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Abstract

Large Language Models(LLMs) excel at generating code but
often struggle when faced with incomplete or underspecified
instructions. Drawing on the practice of experienced devel-
opers who seek clarification before coding, we introduce a
framework that integrates a clarifying Q&A phase into the
code generation process. Instead of working blindly from
vague prompts, our approach encourages users to refine their
requirements, enabling the LLM to produce more contextu-
ally informed and accurate code. We apply this technique to
a range of challenging tasks, demonstrating that high-quality
clarifications substantially improve both code correctness and
reliability. Our results highlight a promising avenue for en-
hancing human-LLM collaboration, making generated code
solutions more aligned with user intent and reducing the need
for subsequent revisions.

Introduction
In recent years, Large Language Models (LLMs) have
demonstrated remarkable capabilities in generating
code (Jiang et al. 2024a). Given instructions for a coding
task, these models can produce code snippets that closely
align with the specified requirements. To measure their
effectiveness across different dimensions, researchers have
introduced a wide range of benchmarks (Hendrycks et al.
2021; Chen et al. 2021; Du et al. 2023; Zhuo et al. 2024),
each designed to evaluate various aspects of code generation
quality.

As LLMs have advanced, however, many of these ear-
lier benchmarks have lost their discriminatory power, with
state-of-the-art models now easily surpassing them. As a re-
sult, the focus has shifted toward more complex and realistic
scenarios (Du et al. 2023; Farchi et al. 2024; Jimenez et al.
2024). Under these conditions, a critical challenge arises: the
initial instructions given to the model are often incomplete
or underspecified. While an LLM may produce semantically
correct code according to the provided instructions, the re-
sulting output may fail to pass comprehensive test suites due
to missing contextual details.

This issue is not limited to academic settings. In real-
world software development, engineers frequently receive
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only high-level requirements, which may lack the granular-
ity needed to implement a solution that meets all specifica-
tions. When critical information is absent, the code produced
by an LLM—or even a human programmer—can struggle to
fulfill strict testing criteria, ultimately hindering reliable de-
ployment.

A common approach that skilled programmers use in
these scenarios is to seek clarification before coding. For ex-
ample, when faced with vague or incomplete requirements,
a developer might ask follow-up questions to ensure full
understanding before proceeding with implementation. In-
spired by this practice, our work proposes a novel code
generation framework, ClariGen (depicted in Figure 1),
that simulates this behavior. Instead of directly producing
code from an underspecified prompt, the LLMs first gener-
ate clarifying questions, prompting the user to provide es-
sential details. With these enriched requirements in hand,
the model can then generate code that aligns more closely
with the user’s goals, thereby increasing the likelihood of
passing strict validation tests. In this way, our approach im-
proves both the quality and reliability of code generation by
encouraging a more interactive and context-aware develop-
ment process.

In our empirical evaluation, we demonstrate that incorpo-
rating clarification questions into the code generation pro-
cess yields measurable improvements across multiple di-
mensions. Compared to baseline models that generate code
directly from the initial prompt, our approach shows higher
Pass@1 on comprehensive test suites and exhibits greater
robustness to vague or underspecified instructions. Fur-
thermore, we analyze the effectiveness of using clarifica-
tion questions generated by different models, revealing that
higher-quality Q&A content consistently leads to stronger
performance gains. Although some tasks still regress from
success to failure, the overall trends suggest that augment-
ing the coding instructions through an interactive clarifica-
tion process substantially enhances both the accuracy and
reliability of the generated code.

Related Work
Code Generation with LLMs
Code generation using LLMs has garnered significant at-
tention, particularly because these models, trained on exten-



Figure 1: An overview of the ClariGen framework. (1.1) The
model receives an initial instruction. (1.2) The model queries
the user for clarification on missing or ambiguous details. (2)
The user provides additional information in response. (3) In-
corporating these clarifications, the model produces the final
code output.

sive code corpora, exhibit emergent capabilities in generat-
ing high-quality code (Li et al. 2022; Austin et al. 2021).
Current research predominantly focuses on enhancing code
quality through various strategies, such as pre-processing or
post-processing of instructions and code (Jiang et al. 2024b;
Olausson et al. 2024). However, as evaluation tasks become
more complex, the instructions in benchmarks are generally
insufficient to guide LLMs in generating code that passes
strict tests. ClarifyGPT (Mu et al. 2024) addresses this chal-
lenge by detecting ambiguities in the generated code and
subsequently providing corrections to achieve the correct
implementation. Although ClarifyGPT demonstrates signif-
icant improvements, it remains unclear whether LLMs can
directly ask questions based on given instructions to fur-
ther enhance code quality. In our work, we directly gener-
ate questions from the provided instructions and use the an-
swers, informed by software requirements, to simulate the
software development process and improve code quality.

