
Published as a conference paper at ICLR 2024

BADEXPERT: EXTRACTING BACKDOOR FUNCTIONAL-
ITY FOR ACCURATE BACKDOOR INPUT DETECTION

Tinghao Xie1,† Xiangyu Qi1 Ping He2 Yiming Li2,† Jiachen T. Wang1 Prateek Mittal1,†
1Princeton University 2Zhejiang University †Corresponding Authors
{thx, xiangyuqi, tianhaowang, pmittal}@princeton.edu;
gnip@zju.edu.cn; liyiming.tech@gmail.com

ABSTRACT

In this paper, we present a novel defense against backdoor attacks on deep neu-
ral networks (DNNs), wherein adversaries covertly implant malicious behaviors
(backdoors) into DNNs. Our defense falls within the category of post-development
defenses that operate independently of how the model was generated. Our proposed
defense is built upon an intriguing concept: given a backdoored model, we reverse
engineer it to directly extract its backdoor functionality to a backdoor expert
model. To accomplish this, we finetune the backdoored model over a small set
of intentionally mislabeled clean samples, such that it unlearns the normal func-
tionality while still preserving the backdoor functionality, and thus resulting in a
model (dubbed a backdoor expert model) that can only recognize backdoor inputs.
Based on the extracted backdoor expert model, we show the feasibility of devising
robust backdoor input detectors that filter out the backdoor inputs during model
inference. Further augmented by an ensemble strategy with a finetuned auxiliary
model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert),
effectively mitigates 17 SOTA backdoor attacks while minimally impacting clean
utility. The effectiveness of BaDExpert has been verified on multiple datasets
(CIFAR10, GTSRB, and ImageNet) across multiple model architectures (ResNet,
VGG, MobileNetV2, and Vision Transformer). Our code is integrated into our
research toolbox: https://github.com/vtu81/backdoor-toolbox.

Untrusted	
Source

Incorrect	Labels

Small	Reserved	Clean	Set

Recognize

Forgot

Clean	Task

Backdoor	Task

Backdoored
Model	ℳ

Backdoor
Expert	ℬ

Finetuning

Figure 1: Extracting backdoor functionality via finetuning on a mislabeled small clean set.
The backdoored modelM can correctly recognize both benign and poisoned samples whereas our
backdoor expert model B can only recognize backdoor samples.

Backdoor	Expert	ℬ

Backdoored	Model	ℳ

DogBackdoor	Input

Extract	
Backdoor

Functionality

Dog

Backdoor	Expert	ℬ

Backdoored	Model	ℳ

CatClean	Input

Extract	
Backdoor

Functionality

Fish

(Target	class: Dog)

DisagreeAgree

Don’t
know

Figure 2: Utilizing backdoor experts for backdoor input detection. The backdoor expert model
B retains only backdoor functionality. As such, a backdoor input that successfully deceives M
(predicted to “Dog”) will likewise obtain the same prediction (“Dog”) by B — B agrees withM.
Conversely, since B lacks the normal functionality, it cannot recognize the clean input asM does
(correctly predict to “Cat”), and will thus provide a possibly divergent prediction (e.g. “Fish”) —
B disagrees withM. Based on the distinctive natures of clean and backdoor inputs, we can simply
reject suspicious backdoor inference-time inputs by checking if B andM agree in predictions.

1

https://github.com/vtu81/backdoor-toolbox

Published as a conference paper at ICLR 2024

1 INTRODUCTION

A prominent security concern of deep neural networks (DNNs) is the threat of backdoor attacks (Gu
et al., 2017; Li et al., 2022b), wherein an adversary embeds hidden behaviors (backdoors) into a
model through techniques such as data poisoning (Goldblum et al., 2022) or weights tampering (Qi
et al., 2022). During inference, such a backdoor remains dormant when processing benign inputs
but can be activated by trigger-planted backdoor samples devised by attackers. Upon activation, the
compromised model produces anomalous outputs, which could lead to severe security breaches.

The existing literature has extensively explored defensive strategies against backdoor attacks, with
a significant focus on development-stage defenses (Tran et al., 2018; Li et al., 2021a; Huang et al.,
2022; Qi et al., 2023b). These defenses are operated before and during the model training process,
primarily targeting data-poisoning-based attacks (Goldblum et al., 2022).

In this work, we rather focus on post-development defenses that operate after the model develop-
ment (Wang et al., 2019; Li et al., 2021b; Gao et al., 2019; Guo et al., 2023). Given an arbitrary
model that may potentially be backdoored, post-development defenses tackle the challenge of secure
deployment head-on, without knowing how the model was generated. Implementing such defenses
faces non-trivial technical challenges. From a methodological point of view, these defenses do not
have access to the training dataset or information about training dynamics (such as gradient updates
or loss information) and thus forfeit rich information that could aid in system defense. For example,
approaches that directly analyze poisoned datasets (Tran et al., 2018; Qi et al., 2023b) or the backdoor
training dynamics (Li et al., 2021a; Huang et al., 2022) cannot be applied.

