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Abstract

Node embeddings are low-dimensional vectors that capture node properties, typically learned
through unsupervised structural similarity objectives or supervised tasks. While recent
efforts have focused on post-hoc explanations for graph models, intrinsic interpretability
in unsupervised node embeddings remains largely underexplored. To bridge this gap, we
introduce DISENE (Disentangled and Self-Explainable Node Embedding), a framework
that learns self-explainable node representations in an unsupervised fashion. By leveraging
disentangled representation learning, DISENE ensures that each embedding dimension corre-
sponds to a distinct topological substructure of the graph, thus offering clear, dimension-wise
interpretability. We introduce new objective functions grounded in principled desiderata,
jointly optimizing for structural fidelity, disentanglement, and human interpretability. Ad-
ditionally, we propose several new metrics to evaluate representation quality and human
interpretability. Extensive experiments on multiple benchmark datasets demonstrate that
DISENE not only preserves the underlying graph structure but also provides transparent,
human-understandable explanations for each embedding dimension.

1 Introduction

Self-supervised and unsupervised node representation learning (Hamilton) 2020) provide a powerful toolkit
for extracting meaningful insights from complex networks, making them essential in modern Al and machine
learning applications for network analysis (Ding et all |2024). These methods offer flexible and efficient
ways to analyze high-dimensional networks by transforming them into low-dimensional vector spaces. This
transformation enables dimensionality reduction, automatic feature extraction, and the deployment of standard
machine learning algorithms for tasks such as node classification, clustering, and link prediction (Khosla et al.,
2021)). Moreover, unsupervised node representations, or embeddings, enable visualization of complex networks
and can be transferred across similar networks, enhancing understanding and predictive power in fields
ranging from social networks to biological systems. Despite their widespread utility, these approaches often
face substantial challenges in terms of interpretability, typically relying on complex and post-hoc techniques
to understand the latent information encoded within the embeddings (Piaggesi et al., [2024; Idahl et al., 2019;
Gogoglou et al., [2019). This limitation raises a critical question: What information do these embeddings
encode?

Despite a large body of research on explainable GNN models, embedding methods—the fundamental building
blocks of graph-based systems—have received comparatively little attention. Most existing attempts to
explain embeddings are predominantly post-hoc (Piaggesi et al., [2024}; |Gogoglou et al. 2019; [Khoshraftar
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Figure 1: DISENE generates
dimension-wise disentangled repre-
sentations in which each embedding
dimension is mapped to a mesoscale
substructure in the input graph.
The vector represents the embed-
ding for the node marked in blue
and the bars depict feature values.

Figure 2: The overlap in dimension
explanations aligns with the cor-
relation between the node feature
values for those dimensions. The
dimension referenced by the blue
subgraph shows a stronger correla-
tion with the red dimensions and
a lower correlation with the green
dimension.

‘Qﬁ, A7 b

Figure 3: The node feature value
indicates its proximity to the ex-
planation substructure mapped to
the corresponding dimension. The
black node has a higher value for
the dimension corresponding to the
green subgraph (since it is 1 hop
away) than for the dimension cor-
responding to the red subgraph (3

hops away).

let al., 2021} [Dalmia et al.| [2018) and heavily dependent on the specific embedding techniques used. Some

approaches (Piaggesi et al.l|2024) extend methods from the post-processing of word embeddings (Subramanian
let all, 2018} |Chen & Zakil [2017) by minimizing reconstruction errors through over-complete auto-encoders to

improve sparsity. Other works (Gogoglou et al. [2019; [Khoshraftar et al., 2021} |Dalmia et al., 2018) focus
solely on extracting meaningful explanations, without addressing the underlying embedding learning process.

We propose DISENE (Disentangled and Self-Explainable Node Embedding), a framework that addresses
the interpretability gap in unsupervised node embeddings by generating inherently self-explainable node
representations. In our approach, "self-explainable” means that each embedding dimension corresponds to a
distinct subgraph that globally explains the structural information encoded within that dimension. These
dimensional subgraphs highlight human-comprehensible functional components of the input graph, providing
clear and meaningful insights. DISENE leverages disentangled representation learning, an approach that
encodes latent variables corresponding to distinct factors of variation in the data (Wang et al., [2024)), to
produce node embeddings that are interpretable on a per-dimension basis.

In graph data, node behaviour is strongly influenced by mesoscale structures such as communities, which shape
the network’s organization and drive dynamics (Barrat et al.,[2008). By leveraging disentangled representation
learning, we capture these "topological' substructures more effectively, with each embedding dimension
reflecting an independent graph unit (see Figure . We achieve this through a novel objective function
that ensures structural disentanglement. Specifically, we optimize the embeddings so that each dimension is
predictive of a unique substructure in the input graph. To avoid degenerate solutions, we incorporate an
entropy-based regularizer that ensures the resulting substructures are non-empty and informative.

Our paradigm represents a shift in the language of explanations compared to the ones often considered when
dealing with GNNs (Yuan et al., 2023)). Explainability for GNNs often involves understanding which parts of
the local computation graph (nodes, edges) and node attributes significantly influence the model’s predictions
(Funke et al., 2023} [Ying et al., 2019} |Schnake et al., 2022)). On the other hand, the explanations that we
aim to discover are inherently non-local, since they could involve mesoscale structures such as node clusters
(Piaggesi et al.l [2024]), usually not included in the GNN computational graph.

We provide a comprehensive evaluation of the embeddings and uncover novel insights by proposing several new
metrics that capture the interplay between disentanglement and explainability (see Section for details).
For instance, our overlap consistency metric (illustrated in Figure [2)) shows that the overlap of the topological
substructures used as explanations matches the correlation among the corresponding embedding dimensions,
providing insights into the interdependencies among node characteristics within the graph. Moreover, we
attribute meaning to the embedding values by showing that the magnitude of a node’s entry in a specific
dimension correlates with its proximity (as depicted in Figure |3)) to the topological subgraphs associated
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with that dimension. This relationship enhances our understanding of the relative positioning of nodes with
respect to different graph components, thereby enhancing spatial awareness of the graph structure.

Contributions are summarized as follows: (i) we formalize new and essential criteria for achieving disen-
tangled and explainable node representations, offering a fresh perspective on interpretability in unsupervised
graph-based learning; (7i) we introduce novel evaluation metrics to help quantifying the goodness of node
representation learning in disentangled and explainable settings (iii) we perform extensive experimental
analyses on synthetic and real-world data to establish state-of-the-art results in self-explainable node feature
learning. We release our code and data at https://github.com/simonepiaggesi/disene|

2 Preliminaries and Related Work

Given an undirected graph G = (V,€), node embeddings are obtained through an encoding function
h:V — R¥ that maps each node to a point in a K —dimensional vector space R, where typically D << |V|.
We denote the K-dimensional embedding of a node v € V as h(v) = [h1(v), ..., hx (v)], where hq(v) represents
the value of the d-th feature of the embedding for node v. Alternatively, we can represent all node embeddings
collectively as a matrix H(G) € RV*E | where each entry H,q = hq(v) corresponds to the d-th feature for
node v. We can also refer to columns of such matrix, H. 4, as the dimensions of the embedding model space.

Node embeddings interpretability. Node embeddings are shallow encoding techniques, often based on
matrix factorization or random walks (Qiu et all |2018)). Since the latent dimensions in these models are
not aligned with high-level semantics (Senel et al.| 2018 Prouteau et al., [2022), interpreting embeddings
typically involves post-hoc explanations of their latent features (Gogoglou et al.l 20195 [Khoshraftar et al.|
2021)). Other works propose alternative methods to modify existing node embeddings, making them easier to
explain with human-understandable graph features (Piaggesi et al., [2024; [Shafi et al., [2024)). From a different
viewpoint, Shakespeare & Roth| (2024)) explore how understandable are the embedded distances between
nodes. Similarly, [Dalmia et al.| (2018) investigate whether specific topological features are predictable, and
then encoded, in node representations.

Graph neural networks interpretability. Graph Neural Networks (GNNs) (Wu et al., [2021]) are deep
models that operate via complex feature transformations and message passing. In recent years, GNNs
have gained significant research attention, also in addressing the opaque decision-making process. Several
approaches have been proposed to explain GNN decision process (Yuan et al., [2023), including perturbation
approaches (Ying et al.l [2019; [Yuan et all 2021} [Funke et all 2023)), surrogate model-based methods (Vu &
Thail [2020; [Huang et al.| [2023), and gradients-based methods (Pope et al., |2019; |Sanchez-Lengeling et al.,
2020). In parallel, alternative research directions focused on concept-based explanations, i.e. high-level units
of information that further facilitate human understandability (Magister et al.l 2021; [ Xuanyuan et al.| [2023).

Disentangled learning on graphs. Disentangled representation learning seeks to uncover and isolate
the fundamental explanatory factors within data (Wang et al, 2024). In recent years, these techniques have
gained traction for graph-structured data (Liu et al.; [2020; |Li et al.| 2021} |Yang et al.| 2020; |[Fan & Gaol 2024).
For instance, FactorGCN (Yang et all, [2020]) disentangles an input graph into multiple factorized graphs,
resulting in distinct disentangled feature spaces that are aggregated afterwards. IPGDN (Liu et al.l 2020)
proposes a disentanglement using a neighborhood routing mechanism, enforcing independence between the
latent representations as a regularization term for GNN outputs. Meanwhile, DGCL (Li et al., [2021) focuses
on learning disentangled graph-level representations through self-supervision, ensuring that the factorized
components capture expressive information from distinct latent factors independently.

