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Abstract

Node embeddings are low-dimensional vectors that capture node properties, typically learned
through unsupervised structural similarity objectives or supervised tasks. While recent
efforts have focused on post-hoc explanations for graph models, intrinsic interpretability
in unsupervised node embeddings remains largely underexplored. To bridge this gap, we
introduce DiSeNE (Disentangled and Self-Explainable Node Embedding), a framework
that learns self-explainable node representations in an unsupervised fashion. By leveraging
disentangled representation learning, DiSeNE ensures that each embedding dimension corre-
sponds to a distinct topological substructure of the graph, thus offering clear, dimension-wise
interpretability. We introduce new objective functions grounded in principled desiderata,
jointly optimizing for structural fidelity, disentanglement, and human interpretability. Ad-
ditionally, we propose several new metrics to evaluate representation quality and human
interpretability. Extensive experiments on multiple benchmark datasets demonstrate that
DiSeNE not only preserves the underlying graph structure but also provides transparent,
human-understandable explanations for each embedding dimension.

1 Introduction

Self-supervised and unsupervised node representation learning (Hamilton, 2020) provide a powerful toolkit
for extracting meaningful insights from complex networks, making them essential in modern AI and machine
learning applications for network analysis (Ding et al., 2024). These methods offer flexible and efficient
ways to analyze high-dimensional networks by transforming them into low-dimensional vector spaces. This
transformation enables dimensionality reduction, automatic feature extraction, and the deployment of standard
machine learning algorithms for tasks such as node classification, clustering, and link prediction (Khosla et al.,
2021). Moreover, unsupervised node representations, or embeddings, enable visualization of complex networks
and can be transferred across similar networks, enhancing understanding and predictive power in fields
ranging from social networks to biological systems. Despite their widespread utility, these approaches often
face substantial challenges in terms of interpretability, typically relying on complex and post-hoc techniques
to understand the latent information encoded within the embeddings (Piaggesi et al., 2024; Idahl et al., 2019;
Gogoglou et al., 2019). This limitation raises a critical question: What information do these embeddings
encode?

Despite a large body of research on explainable GNN models, embedding methods–the fundamental building
blocks of graph-based systems–have received comparatively little attention. Most existing attempts to
explain embeddings are predominantly post-hoc (Piaggesi et al., 2024; Gogoglou et al., 2019; Khoshraftar
et al., 2021; Dalmia et al., 2018) and heavily dependent on the specific embedding techniques used. Some
approaches (Piaggesi et al., 2024) extend methods from the post-processing of word embeddings (Subramanian
et al., 2018; Chen & Zaki, 2017) by minimizing reconstruction errors through over-complete auto-encoders to
improve sparsity. Other works (Gogoglou et al., 2019; Khoshraftar et al., 2021; Dalmia et al., 2018) focus
solely on extracting meaningful explanations, without addressing the underlying embedding learning process.

We propose DiSeNE (Disentangled and Self-Explainable Node Embedding), a framework that addresses
the interpretability gap in unsupervised node embeddings by generating inherently self-explainable node

1



Under review as submission to TMLR

Figure 1: DiSeNE generates
dimension-wise disentangled repre-
sentations in which each embedding
dimension is mapped to a mesoscale
substructure in the input graph.
The vector represents the embed-
ding for the node marked in blue
and the bars depict feature values.

Figure 2: The overlap in dimension
explanations aligns with the cor-
relation between the node feature
values for those dimensions. The
dimension referenced by the blue
subgraph shows a stronger correla-
tion with the red dimensions and
a lower correlation with the green
dimension.

Figure 3: The node feature value
indicates its proximity to the ex-
planation substructure mapped to
the corresponding dimension. The
black node has a higher value for
the dimension corresponding to the
green subgraph (since it is 1 hop
away) than for the dimension cor-
responding to the red subgraph (3
hops away).

representations. In our approach, "self-explainable" means that each embedding dimension corresponds to a
distinct subgraph that globally explains the structural information encoded within that dimension. These
dimensional subgraphs highlight human-comprehensible functional components of the input graph, providing
clear and meaningful insights. DiSeNE leverages disentangled representation learning, an approach that
encodes latent variables corresponding to distinct factors of variation in the data (Wang et al., 2024), to
produce node embeddings that are interpretable on a per-dimension basis.

In graph data, node behaviour is strongly influenced by mesoscale structures such as communities, which shape
the network’s organization and drive dynamics (Barrat et al., 2008). By leveraging disentangled representation
learning, we capture these "topological" substructures more effectively, with each embedding dimension
reflecting an independent graph unit (see Figure 1). We achieve this through a novel objective function
that ensures structural disentanglement. Specifically, we optimize the embeddings so that each dimension is
predictive of a unique substructure in the input graph. To avoid degenerate solutions, we incorporate an
entropy-based regularizer that ensures the resulting substructures are non-empty and informative.

Our paradigm represents a shift in the language of explanations compared to the ones often considered when
dealing with GNNs (Yuan et al., 2023). Explainability for GNNs often involves understanding which parts of
the local computation graph (nodes, edges) and node attributes significantly influence the model’s predictions
(Funke et al., 2023; Ying et al., 2019; Schnake et al., 2022). On the other hand, the explanations that we
aim to discover are inherently non-local, since they could involve mesoscale structures such as node clusters
(Piaggesi et al., 2024), usually not included in the GNN computational graph.

We provide a comprehensive evaluation of the embeddings and uncover novel insights by proposing several new
metrics that capture the interplay between disentanglement and explainability (see Section 3.3 for details).
For instance, our overlap consistency metric (illustrated in Figure 2) shows that the overlap of the topological
substructures used as explanations matches the correlation among the corresponding embedding dimensions,
providing insights into the interdependencies among node characteristics within the graph. Moreover, we
attribute meaning to the embedding values by showing that the magnitude of a node’s entry in a specific
dimension correlates with its proximity (as depicted in Figure 3) to the topological subgraphs associated
with that dimension. This relationship enhances our understanding of the relative positioning of nodes with
respect to different graph components, thereby enhancing spatial awareness of the graph structure.

Contributions are summarized as follows: (i) we formalize new and essential criteria for achieving disen-
tangled and explainable node representations, offering a fresh perspective on interpretability in unsupervised
graph-based learning; (ii) we introduce novel evaluation metrics to help quantifying the goodness of node
representation learning in disentangled and explainable settings (iii) we perform extensive experimental
analyses on synthetic and real-world data to establish state-of-the-art results in self-explainable node feature
learning. We release our code and data anonymously at this link.
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2 Preliminaries and Related Work

Given an undirected graph G = (V, E), node embeddings are obtained through an encoding function
h : V → RK that maps each node to a point in a K−dimensional vector space RK , where typically D << |V|.
We denote the K-dimensional embedding of a node v ∈ V as h(v) = [h1(v), . . . , hK(v)], where hd(v) represents
the value of the d-th feature of the embedding for node v. Alternatively, we can represent all node embeddings
collectively as a matrix H(G) ∈ RV ×K , where each entry Hvd = hd(v) corresponds to the d-th feature for
node v. We can also refer to columns of such matrix, H:,d, as the dimensions of the embedding model space.

Node embeddings interpretability. Node embeddings are shallow encoding techniques, often based on
matrix factorization or random walks (Qiu et al., 2018). Since the latent dimensions in these models are
not aligned with high-level semantics (Senel et al., 2018; Prouteau et al., 2022), interpreting embeddings
typically involves post-hoc explanations of their latent features (Gogoglou et al., 2019; Khoshraftar et al.,
2021). Other works propose alternative methods to modify existing node embeddings, making them easier to
explain with human-understandable graph features (Piaggesi et al., 2024; Shafi et al., 2024). From a different
viewpoint, Shakespeare & Roth (2024) explore how understandable are the embedded distances between
nodes. Similarly, Dalmia et al. (2018) investigate whether specific topological features are predictable, and
then encoded, in node representations.