Asking Clarification Questions
Asking Clarification Questions (ACQ) helps prevent mis-
understandings in human-human and human-machine com-
munication by eliciting missing information and resolving
ambiguities (Shi, Feng, and Lipani 2022; Zou et al. 2023).
Widely used in NLP tasks like dialogue systems and query
refinement (Zamani et al. 2020; Rahmani et al. 2023), ACQ
remains underexplored in code generation. Recognizing that
developers often seek clarification before coding, we extend
ACQ to this domain. By prompting for additional details to
clarify vague or incomplete requirements, we enable LLMs
to produce more accurate, context-aware code. This iterative
approach enhances reliability and success rates in challeng-
ing tasks, aligning code generation more closely with real-
world software development practices.

Methodology
Our proposed framework, illustrated in Figure 1, is designed
to simulate the real-world workflow of a programmer tack-
ling an underspecified coding task with partial software re-
quirements. It decomposes the code generation process into

three key stages: (1) Clarification Question Generation, (2)
Question Answering, and (3) Code Generation.

Clarification Question Generation
Given an initial coding task instruction ψ, the Large Lan-
guage Model Ml emulates a developer confronted with am-
biguous requirements. In this step, Ml identifies missing
details or unclear specifications—often related to the pro-
gram’s intended function, inputs, and outputs—and gener-
ates a set of clarifying questions. Formally:

{qi}
nq

i=1 =Ml(ψ).

The number of questions nq emerges dynamically, reflecting
the complexity and incompleteness of the given instruction.

Answering Questions
Once the clarification questions {qi}

nq

i=1 are generated, they
are presented to the user U . Drawing on their domain exper-
tise and the underlying requirements, the user responds with
a set of corresponding answers {ai}

nq

i=1. This interactive ex-
change refines the previously underspecified instruction ψ,
enriching it with critical contextual details and ensuring that
the specification aligns more closely with the intended func-
tionality.

Code Generation
With the original instruction ψ now supplemented by the
clarified requirements {qi, ai}

nq

i=1, the LLM proceeds to
generate the final code:

c =Ml(ψ, {qi}
nq

i=1, {ai}
nq

i=1).

Through this iterative clarification cycle, the produced
code c becomes more context-aware, accurate, and closely
aligned with the user’s intended goals.

Evaluation
Most existing code generation benchmarks provide only
problem statements and expected solutions, but do not sup-
ply additional clarifications or answers to potential follow-
up questions. To integrate our framework seamlessly with
these datasets, we simulate the user’s role by employing an
LLM as an answer provider, as shown in Figure 2. This sim-
ulation ensures that our methodology can be directly applied
to existing benchmarks without manual intervention, main-
taining consistency and allowing for automated evaluation
of Q&A-enhanced code generation.

Experiment and Result
In this section, we present our experimental evaluation, aim-
ing to answer the following research questions:

1. Framework Effectiveness: Will our proposed frame-
work yield higher-quality code if additional clarifications are
provided?

2. Model Generality: How do different LLMs perform
when integrated into our framework?

3. Cross-Model Consistency: Can the generated QA
pairs be effectively transferred to other LLMs to improve
code generation quality?



4. Performance Variance: What is the performance dif-
ferential between the model and the baseline?

The following subsections detail our experimental setup
and results, offering insights into each of these questions.