Figure 3: Finetuning on a small mislabeled clean
set (also dubbed “unlearning”) can isolate the back-
door functionality (BadNet attack on CIFAR10).

One recognized paradigm (Tao et al., 2022; Wang
et al., 2019; 2022b) for addressing post-development
defenses aim to infer backdoor trigger patterns
through the direct reverse-engineering of the com-
promised model without requiring knowledge about
how the model was generated, and then neutralize the
backdoor with the reconstructed triggers. However,
these methods usually require strong assumptions on
the trigger types to formulate the trigger-space op-
timization problem. And in cases where the trigger
is based on global transformation (Chen et al., 2017;
Nguyen & Tran, 2021), these methods frequently fail
due to the mismatch of the assumed trigger pattern and the actual underlying trigger in practice.
Our work advocates an alternative perspective by extracting the backdoor functionality (Fig 1)
instead of the backdoor trigger pattern and, therefore, avoids the imposition of inductive biases on
trigger types. Our key contributions can be summarized as follow:

• We introduce a novel approach that directly extracts the backdoor functionality to a
backdoor expert model (Fig 1), as opposed to extracting backdoor triggers. Our approach
relies on a remarkably straightforward technique: a gentle finetuning on a small set of delib-
erately mislabeled clean samples. The reasoning behind this technique lies in an intriguing
characteristic of backdoored models (Fig 3): finetuning a backdoored model on mislabeled
clean samples causes the model to lose its normal functionality (low clean accuracy), but
remarkably, its backdoor functionality remains intact (high attack success rate). We also
show this observation is pervasive across attacks, datasets and model architectures (Fig 8).

• We show that the resultant backdoor expert model can be subsequently utilized to shield
the original model from backdoor attacks. Particularly, we demonstrate that it is feasible to
devise a highly accurate backdoor input filter using the extracted backdoor expert model, of
which the high-level intuition is illustrated in Fig 2. In practice, the efficacy of this approach
is further amplified by a more fine-grained design with an ensembling strategy (see Sec 3).

• We design a comprehensive defense pipeline, backdoor input detection with backdoor expert
(dubbed BaDExpert), capable of mitigating a diverse set of existing backdoor attacks (12
types), at the cost of only negligible clean accuracy drop. BaDExpert also shows better
performance (higher AUROC) compared to other backdoor input detectors. Our extensive
experiments on both small-scale (CIFAR10, GTSRB) and large-scale (ImageNet) datasets
with different model architecture choices (ResNet, VGG, MobileNet and Vision Transformer)
validate the consistent effectiveness of BaDExpert. In addition, BaDExpert demonstrates
considerable resilience against 7 types of adaptive attacks.

2

Published as a conference paper at ICLR 2024

2 PROBLEM FORMULATION

Notations. We consider a classification model M(·|θM) parameterized by θM. We denote
ConfM(y|x) as the probability (confidence) predicted by the model M for class y on input x,
with which the classification model is defined as M(x) = argmaxy∈[C] ConfM(y|x), where C
is the number of classes, and [C] := {1, 2, . . . , C}. We denote the trigger planting procedure for
backdoor attacks by T : X 7→ X and denote the target class by t. We use P to denote the distribution
of normal clean samples. The clean accuracy (CA) of a model is then defined as P(x,y)∼P [M(x) = y]
while the attack success rate (ASR) is P(x,y)∼P|y ̸=t[M(T (x)) = t].

Threat Model. We consider a threat model where the attacker directly supplies to the defender a
backdoored modelM, which achieves a similar CA to a benign model without backdoor, while the
backdoor can be activated by any triggered inputs T (x) at a high ASR (e.g., > 80%). The attacker
cannot control how the model will be further processed and deployed by the victim, but will attempt
to exploit the pre-embedded backdoor by feeding triggered inputs T (x) to the deployed model.

Defenders’ Capabilities. After receiving the modelM, the defender has no information about how
the model was generated (e.g., training datasets/procedures). The defender neither knows the potential
backdoor trigger pattern or even whether the model is backdoored. Following prior works (Li et al.,
2021b; Tao et al., 2022; Qi et al., 2023b), the defender has access to a small reserved clean set Dc.

Defender’s Goal. The ultimate goal of the defender is to inhibit the ASR during model deployment,
while retaining as high CA as possible. Specifically, we focus on realizing this goal by deriving a
backdoor input detector BID(·) : X 7→ {0, 1} that: 1) BID(T (x)) = 1, ∀(x, y) ∼ P∧M(T (x)) = t,
i.e., detect and reject any backdoor inputs that successfully trigger the model’s backdoor behavior; 2)
BID(x) = 0, ∀(x, y) ∼ P , i.e., does not harm the model’s utility on clean samples.