Graph neural networks interpretability. Graph Neural Networks (GNNs) (Wu et al., 2021) are deep
models that operate via complex feature transformations and message passing. In recent years, GNNs
have gained significant research attention, also in addressing the opaque decision-making process. Several
approaches have been proposed to explain GNN decision process (Yuan et al., 2023), including perturbation
approaches (Ying et al., 2019; Yuan et al., 2021; Funke et al., 2023), surrogate model-based methods (Vu &
Thai, 2020; Huang et al., 2023), and gradients-based methods (Pope et al., 2019; Sánchez-Lengeling et al.,
2020). In parallel, alternative research directions focused on concept-based explanations, i.e. high-level units
of information that further facilitate human understandability (Magister et al., 2021; Xuanyuan et al., 2023).

Disentangled learning on graphs. Disentangled representation learning seeks to uncover and isolate
the fundamental explanatory factors within data (Wang et al., 2024). In recent years, these techniques have
gained traction for graph-structured data (Liu et al., 2020; Li et al., 2021; Yang et al., 2020; Fan & Gao, 2024).
For instance, FactorGCN (Yang et al., 2020) disentangles an input graph into multiple factorized graphs,
resulting in distinct disentangled feature spaces that are aggregated afterwards. IPGDN (Liu et al., 2020)
proposes a disentanglement using a neighborhood routing mechanism, enforcing independence between the
latent representations as a regularization term for GNN outputs. Meanwhile, DGCL (Li et al., 2021) focuses
on learning disentangled graph-level representations through self-supervision, ensuring that the factorized
components capture expressive information from distinct latent factors independently.

3 Our Proposed Framework: DiSeNE

In this section, we begin by outlining the key desiderata for achieving disentangled and self-explainable node
representations. Next, we design a novel framework that meets these objectives by ensuring that the learned
node representations are both disentangled and interpretable. Finally, we introduce new evaluation metrics
to effectively assess the quality of node representation learning in both disentangled and explainable settings.

3.1 Core Objectives and Desiderata

In the context of unsupervised graph representation learning, we argue that learning self-explainable node
embeddings amounts to reconstructing the input graph in a human-interpretable fashion. Traditionally, dot-
product models based on NMF (Yang & Leskovec, 2013) and LPCA (Chanpuriya et al., 2023) decompose the
set of graph nodes into clusters, where each entry of the node embedding vector represents the strength of the
participation of the node to a cluster. In this scenario, the dot-product of node embeddings becomes intuitively
understandable, as it reflects the extent of shared community memberships between nodes, thereby providing
a clear interpretation of edge likelihoods. This concept is also related to distance encoding methods (Li et al.,
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2020; Klemmer et al., 2023), where a node feature hd(u) is expressed as a function of the node’s proximity
ζ(u,Sd) = AGG({ζ(u, v), v ∈ Sd}) to the anchor set Sd ⊂ V, using specific aggregation functions AGG.
Typically, distance encodings are constructed by randomly sampling anchor sets (You et al., 2019), and used
as augmented node features to enhance expressiveness and improve performance on downstream tasks.

Inspired by this idea, our goal is to optimize unsupervised node embeddings encoded by a GNN function
h : V → RK trained on the graph G = (V, E), such that node features resemble non-random, structurally
meaningful anchor sets, thus improving human-interpretability. To achieve this, we propose three key
desiderata for learning general-purpose node representations: (i) connectivity preservation, (ii) dimensional
interpretability, and (iii) structural disentanglement. These desiderata serve as the foundational components
of our approach, as detailed below.

Connectivity preservation. Ideally, node embeddings are constructed so that the geometric relationships
in the low-dimensional space mirror the connectivity patterns of the original graph. Nodes with greater
similarity in the network should be placed close to each other in the embedding space, and viceversa. To
implement the approach, we train the node embedding function in recovering the graph structure. We employ
a random walk optimization framework based on the skip-gram model with negative sampling (Huang et al.,
2021). The loss function for this framework is defined as:

Lrw = −
∑

(u,v)∼Prw

log σ
(
h(u)⊤h(v)

)
−

∑
(u′,v)∼Pn

log σ
(
− h(u′)⊤h(v)

)
,

where σ(·) is the sigmoid function, Prw is the distribution of node pairs co-occurring on simulated random
walks (positive samples), Pn is a distribution over randomly sampled node pairs (negative samples), and
h(u)⊤h(v) represents the dot product between the embeddings of nodes u and v. By optimizing this loss
function, we encourage nodes that co-occur in random walks to have similar embeddings, effectively preserving
the graph’s structural information in the embedding space.

Dimensional interpretability. Embedding representations are multi-dimensional, with specific latent
factors contributing in representing each dimension (e.g., social similarity, functional proximity, shared
interests). A given edge between u and v may rely more heavily on certain dimensions. This perspective
shows how local relationships (edges) are directly informed by the global structure of the embeddings, with
each dimension contributing uniquely to reconstructing particular relationships. Given structure-preserving
embeddings, meaning they effectively encode the input structure, we should be able to interpret each embedding
dimension in terms of the graph’s topological structure. Specifically, our framework attributes "responsibility"
for reconstructing a local relationship (an edge) to specific dimensions, based on their contribution to the
edge likelihood or the probability of reconstructing that edge through the embeddings. We achieve this by
assigning local subgraphs to different latent dimensions. Consider the likelihood of an edge (u, v), defined as
ŷ(u, v; h) = σ

(∑K
d=1 hd(u)hd(v)

)
. To understand how each dimension d contributes to this likelihood, we

compute the edge-wise dimension importance ϕd(u, v; h) as the deviation of the dimension-specific contribution
from its average over all edges:

ϕd(u, v; h) = hd(u)hd(v)− 1
|E|

∑
(u′,v′)∈E

hd(u′)hd(v′). (1)

Since the dot-product is a linear function
∑K

d=1 αdhd(u)hd(v) + β with unitary coefficients αd ≡ 1 and zero
intercept β ≡ 0, Eq. (1) corresponds to the formulation of LinearSHAP attribution scores (Lundberg &
Lee, 2017), using the set of training edges as the background dataset. Essentially, the attribution function
ϕd(u, v; h) indicates whether a specific dimension d contributes positively to an edge’s likelihood. A positive
attribution score means that the dimension increases the likelihood of predicting the edge.

Each dimension contributes to reconstructing specific edges or substructures, and together, these contributions
create a unified representation of the entire graph. Thus, the global nature of embeddings emerges as a direct
consequence of their contributions to local relationships. From this observation, we generate dimension-wise
(global) explanations for the latent embedding model by collecting edge subsets with positive contributions:

Ed = {(u, v) ∈ E : ϕd(u, v; h) > 0}. (2)
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These self-explanations take the form of global edge masks M(d) ∈ R|V|×|V|
≥0 , where each entry is defined as

M
(d)
uv (ϕd; h) = max{0, ϕd(u, v; h)}. By applying these masks to the adjacency matrix A through Hadamard

product (⊙), we obtain A(d) = A ⊙M(d). Each masked adjacency matrix A(d) highlights the subgraph
associated with dimension d. From these masked adjacency matrices, we construct edge-induced subgraphs
Gd = (Vd, Ed), where Vd is the set of nodes involved in edges Ed. These subgraphs act as anchor sets
for the model, providing interpretable representations of how each embedding dimension relates to specific
structural patterns within the graph. We will refer to edge-induced subgraphs computed as the aforementioned
procedure (pseudo-code in Appendix E) as explanation subgraphs/substructures or topological components of
the embedding model.

Structural disentanglement. To enhance the effectiveness of dimensionally interpretable encodings, each
dimension of the latent space should encode an independent structure of the input graph, effectively acting as
an anchor subgraph. Inspired by community-affiliation models (Yang & Leskovec, 2013; 2012), we introduce
a node affiliation matrix F ∈ R|V|×K that captures the association between each node u ∈ V and anchor
subgraph Gd = (Vd, Ed). Specifically, each entry Fud is proportional to the magnitude of predicted meaningful
connections between node u and other nodes in Gd, expressed using the per-dimension attribution scores from
Eq. (1): Fud(h) =

∑
v∈Vd

ϕd(u, v; h). This aggregates the contributions of dimension d to the likelihood of
edges involving node u. To achieve structure-aware disentanglement, we enforce soft-orthogonality among the
columns of the affiliation matrix1. This ensures that different embedding dimensions capture independent
structures, leading to nearly non-overlapping sets of predicted links for each dimension. We express the
columns of the affiliation matrix as F:,d and obtain the disentanglement loss function as:

Ldis =
K∑

d=1

K∑
l=1

[cos (F:,d, F:,l)− δd,l] (3)

where cos (F:,d, F:,l) denotes the cosine similarity between the d-th and the l-th columns of F, and and δd,l

is the Kronecker delta function (1 if d = l , 0 otherwise). This objective penalizes correlation between the
edge importance attribution scores of different dimensions. By reducing redundancy, we ensure that each
dimension contributes uniquely to the reconstruction of a small set of edges, promoting interpretability. This
approach enables us to obtain disentangled representations (Wang et al., 2024), where embedding dimensions
correspond to orthogonal latent factors of the input graph. Although higher-order disentanglement is possible
(e.g., with groups of dimensions), we focus on single-feature disentanglement for achieving dimension-wise
interpretability.