Experimental Setup
Our experiments are conducted on the BigCodeBench-Hard
subset (Zhuo et al. 2024), which comprises approximately
150 challenging, user-facing tasks selected from the Big-
CodeBench dataset. To evaluate performance, we employ
the widely used Pass@K metric, which measures the ef-
fectiveness of LLMs in generating correct code by deter-
mining the probability that at least one of the top-K gen-
erated samples passes all test cases. In this experiment, we
set K to 1, aligning with the most practical application of
LLMs in code generation, where typically only a single so-
lution is sought. This setting closely mirrors real-world us-
age scenarios, emphasizing the model’s ability to produce
correct and functional code on the first attempt. We evaluate
four LLMs in our framework: GPT-4 (OpenAI et al. 2024),
Gemini (Team et al. 2024), Qwen2.5-32B-Coder (Hui et al.
2024), and Qwen2.5-72B-Instruct (Yang et al. 2024).

Figure 2: Illustration of the evaluation framework. The in-
struction is first processed by a Question Model to generate
clarification questions. These questions are then answered
by the Answer Model, and the resulting Q&A pairs are used
by the Code Model to produce the final code output.

The experimental procedure is divided into three main
stages, as depicted in Figure 2: (1) Question Generation, (2)
Answer Generation, and (3) Code Generation. See Appendix
A for a detailed look at how the prompts for different tasks.

Question Generation: In this stage, the selected question
LLM is supplied with the initial coding task instruction and
tasked with generating a set of clarification questions. This
process mirrors how a developer would seek additional de-
tails from stakeholders when requirements are incomplete.
By pinpointing ambiguities and gaps, the LLM produces
questions that target crucial missing information, setting the
stage for more precise and context-aware code generation.

Answer Generation: Once the clarification questions are
formulated, we use GPT-4 to produce corresponding an-
swers. For this purpose, GPT-4 has access to the original
instruction, the canonical code (as a reference), and the gen-
erated questions. The answers are crafted to focus strictly
on the software requirements, intentionally excluding any
direct implementation details. This approach simulates real-
world development scenarios, where engineers rely on spec-
ifications and high-level requirements rather than detailed

Model Pass@1(%) Improve
GPT-4 w/o Q&A 34.67 -
GPT-4 w/ Q&A 35.33 0.67
Gemini w/o Q&A 26.67 -
Gemini w Q&A 31.33 4.67
Qwen2.5-32B-Coder w/o Q&A 33.33 -
Qwen2.5-32B-Coder w Q&A 36.67 3.33
Qwen2.5-72B-Instruct w Q&A 30.00 -
Qwen2.5-72B-Instruct w Q&A 33.33 3.33

Table 1: Pass@1 of different LLMs on the code-generation
task, comparing their performance with and without an in-
teractive Q&A stage.

code insights before beginning implementation. By adhering
to these guidelines, the answers become both practical and
representative of typical software engineering workflows.

Code Generation: With the finalized clarification ques-
tions and their corresponding answers in hand, we then
prompt each LLM to produce the final code solution. The
input to the model includes the original instruction as well
as the question-answer pairs, enabling the model to generate
code that better aligns with the clarified requirements.

Framework Effectiveness
To assess the effectiveness of our framework, we conduct ex-
periments in which the same model is used both to generate
clarification questions and to produce the final code. Table 1
compares our interactive approach to a baseline where code
is generated directly from the original instruction.

As shown in the table, incorporating the question-answer
phase significantly improves the quality of the generated
code. By enriching the original instructions with additional
details gleaned from answers, our framework enables the
model to better understand the underlying requirements.
These findings suggest that our approach is particularly valu-
able in practical scenarios where initial instructions are in-
complete or vague, ultimately enhancing code generation re-
liability and overall utility.

Model Generality
Although all models show improvements over the baseline,
their relative gains vary. Notably, GPT-4, which achieves
state-of-the-art performance without clarification, is over-
taken by Qwen2.5-32B-Coder once question-answer pairs
are introduced. This indicates that even models starting from
a lower baseline can outperform stronger models if given the
opportunity to clarify ambiguities in the instructions.

Gemini, despite having the weakest baseline performance,
experiences the largest relative increase in Pass@1 when
clarification is provided. This finding suggests that models
initially struggling with incomplete instructions may benefit
disproportionately from the added context.