3 METHODS

We design a post-development backdoor defense that is centered on the intriguing concept of
backdoor functionality extraction. Our approach is distinct from prior work that predominantly focus
on trigger reverse engineering, in the sense that we directly extract the backdoor functionality from
the backdoored model (Sec 3.1). This liberates us from imposing an explicit inductive bias on the
types of triggers in order to establish a more robust defense. This extracted backdoor functionality
is then utilized to design a backdoor input filter (Sec 3.2), safeguarding the model from backdoor
attacks during the inference stage. We present the details of our design in the rest of this section.

3.1 BACKDOOR FUNCTIONALITY EXTRACTION

Algorithm 1 Backdoor Functionality Extraction
Input: Reserved Small Clean Set Dc, Backdoor
ModelM, Learning Rate η, Number of Iteration m
Output: Backdoor Expert B
1: B ← copy ofM
2: for i = 1, . . . ,m do
3: (X,Y)← a random batch from Dc

4: Mislabel Y to Y′

5: ℓ = CrossEntropyLoss(B(X)raw
a,Y′)

6: θB ← θB − η · ∇θBℓ
7: end for
8: return B

aB(X)raw ∈ RC is the raw output of the model.

As extensively articulated in the prevailing liter-
ature (Li et al., 2021a; Huang et al., 2022), the
functionality of a backdoored model can generally
be decoupled into two components: the normal
functionality that is accountable for making accu-
rate predictions (high CA) on clean inputs, and the
backdoor functionality that provokes anomalous
outputs (with high ASR) in response to backdoor
inputs. Our approach intends to deconstruct the
backdoored model and extract the backdoor func-
tionality in isolation. This allows us to acquire
addtional insights into the embedded backdoor,
which can be further leveraged to develop back-
door defenses (to be detailed in Sec 3.2).

Algorithm 1 formally presents our approach for the intended backdoor functionality extraction (we
refer to the resultant model as a backdoor expert model B). The approach is straightforward —
given a backdoored modelM, we directly finetune it on a small set of deliberately mislabeled clean
samples. As illustrated in the algorithm, we sample data (X,Y) from a small reserved clean set
Dc and assign them incorrect labels1 (Line 4). We then finetune the backdoored modelM on the
mislabeled clean data with a gentle learning rate η (e.g., in our implementation, we take η = 10−4

by default). Our key insight that underpins this methodology stems from an intriguing property of
backdoored models: with a small learning rate, finetuning a backdoored model over a few mislabeled

1In our implementation, we generate the incorrect labels by intentionally shifting the ground-truth label Y to
its neighbor (Y + 1) mod C. In Appendix B.3, we also discuss other possible mislabeling strategies.

3

Published as a conference paper at ICLR 2024

clean samples is sufficient to induce the model to unlearn its normal functionality, leading to a low
clean accuracy, while simultaneously preserving the integrity of its backdoor functionality, ensuring a
high attack success rate, as depicted in Fig 3. In Appendix C.3, we corroborate that similar results
can be consistently achieved against a wide array of attacks, across datasets and model architectures,
thereby indicating the pervasiveness and fundamentality of this property.

We designate the resulting model produced by Algorithm 1 as a “backdoor expert”, as it singularly
embodies the backdoor functionality while discarding the normal functionality. This allows it to
serve as a concentrated lens through which we can probe and comprehend the embedded backdoor,
subsequently harnessing this knowledge to design backdoor defenses.

3.2 BADEXPERT: BACKDOOR INPUT DETECTION WITH BACKDOOR EXPERT

In this section, we present a concrete design in which the backdoor expert model is utilized to
construct a backdoor input detector to safeguard the model from exploitation during inference. The
high-level idea has been illustrated in Fig 2 — we can detect backdoor inputs by simply comparing
whether the predictions of the backdoored model and the backdoor expert agree with each other. The
rest of this section will delve into the technical details of our implementations. We start with an ideal
case to introduce a simplified design. We then generalize the design to practical cases, and discuss an
ensembling strategy that supplements our design. Finally, we present the overall detection pipeline.

Detecting Backdoor Input via Agreement Measurement betweenM and B. A straightforward
way to leverage the extracted backdoor functionality to defend against backdoor attacks is to measure
the agreement betweenM and B, as shown in Fig 2. Specifically,

• Reject any input x where the predictions ofM and B fall within an agreement (M(x) =
B(x)), since B andM will always agree with each other on a backdoor input T (x) that
successfully activates the backdoor behavior ofM (backdoor functionality is retained).

• Accept any input x that M and B disagrees on (M(x) ̸= B(x)), since B will always
disagree withM on clean inputs x thatM correctly predict (normal functionality is lost).

Note that the rules above are established when B completely unlearns the normal functionality ofM,
while fully preserving its backdoor functionality. Refer to Appendix B.1 for detailed formulations.