3.2 Our Approach: DiSeNE

Building upon the above components, introduced to satisfy our desiderata for interpretable node embeddings,
we present our approach, DiSeNE. Specifically, DiSeNE takes as input identity matrix 1|V|×|V| as node
attributes and, depending on the encoder architecture, also the adjacency matrix A ∈ R|V|×|V|. The input
is encoded into an intermediate embedding layer Z ∈ R|V|×D. Next, DiSeNE processes the embedding
matrix Z to compute the likelihood of link formation between node pairs, given by ŷ(u, v; h) = σ(h(u)⊤h(v))
where h(v) = ρ(W⊤z(v)) are the final node representations in H ∈ R|V|×K , obtained by applying a
linear transformation W ∈ RD×K followed by a non-linear activation function ρ. To encode z, we employ
architectures incorporating fully connected layers and graph convolutional layers (Wu et al., 2019). This
process can be further enhanced by integrating more complex message-passing mechanisms or MLP operations.
For example, the message-passing could initiate from an MLP-transformed node attribute matrix, MLP(X),
or incorporate more sophisticated architectures beyond simple graph convolutions for increased expressiveness
(Xu et al., 2019; Velickovic et al., 2017).

The embeddings are optimized by combining the previously described objective functions for preserving struc-
tural faithfulness and achieving structural disentanglement, thereby improving dimensional interpretability.

1Note that Fud(h) ≡
∑

v∈V hd(u)hd(v)− |V|
|E|
∑

(u′,v′)∈E hd(u′)hd(v′) and assuming |V| << |E|, the second term becomes
negligible, allowing us to approximate Fud(h) and reduce computational costs.
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To avoid degenerate disentanglement solutions we introduce a regularization strategy. Specifically, we aim
avoiding the emergence of “empty” clusters characterized by near-zero columns in F that, while orthogonal
to others, fail to convey meaningful information. This regularization ensures a minimal but significant
level of connectivity within each topological substructure. Specifically, we enforce that the total amount of
contributions to predicted edges in each anchor subgraph Gk,

∑
u,v∈V ϕk(u, v; h), to be non-zero. We found a

more stable and precise approach by enforcing that the aggregated node features of each embedding dimension
are non-zero, achieved by maximizing the entropy: H = −

∑K
d=1

( ∑
u

hd(u)
||
∑

u
h(u)||1

)
log
( ∑

u
hd(u)

||
∑

u
h(u)||1

)
. Thus,

the model is optimized by minimizing the following comprehensive loss function:

L = Lrw + Ldis + λent

(
1− H

log K

)
The hyperparameter λent determines the strength of the regularization, controlling the stability for explanation
subgraph sizes across the various latent dimensions. We report the pseudo-code of DiSeNE in Appendix B,
along with a space-time complexity analysis, showing that our method has O(|E|K + |V|K2 + |V|KTL)
runtime complexity and O(|V|K + |V|L) space complexity (T refers to the window size, L to simulated walks
length), which is in line with well-established techniques for node embeddings (Tsitsulin et al., 2021). Our
approach deviates from typical GNNs by focusing solely on learning from graph topology, as node attributes
may not always align with structural information (e.g., in cases of heterophily (Zhu et al., 2024)). While
semantic features can be integrated in various ways (Tan et al., 2024), we chose a more straightforward,
broadly applicable method. Our node embeddings produce interpretable structural features h(u), which
can be concatenated with node semantic attributes x(u), enabling transparent feature sets for effective
explanations in downstream tasks via post-hoc tabular techniques.

3.3 Proposed Evaluation Metrics

In the following, we present novel metrics to quantify interpretability and disentanglement in unsupervised
node embeddings, which we use to compare models in our experiments. Unlike prior works, which primarily
focus on explaining graph model decisions, our approach offers a novel perspective by targeting the explanation
of graph model encodings. Traditional graph-based explainers focus on interpreting GNN model decisions for
specific tasks, highlighting subgraphs or motifs responsible for the predictions (Longa et al., 2025; Li et al.,
2025). In contrast, our objective is to assess the interpretability of GNN models in a task-agnostic setting,
by evaluating explanatory subgraphs derived from node embedding dimensions that are learned without
supervision. In the next, we define our comprehensive vocabulary of evaluation metrics. While alternative
taxonomies exist in the literature, we propose a consistent framework highlighting similarities and differences
between our indicators and other established metrics in the field of graph-based explainability (Yuan et al.,
2023; Kakkad et al., 2023).

Comprehensibility. Comprehensibility measures how well the explanations of embedding dimensions align
with human-interpretable graph structures. Given their importance in the organization of complex real-world
systems (Girvan & Newman, 2002; Hric et al., 2014), community modules (or clusters) are often the most
intuitive units for understanding a graph. We evaluate comprehensibility by handling edges in explanation
masks {M(d)}d=1,...,K as retrieved items from a query, and measuring their overlap with the edges in the
ground-truth communities using precision, recall, and F1-score. Let C(E) = {C(1), . . . , C(m)} denotes the set of
truthful link communities of the input graph2. Associated to partition C(i), we define ground-truth edge masks
C(i) ∈ {0, 1}V ×V with binary entries C

(i)
uv = ⊮[(u, v) ∈ C(i)]. For a given mask M(d), comprehensibility score is

given by the maximum edge overlap (as F1-score) of the explanation substructure computed across community
structures in C(E), quantifying how closely the explanation match human-understandable ground-truth:

Comp(M(d)) = maxi

{
F1(M(d), C(i))

}
= maxi

{
2

prec(M(d), C(i))−1 + rec(M(d), C(i))−1

}
(4)

2Synthetic graphs can be constructed with ground-truth relevant sub-structures (like BA-Shapes (Ying et al., 2019) or SBM
graphs). In real-world graphs, it is usually reasonable to assume that the community structure (Fortunato, 2010) can serve as
ground-truth.
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For precision, we weigh relevant item scores with normalized embedding masks values: prec(M(d), C(i)) =∑
u,v

M(d)
uv C(i)

uv∑
u,v

M
(d)
uv

. For recall, we weigh binarized embedding masks values with normalized ground-truth scores3:

rec(M(d), C(i)) =
∑

u,v
⊮[M(d)

uv >0]C(i)
uv

|C(i)| . This approach is similar to the accuracy assessment used in GNNEx-
plainer and subsequent works (Ying et al., 2019; Luo et al., 2020), where explanations for model decisions are
compared to planted graph substructures, perceived as human-readable justifications for a node’s prediction.
However, instead of evaluating individual decisions’ explanations by using synthetic ground-truth motifs,
we perform a global assessment of the unsupervised embedding dimensions by comparing their explanation
subgraphs with a reasonable ground-truth about the graph structure. An analogous evaluation of explanation
correctness which specifically focuses on individual model decisions will be provided later by the plausibility
metric.

Sparsity. We refer to sparsity as a measure of the localization of subgraph explanations, it is generally
defined as the ratio of the number of bits needed to encode an explanation compared to those required to
encode the input (Pope et al., 2019; Funke et al., 2023). As we produce soft masks, we use entropy for this
quantification. Given that compact explanations are more effective in delivering clear insights, we evaluate
sparsity by measuring the normalized Shannon entropy over the mask distribution:

Sp(M(d)) = − 1
log |E|

∑
(u,v)∈E

(
M

(d)
uv∑

u′,v′ M
(d)
u′v′

)
log
(

M
(d)
uv∑

u′,v′ M
(d)
u′v′

)
. (5)

A lower entropy in the mask distribution indicates higher sparsity/compactness. Motivation for using entropy
for explanation size quantification can be found in one of the existing works (Funke et al., 2023).