3 Our Proposed Framework: DiSeNE

In this section, we begin by outlining the key desiderata for achieving disentangled and self-explainable node
representations. Next, we design a novel framework that meets these objectives by ensuring that the learned
node representations are both disentangled and interpretable. Finally, we introduce new evaluation metrics
to effectively assess the quality of node representation learning in both disentangled and explainable settings.
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3.1 Core Objectives and Desiderata

In the context of unsupervised graph representation learning, we argue that learning self-explainable node
embeddings amounts to reconstructing the input graph in a human-interpretable fashion. Traditionally, dot-
product models based on NMF (Yang & Leskovec), 2013) and LPCA (Chanpuriya et al., 2023) decompose the
set of graph nodes into clusters, where each entry of the node embedding vector represents the strength of the
participation of the node to a cluster. In this scenario, the dot-product of node embeddings becomes intuitively
understandable, as it reflects the extent of shared community memberships between nodes, thereby providing
a clear interpretation of edge likelihoods. This concept is also related to distance encoding methods (Li et al.
2020; [Klemmer et al., [2023)), where a node feature hg(u) is expressed as a function of the node’s proximity
C(u,8q) = AGG({¢(u,v),v € S4}) to the anchor set S C V, using specific aggregation functions AGG.
Typically, distance encodings are constructed by randomly sampling anchor sets (You et al., [2019), and used
as augmented node features to enhance expressiveness and improve performance on downstream tasks.

Inspired by this idea, our goal is to optimize unsupervised node embeddings encoded by a GNN function
h: V — RX trained on the graph G = (V, &), such that node features resemble non-random, structurally
meaningful anchor sets, thus improving human-interpretability. To achieve this, we propose three key
desiderata for learning general-purpose node representations: (i) connectivity preservation, (ii) dimensional
interpretability, and (i) structural disentanglement. These desiderata serve as the foundational components
of our approach, as detailed below.

Connectivity preservation. Ideally, node embeddings are constructed so that the geometric relationships
in the low-dimensional space mirror the connectivity patterns of the original graph. Nodes with greater
similarity in the network should be placed close to each other in the embedding space, and viceversa. To
implement the approach, we train the node embedding function in recovering the graph structure. We employ
a random walk optimization framework based on the skip-gram model with negative sampling (Huang et al.|
2021). The loss function for this framework is defined as:

Loy = — Z logo(h(u) "h(v)) — Z logo(—h(u') "h(v)),

(u,0)~Proy (u',v)~ Py,

where o(-) is the sigmoid function, P, is the distribution of node pairs co-occurring on simulated random
walks (positive samples), P, is a distribution over randomly sampled node pairs (negative samples), and
h(u) "h(v) represents the dot product between the embeddings of nodes u and v. By optimizing this loss
function, we encourage nodes that co-occur in random walks to have similar embeddings, effectively preserving
the graph’s structural information in the embedding space.

Dimensional interpretability. Embedding representations are multi-dimensional, with specific latent
factors contributing in representing each dimension (e.g., social similarity, functional proximity, shared
interests). A given edge between u and v may rely more heavily on certain dimensions. This perspective
shows how local relationships (edges) are directly informed by the global structure of the embeddings, with
each dimension contributing uniquely to reconstructing particular relationships. Given structure-preserving
embeddings, meaning they effectively encode the input structure, we should be able to interpret each embedding
dimension in terms of the graph’s topological structure. Specifically, our framework attributes "responsibility"
for reconstructing a local relationship (an edge) to specific dimensions, based on their contribution to the
edge likelihood or the probability of reconstructing that edge through the embeddings. We achieve this by
assigning local subgraphs to different latent dimensions. Consider the likelihood of an edge (u,v), defined
as g(u,v;h) = a( chl(:l hd(u)hd(v)>. The likelihood score is obtained by applying the sigmoid to a linear
combination of per-dimension products hg(u)hg(v). Because the sigmoid is monotonic, each product’s sign
and magnitude directly determine its influence on §. Thus, we can interpret the edge likelihood by inspecting
the raw products. This decomposition requires only linear additivity and it does not depend on any statistical
relationships among the terms. To understand how each dimension d contributes to this likelihood, we
compute the edge-wise dimension importance ¢4(u, v; h) as the deviation of the dimension-specific contribution
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from its average over all edges:

¢a(u, vih) = hq(u)ha(v Z ha(u')ha(v'). (1)

(u'v")e€

Since the dot-product is a linear function 25:1 aghg(u)hg(v) + B with unitary coefficients ag = 1 and zero
intercept 8 = 0, Eq. corresponds to the formulation of LinearSHAP attribution scores (Lundberg &
Leel 2017)), using the set of training edges as the background dataset. Essentially, the attribution function
¢a(u, v; h) indicates whether a specific dimension d contributes positively to an edge’s likelihood. A positive
attribution score means that the dimension increases the likelihood of predicting the edge. If two dimensions
are correlated, they may often push an edge with similar attributions, but each still provides an observable
marginal deviation that we can measure. In other words, ¢4 quantifies marginal responsibility, not exclusive
responsibility; therefore it remains valid in the presence of correlations. Each dimension contributes to
reconstructing specific edges or substructures, and together, these contributions create a unified representation
of the entire graph. Thus, the global nature of embeddings emerges as a direct consequence of their
contributions to local relationships. From this observation, we generate dimension-wise (global) explanations
for the latent embedding model by collecting edge subsets with positive contributions:

€a={(u,v) € £: ¢a(u,v;h) > 0}. (2)

These self-explanations take the form of global edge masks M(4) e R‘ZVAXM, where each entry is defined as

M,%)(gbd; h) = max{0, ¢4(u,v; h)}. By applying these masks to the adjacency matrix A through Hadamard
product (®), we obtain AW = A © M@, Each masked adjacency matrix A(9 highlights the subgraph
associated with dimension d. From these masked adjacency matrices, we construct edge-induced subgraphs
Ga = (Va,&4), where Vy is the set of nodes involved in edges £;. These subgraphs act as anchor sets
for the model, providing interpretable representations of how each embedding dimension relates to specific
structural patterns within the graph. We will refer to edge-induced subgraphs computed as the aforementioned
procedure (pseudo-code in Appendix [E)) as explanation subgraphs/substructures or topological components of
the embedding model.

Structural disentanglement. To enhance the effectiveness of dimensionally interpretable encodings, each
dimension of the latent space should encode an independent structure of the input graph, effectively acting as
an anchor subgraph. Inspired by community-affiliation models (Yang & Leskovec, [2013; [2012), we introduce
a node affiliation matrix F € RIVI*X that captures the association between each node u € V and anchor
subgraph G; = (V4,&4). Specifically, each entry F, 4 is proportional to the magnitude of predicted meaningful
connections between node u and other nodes in G4, expressed using the per-dimension attribution scores from
Eq. : Fui(h) =3,y ¢a(u,v;h). This aggregates the contributions of dimension d to the likelihood of
edges involving node u. To achieve structure-aware disentanglement, we enforce soft-orthogonality among the
columns of the affiliation Inatrixﬂ This ensures that different embedding dimensions capture independent
structures, leading to nearly non-overlapping sets of predicted links for each dimension. We express the
columns of the affiliation matrix as F. 4 and obtain the disentanglement loss function as:

K K
Lais = Z Z [cos (F. q,F.;) — 6a,] (3)

d=11=1

where cos (F. 4,F. ;) denotes the cosine similarity between the d-th and the I-th columns of F, and and d4,
is the Kronecker delta function (1 if d =1, 0 otherwise). This objective penalizes correlation between the
edge importance attribution scores of different dimensions. By reducing redundancy, we ensure that each
dimension contributes uniquely to the reconstruction of a small set of edges, promoting interpretability. This
approach enables us to obtain disentangled representations (Wang et al.l |2024), where embedding dimensions
correspond to orthogonal latent factors of the input graph. Although higher-order disentanglement is possible
(e.g., with groups of dimensions), we focus on single-feature disentanglement for achieving dimension-wise
interpretability.

INote that Fq(h) = Zvev ha(uw)hg(v) — ‘Izl‘ Z(u, v)es ha(u')hg(v') and assuming |V| << |€|, the second term becomes

negligible, allowing us to approximate F,4(h) and reduce computational costs.



Published in Transactions on Machine Learning Research (07/2025)

3.2 Our Approach: DiSeNE

Building upon the above components, introduced to satisfy our desiderata for interpretable node embeddings,
we present our approach, DISENE. Specifically, DISENE takes as input identity matrix 1))y as node
attributes and, depending on the encoder architecture, also the adjacency matrix A € RIVI*IVI| The input
is encoded into an intermediate embedding layer Z € RIVI*P . Next, DISENE processes the embedding
matrix Z to compute the likelihood of link formation between node pairs, given by §(u,v;h) = o(h(u) "h(v))
where h(v) = p(WT'z(v)) are the final node representations in H € RVIXK | obtained by applying a
linear transformation W € RP*X followed by a non-linear activation function p. To encode z, we employ
architectures incorporating fully connected layers and graph convolutional layers (Wu et al., [2019)). This
process can be further enhanced by integrating more complex message-passing mechanisms or MLP operations.
For example, the message-passing could initiate from an MLP-transformed node attribute matrix, MLP(X),
or incorporate more sophisticated architectures beyond simple graph convolutions for increased expressiveness
(Xu et all 2019; [Velickovic et al.l |2017)).