Both Qwen2.5-32B-Coder and Qwen2.5-72B-Instruct
show substantial improvements in Pass@1. Among all
models tested, Qwen2.5-32B-Coder ultimately achieves the
highest Pass@1 once clarification is introduced, demonstrat-



Model Pass@1(%) Improve
GPT-4 w/o Q&A 34.67 -
GPT-4 w/ Q&A from itself 35.33 0.67
GPT-4 w/ Q&A from Gemini 35.33 0.67
GPT-4 w/ Q&A from Qwen 38.00 3.33
Gemini w/o Q&A 26.67 -
Gemini w/ Q&A from itself 31.33 4.67
Gemini w/ Q&A from GPT-4 29.33 2.67
Gemini w/ Q&A from Qwen 31.33 4.67
Qwen w/o Q&A 33.33 -
Qwen w/ Q&A from itself 36.67 3.33
Qwen w/ Q&A from GPT-4 38.00 4.67
Qwen w/ Q&A from Gemini 31.33 -2.00

Table 2: Cross-model Q&A evaluation results. Pass@1 of
three LLMs (GPT-4, Gemini, and Qwen) are reported under
four conditions: without Q&A, with self-generated Q&A,
and with Q&A provided by different models.

ing the strong potential of combining effective question-
asking with high-quality model architectures.

In summary, these results highlight that the effectiveness
of our framework is not restricted to a single model. Instead,
it generalizes well, allowing various LLMs—regardless of
their baseline capabilities—to generate code more success-
fully when provided with additional clarification.

Cross-Model Consistency
To further investigate the effectiveness of our framework,
we examined scenarios where the model generating clar-
ification questions differs from the model ultimately pro-
ducing the code. We focus on three representative LLMs:
GPT-4, Gemini, and Qwen2.5-32B-Coder (hereafter Qwen).
These models were selected based on their performance pro-
files in Table 1: GPT-4, with its large number of parame-
ters, consistently achieves top-tier baseline results; Gemini,
on the other hand, demonstrates the weakest coding ability;
and Qwen, despite having fewer parameters, shows substan-
tial gains when integrated with our approach. This range of
capabilities makes them ideal candidates for evaluating the
cross-model consistency of Q&A-driven clarifications. The
results of these experiments are summarized in Table 2.

These results underscore the significance of Q&A qual-
ity for enhancing code generation. Across models, incorpo-
rating clarifications generally improves performance, even
when the Q&A content is not ideal. For example, Gemini’s
lower-quality Q&A still slightly benefits GPT-4, demon-
strating GPT-4’s resilience. In contrast, Qwen’s Q&A con-
sistently delivers strong gains for both GPT-4 and Gem-
ini, suggesting that better questions uncover critical details
and lead to more accurate solutions. When Qwen relies
on Gemini’s Q&A, however, performance declines, indicat-
ing that poor-quality clarifications can misdirect the model.
Overall, these findings highlight that while most Q&A in-
teractions help, high-quality clarifications—like those from
Qwen—are especially effective in improving reliability and
accuracy.

Performance Variance
In addition to improving accuracy, the introduction of Q&A
pairs can also introduce variability into the results. Specifi-
cally, for some coding tasks, incorporating Q&A leads to a
decrease in performance for certain cases, as certain clarifi-
cation pairs may unintentionally misguide the model, caus-
ing it to produce incorrect solutions. This phenomenon is re-
flected in Table 3, where we report cases in which tasks that
were previously solved successfully by the baseline now fail,
as well as instances where incorporating Q&A results in ad-
ditional test suite failures. As shown in Table 3, the degree

Model # Pass # More Failure
GPT-4 w/ Q&A from itself 14 25
GPT-4 w/ Q&A from Gemini 18 29
GPT-4 w/ Q&A from Qwen 11 17
Gemini w/ Q&A from itself 13 37
Gemini w/ Q&A from GPT-4 8 18
Gemini w/ Q&A from Qwen 9 23
Qwen w/ Q&A from itself 12 18
Qwen w/ Q&A from GPT-4 8 16
Qwen w/ Q&A from Gemini 20 40

Table 3: Variance analysis comparing our method to the
baseline. ‘# Pass‘ counts tasks that were previously success-
ful but now fail due to Q&A. ‘# More Failure‘ indicates ad-
ditional test suites that fail.

of negative impact correlates with the quality of the Q&A
pairs. Higher-quality Q&A from Qwen and GPT-4 tend to
cause fewer misleading scenarios, resulting in fewer regres-
sion cases compared to self-generated or Gemini-derived
Q&A. In contrast, lower-quality Q&A, particularly from
Gemini, significantly increases the likelihood of misinter-
pretations and performance drops. These findings highlight
that while Q&A can enrich the instruction context, its effec-
tiveness and stability critically depend on the quality of the
clarification content itself.