Overlap Consistency. This metric assesses whether the correlation between two embedding dimensions is
mirrored in their corresponding explanations. A well-structured, disentangled latent space should correspond
to distinct, uncorrelated topological structures. For example, if two embedding dimensions are correlated,
their explanation substructures should also overlap. In our context, this a proxy measure for explanation’s
contrastivity (Wang et al., 2023; Pope et al., 2019), based on the intuition that explanations for unrelated
dimensions should differ substantially—particularly in the specific substructures they highlight. We aim to
quantify how different topological components affect pairwise feature correlations in the latent space. To
achieve this, we propose a metric that measures the strength of association between the physical overlap
of the explanation substructures {Gd} and the correlation among corresponding latent dimensions {H:,d}.
We compute the overlap between two subgraph components using the Jaccard similarity index of their edge
sets from Eq. (2): J(d, l; h) = |Ed∩El|

|Ed∪El| . The overlap consistency (OvC) metric measures the linear correlation
between pairwise Jaccard values and squared Pearson correlation coefficients (ρ2) of the embedding features:

OvC(h) = ρ
(

[J(d, l; h)]d<l, [ρ2(H:,d, H:,l)]d<l

)
(6)

where [∗]d<l denotes the condensed list of pair-wise similarities. By using ρ2 we remain agnostic about the
sign of the correlation among latent features, since high overlaps could originate from both cases.

Positional Coherence. This metric evaluates whether the feature value of a node representation in
a specific embedding dimension corresponds to its spatial relationship with the explanation substructure
for that dimension. In fact, an effective representation should preserve meaningful spatial properties that
reflect node proximity and connectivity patterns. In our context, this is a proxy measure for explanation’s
faithfulness (Zhao et al., 2023b), reflecting how well the dimension-based structures align with the embeddings
they are intended to explain. To achieve this, we propose to measure the extent to which node entries
reflect their relative positions with the subgraphs used as explanations. For example, if node u has a high
value in embedding dimension d, it should be positioned closer to the substructure that explains dimension

3For the precision, we normalize with the sum of scores because they are continuous. For recall, we use the cardinality in
place of the sum because the ground-truth has binary scores.
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d. Typically, positional encoding (Rampásek et al., 2022; Li et al., 2020; You et al., 2019) involves the
use of several sets of node anchors Sd ⊂ V that establish an intrinsic coordinate system. This system
influences the node u’s features based on the node’s proximity ζ(u,Sd) = AGG({ζ(u, v), v ∈ Sd}), where
AGG denotes a specific pooling operation. As node proximity, we used the inverse of the shortest path
distance ζspd(u, v) ≡ (1 + dspd(u, v))−1. As the anchor sets, we chose the embedding substructures used
for explanations, Sd ≡ Vd. For a specified pair of dimensions (d, l), we assess the correlation between node
features along dimension d and the corresponding distances to the topological component indexed by l via
feature-proximity correlation: fpcorr(d, l; h) = ρ

([
ζspd(u,Vd)

]
u∈V , H:,l

)
. The positional coherence metric

(PoC) is defined to specifically evaluate the degree to which each feature d is uniquely correlated with its
corresponding topological component Vd, without being significantly influenced by correlations with other
substructures. This metric is calculated as the ratio of the average fpcorr for the given dimensions to the
average fpcorr computed with pairs of permuted dimensions:

PoC(h) =
∑

d fpcorr(d, d; h)〈∑
d fpcorr(d, π(d); h)

〉
π

(7)

where ⟨.⟩π denotes an empirical average over multiple permutations. By comparing with random feature-
subgraph pairs, the metric avoid promoting models with redundancies in the latent features, where high
correlations with other topological components are possible.

classifier 
prediction Yes No

feature 
explanation

ground-truth 
explanation

Plausibility

Figure 4: Sketch of Plausibility met-
ric computation. High plausibility
scores indicate that the dimensions
deemed more comprehensible also re-
ceived higher importance scores from
the post-hoc attribution technique.

Plausibility. Plausibility evaluates how closely subgraph explana-
tions align with human reasoning, a concept also studied in existing
works like Bagel (Rathee et al., 2022). Unlike comprehensibility,
which measures the alignment of explanation substructures with
community clusters in the graph (independent of task-specific infor-
mation), plausibility focuses on explanations for decisions made in
downstream tasks, using the embedding features as predictor vari-
ables. To this end, relying on feature-based post-hoc explanation
methods (Lundberg & Lee, 2017; Ribeiro et al., 2016), we construct
instance-specific explanations to determine feature importance scores
related to the topological structures. Typical feature importance
explainers (Bodria et al., 2023) are useless in this context because
node embeddings have inherently uninterpretable features, leading to
uninformative explanations. Our approach overcomes this limitation
by mapping explanations back to the graph’s structural components,
that are human-readable. We detail the procedure for link prediction
here (see also Figure 4), but we also report the methodology for node
classification in Appendix D. The process involves three key steps.

(1) Training a downstream classifier. We train a binaryclassifier b : RK → [0, 1] to perform the downstream link
prediction task using node embeddings. This classification model can either leverage feature interpretability
techniques, such as SHAP (Lundberg & Lee, 2017), or being inherently interpretable, such as logistic
regression.
(2) Extracting post-hoc explanations. For an edge instance h(u, v) (which could be derived from node-
pair operations such as h(u)⊙ h(v)), we employ post-hoc methods to determine the feature relevance for
the classifier prediction on the node pair instance (u, v), {Ψj(u, v; b)}j=1,...,K for each of the embedding
dimensions. Similarly to Eq. (1) which defines task-agnostic masks, here we calculate task-specific masks
B(j) ∈ RV ×V

≥0 which aggregate the logic of the classifier based on individual feature importance: B
(j)
uv (Ψj ; b) =

max{0, Ψj(u, v; b)}. Substructures corresponding to the most important features (identified by the post-hoc
techniques), or the explanations directly returned by the interpretable model serve as the final explanations.
(3) Evaluation. Explanations are then compared with the available human rationale behind the decisions.
To do that, we resort the F1-score in Eq. (4) with respect to the ground-truth structure of the edge under
study, indexed by g(u, v), that it is known has driven the classifier decision. Specifically, we define plausibility
for an individual prediction b(u, v) as the average F1-accuracy relative to the ground-truth structure for the
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instance, weighted by the computed feature importance:

Pℓ(u, v; b) =
∑K

j=1 f(Ψj(u, v; b))F1(B(j), Cg(u,v))∑K
j=1 f(Ψj(u, v; b))

(8)

where f is a function guaranteeing the non-negativity of relevance weights. This ensures that only the
features that are both interpretable and significant to the local prediction contribute substantially to the
score, penalizing instead those important features that are not human-comprehensible.

It is worth to note that although our measure is similar to the accuracy index used to assess correctness
of explanation subgraphs (Ying et al., 2019), we refer to it as "plausibility." This is because, despite their
competitive classification performance, typical embedding representations may fail to capture the truthful
substructures in the most task-predictive features, as they are not constrained to follow human reasoning.
Thus, with plausibility, we aim to understand when predictive embedding features are also congruent to
human rationales. The choice of the weighting function f is case-specific and tailored to the objective of the
analysis. For example, choosing f as indicator function such that f(Ψj) = ⊮[j = argmax{Ψ1, . . . ΨK}] allows
to study the plausibility of the most predictive substructure.

4 Experiments

We conduct extensive experiments to answer the following research questions:

(RQ1) Human understandability: How comprehensible and sparse are the explanation substructures
generated by DiSeNE?
(RQ2) Structural disentanglement: Do the disentangled subgraphs reveal intrinsic properties of node
embeddings, like feature correlations and latent positions?
(RQ3) Utility for downstream tasks: Are the identified substructures plausible and coherent enough to
serve as explanations in downstream tasks?

To address our research questions, we extract topological components from multiple embedding methods,
trained on different graph data, by computing edge subsets defined in Eq. (2), and analyzing embedding
metrics defined in Section 3.3. In the following, we describe the data, models, experimental setup, and results.