The embeddings are optimized by combining the previously described objective functions for preserving struc-
tural faithfulness and achieving structural disentanglement, thereby improving dimensional interpretability.
To avoid degenerate disentanglement solutions we introduce a regularization strategy. Specifically, we aim
avoiding the emergence of “empty” clusters characterized by near-zero columns in F that, while orthogonal
to others, fail to convey meaningful information. This regularization ensures a minimal but significant
level of connectivity within each topological substructure. Specifically, we enforce that the total amount of
contributions to predicted edges in each anchor subgraph Gy, Eu,vev or(u,v; h), to be non-zero. We found a
more stable and precise approach by enforcing that the aggregated node features of each embedding dimension

hg(u hq(u
are non-zero, achieved by maximizing the entropy’f H = — Zfl{:l (%“ hué( )‘)‘ ) log (II%::H h(z( )I)I ) . Thus,
w)|1 u)|f1

the model is optimized by minimizing the following comprehensive loss function:

H
= ~rw dis en 1———
L="Lryw+ Lais + A t( logK)

The hyperparameter Ao, determines the strength of the regularization, controlling the stability for explanation
subgraph sizes across the various latent dimensions. We report the pseudo-code of DISENE in Appendix [B]
along with a space-time complexity analysis, showing that our method has O(|€|K + |V|K? + |[V|KTL)
runtime complexity and O(|V|K + |V|L) space complexity (T refers to the window size, L to simulated walks
length), which is in line with well-established techniques for node embeddings (Tsitsulin et al., [2021). Our
approach deviates from typical GNNs by focusing solely on learning from graph topology, as node attributes
may not always align with structural information (e.g., in cases of heterophily (Zhu et all 2024)). While
semantic features can be integrated in various ways (Tan et all [2024]), we chose a more straightforward,
broadly applicable method. Our node embeddings produce interpretable structural features h(u), which
can be concatenated with node semantic attributes x(u), enabling transparent feature sets for effective
explanations in downstream tasks via post-hoc tabular techniques.

3.3 Proposed Evaluation Metrics

In the following, we present novel metrics to quantify interpretability and disentanglement in unsupervised
node embeddings, which we use to compare models in our experiments. Unlike prior works, which primarily
focus on explaining graph model decisions, our approach offers a novel perspective by targeting the explanation
of graph model encodings. Traditional graph-based explainers focus on interpreting GNN model decisions for
specific tasks, highlighting subgraphs or motifs responsible for the predictions (Longa et al., 2025; |Li et al.,
2025). In contrast, our objective is to assess the interpretability of GNN models in a task-agnostic setting,
by evaluating explanatory subgraphs derived from node embedding dimensions that are learned without
supervision. In the next, we define our comprehensive vocabulary of evaluation metrics. While alternative
taxonomies exist in the literature, we propose a consistent framework highlighting similarities and differences

2We assume non-negative activation functions p (e.g., ReLU), thus every post-activation feature hq(u) is itself non-negative.
Therefore, their sum Z d hq(u) is non-negative as well, and an absolute-value operator in the entropy mass term is unnecessary.
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between our indicators and other established metrics in the field of graph-based explainability (Yuan et al.,
2023; Kakkad et al., [2023)).

Topological Alignment. This metric measures how well the explanations of embedding dimensions align
with human-interpretable graph structures. Given their importance in the organization of complex real-world
systems (Girvan & Newman) [2002; |Hric et al., [2014)), community modules (or clusters) are often the most
intuitive units for understanding a graph. We evaluate topological alignment by handling edges in explanation
masks {M(d)}dzl,m, Kk as retrieved items from a query, and measuring their overlap with the edges in the
ground-truth communities using precision, recall, and Fj-score. While this metric captures one aspect of
human-comprehensibility, it does not exhaust the space of interpretable structures, such as motifs, roles, or
domain-specific patterns. For example, in biological networks, structures like protein complexes or regulatory
circuits are often considered as more interpretable. In social networks, roles like hubs, bridges, or peripheral
nodes may give better explanations than just communities. Future work could incorporate alternative
structural annotations to evaluate broader forms of topological alignment.

Let C(&) = {C¢™M,...,C"™} denotes the set of truthful link communities of the input grap Associated to
partition CV, we define ground-truth edge masks C¥ € {0,1}V*V with binary entries C\) = W¥([(u,v) € C(9).
For a given mask M(? | topological alignment score is given by the maximum edge overlap (as Fy-score) of
the explanation substructure computed across community structures in C(£), quantifying how closely the
explanation match human-understandable ground-truth:

; 2
i (d)y — . (@) iyl = .
Align(M'") = max; {F1 (M C )} max; {prec(M(d), CO) T 1 rec(M@, C@) 1 } (4)

For precision, we weigh relevant item scores with normalized embedding masks values: prec(M(d), Cc) =
MPCE)

X:i:UM(d) For recall, we weigh binarized embedding masks values with normalized ground-truth scoreg*
rec(M(@, C(") = ICJ;’I
plainer and subsequent works (Ying et al. [2019; Luo et al., [2020]), where explanations for model decisions are
compared to planted graph substructures, perceived as human-readable justifications for a node’s prediction.
However, instead of evaluating individual decisions’ explanations by using synthetic ground-truth motifs,
we perform a global assessment of the unsupervised embedding dimensions by comparing their explanation
subgraphs with a reasonable ground-truth about the graph structure. An analogous evaluation of explanation
correctness which specifically focuses on individual model decisions will be provided later by the plausibility
metric.

Do M) >0 el e .
e . This approach is similar to the accuracy assessment used in GNNEx-

Sparsity. We refer to sparsity as a measure of the localization of subgraph explanations, it is generally
defined as the ratio of the number of bits needed to encode an explanation compared to those required to
encode the input (Pope et all 2019; Funke et al., [2023). As we produce soft masks, we use entropy for this
quantification. Given that compact explanations are more effective in delivering clear insights, we evaluate
sparsity by measuring the normalized Shannon entropy over the mask distribution:

) A A
Sp(M¥) = — > ( “ ) log ( “ : (5)
IOg |5| (u,v)€€ Zu’,v’ M’ls/’l))’ Zu’,v/ Mq(m);'

A lower entropy in the mask distribution indicates higher sparsity/compactness. Motivation for using entropy
for explanation size quantification can be found in one of the existing works (Funke et al., 2023])).

Overlap Consistency. This metric assesses whether the correlation between two embedding dimensions is
mirrored in their corresponding explanations. A well-structured, disentangled latent space should correspond

3Synthetic graphs can be constructed with ground-truth relevant sub-structures (like BA-SHAPES (Ying et al.,[2019) or SBM
graphs). In real-world graphs, it is usually reasonable to assume that the community structure (Fortunatol [2010) can serve as
ground-truth.

4For the precision, we normalize with the sum of scores because they are continuous. For recall, we use the cardinality in
place of the sum because the ground-truth has binary scores.
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to distinct, uncorrelated topological structures. For example, if two embedding dimensions are correlated,
their explanation substructures should also overlap. In our context, this a proxy measure for explanation’s
contrastivity (Wang et al., |2023} |Pope et al., [2019)), based on the intuition that explanations for unrelated
dimensions should differ substantially—particularly in the specific substructures they highlight. We aim to
quantify how different topological components affect pairwise feature correlations in the latent space. To
achieve this, we propose a metric that measures the strength of association between the physical overlap
of the explanation substructures {Gy} and the correlation among corresponding latent dimensions {H. 4}.
We compute the overlap between two subgraph components using the Jaccard similarity index of their edge
sets from Eq. : J(d,l;h) = :g‘éggll The overlap consistency (OvC) metric measures the linear correlation

between pairwise Jaccard values and squared Pearson correlation coefficients (p?) of the embedding features:
OvC(h) = P([J(d»l; h)]a<t, [p°(H. 4, H:,l)]d<l) (6)

where [¥]4<; denotes the condensed list of pair-wise similarities. By using p? we remain agnostic about the
sign of the correlation among latent features, since high overlaps could originate from both cases.

Positional Coherence. This metric evaluates whether the feature value of a node representation in
a specific embedding dimension corresponds to its spatial relationship with the explanation substructure
for that dimension. In fact, an effective representation should preserve meaningful spatial properties that
reflect node proximity and connectivity patterns. In our context, this is a proxy measure for explanation’s
faithfulness (Zhao et al., 2023b), reflecting how well the dimension-based structures align with the embeddings
they are intended to explain. To achieve this, we propose to measure the extent to which node entries
reflect their relative positions with the subgraphs used as explanations. For example, if node u has a high
value in embedding dimension d, it should be positioned closer to the substructure that explains dimension
d. Typically, positional encoding (Rampések et al., 2022; [Li et al., 2020} [You et al.l [2019) involves the
use of several sets of node anchors S; C V that establish an intrinsic coordinate system. This system
influences the node u’s features based on the node’s proximity ((u,Sq) = AGG({{(u,v),v € Sq}), where
AGG denotes a specific pooling operation. As node proximity, we used the inverse of the shortest path
distance (spa(u,v) = (1+ dspd(u,v))_l. As the anchor sets, we chose the embedding substructures used
for explanations, Sq = V,. For a specified pair of dimensions (d, ), we assess the correlation between node
features along dimension d and the corresponding distances to the topological component indexed by [ via

uey’ T
(PoC) is defined to specifically evaluate the degree to which each feature d is uniquely correlated with its
corresponding topological component V,;, without being significantly influenced by correlations with other
substructures. This metric is calculated as the ratio of the average fp.or for the given dimensions to the
average fpeorr computed with pairs of permuted dimensions:

Zd prO'r‘T(dy d; h)
(34 fPeorr(d, m(d); h))_
where (.), denotes an empirical average over multiple permutations. By comparing with random feature-

subgraph pairs, the metric avoid promoting models with redundancies in the latent features, where high
correlations with other topological components are possible.

feature-proximity correlation: fpeorr(d,l;h) = p([(spd(u,]}d)] H l). The positional coherence metric

PoC(h) = (7)

Plausibility. Plausibility evaluates how closely subgraph explanations align with human reasoning, a
concept also studied in existing works like BAGEL (Rathee et al., |2022). Unlike topological alignment,
which measures the alignment of explanation substructures with community clusters in the graph (indepen-
dent of task-specific information), plausibility focuses on explanations for decisions made in downstream
tasks, using the embedding features as predictor variables. To this end, relying on feature-based post-
hoc explanation methods (Lundberg & Lee| [2017}; [Ribeiro et al., 2016), we construct instance-specific
explanations to determine feature importance scores related to the topological structures. Typical feature
importance explainers (Bodria et al.l |2023) are useless in this context because node embeddings have in-
herently uninterpretable features, leading to uninformative explanations. Our approach overcomes this
limitation by mapping explanations back to the graph’s structural components, that are human-readable.