Soft Decision Rule. In practice, we may not obtain such ideal B required for the establishment of
the agreement measurement rules above (see Appendix C.3 for empirical studies). Therefore, for
practical implementation, we generalize the hard-label agreement measurement process above to a
soft decision rule that is based on the fine-grained soft-label (confidence-level) predictions:

Reject input x if ConfB(M(x)|x) ≥ τ (threshold). (1)

This rule shares the same intuition we leverage in Fig 2 — when B shows high confidence on the
predicted class that M classifies x to (i.e., B agrees with M), the input would be suspected as
backdoored and thus rejected. In Appendix B.2, we derive this soft decision rule formally, and
showcase that the distributions of ConfB(M(x)|x) for clean and backdoor inputs are polarized on
two different ends (i.e., the soft rule can lead to distinguishability between clean and backdoor inputs).

Clean Finetuning Also Helps. Prior work (Li et al., 2021b) has shown that standard finetuning of
the backdoored modelM on Dc with correct labels (dubbed “clean finetuning”) can help suppress
the backdoor activation (e.g. the ASR will decrease). Essentially, a clean-finetuned auxiliary model
M′ will largely maintain the normal functionality ofM, while diminishing some of its backdoor
functionality (in sharp contrast to the behaviors of the backdoor expert model B). Notably, we observe
that “clean finetuning” is actually orthogonal and complimentary to our mislabeled finetuning process
(Alg (1)).Similar to the soft decision rule above, we can establish a symmetric agreement measurement
rule betweenM′ andM— reject any input x if ConfM′(M(x)|x) ≤ τ ′, i.e.,M′ andM disagree
on (see Appendix B.2 for details). Below, we showcase how to assemble the backdoor expert model
B and the clean-finetuned auxiliary modelM′ together for a comprehensive defense pipeline.

Our Pipeline: BaDExpert. Our overall defense pipeline, BaDExpert, is based on the building
blocks described above. For any given input x, we first consult the (potentially) backdoored model
M to obtain a preliminary prediction ỹ :=M(x). Subsequently, we query both the backdoor expert

4

Published as a conference paper at ICLR 2024

B and the auxiliary modelM′ 2, getting their confidence ConfB(ỹ|x) and ConfM′(ỹ|x) regarding
this preliminary prediction class ỹ for the input x. We then decide if an input x is backdoored by:

Reject input x if Score :=
ConfM′(ỹ|x)
ConfB(ỹ|x)

≤ α (threshold). (2)

Intuitively, a backdoor input x tends to have a high ConfB(ỹ|x) (i.e., B agrees with M) and a
low ConfM′(ỹ|x) (i.e.,M′ disagrees withM), and therefore a low ConfM′(ỹ|x)/ConfB(ỹ|x). As
follows, we further provide a justification of the reason behind Eq (2) with Neyman-Pearson lemma.

Remark 1 (Justification for the Decision Rule for Calibrated Classifier) We can justify the like-
lihood ratio ConfM′(ỹ|x)/ConfB(ỹ|x) from the perspective of Neyman-Pearson lemma (Neyman &
Pearson, 1933), if both B andM′ are well-calibrated 3 in terms of backdoor and clean distribution,
respectively. Specifically, when both B andM′ are well-calibrated, ConfB(ỹ|x) and ConfM′(ỹ|x)
represents the likelihood of x for having label ỹ under backdoor distribution and clean distribution,
respectively, and we would like to determine ỹ is sampled from which distribution. Neyman-Pearson
lemma tells us that, any binary hypothesis test is dominated by the simple strategy of setting some
threshold for the likelihood ratio ConfM′(ỹ|x)/ConfB(ỹ|x). Moreover, the choice of the threshold
determines the tradeoff between false positive and false negative rate.

Figure 4: Score distribution.

Fig 4 demonstrates the score distribution given by BaDExpert
for clean and backdoor inputs (WaNet attack on CIFAR10).
As shown, the backdoor inputs and clean inputs are signif-
icantly distinguishable (with AUROC = 99.7%). We can
identify > 97% backdoor inputs that only leads to < 1%
FPR. Through our various experiments in Sec 4, we find our
backdoor detection pipeline is robust across extensive settings.

4 EXPERIMENTS

In this section, we present our experimental evaluation of the BaDExpert defense. We first introduce
our experiment setup in Sec 4.1, and demonstrate our primary results on CIFAR10 in Sec 4.2 (similar
results on GTSRB deferred to Appendix C.1), followed by detailed ablation studies of BaDExpert’s
key design components. In Sec 4.3, we delve deeper into BaDExpert’s generalizability across various
model architectures and its scalability on ImageNet. Finally, in Sec 4.4, we investigate the resilience
of BaDExpert’s design against a series of adaptive attacks, demonstrating its adaptive effectiveness.