4.1 Datasets and Competitors

Datasets. We ran experiments on four real-world datasets (Cora, Wiki, FaceBook, PPI), and six
synthetic datasets (Ring-of-Cliques, SBM, BA-Cliques, ER-Cliques, Tree-Cliques and Tree-Grids)
with planted subgraphs, which serve as ground-truth human rationales for explaining specific node labels.
Statistics for these datasets are provided in Table A1 in the Appendix. Additionally we employ several
biological datasets (see Appendix C) for the evaluation on multi-label node classification). BA-Cliques and
ER-Cliques are variations of the BA-Shapes (Ying et al., 2019) where we randomly attach cliques, instead
of house motifs, to Barabási-Albert and Erdős-Rényi random graphs. Tree-Cliques and Tree-Grids (Ying
et al., 2019) are composed of a 8-level balanced tree, with cliques and 3x3 grid motifs respectively. Ring-
Cliques and SBM (Abbe, 2017) are implemented in NetworkX4. For synthetic data, we present only results
for plausibility metrics, leaving the other findings in the Appendix E.

Methods. We compare with different node embedding methods in producing explainable feature dimensions.
Competitors include shallow encoders DeepWalk (Perozzi et al., 2014), InfWalk (Chanpuriya & Musco,
2020), and deep graph models Graph Autoencoder (GraphAE) (Salha et al., 2020), GraphSAGE (Hamilton
et al., 2017). We also apply the Dine retrofitting approach (Piaggesi et al., 2024) to post-process embeddings
from DeepWalk and GraphAE. Moreover, we compare with graph-based local explanation methods
GNNExplainer (Ying et al., 2019) and PGExplainer (Luo et al., 2020). Post-hoc explainers are applied to
the output of different GNN models for node classification: GCN (Wu et al., 2019), GraphSAGE (Hamilton
et al., 2017), and GATv2 (Brody et al., 2022). We evaluate our method DiSeNE in two variants: a 1-layer

4https://networkx.org/documentation/stable/reference/generators.html
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Table 1: Comprehensibility and sparsity in real data. Best scores in bold, second best underlined.

Method Comprehensibility Sparsity
Cora Wiki FB PPI Cora Wiki FB PPI

DeepWalk .363±.003 .356±.002 .602±.004 .281±.002 .183±.001 .165±.002 .130±.004 .136±.003
GraphAE .299±.001 .248±.002 .481±.014 .263±.003 .182±.002 .164±.004 .154±.003 .135±.003
InfWalk .281±.002 .288±.001 .658±.006 .312±.002 .211±.003 .185±.002 .318±.010 .177±.002
GraphSAGE .358±.004 .307±.007 .583±.003 .306±.005 .189±.001 .189±.003 .145±.002 .172±.001
DW+Dine .511±.051 .496±.014 .813±.025 .569±.022 .317±.036 .266±.007 .226±.009 .188±.002
GAE+Dine .569±.004 .591±.004 .843±.005 .484±.007 .290±.001 .252±.001 .195±.002 .198±.002

DiSe-FCAE .822±.001 .755±.003 .971±.001 .484±.001 .504±.001 .419±.001 .297±.002 .282±.001
DiSe-GAE .834±.003 .762±.004 .967±.001 .515±.001 .496±.001 .418±.001 .304±.003 .254±.002

fully-connected encoder (DiSe-FCAE) and a 1-layer convolutional encoder (DiSe-GAE). GNN-based methods
are trained using the identity matrix as node features. Specific training settings are provided in Appendix A.

Setup. In experiments on real-world graphs, we investigate latent space interpretability and disentanglement
metrics by keeping the output embedding dimension fixed at 128. This dimensionality was chosen to ensure
that all methods achieve optimal performance in terms of test accuracy, specifically for link prediction (see
the Appendix C for extensive downstream task results). For synthetic data, since we investigated plausibility
metric referred to a downstream classifier, thus we did not focus on a specific dimension but we selected the
best score metric varying the output dimensions in the list [2, 4, 8, 16, 32, 64, 128]. Each reported result is an
average over 5 runs. For link prediction, we use a 90%/10% train/test split, and for node classification, we
use an 80%/20% split. All results refer to the training set, except for downstream task experiments, where
we present results for the test set.

4.2 Results and Discussion

(RQ1) Are the topological substructures both comprehensible and sparse to support human
understandability? Here we explore how well the represented topological structures can serve as global
explanations for node embeddings, quantifying the Comprehensibility in the terms of associations between
model parameters and human-understandable units of the input graph, as well as the Sparsity of these
associations. For comprehensibility, we apply modularity maximization to find meaningful clusters (Blondel
et al., 2023). In Table 1 we show compact scores as the average values 1

K

∑K
d=1 Comp(Md) and 1 −

1
K

∑K
d=1 Sp(Md) over all the embedding features. Since for sparsity we report the value subtracted from 1,

all the scores present better results with higher values.
DeepWalk and InfWalk show moderate performance in Comprehensibility, excelling slightly on FB
but underperforming on PPI, while GraphAE consistently lags behind, particularly on Wiki and PPI.
GraphSAGE shows good comprehensibility across Cora and FB. Incorporating DINE improves results,
especially for GAE+Dine, which achieves improved scores on all datasets. The proposed models, DiSe-FCAE
and DiSe-GAE, deliver the highest overall performance. DiSe-FCAE performs well on FB, while DiSe-GAE
excels across Cora and Wiki. However, both models show sub-optimal results on PPI, suggesting potential
for further improvement on this dataset.
DeepWalk and GraphAE offer moderate Sparsity, peaking on Cora, but underperform on other datasets.
InfWalk excels on FB but shows moderate results elsewhere, while GraphSAGE performs poorly in
terms of sparsity across all datasets. DeepWalk and GAE significantly improve their sparsity with Dine,
particularly on Cora. For the proposed models, DiSe-FCAE performs best across datasets Cora, Wiki and
PPI. Meanwhile, DiSe-GAE obtains the highest value on FB.

(RQ2) Can the identified subgraphs explain the intrinsic characteristics of the node embeddings?
Here we explore how well the defined topological units represent information in the node embedding space,
providing insights into how the relative and absolute positioning of topological structures influences the
feature encoding within a graph. By quantifying these relationships, we can better understand the underlying
patterns and structural information encoded in graph embeddings. In Table 2 we report Positional Coherence
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Table 2: Overlap consistency and positional coherence in real data. Best scores in bold, second best underlined.

Method Overlap Consistency Positional Coherence
Cora Wiki FB PPI Cora Wiki FB PPI

DeepWalk .137±.009 .143±.006 .115±.007 .015±.003 1.078±0.025 0.835±0.025 1.119±0.015 1.009±0.015
GraphAE .269±.002 .295±.004 .273±.017 .452±.008 1.023±0.006 1.040±0.002 1.001±0.013 1.016±0.001
InfWalk .008±.003 .023±.002 .021±.002 .134±.002 1.004±0.011 0.998±0.004 0.938±0.053 0.999±0.002
GraphSAGE .211±.003 .136±.017 .230±.007 .097±.040 1.099±0.012 1.103±0.010 1.005±0.007 1.018±0.002
DW+Dine .900±.012 .804±.032 .851±.017 .855±.016 1.790±0.076 2.126±0.065 1.792±0.058 1.247±0.043
GAE+Dine .560±.010 .610±.006 .801±.016 .646±.003 2.317±0.028 2.551±0.048 1.783±0.037 1.098±0.004

DiSe-FCAE .885±.008 .863±.006 .939±.030 .548±.001 5.210±0.080 3.540±0.082 3.348±0.085 1.283±0.004
DiSe-GAE .853±.007 .811±.008 .889±.007 .887±.004 5.300±0.193 4.343±0.144 3.388±0.054 1.261±0.005

and Overlap Consistency for the examined embedding methods. For the second metric, as node proximity we
used the inverse of the shortest path distance with sum as pooling.
DeepWalk and InfWalk perform poorly for Overlap Consistency, while GraphAE shows moderate
scores, particularly on PPI. GraphSAGE performs slightly worse, with the best overlap consistency on FB
and Cora. DW+Dine achieves strong scores across all datasets, while GAE+Dine performs solidly but
slightly lower, with its best result on FB. The proposed models, DiSe-FCAE and DiSe-GAE, outperform all
others, achieving the highest consistency across all datasets except on Cora. DiSe-FCAE excels on FB and
Wiki, while DiSe-GAE achieves the best overall score on PPI.
DeepWalk, GraphAE, and GraphSAGE demonstrate moderate Positional Coherence. InfWalk
consistently scores around 1.0 on all datasets, indicating stable but unremarkable coherence. Incorporating
DINE leads to substantial improvements for both DeepWalk and GAE, achieving notable gains on Cora,
Wiki and FB. The proposed models, DiSe-FCAE and DiSe-GAE, far outperform other methods, with
DiSe-FCAE achieving top scores on PPI, while DiSe-GAE dominates on Cora, Wiki and FB (though with
higher variance): both models show consistent superiority.