8
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We detail the procedure for link prediction here (see also Figure classifier u
7 but we also report the methodology for node classification in prediction
Appendix [E] The process involves three key steps.
ground-truth
(1) Training a downstream classifier. We train a binary classifier  explanation
b : RE — [0,1] to perform the downstream link prediction task feature /P'a”Sib"“y
using node embeddings. This classification model can either leverage — explanation
feature interpretability techniques, such as SHAP (Lundberg & Lee, ?Q, a
2017)), or being inherently interpretable, such as logistic regression. \?’ O}V

(2) Extracting post-hoc explanations. For an edge instance h(u,v) Figure 4: Sketch of Plausibility met-
(which could be derived from node-pair operations such as h(u) ® ric computation. High plausibility
h(v)), we employ post-hoc methods to determine the feature rele- gcores indicate that the dimensions
vance for the classifier prediction on the node pair instance (u,v), deemed more comprehensible also re-
{¥;(u,v;b)}j=1,... K for each of the embedding dimensions. Similarly ceived higher importance scores from
to Eq. which defines task-agnostic masks, here we calculate task- the post-hoc attribution technique.
specific masks BUY) ¢ RZOXV which aggregate the logic of the classifier

based on individual feature importance: ng];,)(\llj; b) = max{0, ¥, (u, v;b)}. Substructures corresponding to
the most important features (identified by the post-hoc techniques), or the explanations directly returned by
the interpretable model serve as the final explanations.

(3) Ewaluation. Explanations are then compared with the available human rationale behind the decisions.
To do that, we resort the Fj-score in Eq. with respect to the ground-truth structure of the edge under
study, indexed by g(u,v), that it is known has driven the classifier decision. Specifically, we define plausibility
for an individual prediction b(u,v) as the average Fj-accuracy relative to the ground-truth structure for the
instance, weighted by the computed feature importance:

SO F(W(u,030))Fy (BY), Co00))
5o (W (u,0:b)

where f is a function guaranteeing the non-negativity of relevance weights. This ensures that only the
features that are both interpretable and significant to the local prediction contribute substantially to the
score, penalizing instead those important features that are not human-comprehensible.

Pl(u,v;b) = (8)

It is worth to note that although our measure is similar to the accuracy index used to assess correctness
of explanation subgraphs (Ying et all 2019), we refer to it as "plausibility." This is because, despite their
competitive classification performance, typical embedding representations may fail to capture the truthful
substructures in the most task-predictive features, as they are not constrained to follow human reasoning.
Thus, with plausibility, we aim to understand when predictive embedding features are also congruent to
human rationales. The choice of the weighting function f is case-specific and tailored to the objective of the
analysis. For example, choosing f as indicator function such that f(¥;) = ¥[j = argmax{V,,... ¥ }] allows
to study the plausibility of the most predictive substructure.

4 Experiments

We conduct extensive experiments to answer the following research questions:

(RQ1) Human understandability: How comprehensible and sparse are the explanation substructures
generated by DISENE?

(RQ2) Structural disentanglement: Do the disentangled subgraphs reveal intrinsic properties of node
embeddings, like feature correlations and latent positions?

(RQ3) Utility for downstream tasks: Are the identified substructures plausible and coherent enough to
serve as explanations in downstream tasks?

To address our research questions, we extract topological components from multiple embedding methods,
trained on different graph data, by computing edge subsets defined in Eq. , and analyzing embedding
metrics defined in Section [3:3] In the following, we describe the data, models, experimental setup, and results.
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Moreover, in the Appendix we report the following supplementary experiments: in section [D] we analyze
accuracy-interpretability trade-offs for different embedding methods; in section [G] we perform ablation studies
on the interpretability performances of DISENE while varying the entropy regularization and the depth of
the convolutional encoder; in section [H] we showcase the human-understandability of embeddings in the
presence of rich topic and text information in graph data.

4.1 Datasets and Competitors

Datasets. We ran experiments on four real-world datasets (COrA, WIKI, FACEBOOK, PPI), and six
synthetic datasets (RING-OF-CLIQUES, SBM, BA-CLIQUES, ER-CLIQUES, TREE-CLIQUES and TREE-GRIDS)
with planted subgraphs, which serve as ground-truth human rationales for explaining specific node labels.
Statistics for these datasets are provided in Table in the Appendix. Additionally we employ several
biological datasets (see Appendix for the evaluation on multi-label node classification). BA-CLIQUES and
ER-CLIQUES are variations of the BA-SHAPES (Ying et al., [2019) where we randomly attach cliques, instead
of house motifs, to Barabési-Albert and Erdés-Rényi random graphs. TREE-CLIQUES and TREE-GRIDS (Ying
et al., |2019) are composed of a 8-level balanced tree, with cliques and 3x3 grid motifs respectively. RING-
CLIQUES and SBM (Abbe, 2017)) are implemented in NetworkXﬂ For synthetic data, we present only results
for plausibility metrics, leaving the other findings in the Appendix [F]

Methods. We compare with different node embedding methods in producing explainable feature dimensions.
Competitors include shallow encoders DEEPWALK (Perozzi et al., 2014]), INFWALK (Chanpuriya & Musco,
2020), and deep graph models Graph Autoencoder (GRAPHAE) (Salha et al.,|2020), GRAPHSAGE (Hamilton
et al.l|2017) and DGLFRM (Mehta et al. [2019). We also apply the DINE retrofitting approach (Piaggesi et al.,
2024)) to post-process embeddings from DEEPWALK and GRAPHAE. Moreover, we compare with graph-based
local explanation methods GNNEXPLAINER (Ying et al., [2019) and PGEXPLAINER (Luo et al., |2020).
Post-hoc explainers are applied to the output of different GNN models for node classification: GCN (Wu
et all [2019), GRAPHSAGE (Hamilton et al. 2017), and GATV2 (Brody et al.| 2022). We evaluate our
method DISENE in two variants: a 1-layer fully-connected encoder (DISE-FCAE) and a 1-layer convolutional
encoder (DISE-GAE). GNN-based methods are trained using the identity matrix as node features. Specific
training settings are provided in Appendix [A]

Setup. In experiments on real-world graphs, we investigate latent space interpretability and disentanglement
metrics by keeping the output embedding dimension fixed at 128. This dimensionality was chosen to ensure
that all methods achieve optimal performance in terms of test accuracy, specifically for link prediction (see
the Appendix sections |C| and |§| for extensive results on downstream tasks and embedding metrics). For
synthetic data, since we investigated plausibility metric referred to a downstream classifier, thus we did not
focus on a specific dimension but we selected the best score metric varying the output dimensions in the list
[2,4,8,16,32,64,128]. Each reported result is an average over 5 runs. For link prediction, we use a 90%/10%
train/test split, and for node classification, we use an 80%/20% split. All results refer to the training set,
except for downstream task experiments, where we present results for the test set.

4.2 Results and Discussion

(RQ1) Are the topological substructures both comprehensible and sparse to support human
understandability? Here we explore how well the represented topological structures can serve as global
explanations for node embeddings, quantifying the Topological alignment in the terms of associations
between model parameters and human-understandable units of the input graph, as well as the Sparsity
of these associations. For Topological alignment, we apply modularity maximization to find meaningful
clusters (Blondel et al., 2023). In Table 1| we show compact scores as the average values + fo:l Align(My)

and 1 — % Z(Ile Sp(M,) over all the embedding features. Since for sparsity we report the value subtracted
from 1, all the scores present better results with higher values.

DEEPWALK, INFWALK and GRAPHSAGE show moderate performance in Topological Alignment, excelling
slightly on FB but underperforming on PPI, while GRAPHAE consistently lags behind, particularly on WIKI

5https ://networkx.org/documentation/stable/reference/generators.html
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Table 1: Topological alignment and sparsity in real data

. Best scores in bold, second best underlined.