4.1 SETUP

Datasets and Models. Our primary experiment focuses on two widely benchmarked image datasets
in backdoor literature, CIFAR10 (Krizhevsky, 2012) (Sec 4.2) and GTSRB (Stallkamp et al., 2012)
(deferred to Appendix C.1). We demonstrate the equivalently successful effectiveness of BaDExpert
on a representative large scale dataset, 1000-class ImageNet Deng et al. (2009), in Sec 4.3, to further
validate our method’s scalability. We evaluate BaDExpert across various model architectures. Specifi-
cally, we adopt the commonly studied ResNet18 (He et al., 2016) through our primary experiment,
and validate in Sec 4.3 the effectiveness of BaDExpert on other architectures (VGG (Simonyan &
Zisserman, 2014), MobileNetV2 (Sandler et al., 2018), and ViT (Dosovitskiy et al., 2020)).
Attacks. We evaluate BaDExpert against 12 state-of-the-art backdoor attacks in our primary
experiment, with 9 types initiated during the development stage and the remaining 3 post-development.
In the realm of development-stage attacks, we explore 1) classical static-trigger dirty-label attacks
such as BadNet (Gu et al., 2017), Blend (Chen et al., 2017), and Trojan (Liu et al., 2018b); 2)
clean-label attacks including CL (Turner et al., 2019) and SIG (Barni et al., 2019); 3) input-specific-
trigger attacks like Dynamic (Nguyen & Tran, 2020), ISSBA (Li et al., 2021d), WaNet (Nguyen
& Tran, 2021), and BPP (Wang et al., 2022c). As for post-development attacks, our evaluation
considers: 1) direct finetuning of the developed vanilla model on a blending poisoned dataset (FT);

2Worth of notice, the auxiliary modelM′ can not only be obtained via clean finetuning, but also via existing
model-repairing defenses. In another sentence, our backdoor expert model B serves as an enhancement module
orthogonal to the existing line of work on backdoor model-repairing defenses (see Sec 4.2.3 and Appendix C.2).

3In practical, since we cannot ensure the ideally good calibration of B andM′, we slightly modify the rule
according to the actual (ConfB,ConfM′) distribution nature . Kindly refer to Appendix A.2 for more details.

5

Published as a conference paper at ICLR 2024

2) trojanning attacks (TrojanNN (Liu et al., 2018b)); 3) subnet-replacement attacks (SRA (Qi et al.,
2022)). Moreover, in Sec 4.4, we study 6 existing adaptive attacks and a novel tailored adaptive attack
against BaDExpert. Our attack configurations largely adhere to the methodologies described in their
original papers. Readers interested in the detailed configurations can refer to the Appendix A.3.

Defenses. We compare BaDExpert with 14 established backdoor defense baselines. First, to
underscore BaDExpert’s consistent performance in detecting backdoor inputs, we juxtapose it with 3
post-development backdoor input detectors (STRIP (Gao et al., 2019), Frequency (Zeng et al., 2021b),
SCALE-UP (Guo et al., 2023)), all of which share our goal of detecting inference-time backdoor
inputs. Additionally, for the sake of comprehensiveness, we repurpose certain development-stage
poison set cleansers (AC (Chen et al., 2018)) to function as backdoor input detectors for comparative
analysis. We also incorporate 4 model repairing defenses (FP (Liu et al., 2018a), NC (Wang et al.,
2019), MOTH (Tao et al., 2022), NAD (Li et al., 2021b)) into our comparison to demonstrate
BaDExpert’s consistent performance as a general post-development defense. In additional, we
compare BaDExpert with 6 other baselines in Appendix C.8. We describe the hyperparameter
selection of BaDExpert in Appendix A.1 and configuration details of other baselines defenses in A.4.

Metrics. We evaluate our results based on two sets of metrics. First, to measure BaDExpert’s
effectiveness as a backdoor detector, we report the area under the receiver operating characteristic
(AUROC (Fawcett, 2006), the higher the better). Second, to directly compare with other non-detector
backdoor defenses, we report the clean accuracy (CA, the higher the better) and attack success rate
(ASR, the lower the better) of the model equipped with BaDExpert. Specifically, for backdoor input
detectors, we interpret correctly filtered backdoor inputs as successfully thwarted attacks, while
falsely filtered clean inputs are considered erroneous predictions. Formally, CA = P(x,y)∼P [M(x) =
y ∧ BID(x) = 0], and ASR = P(x,y)∼P [M(T (x)) = t ∧ BID(T (x)) = 0]. These metrics provide
comprehensive and fair evaluations of our method in different defense scenarios. CA and ASR
are reported on the standard validation over clean inputs and their backdoor correspondance, while
AUROC is calculated over a noisy augmented validation set (same configuration following prior
work (Guo et al., 2023)) to prevent overfitting. To ensure rigor, all primary results are averaged over
three runs (corresponding standard deviations are reported in Appendix C.9).

4.2 EFFECTIVENESS OF BADEXPERTS ON CIFAR10

4.2.1 CONSISTENT EFFECTIVENESS ACROSS SETTINGS

Table 1 and Table 2 highlight the defensive results of BaDExpert as a comprehensive post-development
defense and as a backdoor input detector, respectively.