(RQ3) Are the identified latent structures sufficiently meaningful to serve as explanations for
downstream tasks? Node embeddings serve as versatile feature representations suitable for downstream
tasks, though they typically function as "tabular-like" feature vectors without semantic labels for each feature.
This limitation restricts the use of established post-hoc analysis methods (Bodria et al., 2023) like LIME,
SHAP, etc. Our method allows us to link topological substructures with embedding features, thereby assigning
semantic labels to node vectors. Consequently, we are able to explain a downstream classifier trained with
unsupervised embeddings using feature attribution. Our goal is to assess whether the task-important features
align with human understanding by measuring the Plausibility.
In these experiments we consider node classification and link prediction as binary downstream tasks, training
a logistic regression classifier b(x; β) = σ(

∑K
j=1 βjhj(x) + β0), where x is a node/link instance. We use SHAP

(Lundberg & Lee, 2017) to compute the instance-wise feature attribution values {Ψj(x; b)}j=1...K . For node
classification, we consider positive instances as the nodes inside a clique in the synthetic graph. Accordingly,
the ground-truth explanation for a node is the set of nodes within the clique it belongs to. For link prediction,
we focus on test edges that were inside a clique before removal, where the ground-truth explanation is again
the set of edges inside the clique itself. We compute plausibility scores over test instances with correct
predicted label, because local explanations extracted from wrong predictions are not reliable for analyzing
model decisions. We report in Appendix D the corresponding accuracy scores of downstream classifiers.
Table 3 compares Plausibility scores where node features from different embeddings are used to train
downstream predictors. Since typical embeddings exhibit semantic patterns distributed across many di-
mensions (Elhage et al., 2022), here we consider all the contributing dimensions employing a non-negative
weighting function f(∗) = max(0, ∗). This choice prevents bias toward methods that inherently produce
disentangled semantics (e.g., by analyzing only top-ranked dimensions). DeepWalk, GraphAE, and
InfWalk perform modestly, with DeepWalk scoring the highest among these on Ring-Cl and InfWalk
showing relative strength on BA-Cl. GraphSAGE significantly underperforms across all tasks, especially
in node classification. The addition of Dine improves both DeepWalk and GAE. DW+Dine excels with
strong performance on Ring-Cl, SBM, and Tree datasets, while GAE+Dine achieves slightly worst results,
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Table 3: Plausibility for node embeddings in synthetic data. Best scores in bold, second best underlined.

Method Link Prediction Node Classification
Ring-Cl SBM BA-Cl ER-Cl BA-Cl ER-Cl Tr-Cl Tr-Gr

DeepWalk .234±.003 .205±.008 .173±.002 .160±.006 .146±.002 .141±.003 .103±.007 .091±.002
GraphAE .183±.003 .160±.002 .145±.004 .145±.005 .130±.002 .135±.006 .083±.001 .072±.001
InfWalk .224±.005 .181±.005 .218±.007 .212±.008 .129±.002 .141±.004 .097±.002 .093±.004
GraphSAGE .252±.005 .217±.003 .186±.006 .178±.005 .160±.004 .154±.002 .093±.002 .084±.003
DW+Dine .943±.012 .904±.002 .744±.008 .724±.040 .320±.031 .327±.008 .549±.015 .627±.004
GAE+Dine .549±.005 .547±.014 .418±.011 .387±.002 .351±.011 .397±.003 .366±.013 .254±.005

DiSe-FCAE .978±.001 .924±.006 .950±.006 .938±.014 .820±.011 .791±.012 .860±.004 .810±.008
DiSe-GAE .969±.002 .910±.006 .936±.003 .941±.005 .813±.003 .797±.009 .791±.005 .800±.004

Table 4: Plausibility for graph explainers in synthetic data. Best scores in bold, second best underlined.

Node Classif. GnnExplainer PGExplainer DiSeNE
Dataset GCN GSAGE GATv2 GCN GSAGE GATv2 FCAE GAE

BA-Cl .729±.004 .703±.006 .707±.004 .895±.005 .581±.038 .596±.016 .919±.001 .875±.009
ER-Cl .638±.005 .611±.005 .633±.002 .923±.004 .704±.032 .724±.002 .881±.006 .872±.008
Tr-Cl .846±.004 .829±.005 .832±.006 .863±.009 .374±.006 .422±.074 .926±.001 .871±.005
Tr-Gr .847±.005 .833±.004 .832±.003 .573±.003 .641±.045 .765±.039 .889±.006 .898±.001

particularly on node classification tasks, such as in Tr-Gr. Within the proposed models, DiSe-FCAE and
DiSe-GAE consistently achieve the highest scores ranking as the best two methods overall.
In Table 4 we compare Plausibility for state-of-the-art local post-hoc explainers for graphs in node clas-
sification. We emphasize that our approach focuses on explaining model encodings, unlike methods such
as GNNExplainer and PGExplainer, which explain model decisions. These methods present local
explanation in the form of node and/or edge importance, whereas in our method, combined with feature-based
explainer, the explanation format is a vector of feature importance, associated with a subgraph for each
feature. To make a suitable comparison, we consider as the explanation presented by our method the
subgraph associated to the most important embedding feature (according to the logistic classifier). Recalling
Eq. (8), this approach is equivalent to choosing the function f(Ψj) = ⊮[j = argmax{Ψ1, . . . ΨK}] to compute
plausibility index. We observe GNNExplainer has uniform results across different input GNN models,
instead PGExplainer performs best with GCN. DiSe-FCAE and DiSe-GAE outperforms the competitors
in most of the cases, except with GCN+PGExplainer in ER-Cliques. Reported results show that our
method is capable of producing subgraph-based local explanations with comparable, or even better, plausibility
scores than GNNExplainer/PGExplainer. To enhance clarity, Appendix D includes qualitative examples
that visualize the local explanations generated by the different methods.

5 Conclusions

We present DiSeNE, a novel framework for generating self-explainable unsupervised node embeddings. To
build our framework, we design new objective functions that ensure connectivity preservation, dimensional
explainability, and structural disentanglement. Unlike traditional GNN explanation methods that typically
extract a subgraph from a node’s local neighborhood, DiSeNE introduces a paradigm shift by learning node
embeddings where each dimension captures an independent structural feature of the input graph. Additionally,
we propose new metrics to evaluate the human interpretability of explanations, analyze the influence of spatial
structures and node positions on latent features, and apply post-hoc feature attribution methods to derive
task-specific instance-wise explanations. Our results show that interpretable node representations for graphs
can be obtained by disentangling topological substructures across embedding dimensions. Additionally, the
most important node features identified by post-hoc techniques aligns with the true explanation subgraphs.
These findings mark a significant step toward human-centric evaluations of node embeddings, pointing to
critical directions for future work in advancing human-in-the-loop validations in graph feature learning.
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Table A1: Summary statistics of graph-structured data. In empirical data, we restrict our analysis to the
largest connected component of any graph.

Cora Wiki FB PPI Ring-Cl SBM BA-Cl ER-Cl Tr-Cl Tr-Gr

# nodes 2,485 2,357 4,039 3,480 320 320 640 640 831 799
# edges 5,069 11,592 88,234 53,377 1,619 1,957 3,138 4,196 2,081 972
# clusters/motifs 28 18 16 9 32 32 32 32 32 32
density 0.002 0.004 0.011 0.009 0.032 0.038 0.015 0.021 0.006 0.003
clust. coeff. 0.238 0.383 0.606 0.173 0.807 0.561 0.486 0.456 0.360 0.002

Table A2: Summary statistics of graph biological data used for multi-label node classification.