Method Topological Alignment Sparsity
Cora WIKI FB PPI | Cora WIKI FB PPI

DEEPWALK .363+.003 .356+£.002 .602+.004 .281+4.002 .183+.001 .165+.002 .130+.004 .136+.003
GRAPHAE .299+.001 .248+.002 .481+.014 .263+.003 .182+.002 .164+.004 .154+.003 .135+.003
INFWALK .281+.002 .288+.001 .658+.006 .312+.002 .211+.003 .185+.002 .318+4+.010 .177+.002
GRAPHSAGE | .3584.004 .307+.007 .583+£.003 .306+.005 .189+.001 .189+.003 .145+.002 .1724.001
DGLFRM .551+.015 .555+.014 .618+.005 .515+.008 .314+.014 .346+.024 .373+.018 .383+.012
DW+DINE .511+.051 .496+.014 .813+.025 .569+.022 | .317+.036 .266+.007 .226+.009 .188+.002
GAE+DINE .569+.004 .591+.004 .843+.005 .484+.007 .2904+.001 .2524.001 .195+.002 .1984.002
DISE-FCAE .8224.001 .755+.003 .9714.001 .4844.001 | .5044.001 .4194.001 .2974+.002 .282+.001
DISE-GAE .834+.003 .762+.004 .967+.001 .515+.001 | .4964.001 .418+.001 .304+.003 .2544.002

Table 2: Overlap consistency and positional coherence in real data. Best scores in bold, second best underlined.

Method Overlap Consistency Positional Coherence
CoORA WIKI FB PPI CORA WIKI FB PPI

DEEPWALK .137+.009 .1434.006 .1154.007 .0154.003 | 1.07840.025 0.83540.025 1.11940.015 1.00940.015
GRAPHAE .2694.002 .2954.004 .2734.017 .4524.008 | 1.02340.006 1.04040.002 1.001+£0.013 1.01640.001
INFWALK .008+.003 .023+.002 .021+.002 .134+.002 | 1.004+0.011 0.998+0.004 0.938+0.053 0.999+40.002
GRAPHSAGE | .2114.003 .1364.017 .2304.007 .0974.040 | 1.09940.012 1.103+0.010 1.0054:0.007 1.0184-0.002
DGLFRM .0614.004 .0474.008 .070+.006 .102+.002 1.2634+0.052 1.197+0.043 1.34940.065 1.29140.049
DW+DINE .900+4.012 .804+.032 .851+.017 .855+.016 1.79040.076 2.126+0.065 1.79240.058 1.24740.043
GAE+DINE .5604.010 .6104.006 .801+.016 .6464.003 | 2.317+0.028 2.551+0.048 1.78340.037 1.0984-0.004
DISE-FCAE .956+.001 .941+.004 .963+.004 .934+.003 | 5.2104+0.080 3.540+0.082 3.348+0.085 1.283+0.004
DISE-GAE .961+4.001 .9444.005 .954+.002 .937+.001 |5.300+0.193 4.343+0.144 3.38840.054 1.261+0.005

and PPI. DGLFRM shows good topological alignment across all datasets. Incorporating DINE improves
results, especially for GAE4DINE, which achieves improved scores on all datasets. The proposed models,
DISE-FCAE and D1SE-GAE, deliver the highest overall performance. DISE-FCAE performs well on FB,
while DISE-GAE excels across CORA and WIKI. However, both models show sub-optimal results on PPI,
suggesting potential for further improvement on this dataset.

DEEPWALK and GRAPHAE offer moderate Sparsity, peaking on CORA, but underperform on other datasets.
INFWALK excels on FB but shows moderate results elsewhere, while GRAPHSAGE performs poorly in
terms of sparsity across all datasets. DEEPWALK and GAE significantly improve their sparsity with DINE,
particularly on CorA. DGLFRM shows competitive sparsity, excelling in FB and PPI. For the proposed
models, DISE-FCAE and DISE-GAE perform best across datasets CORA, WIKI.

(RQ2) Can the identified subgraphs explain the intrinsic characteristics of the node embeddings?
Here we explore how well the defined topological units represent information in the node embedding space,
providing insights into how the relative and absolute positioning of topological structures influences the
feature encoding within a graph. By quantifying these relationships, we can better understand the underlying
patterns and structural information encoded in graph embeddings. In Table [2] we report Positional Coherence
and Overlap Consistency for the examined embedding methods. For the second metric, as node proximity we
used the inverse of the shortest path distance with sum as pooling.

DEEPWALK, INFWALK and DGLFRM perform poorly for Overlap Consistency, while GRAPHAE shows
moderate scores, particularly on PPI. GRAPHSAGE performs slightly worse, with the best overlap consistency
on FB and CorAa. DW+DINE achieves strong scores across all datasets, while GAE+DINE performs solidly
but slightly lower, with its best result on FB. The proposed models, DISE-FCAE and DISE-GAE, outperform
all others, achieving the highest consistency across all datasets except on CORA. DISE-FCAE excels on FB
and WIKI, while DISE-GAE achieves the best overall score on PPI.

DEEPWALK, GRAPHAE, and GRAPHSAGE demonstrate moderate Positional Coherence. INFWALK
consistently scores around 1.0 on all datasets, indicating stable but unremarkable coherence. Incorporating
DINE leads to substantial improvements for both DEEPWALK and GAE, achieving notable gains on CORA,
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Table 3: Plausibility for node embeddings in synthetic data. Best scores in bold, second best underlined.

Method Link Prediction Node Classification
Rine-CL  SBM BA-CL  ER-CL | BA-Ct ER-CL TrCr  Tr-GR

DEEPWALK .2344.003 .205+.008 .1734.002 .1604.006 .1464+.002 .141+.003 .1034.007 .0914.002
GRAPHAE .1834+.003 .160+£.002 .1454.004 .1454.005 .1304.002 .135+.006 .0834.001 .0724.001
INFWALK .2244.005 .1814.005 .218+.007 .2124.008 .1294.002 .1414.004 .097+.002 .093+.004
GRAPHSAGE .2524.005 .2174.003 .186+.006 .178%£.005 .1604.004 .1544.002 .093+.002 .084+.003
DGLFRM .3434£.006 .2244+.002 .220+.010 .210+£.007 .1494.003 .1434+.002 .166+.001 .175%£.009
DW-+DINE .943+.012 .904+.002 .744+.008 .724+.040 .320+.031  .327+.008 .549+.015 .627+.004
GAE+DINE .5494.005 .5474+.014 .418+.011 .3874.002 .3514+.011 .397+.003 .366+.013 .2544-.005
DISE-FCAE .9784+.001 .9244.006 .950+.006 .938+.014 | .8204.011 .791+4+.012 .860+.004 .810+.008
DISE-GAE .9694.002 .910+.006 .936+.003 .941+.005 | .8134.003 .797+.009 .791+.005 .800+.004

Table 4: Plausibility for graph explainers in synthetic data. Best scores in bold, second best underlined.

Node Classif. GNNEXPLAINER PGEXPLAINER DISENE
Dataset GCN GSAGE GATV2 \ GCN GSAGE GATV2 \ FCAE GAE
BA-CL .729+.004  .703£.006  .707+.004 | .895+.005 .581+.038  .596+.016 | .919+.001 .875+.009
ER-CL .6384+.005 .611+.005 .633+.002 .9234.004 .704+.032 .7244.002 .881+4.006 .8724.008
Tr-CL .8464.004 .829+.005 .832+.006 .863+.009 .374+.006 .4224.074 .9264.001 .8714+.005
Tr-GR .8474.005 .833+£.004 .8324.003 .5734.003 .641+.045 .7654.039 .889+.006 .8984.001

WIkKI and FB. DGLFRM shows moderate scores, nevertheless scoring the best in PPI. The proposed models,
Di1SE-FCAE and D1SE-GAE, far outperform other methods, with DISE-FCAE achieving top scores on PPI,
like DGLFRM, while DISE-GAE dominates on COrRA, WIKI and FB (though with higher variance): both
models show consistent superiority.

(RQ3) Are the identified latent structures sufficiently meaningful to serve as explanations for
downstream tasks? Node embeddings serve as versatile feature representations suitable for downstream
tasks, though they typically function as "tabular-like" feature vectors without semantic labels for each feature.
This limitation restricts the use of established post-hoc analysis methods (Bodria et al., 2023) like LIME,
SHAP, etc. Our method allows us to link topological substructures with embedding features, thereby assigning
semantic labels to node vectors. Consequently, we are able to explain a downstream classifier trained with
unsupervised embeddings using feature attribution. Our goal is to assess whether the task-important features
align with human understanding by measuring the Plausibility.

In these experiments we consider node classification and link prediction as binary downstream tasks, training
a logistic regression classifier b(x; 8) = U(Z;il Bihj(x)+ Bo), where z is a node/link instance. We use SHAP
(Lundberg & Lee, 2017) to compute the instance-wise feature attribution values {¥;(z;b)};=1... k. For node
classification, we consider positive instances as the nodes inside a clique in the synthetic graph. Accordingly,
the ground-truth explanation for a node is the set of nodes within the clique it belongs to. For link prediction,
we focus on test edges that were inside a clique before removal, where the ground-truth explanation is again
the set of edges inside the clique itself. We compute plausibility scores over test instances with correct
predicted label, because local explanations extracted from wrong predictions are not reliable for analyzing
model decisions. We report in Appendix [E] the corresponding accuracy scores of downstream classifiers.
Table [3| compares Plausibility scores where node features from different embeddings are used to train
downstream predictors. Since typical embeddings exhibit semantic patterns distributed across many dimen-
sions (Elhage et al.,|2022)), here we consider all the contributing dimensions employing a non-negative weighting
function f(*) = max(0, *). This choice prevents bias toward methods that inherently produce disentangled
semantics (e.g., by analyzing only top-ranked dimensions). DEEPWALK, GRAPHAE, and INFWALK perform
modestly, with DEEPWALK scoring the highest among these on RING-CL and INFWALK showing relative
strength on BA-CL. Compared with earlier approaches, DGLFRM delivers a modest gain in Plausibility,
most notably in link prediction, whereas GRAPHSAGE significantly underperforms across all tasks, especially
in node classification. The addition of DINE improves both DEEPWALK and GAE. DW+DINE excels with
strong performance on RING-CL, SBM, and TREE datasets, while GAE+DINE achieves slightly worst results,
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particularly on node classification tasks, such as in TR-GR. Within the proposed models, DISE-FCAE and
DISE-GAE consistently achieve the highest scores ranking as the best two methods overall.