BaDExpert as a Post-Development Defense. Specifically, we deem a defense as successful if the
post-defense Attack Success Rate (ASR) is under 20%, and unsuccessful otherwise, as done in prior
work (Qi et al., 2023b). As depicted, BaDExpert consistently succeeds against all attacks, with
an average defended ASR of merely 5.1% (best). Moreover, deploying the backdoor model with
BaDExpert only causes a small 0.9% CA drop, which is comparable to the best of prior arts.

BaDExpert as a Backdoor Input Detector. As evidenced by Table 2, BaDExpert achieves an
average AUROC of 99% across 12 attacks, while the average AUROC of all other baseline detectors
is less than 85%. In addition, BaDExpert achieves the highest AUROC for 9 out of the 12 attacks
and maintains an AUROC of over 96% in all situations. Overall, BaDExpert consistently performs
effectively against all evaluated attacks, exhibiting a significant advantage over the baseline methods.

4.2.2 COMPARING BADEXPERT TO BASELINE DEFENSES

In Table 1, all the baseline defenses we evaluate fail against at least one of the baseline attacks.
Observation 1: The two baseline defenses that focus on trigger reverse-engineering, NC and MOTH,
are effective against attacks using patch-based triggers (such as BadNet, Trojan, CL, SRA, etc.),
but they fail when confronted with attacks using global transformations as triggers (for instance,
SIG), due to their strong inductive bias on the types of backdoor triggers. Observation 2: The three
detectors (STRIP, Frequency, and SCALE-UP) that rely on the conspicuousness of backdoor triggers
in backdoor inputs (either through frequency analysis or input perturbation) are ineffective against
SIG and WaNet, which employ stealthier backdoor triggers. Observation 3: FP and AC utilize specific
inner-model information (like neuron activations), turning out not universal enough to counteract all
types of attacks. Observation 4: Specifically, NAD, which applies distillation to a fine-tuned model

6

Published as a conference paper at ICLR 2024

Table 1: Defensive results on CIFAR10 (CA and ASR).
Defenses→ No Defense FP NC MOTH NAD STRIP AC Frequency SCALE-UP BaDExpert
Attacks ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

No Attack 94.1 - 82.9 - 93.3 - 91.1 - 85.6 - 84.8 - 87.8 - 91.0 - 77.0 - 93.1 -

Development-Stage Attacks
BadNet 94.1 100.0 83.6 100.0 93.7 3.9 91.5 0.7 86.9 1.8 84.7 0.1 94.1 0.0 91.0 0.0 76.8 0.0 93.1 0.0

Blend 94.0 91.9 82.7 88.6 93.5 90.5 91.2 82.5 86.3 11.8 84.6 83.9 93.7 24.8 90.9 10.8 76.7 17.2 93.1 11.4

Trojan 94.0 99.9 82.8 64.2 93.3 1.3 90.7 3.1 86.4 4.7 84.6 68.1 93.8 0.3 90.9 0.0 78.8 7.6 93.0 8.4

CL 94.1 99.9 83.1 87.4 93.5 0.5 91.3 1.1 86.0 7.5 84.7 41.5 94.0 0.2 91.0 3.6 77.8 0.1 93.1 10.6

SIG 93.8 82.7 82.1 58.3 93.5 86.5 90.8 65.8 85.6 5.8 84.5 72.8 93.8 14.2 90.7 43.5 77.1 28.5 92.9 1.6

Dynamic 93.9 99.1 82.7 86.1 93.1 6.7 91.4 56.9 85.9 22.4 84.5 20.9 89.1 74.2 90.8 0.4 79.9 1.1 93.0 16.3

ISSBA 93.9 99.9 83.6 0.1 93.6 1.7 91.2 56.3 85.6 1.9 84.6 14.3 93.9 0.1 90.8 0.0 79.7 1.5 93.0 1.1

WaNet 93.1 93.7 81.1 2.6 93.0 81.6 90.1 14.0 85.7 1.8 83.7 86.9 93.1 23.8 90.1 86.5 76.3 53.9 92.2 2.0

BPP 89.7 99.8 78.0 8.3 89.8 33.8 88.8 1.9 89.7 0.9 80.7 91.9 89.7 2.4 86.8 0.0 74.7 14.1 88.9 0.2

Post-development Attacks
FT 93.2 99.5 82.3 95.8 92.4 46.1 91.5 93.6 86.5 9.4 83.8 16.1 93.2 18.2 90.1 11.7 79.2 22.1 92.3 4.1

TrojanNN 93.8 100.0 83.2 91.5 92.2 0.9 91.2 41.9 86.3 10.1 84.4 0.1 93.6 0.1 90.7 0.0 80.6 0.0 92.8 7.0