PPI PCG HumLoc EukLoc

# nodes 3,480 3,177 2,552 2,969
# edges 53,377 37,314 15,971 11,130
# labels 121 15 14 22
density 0.009 0.007 0.005 0.003
clust. coeff. 0.173 0.346 0.132 0.150

A Training Settings

For DeepWalk (Perozzi et al., 2014), we train Node2Vec5 algorithm for 5 epochs with the following
parameters: p= 1, q= 1, walk_length= 20, num_walks= 10, window_size= 5.

For InfWalk6 (Chanpuriya & Musco, 2020), a matrix factorization-based method linked to DeepWalk and
spectral graph embeddings, we set the same value window_size= 5 used for DeepWalk.

In GraphAE (Salha et al., 2020), we optimize a 1-layer GCN encoder with a random-walk loss setting
analogous to DeepWalk. The model is trained for 50 iterations using Adam optimizer and learning rate of
0.01.

In GraphSAGE7 (Hamilton et al., 2017), we optimize a 2-layer SAGE encoder with mean aggregation and
with a random-walk loss setting analogous to DeepWalk. The model is trained for 50 iterations using Adam
optimizer, learning rate of 0.01.

Dine8 (Piaggesi et al., 2024), autoencoder-based post-processing process trained for 2000 iterations, and
learning rate of 0.1. Input embeddings are from DeepWalk and GAE methods, tuning the input embedding
size in the list [8, 16, 32, 64, 128, 256, 512].

DiSe-FCAE and DiSe-GAE trained for 50 iterations using Adam optimizer and learning rate of 0.01. Random
walk sampling follows the same setting as DeepWalk, GraphAE and GraphSAGE.

GNNExplainer9 is trained for 30 epochs for each test node, while PGExplainer10 is trained for 5 epochs
on trained nodes before being applied on test nodes. Moreover, since PGExplainer is based on edge masks,
we derive node masks for that model with the average mask value from incident edges.

Graph explainers are applied on top of the following GNN models trained on node classification (two-layer
for clique-based data and three-layer for grid-based data): GCN (Wu et al., 2019), GraphSAGE (Hamilton
et al., 2017), and GATv2 (Brody et al., 2022). All the graph models (not the explainers) are tuned by
searching the best embedding size from the list [2, 4, 8, 16, 32, 64, 128], as the input to the classification layer.

5https://github.com/eliorc/node2vec
6https://github.com/schariya/infwalk
7https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py
8https://www.github.com/simonepiaggesi/dine
9https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.GNNExplainer.html#torch_

geometric.explain.algorithm.GNNExplainer
10https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.PGExplainer.html#torch_

geometric.explain.algorithm.PGExplainer
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B Algorithm Complexity

Space and time complexity of DiseNE can be analyzed by looking at the pseudo-code in Algorithm A1. Part
of the complexity depends on the complexity of the encoder. Here, we assume GCN as encoding functions,
with its own set of learnable parameters Θ. But, in the experiments, we have also tested fully-connected
encoders.

Algorithm A1: DiSeNE(G, A, K, T, L, λent)
Input : Graph G = (V, E)

Adjaceny matrix A ∈ {0, 1}|V|×|V|

Embedding size K, Context window T ,
Walks length L, Regularization λent

Output : Embedding matrix H ∈ R|V|×K

1 Init. encoder network EncΘ(∗);
2 Init. identity matrix features X;
3 while not converged do
4 Encoding step: H← ρ(W⊤EncΘ(A, X));
5 Sample batch of nodes: B ← Sample(V);
6 Init. random walks W ← ∅;
7 foreach v ∈ B do
8 Sample random walk:

W ←W ∪RandomW alk(A, v, L);
9 Random-walk loss: Lrw(H,W, T );

10 foreach d ∈ {1 . . . K} do
11 Aggregate rows of H: fd ←

∑
v

Hvd;
12 Compute 1-norm: |f |1 ←

∑
v,d

Hvd;
13 Node affiliation matrix: F← H⊙ f ;
14 Disentanglement loss Ldis(F)
15 Regularization loss Lent(F)
16 Total loss: L ← Lrw + Ldis + λentLent;
17 Backpropagate and update Θ, W;
18 return H;

Our method consists of four main steps:

• Encoding step generates the node embeddings
H and has the same per-layer time/space com-
plexity of standard GCNs (Duan et al., 2022),
i.e. O(||A||0K + |V|K2) and O(|V|K) respec-
tively.

• Random walk sampling and loss calculation
has time/space complexity O(|V|KTL) and
O(|V|L) respectively (Rozemberczki et al.,
2019), where T is the context window size
and L is the random-walk length (we sample
1 random walk per node, fixing as well the
number of negative samples to 1 for each pos-
itive sample). RandomWalk function sample
a first-order random walk starting from source
node v of length L.

• Node affiliation matrix involves computing the
entries Fud =

∑
v∈Vd

ϕd(u, v; h) as Fud =∑
v HudHvd = Hudfd, i.e. by multiplying

node embedding entries Hud with quantities
fd =

∑
v Hvd. This step involves O(|V|K) op-

erations for computing and storing matrix F.

• Disentanglement and regularization losses in-
volve respectively O(|V|K2) and O(K) oper-
ations for cosine similarity (matrix products)
and entropy (vector sum).

Overall, given that ||A||0 is 2|E|, DiSeNE results in O(|E|K + |V|K2 + |V|KTL) runtime complexity and
O(|V|K + |V|L) space complexity, which are in line with established node embedding methods (see, for
instance, Table 1 in Tsitsulin et al. (2021) for an exhaustive summary).

C Downstream Tasks Results

We tested link prediction for the datasets reported in the main paper. For node classification, we tested PPI
and other benchmark biological datasets in multi-label setting (Zhao et al., 2023a): the PCG dataset for the
protein phenotype prediction, the HumLoc, and EukLoc datasets for the human and eukaryote protein
subcellular location prediction tasks, respectively. Characteristics of additional biological datasets are reported
in Table A2. We concatenated node attributes to node embeddings to get an enriched set of predictors that,
given our method extract interpretable features, can be used in combination with feature-based explainers
(e.g., SHAP) for building fully transparent prediction pipelines. In Figure A1 we report AUC-PR scores for
link prediction and node classification in real-world graph data. Generally, scores increase with the number
of latent embedding dimensions. Tables A3 and A4 show the maximum scores for link prediction and node
classification, demonstrating that our approach can consistently achieve reasonable performances within the
expected range of the performance-interpretability trade-off.

18



Under review as submission to TMLR

2 4 8 16 32 64 128
output dimensions

0.7

0.8

0.9

AU
C-

PR

cora

2 4 8 16 32 64 128
output dimensions

0.7

0.8

0.9

wiki

2 4 8 16 32 64 128
output dimensions

0.8

0.9

1.0
facebook

DeepWalk
GraphAE

InfWalk
GraphSAGE

DW+DINE
GAE+DINE

DiSe-FCAE
DiSe-GAE

2 4 8 16 32 64 128
output dimensions

0.7

0.8

0.9
ppi

2 4 8 16 32 64 128
output dimensions

0.40

0.45

0.50

AU
C-

PR

ppi

2 4 8 16 32 64 128
output dimensions

0.175

0.200

0.225

pcg

2 4 8 16 32 64 128
output dimensions

0.20

0.25

0.30

humloc

DeepWalk
GraphAE

InfWalk
GraphSAGE

DW+DINE
GAE+DINE

DiSe-FCAE
DiSe-GAE

2 4 8 16 32 64 128
output dimensions

0.15

0.20

0.25
eukloc

Figure A1: Downstream tasks results on real-world datasets (link prediction on the top panel, multi-label
node classification on the bottom panel) with varying feature dimensions size.

Table A3: Link prediction results (AUC-PR) on real-world datasets. Best scores are in bold, while scores
with a relative performance loss of no more than 2% respect to the best score are underlined.