In Table [] we compare Plausibility for state-of-the-art local post-hoc explainers for graphs in node clas-
sification. We emphasize that our approach focuses on explaining model encodings, unlike methods such
as GNNEXPLAINER and PGEXPLAINER, which explain model decisions. These methods present local
explanation in the form of node and/or edge importance, whereas in our method, combined with feature-based
explainer, the explanation format is a vector of feature importance, associated with a subgraph for each
feature. To make a suitable comparison, we consider as the explanation presented by our method the
subgraph associated to the most important embedding feature (according to the logistic classifier). Recalling
Eq. , this approach is equivalent to choosing the function f(¥;) = W¥[j = argmax{¥,... ¥k }] to compute
plausibility index. We observe GNNEXPLAINER has uniform results across different input GNN models,
instead PGEXPLAINER performs best with GCN. DISE-FCAE and DISE-GAE outperforms the competitors
in most of the cases, except with GCN+PGEXPLAINER in ER-CLIQUES. Reported results show that our
method is capable of producing subgraph-based local explanations with comparable, or even better, plausibility
scores than GNNEXPLAINER/PGEXPLAINER. To enhance clarity, Appendix [Ef includes qualitative examples
that visualize the local explanations generated by the different methods.

5 Conclusions

We present DISENE, a novel framework for generating self-explainable unsupervised node embeddings. To
build our framework, we design new objective functions that ensure connectivity preservation, dimensional
explainability, and structural disentanglement. Unlike traditional GNN explanation methods that typically
extract a subgraph from a node’s local neighborhood, DISENE introduces a paradigm shift by learning node
embeddings where each dimension captures an independent structural feature of the input graph. Additionally,
we propose new metrics to evaluate the human interpretability of explanations, analyze the influence of spatial
structures and node positions on latent features, and apply post-hoc feature attribution methods to derive
task-specific instance-wise explanations. Our results show that interpretable node representations for graphs
can be obtained by disentangling topological substructures across embedding dimensions. Additionally, the
most important node features identified by post-hoc techniques aligns with the true explanation subgraphs.
These findings mark a significant step toward human-centric evaluations of node embeddings, pointing to
critical directions for future work in advancing human-in-the-loop validations in graph feature learning.
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Appendix

Table Al: Summary statistics of graph-structured data. In empirical data, we restrict our analysis to the
largest connected component of any graph.

| Cora Wik FB PPI | RiNe-CL SBM BA-CL ER-CL Tr-CL TR-GR

# nodes 2,485 2,357 4,039 3,480 320 320 640 640 831 799
# edges 5,069 11,592 88,234 53,377 1,619 1,957 3,138 4,196 2,081 972
# clusters/motifs 28 18 16 9 32 32 32 32 32 32

density 0.002 0.004 0.011 0.009 0.032 0.038 0.015 0.021 0.006 0.003
clust. coeff. 0.238 0.383 0.606 0.173 0.807 0.561 0.486 0.456 0.360 0.002

A Training Settings

For DEEPWALK (Perozzi et al., 2014), we train NODEQVECﬂ algorithm for 5 epochs with the following
parameters: p=1, q=1, walk_length=20, num_walks=10, window_size=5.

For INFWALKE (Chanpuriya & Musco, 2020)), a matrix factorization-based method linked to DEEPWALK and
spectral graph embeddings, we set the same value window_size=>5 used for DEEPWALK.

In GRAPHAE (Salha et al. |2020), we optimize a 1-layer GCN encoder with a random-walk loss setting
analogous to DEEPWALK. The model is trained for 50 iterations using Adam optimizer and learning rate of
0.01.

In GRAPHSAGEﬂ (Hamilton et al., 2017)), we optimize a 2-layer SAGE encoder with mean aggregation and
with a random-walk loss setting analogous to DEEPWALK. The model is trained for 50 iterations using Adam
optimizer, learning rate of 0.01.

In DGLFRME (Mehta et al. 2019)), we optimize a 2-layer GCN encoder with the standard hyperparameters
for variational inference: ag=10, Aprior=0.5 and Apost=1. The hidden embedding size is tuned in the list
[8,16,32,64,128,256,512]. The model is trained for 300 iterations using Adam optimizer, learning rate of
0.01.

DINEB (Piaggesi et al.| [2024), autoencoder-based post-processing process trained for 2000 iterations, and
learning rate of 0.1. Input embeddings are from DEEPWALK and GAE methods, tuning the input embedding
size in the list [8, 16, 32, 64,128, 256, 512].

DiSE-FCAE and DISE-GAE trained for 50 iterations using Adam optimizer and learning rate of 0.01. The
hidden embedding size is tuned in the list [8, 16,32, 64,128,256, 512]. Random walk sampling follows the
same setting as DEEPWALK, GRAPHAE and GRAPHSAGE.

GNNEXPLAINERE is trained for 30 epochs for each test node, while PGEXPLAINERE is trained for 5 epochs
on trained nodes before being applied on test nodes. Moreover, since PGEXPLAINER is based on edge masks,
we derive node masks for that model with the average mask value from incident edges.

Graph explainers are applied on top of the following GNN models trained on node classification (two-layer
for clique-based data and three-layer for grid-based data): GCN (Wu et all 2019), GRAPHSAGE (Hamilton
et al., [2017)), and GATV2 (Brody et al. [2022). All the graph models (not the explainers) are tuned by
searching the best output embedding size from the list [2,4, 8,16, 32, 64, 128], as the input to the classification
layer.

6https://github.com/eliorc/noderec
7https://github.com/schariya/infwalk
8https://github.com/pyg—team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py
thtps://github.com/nikhil—dce/SBM—meet—GNN
Ohttps://www.github.com/simonepiaggesi/dine
11https://pytorch—geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.GNNExplainer.html#torch_
geometric.explain.algorithm.GNNExplainer
12https://pytorch—geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.PGExplainer.html#torch_
geometric.explain.algorithm.PGExplainer
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B Algorithm Complexity

Space and time complexity of DISENE can be analyzed by looking at the pseudo-code in Algorithm [AT] Part
of the complexity depends on the complexity of the encoder. Here, we assume GCN as encoding functions,
with its own set of learnable parameters ©. But, in the experiments, we have also tested fully-connected

encoders.

Algorithm Al: DISENE(G, A, K, T, L, Aent)

Input Graph G = (V,€)

Adjaceny matrix A € {0, 1}VIxVI

Embedding size K, Context window T,

Walks length L, Regularization Aent
Output: Embedding matrix H € RIVI*X¥

Init. encoder network Ence(x);

Init. identity matrix features X;

while not converged do

Encoding step: H <+ p(W' Ence(A, X));
Sample batch of nodes: B < Sample(V);
Init. random walks W < (;

foreach v € B do

Sample random walk:

W + WU RandomW alk(A, v, L);
Random-walk loss: Lrw(H, W, T);
foreach d € {1... K} do
Aggregate rows of H: fg < > Hyq;
Compute 1-norm: |f|; + Zv’d H,4;
Node affiliation matrix: F + H® f;
Disentanglement loss Lais(F)
Regularization loss Lent (F')

Total loss: £ < Liw + Ldis + Aent Lent;
Backpropagate and update ©, W;

return H;

Our method consists of four main steps:

Table A2: Time and space complexity for various embed-
ding methods in terms of number of nodes |V|, number of
edges |€| and latent dimensions K. For models trained with
random walk sequences, T denotes the context window size
and L the random walks length. For models trained with
neighborhood sampling, r denotes the number of sampled
neighbors per node. For simplicity, in GNNs we consider
single-layer architectures and we omit the O(K?) memory
usage of model weights since they are negligible compared

to storing the embeddings.

Method Time Complexity Space Complexity
DEEPWALK O(|V|KTL) O(|VIK + |V|L)
INFWALK O(|V|?K) o(|v]?)
GRAPHAE O(I€|K + |V|K?) O(|V|K)
GRAPHSAGE O(r|V|K?) O(r|VIK)

O(IVIK?) O(K?)
DN +base model +base model

2

DISENE OUEIK + WIKS o y1k 4 VL)

+|V|KTL)

1. Encoding step generates the node embeddings H and has the same per-layer time/space complexity

of standard GCNs (Duan et al., 2022)), i.e. O(||A||oK + |[V|K?) and O(|V|K) respectively.

Random walk sampling and loss calculation has time/space complexity O(|V|KTL) and O(|V|L)
respectively (Rozemberczki et al., 2019), where T is the context window size and L is the random-walk
length (we sample 1 random walk per node, fixing as well the number of negative samples to 1 for
each positive sample). RandomW alk function sample a first-order random walk starting from source
node v of length L.