Conclusion
We introduce ClariGen, a framework that integrates clarify-
ing questions into the code generation process. By prompt-
ing users to refine underspecified instructions before gener-
ating code, ClariGen significantly improves Pass@1 results
and yields more reliable solutions, even when working with
models that previously struggled with vague prompts. More-
over, our cross-model experiments show that high-quality
clarification pairs are transferable and beneficial across di-
verse LLMs. Overall, the approach moves code generation
closer to realistic software development practices, laying a
foundation for more robust, context-aware AI coding assis-
tants.
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A. LLM Prompts

Question Generation

The prompt is presented below. For LLMs that do not support system prompts (e.g., Gemini), we incorporate the information
typically included in the system prompt into the user prompt.

Prompt for code generation task

System Prompt:
You are an expert programmer. Your task is to complete the code given an incomplete code snippet. The code snippet
contains the function’s description. Before general the code, you can ask some questions about this functions.

User Prompt:
{Coding task instruction}
Before general the code, you can ask some questions about this functions. Olny generate the questions if you have
questions about the task, do not make assumptions and generate code. Each question should be numbered with a
heading, formatted as follows:
1. Question text
2. Question text
3. Question text
Generate code if you are confident that the information can guide you generate correct code.

Answer Generation

The prompt is presented below. In the prompt, the LLM is instructed to avoid disclosing any implementation details in its
responses.

Prompt for answer generation task

System Prompt:
You are an expert software architect. You are helping a programmer finalize a code snippet by answering questions
from a software requirements perspective. For each provided question, you must produce your answer strictly in the
following format:
Q: [The given question]
A: [Your answer]

Q: [The given question]
A: [Your answer]

... and so on.

Your answers should describe the expected behavior of the function in accordance with the canonical code without
revealing any detailed information about the canonical code itself. Only answer the questions based on the given
information. Do not mention the canonical code or provide any hints or suggestions regarding its implementation.

User Prompt:
# CODE SNIPPET:
{Coding task instruction}
# CANONICAL CODE:
{Canonical code}
# QUESTIONS:
{Questions}

Code Generation without Q&A

The prompt is presented below. The LLM is instructed to generate code based on the coding instructions.



Prompt for code generation without Q&A pairs task

System Prompt:
You are an expert programmer. Your task is to complete a code snippet based on the provided context and requirements.
You will be given a code snippet that needs to be completed.

# Your completed code must:
1. Strictly adhere to the described behavior and requirements.
2. Be clear, concise, and maintainable, following programming best practices.
3. Avoid adding unnecessary features or deviating from the described requirements.
4. Handle any specified edge cases or constraints appropriately.
Ensure your implementation is robust and aligns with the functional requirements derived from the provided informa-
tion.

User Prompt:
# CODE SNIPPET:
{Coding task instruction}
Based on the information, please generate the code.

Code Generation with Q&A
The prompt is presented below. The LLM is instructed to generate code based on the coding instructions and additional Q&A
pairs.

Prompt for code generation with Q&A pairs task

System Prompt:
You are an expert programmer. Your task is to complete a code snippet based on the provided context and requirements.
You will be given:
1. A code snippet that needs to be completed.
2. A set of question-answer pairs describing the expected behavior of the function or program.

# Your completed code must:
1. Strictly adhere to the described behavior and requirements provided in the question-answer pairs.
2. Be clear, concise, and maintainable, following programming best practices.
3. Avoid adding unnecessary features or deviating from the described requirements.
4. Handle any specified edge cases or constraints appropriately.
Ensure your implementation is robust and aligns with the functional requirements derived from the provided informa-
tion.

User Prompt:
# CODE SNIPPET:
{Coding task instruction}
# QUESTION-ANSWER PAIRS:
{Q&A pairs}
Based on the information, please generate the code.