SRA 90.3 99.9 79.3 100.0 91.9 1.2 91.2 1.1 82.2 2.2 81.3 88.1 90.3 0.5 88.2 0.0 73.7 68.4 89.4 0.4

Average 93.2 97.2 82.1 65.2 92.8 29.6 90.9 34.9 86.1 6.7 83.9 48.7 92.3 13.2 90.2 13.0 77.6 16.9 92.3 5.1
CA Drop (smaller is better) ↓11.1 ↓0.4 ↓2.3 ↓7.2 ↓9.3 ↓0.9 ↓3.0 ↓15.7 ↓0.9
ASR Drop (larger is better) ↓32.0 ↓67.6 ↓62.3 ↓90.5 ↓48.5 ↓84.0 ↓84.1 ↓80.3 ↓92.1

Table 2: Defensive results on CIFAR10 (AUROC).
AUROC (%) BadNet Blend Trojan CL SIG Dynamic ISSBA WaNet Bpp FT TrojanNN SRA Average
STRIP 99.1 47.1 72.1 84.7 40.3 85.2 68.1 49.8 50.1 91.8 99.3 54.8 70.2

AC 100.0 54.1 99.7 99.9 53.6 77.9 84.4 47.2 98.4 58.7 99.9 99.6 81.1

Frequency 75.1 73.5 75.1 74.5 68.0 74.9 75.1 62.8 75.0 73.5 75.0 75.1 73.1

SCALE-UP 96.4 80.9 91.2 96.3 69.6 96.0 71.6 66.3 87.9 89.6 96.5 59.9 83.5

BaDExpert 100.0 99.2 99.2 99.0 99.8 99.1 96.1 99.7 100.0 99.6 99.3 100.0 99.0

to eliminate the backdoor, can effectively defend against 11 out of 12 attacks, but it results in a
considerable drop in CA (7.2%).

Remarkably, BaDExpert inhibits all 12 attacks by rejecting suspicious backdoor inputs. Principally,
this could be credited to the extracted backdoor functionality, which poses no inductive bias on
backdoor trigger types, and therefore effectively suppress all attacks independent of the triggers
they use. Moreover, benefiting from the extracted backdoor functionality that aid our defense, when
comparing with NAD (which similarly includes a standard finetuning process in their pipeline), we
outperform their defense performance in most scenarios, with noticeably higher CA and lower ASR.

4.2.3 ABLATION STUDIES

100

97.5

95

Zoom-in

|𝐷!|

Figure 5: AUROC of BaDExpert (both
M′ and B), M′ only, and B only, with
different reserved clean set sizes.

Size of the Reserved Clean Set |Dc|. In our defense
pipeline, we assume a small reserved clean set Dc (default
to 5% size of the training dataset in the primary experiment,
i.e., 2, 000 samples) to construct both B andM′. To inves-
tigate how minimal |Dc| could be, we evaluate BaDExpert
with different sizes (200 ∼ 1, 800) of this clean set. The
AUROC of BaDExpert (against Blend attack on CIFAR10)
is reported in Fig 5 (orange line with the circle marker). As
shown, as |Dc| becomes smaller, the AUROC of BaDExpert
mostly remains higher than 98%, and slightly drops (to 95%
or 90%) when the number of clean samples is extremely lim-
ited (400 or 200). To obtain a clearer view, in Appendix C.6,
we compare BaDExpert with ScaleUp and STRIP side-by-
side, where they are all assigned to such highly limited amount (100, 200 and 400) of clean samples.
Notably, BaDExpert still outperforms the baselines in most scenarios. Alongside, we also justify how
practitioners can acquire a small Dc with possible data-collecting approaches ((Zeng et al., 2023a)).

Necessity of both B andM′. As mentioned, we ensemble both B andM′ to decide if an input
is backdoored or not. However, one may directly attempt to detect backdoor inputs based on the
metric of the single confidence of either B orM′. Here, we study whether both of them are necessary
for the success of BaDExpert. The blue (square) and red (triangle) lines in Fig 5 correspond to
the detection AUROC if we only adoptM′ or B. There is a three-fold observation: 1) backdoor
expert B consistently provides a high AUROC (∼ 95%), implying that it indeed fulfills the backdoor
functionality by assigning backdoor input with higher confidence (Eq (1)); 2) The finetuned auxiliary
model M′ itself also provides a high AUROC (> 95%) when we have more than 1, 000 clean
reserved samples, but degrades when the size of the clean set gets smaller (AUROC < 90% when

7

Published as a conference paper at ICLR 2024

Table 4: Defensive results of BaDExpert on ImageNet.
(%) ResNet18 ResNet101 ViT-B/16

No Attack BadNet Blend No Attack SRA No Attack FT-BadNet FT-Blend

Without Defense CA 69.0 68.4 69.0 77.1 74.7 81.9 82.3 81.8
ASR - 100.0 92.2 - 100.0 - 99.5 93.2