Node affiliation matrix involves computing the entries F,q4 Y vey, Pa(u,vih) as Fug =
Yo HugHyq = Hygfy, ie. by multiplying node embedding entries H,q with quantities f; = > H,q.
This step involves O(]V|K) operations for computing and storing matrix F.

Disentanglement and regularization losses involve respectively O(|V|K?) and O(K) operations for
cosine similarity (matrix products) and entropy (vector sum).

Overall, given that [|Al|y is 2|&|, DISENE results in O(|&|K + |V|K? + |V|KTL) time complexity and
O(|V|K + |V|L) space complexity. In Table we compare these findings with computational complexities
of competitor methods as they are reported from previous works (Tsitsulin et al., [2021}; |Chiang et al., [2019;
Piaggesi et al.| [2024), showing that our approach is in line with established node embeddings (runtime scales
linearly with the number of nodes and edges).
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C Downstream Tasks Results for Real Datasets

We tested link prediction for the datasets reported in the main paper. For node classification, we tested PPI
and other benchmark biological datasets in multi-label setting (Zhao et al.l |2023a): the PCG dataset for the
protein phenotype prediction, the HUMLOC, and EUKLOC datasets for the human and eukaryote protein
subcellular location prediction tasks, respectively. Characteristics of additional biological datasets are reported
in Table We concatenated node attributes to node embeddings to get an enriched set of predictors that,
given our method extract interpretable features, can be used in combination with feature-based explainers
(e.g., SHAP) for building fully transparent prediction pipelines. In Figure we report AUC-PR scores for
link prediction and node classification in real-world graph data. Generally, scores increase with the number
of latent embedding dimensions. Tables and show the maximum scores for link prediction and node
classification, demonstrating that our approach can consistently achieve reasonable performances within the
expected range of the performance-interpretability trade-off.

D Explanations for Real Datasets

Figures and display results for Topological Alignment, Sparsity, Overlap Consistency and Positional
Coherence, for real-world datasets. These curves complement the results presented in Tables [I] and [2] by
covering a broader range of output embedding sizes K (K=128 in the main paper) and tuning for the
hidden size D, as detailed in Section |A| for DINE (i.e., D € [8, 16, 32,64, 128,256, 512]). Generally speaking,
DISE-GAE yields the strongest interpretability scores when the embedding dimension is large, whereas
performance differences are less systematic in the low-dimensional regime. Our subsequent analysis therefore
focuses on the trade-off between these interpretability metrics and downstream task accuracy (e.g., link
prediction).

Figure [A4] plots link-prediction AUC-PR against each interpretability metric for all the considered embedding
methods. Every cluster of points represents a single method with its range of hidden and output dimensions
considered as hyper-parameters. To enable a principled assessment of which method offers the most favorable
balance between predictive power and transparency, the left panel of Figure highlights the Pareto frontier
in each scatter plot. Models on this frontier are optimal in the sense that no alternative model attains both
higher accuracy and greater interpretability, therefore making any other point lying below the frontier strictly
dominated with respect to the two criteria, and thus sub-optimal (dominance was assessed while incorporating
the statistical uncertainty of each metric, estimated with the standard error from five independent runs per
model).

Once the Pareto frontier is identified, we aim to quantify which embedding technique most consistently reaches
that frontier. For every method E we collect all of its hyperparameter instantiations E = {Ey, Es, ... E,,}
(e.g., GRAPHAEk_4). Let P be the set of all configurations that lie on the frontier. We rank methods with
two complementary scores:

_|PNE]

_|PnE|
1Pl '

cov(E) ]

eff(E)
Coverage is the proportion of methods in the Pareto-frontier that belongs to E. Efficiency is the proportion
of E’s configurations that are Pareto-optimal. Scores reported in Table [A] combine Coverage and Efficiency
via their harmonic mean to have a compact measure quantifying the "average" Pareto-optimality of every
embedding method. Using this composite ranking, DISE-GAE consistently finishes within the top two
methods across all datasets.
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Table A3: Summary statistics of graph biological data used for multi-label node classification.

PPI PCG HumLoc  EukLoc
# nodes 3,480 3,177 2,552 2,969
# edges 53,377 37,314 15,971 11,130
# labels 121 15 14 22
density 0.009 0.007 0.005 0.003
clust. coeff. 0.173 0.346 0.132 0.150
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Figure Al: Downstream tasks results on real-world datasets (link prediction on the top panel, multi-label
node classification on the bottom panel) with varying feature dimensions size.

Table A4: Link prediction results (AUC-PR) on real-
world datasets. Best scores are in bold, while scores
with a relative performance loss of no more than 2%
respect to the best score are underlined.

CORA WIKI FB PPI
DEEPWALK .8924.005 .927£.002 .990+.001 .7944.002
GRAPHAE .9114+.003 .950+.001 .9944.001 .9164.001
INFWALK .923+.003 .936+.002 .941+.006 .854+.003
GRAPHSAGE .913+.005 .9444.002 .9914.001 .892+.003
DGLFRM .9724+.001 .967+.001 .979+.001 .890+.001
DW+DINE .896+.004 .931+.003 .987+.001 .817+.004
GAE+DINE  .9264.001 .957+.003 .992+.002 .9194.002
DiSE-FCAE  .856+.007 .9114.004 .977+.001 .884+.002
DISE-GAE .8854.002 .9474.002 .993+.006 .9134.001

21

Table A5: Node classification results (AUC-PR) on
real-world datasets. Best scores are in bold, while
scores with a relative performance loss of no more than
5% respect to the best score are underlined.

PPI PCG HumLoc  EukLoc
DEEPWALK 476+.003 .2104+.001 .314+.012 .241+.010
GRAPHAE .5174+.003 .241+4+.001 .3364.004 .249+.005
INFWALK .4424.001 .207+.002 .287+.004 .2124.003
GRAPHSAGE .5064.001 .2314.002 .3164.004 .2374.011
DW+DINE 488+.002 .217+.001 .308+.004 .231+.008
GAE+DINE  .526+.001 .241+4+.001 .3334+.006 .234+4.008
DISE-FCAE  .498+.001 .2334+.003 .291+.006 .230+.006
DISE-GAE .5184.001 .2424.004 .315+.003 .2384-.006




Published in Transactions on Machine Learning Research (07/2025)

DeepWalk  —=— GraphSAGE  —a— GAE+DINE

GraphAE —4— DGLFRM —e— DiSe-FCAE
InfWalk —4— DW+DINE —o— DiSe-GAE
o cora wiki facebook ppi
c 1.0
b5 .
g 0.8 0.8+ 0.8
C
2
<06+ 0.6 0.8 0.6
©
o
20.4 0.4 1 0.6 0.4 1
©°
= 2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
output dimensions output dimensions output dimensions output dimensions
cora wiki facebook ppi

0.4 1 0.3 0.4 1
> 0.4 1
= 1 0.3 1
4 0.3 0.2 1
3 0.2
0 | 0.2+ 4

0.2 0.1
0.11 0.1+
2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
output dimensions output dimensions output dimensions output dimensions

Figure A2: Topological alignment and sparsity results on real datasets with varying feature dimensions size.
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Figure A3: Overlap consistency and positional coherence results on real datasets with varying feature
dimensions size.
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Figure A4: Scatter plots with link prediction performance (x-axis) and interpretability metrics (y-axis) on
real datasets with varying feature dimensions size.
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Table A6: Pareto-optimal methods for real

datasets.

Dataset| Metric

\ #1

#2

Top.Align.
Sparsity
Over.Cons.
Pos.Coher.

CORA

DISE-GAE(.609)
DISE-GAE(.541)
DISE-GAE(.667)
DISE-GAE(.468)

GAE+DINE(.130)
DISE-FCAE(.165)
DGLFRM(.190)
GAE+DINE(.213)

Top.Align.
Sparsity
Over.Cons.
Pos.Coher.

WIKI

DISE-GAE(.645)
DISE-GAE(.629)
DISE-GAE(.606)
DISE-GAE(.519)

GAE+DINE(.194)
DISE-FCAE(.135)
DGLFRM(.141)
GAE+DINE(.198)

Top.Align.
Sparsity
Over.Cons.
Pos.Coher.

FB

DISE-GAE(.686)
DISE-GAE(.545)
DISE-GAE(.689)
DISE-GAE(.695)

DISE-FCAE(.235)
DGLFRM(.156)
GAE+DINE(.067)
DISE-FCAE(.168)

Top.Align.
Sparsity
Over.Cons.
Pos.Coher.