Cora Wiki FB PPI

DeepWalk .892±.005 .927±.002 .990±.001 .794±.002
GraphAE .911±.003 .950±.001 .994±.001 .916±.001
InfWalk .923±.003 .936±.002 .941±.006 .854±.003
GraphSAGE .913±.005 .944±.002 .991±.001 .892±.003
DW+Dine .896±.004 .931±.003 .987±.001 .817±.004
GAE+Dine .926±.001 .957±.003 .992±.002 .919±.002

DiSe-FCAE .856±.007 .911±.004 .977±.001 .884±.002
DiSe-GAE .885±.002 .947±.002 .993±.006 .913±.001

Table A4: Node classification results (AUC-PR) on real-world datasets. Best scores are in bold, while scores
with a relative performance loss of no more than 5% respect to the best score are underlined.

PPI PCG HumLoc EukLoc

DeepWalk .476±.003 .210±.001 .314±.012 .241±.010
GraphAE .517±.003 .241±.001 .336±.004 .249±.005
InfWalk .442±.001 .207±.002 .287±.004 .212±.003
GraphSAGE .506±.001 .231±.002 .316±.004 .237±.011
DW+Dine .488±.002 .217±.001 .308±.004 .231±.008
GAE+Dine .526±.001 .241±.001 .333±.006 .234±.008

DiSe-FCAE .498±.001 .233±.003 .291±.006 .230±.006
DiSe-GAE .518±.001 .242±.004 .315±.003 .238±.006
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D Explanations Visualization for Synthetic Datasets

D.1 Global Subgraph Explanations

Algorithm A2:
UnsupEdgeSubgraph(G, Z, d)
Input : Graph G = (V, E)

Embedding function z : V → RK

Dimension to explain d ∈ {1 . . . K}
Output : Graph mask M(d) ∈ R|V|×|V|

1 Init. graph mask: M(d) ← 0|V|×|V|;
2 Compute background average attribution:

ζd = 1
|E|
∑

(u,v)∈E zd(u)zd(v);
3 for (u, v) ∈ E do
4 Compute edge attribution:

ϕd(u, v; z) = zd(u)zd(v)− ζd;
5 Add explanation:
6 M(d)

uv ← max{0, ϕd(u, v; z)};
7 return M(d);

In Figure A2 we show subgraph-level global explanations on
synthetic dataset BA-Cliques. Subgraphs are generated for
each feature dimension using the procedure described in Sec-
tion 3.1 (summarized on the left in Algorithm A2) and are based
on various unsupervised embedding methods. The explanatory
subgraphs demonstrate that our method effectively aligns em-
bedding dimensions with meaningful, non-random functional
components of the graph. In contrast, standard methods such
as DeepWalk and GraphAE struggle to isolate individual
structural units within dimensions. Instead, their embeddings
often associate dimensions with groups of cliques or subgraphs
that include elements from the random Barabási-Albert scaffold.
Additionally, the visualization on the right shows the correlation
between latent features, further underscoring that the alignment
between embedding dimensions and graph structure is closely
tied to the ability to disentangle feature correlation through non-
collinearity. Specifcially, we highlight that for DeepWalk and

GraphAE the subgraphs exhibit significant overlap, which can be attributed to non-zero correlations within
their latent features. In contrast, the uncorrelated features of DiSeNE produce distinct, non-overlapping
explanations.
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Figure A2: Subgraph-level global explanations for a representative subset of embedding dimensions, along
with corresponding pairwise feature correlation plots, on synthetic dataset BA-Cliques.

20



Under review as submission to TMLR

D.2 Local Subgraph Explanations

Algorithm A3:
NodeClassSubgraph(G, Ψ, j)
Input : Graph G = (V, E)

Feature-base explanation matrix Ψ ∈ R|V|×K

Dimension to explain j ∈ {1 . . . K}
Output : Node mask B(j) ∈ R|V|

1 Init. node mask: B(j) ← 0|V|;
2 for v ∈ V do
3 Add explanation:
4 B

(j)
v ← max{0, Ψj(v; b)};

5 return B(j);

Local explanations for node embeddings are extracted
by using post-hoc feature importance method SHAP.
For a given embedding model h : V ← RK we train a
downstream classifier, e.g., in node classification task
or link prediction. For simplicity, here we write the
case when the classifier is a (binary) linear model, but
it can be any arbitrary complex model. It is anyway
reasonable to assume that node embeddings come from
a deep graph model and downstream classifier is a
simple 1-layer neural network on top of the embedding
layers.

(node classification) b(v) = σ(
K∑

j=1
βjhj(v) + β0)

(link classification) b(u, v) = σ(
K∑

j=1
βjhj(u, v) + β0)

Given a vector representation of a graph instance (e.g., a node embedding h(v) or an edge embedding
h(u, v)), and the corresponding prediction from classifier b, we compute feature importance with SHAP
{Ψ(V)

j (v; b)}j=1...K or {Ψ(E)
j (u, v; b)}j=1...K and the corresponding task-based graph masks (we illustrate the

pesudo-code for node classification masks in Algorithm A3):

B(j)(Ψ(V)) ∈ R|V|; B(j)
v = max{0, Ψ(V)

j (v; b)}

B(j)(Ψ(E)) ∈ R|V|×|V|; B(j)
uv = max{0, Ψ(E)

j (u, v; b)}

It is valuable to remark that, training with logistic regression and applying SHAP, the resulting importance
scores are simply the coefficients of the regression (Lundberg & Lee, 2017) Ψj(x; b) = βj(hj(x) − E[hj ]).
Thus, combining this methodology to interpretable graph features of DiSeNE, we obtain a fully transparent
node/edge classification pipeline for graph data.

Figure A3 present examples of local explanations for node classification tasks on the small-sized synthetic
datasets Ba-Cliques and Tree-Grids, using different methods. The experimental settings are consistent
with those described in the main paper. On the left, we highlight the local ground-truth structures for the
instance nodes depicted in the illustrations. On the right, we display the explanation subgraphs generated
by each method, with nodes color-coded according to the respective explanation masks. For GraphAE
and DiSeNE, the visualized subgraphs represent the most relevant structures as determined by feature
importance attribution from the logistic regression classifier. For GNNExplainer and PGExplainer, the
node masks correspond to the algorithm’s output in explaining a 2-layer GCN (Wu et al., 2019). Notably,
DiSeNE demonstrates a strong ability to produce meaningful and interpretable node masks, effectively
competing with state-of-the-art GNN explanation methods.
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Figure A3: Subgraph local explanations for node classification in BA-Cliques (top) and Tree-Grids
(bottom). On the leftmost column, we highlight the local ground-truth structures for the considered instance
nodes. On the other columns, we display the explanation subgraphs generated by each method, with nodes
color-coded according to the respective explanation masks. For GraphAE and DiSeNE, the visualized
subgraphs represent the most relevant structures extracted with Algorithm A3 and determined by feature
importance attribution from the logistic regression classifier. For GNNExplainer and PGExplainer, the
node masks correspond to the algorithm’s output in explaining a GCN (Wu et al., 2019) in node classification.
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E Explanations for Synthetic Datasets

E.1 Global Explanations

In Figure A4 we plot results for Comprehensibility and Sparsity, on the top and the bottom respectively,
on synthetic datasets. Generally, DiSe-FCAE outperforms DiSe-GAE and the other competitors in all
the datasets. In Figure A5 we plot results for Overlap Consistency and Positional Coherence, on the top
and the bottom respectively, on synthetic datasets. For the overlap metric, DiSe-FCAE and DiSe-GAE
consistently outperform the competitors, especially with more than 8 dimensions where they achieve almost
perfect overlap. For the positional metric, the competitors GAE+Dine and DW+Dine slightly outperform
DiSe methods, especially in large dimensions, while DeepWalk also show good results.

E.2 Local Explanations

In Figure A6 we plot results for the plausibility metric on link prediction and node classification, on the top
and the bottom respectively, while comparing different unsupervised methods that output node embeddings.
Plausibility seems to benefit larger dimension values for DiSe methods and DW+Dine for link prediction.
Figure A7 shows the corresponding downstream task accuracy results.
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Figure A4: Comprehensibility and sparsity results on synthetic datasets with varying feature dimensions size.
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Figure A5: Overlap consistency and positional coherence results on synthetic datasets with varying feature
dimensions size.
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Figure A6: Plausibility results on synthetic datasets (link prediction on the top panel, binary node classification
on the bottom panel) with varying feature dimensions size.
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Figure A7: Downstream tasks results on synthetic datasets (link prediction on the top panel, binary node
classification on the bottom panel) with varying feature dimensions size.
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