PPI

DISE-GAE(.505)
DGLFRM(.324)
DISE-GAE(.769)
DISE-GAE(.469)

GAE+DINE(.316)
DISE-GAE(.206)
DGLFRM(.066)
DGLFRM(.173)

Figure A5: Pareto frontiers for the optimal models considering the interpretability-accuracy trade-offs defined
by the four proposed metrics and the link prediction accuracy.
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E Explanations Visualization for Synthetic Datasets

Global Subgraph Explanations In Figure [AG] we show
subgraph-level global explanations on synthetic dataset BA-
CLIQUES. Subgraphs are generated for each feature dimension
using the procedure described in Section (summarized on
the left in Algorithm and are based on various unsuper-
vised embedding methods. The explanatory subgraphs demon-
strate that our method effectively aligns embedding dimensions
with meaningful, non-random functional components of the
graph. In contrast, standard methods such as DEEPWALK
and GRAPHAE struggle to isolate individual structural units
within dimensions. Instead, their embeddings often associate
dimensions with groups of cliques or subgraphs that include ele-
ments from the random Barabési-Albert scaffold. Additionally,
the visualization on the right shows the correlation between
latent features, further underscoring that the alignment be-
tween embedding dimensions and graph structure is closely tied
to the ability to disentangle feature correlation through non-

Algorithm A2:
UNSUPEDGESUBGRAPH(G, Z, d)

Input : Graph G = (V,€)
Embedding function z : V — RE
Dimension to explain d € {1...K}
Output: Graph mask M(4 ¢ RIVIXIVI
Init. graph mask: M(@) « oIVIxIVI,
Compute background average attribution:
Ca= 15 > (uwyee 2a(Wza(v);
for (u,v) € £ do
Compute edge attribution:
Ga(u, v;2) = z4(u)za(v) — Ca3
Add explanation:
MY + max{0, dq(u, v;2)};
return M<d);

collinearity. Specifcially, we highlight that for DEEPWALK and GRAPHAE the subgraphs exhibit significant
overlap, which can be attributed to non-zero correlations within their latent features. In contrast, the
uncorrelated features of DISENE produce distinct, non-overlapping explanations.

DEEPWALK

dimension 3

dimension 2

dimension 1

dimension 4

anjeA ysew

o o o o
S 2 8 8
anjeA ysew
| e— | e— | ee—

anjeA ysew

dimension 5 0.0

Figure A6: Subgraph-level global explanations for a representative subset of embedding dimensions, along
with corresponding pairwise feature correlation plots, on synthetic dataset BA-CLIQUES.
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Local Subgraph Explanations Local explanations
for node embeddings are extracted by using post-hoc
feature importance method SHAP. For a given em-

Algorithm A3:
NODECLASSSUBGRAPH(G, ¥, j)

bedding model h : V + RX we train a downstream  1oPut : Graphg=(.&) i
Feature-base explanation matrix ¥ € R

classifier, e.g., in node classification task or link predic- Dimension to explain j € {1... K}
tion. For simplicity, here we write the case when the = Output: Node mask BU) ¢ RIVI

classifier is a (binary) linear model, but it can be any Init. node mask: BG) « olVI;

arbitrary complex model. It is anyway reasonable to 2 for v €V do

assume that node embeddings come from a deep graph Add explanation:

model and downstream classifier is a simple 1-layer By — max{0, ¥;(v;b) };

neural network on top of the embedding layers. 5 return BU);

[VIxK

w N =

K
(node classification)  b(v) = O'(Z Bih;(v) + Bo)
j=1

K
(link classification)  b(u,v) = O'(Z Bihj(u,v) + Bo)
j=1

Given a vector representation of a graph instance (e.g., a node embedding h(v) or an edge embedding
h(u,v)), and the corresponding prediction from classifier b, we compute feature importance with SHAP
{\Ilgv)(v; b)}j=1..K or {\Ilgg)(u, v;b)}=1.. .k and the corresponding task-based graph masks (we illustrate the
pesudo-code for node classification masks in Algorithm [A3):

BO(¥M) e RV, BY) = max{0, %" (v;)}

BU(w®) e RVM*M; - BY) = max{0, 04 (u, v;b)}

It is valuable to remark that, training with logistic regression and applying SHAP, the resulting importance
scores are simply the coefficients of the regression (Lundberg & Lee| 2017) ¥,(x;b) = B;(h;(x) — E[h,]).
Thus, combining this methodology to interpretable graph features of DISENE, we obtain a fully transparent
node/edge classification pipeline for graph data.

Figure [A7] present examples of local explanations for node classification tasks on the small-sized synthetic
datasets BA-CLIQUES and TREE-GRIDS, using different methods. The experimental settings are consistent
with those described in the main paper. On the left, we highlight the local ground-truth structures for the
instance nodes depicted in the illustrations. On the right, we display the explanation subgraphs generated
by each method, with nodes color-coded according to the respective explanation masks. For GRAPHAE
and DISENE, the visualized subgraphs represent the most relevant structures as determined by feature
importance attribution from the logistic regression classifier. For GNNEXPLAINER and PGEXPLAINER, the
node masks correspond to the algorithm’s output in explaining a 2-layer GCN (Wu et al., [2019). Notably,
DISENE demonstrates a strong ability to produce meaningful and interpretable node masks, effectively
competing with state-of-the-art GNN explanation methods.
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Ground-truth GRAPHAE DISENE
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Figure A7: Subgraph local explanations for node classification in BA-CLIQUES (top) and TREE-GRIDS
(bottom). On the leftmost column, we highlight the local ground-truth structures for the considered instance
nodes. On the other columns, we display the explanation subgraphs generated by each method, with nodes
color-coded according to the respective explanation masks. For GRAPHAE and DISENE, the visualized
subgraphs represent the most relevant structures extracted with Algorithm [A3 and determined by feature
importance attribution from the logistic regression classifier. For GNNEXPLAINER and PGEXPLAINER, the
node masks correspond to the algorithm’s output in explaining a GCN (Wu et al} [2019) in node classification.
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Figure A8: Interpretability metrics computed in WIKI with varying entropy regularization parameters,
number of convolutional layers and hidden dimension sizes in DISE-GAE.

F Explanations for Synthetic Datasets

Global Explanations In Figure[A9 we plot results for Topological Alignment and Sparsity, on the top
and the bottom respectively, on synthetic datasets. Generally, DISE-FCAE outperforms DISE-GAE and the
other competitors in all the datasets. In Figure we plot results for Overlap Consistency and Positional
Coherence, on the top and the bottom respectively, on synthetic datasets. For the overlap metric, DISE-FCAE
and DISE-GAE consistently outperform the competitors, especially with more than 8 dimensions where
they achieve almost perfect overlap. For the positional metric, the competitors GAE+DINE and DW+DINE
slightly outperform DISE methods, especially in large dimensions, while DEEPWALK also show good results.

Local Explanations In Figure we plot results for the plausibility metric on link prediction and
node classification, on the top and the bottom respectively, while comparing different unsupervised methods
that output node embeddings. Plausibility seems to benefit larger dimension values for DISE methods and
DW+DINE for link prediction. Figure [AT2]shows the corresponding downstream task accuracy results.

G Influence of Entropy Regularizer and Model Depth for Wiki Dataset

Figure explores how both the entropy-regularization coefficient, A¢y;, and the GCN depth in DISE-GAE
influence the interpretability metrics on the WIKI dataset. Increasing A.,: and using deeper networks boost
Topological Alignment and Overlap Consistency, but it also reduce Sparsity, revealing a trade-off between
compactness and explanatory power. Positional Coherence is weakly sensitive to e, and tends to improve
with shallower architectures.

H Qualitative Examples for Cora Dataset

Tables [AT] and presents qualitative examples regarding the embedding interpretability on the CORA
citation graph. The dataset comprises seven classes, each corresponding to a distinct computer science topic.
We employ different embeddings as predictor variables for the node classification task with a one-vs-rest
multiclass strategy using Logistic Regression. Comparing DISE-GAE with the vanilla GAE and GAE+DINE;,
we selected for each class the most task-relevant embedding dimension corresponding to the highest coefficient
of the linear classifier. For every selected dimension, we analyze different properties of the corresponding
anchor subgraph, computed with Eq. . First, without inspecting node class labels, the Topological
Alignment scores and the Density scores (i.e., the ratio of the number of edges with respect to the maximum
possible edges in the subgraph) tell us that DISE-GAE produces denser subgraphs compared to the overall
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Figure A9: Topological alignment and sparsity results on synthetic datasets with varying feature dimensions
size.
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Figure A10: Overlap consistency and positional coherence results on synthetic datasets with varying feature
dimensions size.

graph, indicating stronger structural cohesion in the most task-relevant subgraph. Moreover, considering
the bar plots that display distributions of class labels inside the subgraphs, nodes grouped within a single
dimension of DISE-GAE share research themes more consistently. This is quantified in the lower entropy of
labels’ distributions within each subgraph. Furthermore, by looking at the top-20 most frequent keywords
extracted from each cluster (after lemmatization and stop-words removal), we represent the word-cloud for
each dimension, indicating clusters that are more thematically coherent and easier to interpret. For example,
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Figure All: Plausibility results on synthetic datasets (link prediction on the top panel, binary node
classification on the bottom panel) with varying feature dimensions size.
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Figure A12: Downstream tasks results on synthetic datasets (link prediction on the top panel, binary node
classification on the bottom panel) with varying feature dimensions size.

looking at the most predictive dimensions for the label Probabilistic methods, we observe with DISE-GAE we
identify papers mentioning topic-relevant keywords such as "bayesian netwoks", "inference" and "probabilistic";
while papers identified with GAE+DINE frequently refer to "reinforcement learning" and "control". These
qualitative examples therefore show that our model learns latent dimensions whose structural and semantic

meanings are markedly more human-intelligible than those of the competing methods.
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Table A7: Most task-relevant dimensions in different methods for node labels Neural Networks, Reinforcement
Learning, and Probabilistic Methods and their interpretations based on topic and text information in CORA.

Node Label | DISE-GAE (Macro-F1=.864) | GraphAE (Macro-F1=.865) | GAE+DINE (Macro-F1=.838)
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Table A8: Most task-relevant dimensions in different methods for node labels Theory, Genetic Algorithms,

and Rule Learning and their interpretations based on topic and text information in CORA.

| DISE-GAE (Macro-F1=.864) | GraphAE (Macro-F1=.865) | GAE+DINE (Macro-F1=.838)
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