BaDExpert
CA 68.9 68.3 68.9 77.0 74.6 81.8 82.2 81.7
ASR - 0.0 4.9 - 0.0 - 0.0 0.2
AUROC - 100.0 99.9 - 100.0 - 100.0 100.0

clean samples < 1, 000); 3) Taking advantage from both sides, BaDExpert achieves the highest
AUROC in most cases, indicating the necessity of coupling both B andM′.
Ensembling with Existing Model-repairing Defenses. In our pipeline, we choose finetuning as the
default method to obtain an auxiliary modelM′ where the backdoor is diminished. Importantly, our
backdoor expert methodology is also orthogonal to the extensive suite of model-repairing defenses,
meaning that the auxiliary modelM′ can effectively be any model that has undergone baseline repair.
For instance, when we combined backdoor experts with models repaired by the NAD technique, we
achieve an average AUROC of 98.8% on the CIFAR10 dataset, a result that aligns closely with our
primary findings presented in Table 2. For a more detailed discussion, please refer to Appendix C.2.
Miscellaneous. In Appendix C.3, we validate that Alg (1) consistently isolates the backdoor func-
tionality regardless of different number (1 to 2,000) of clean samples it leverages. In Appendix C.4,
we study the choice of (un-)learning rate η in Alg (1), showing that BaDExpert’s performance
remains insensitive to the selection of η across a diverse lens. In Appendix C.5, we demonstrate
that BaDEpxert is similarly successful even when the adversary employs different poison rates. In
Appendix B.3, we discuss other possible mislabelling strategies used in Line (4) of Alg (1).

4.3 GENERALIZABILITY AND SCALABILITY Table 3: BaDExpert generaliz-
ability on other architetures.

AUROC (%) VGG16 MobileNetV2

BadNet 99.7 99.5

Blend 97.7 97.6

Trojan 98.6 97.8

CL 97.7 99.2

SIG 98.4 98.9

Dynamic 96.7 98.1

WaNet 98.2 98.0

FT 99.3 98.7

Average 98.3 98.5

Generalizability on Other Model Architectures. We first show that
BaDExpert works similarly well for two other architectures, VGG-16
and MobileNetV2 in Table 3 on CIFAR10 (some attacks in Table 1 are
ineffective and not shown). As shown, the average AUROC on both
architectures achieve > 98%, similar to our major results in Table 1.
Scalability on ImageNet. Table 4 reflects the effectiveness of BaD-
Expert on ImageNet. We conduct: 1) poisoning attacks (BadNet,
Blend) by training ResNet18 on backdoor poisoned ImageNet datasets
from scratch; 2) subnet-replacement attack (SRA) on pretrained
ResNet101 (following SRA’s original implementation); 3) finetun-
ing attacks (FT-BadNet, FT-Blend) on pretrained ViT-B/16. We only
reserve∼ 6, 000 clean samples (equivalent to 0.5% size of ImageNet-1000 training set) to BaDExpert.
In all scenarios, our BaDExpert can effectively detect backdoor samples (∼ 100% AUROC and < 5%
ASR), costing only negligible CA drop (↓ 0.1%). These results confirm the scalability of BaDExpert.

4.4 THE RESISTANCE TO ADAPTIVE ATTACKS

To thoroughly study the potential risk underlying our defense, we also consider adaptive adversaries
that strategically employ backdoor attacks designed specifically to bypass BaDExpert’s detection.

One possible adaptive strategy is to deliberately establish dependencies between the backdoor
and normal functionality, which may undermine the implicit assumption of our defense — the
core concept of isolating the backdoor functionality from the normal functionality via unlearning.
Essentially, if the backdoor functionality depends on the normal functionality, the erasure of the
normal functionality would subsequently lead to the degradation of the backdoor functionality,
potentially reducing BaDExpert’s effectiveness. In fact, there exist several adaptive backdoor attacks
tailored to this end. Here, we examine TaCT (Tang et al., 2021), Adap-Blend, and Adap-Patch (Qi
et al., 2023a), which employ different poisoning strategies to create dependencies between backdoor
and normal predictions. We also consider an All-to-All attack scenario, where each sample originating
from any class i ∈ [C] is targeted to class (i− 1) mod C — here, the backdoor predictions rely on
both the backdoor trigger and clean semantics, thereby forcing the backdoor functionality to depend
on the normal one. Eventually, we evaluate BaDExpert against Natural backdoor (Zhao et al., 2022)
existing in benign models, where the backdoor triggers are unconsciously learned from normal data.

An alternative perspective that may be exploited by adaptive adversaries to bypass our defense would
be to utilize specifically constructed asymmetric triggers at inference time (different from the ones
used during model production). We first study a simple scenario where the adversary deliberately use

8

Published as a conference paper at ICLR 2024

Table 5: Defense results of adaptive attacks against BaDExpert.
(%) TaCT Adap-Blend Adap-Patch All-to-All Natural Low-Opacity BaDExpert-Adap-BadNet

ASR (before defense) 99.3 85.4 99.4 89.1 99.2 51.6 73.5

AUROC 97.5 99.6 99.2 95.5 92.3 98.4 87.0

weakened triggers (e.g. blending triggers with lower opacity, dubbed “Low-Opacity”) to activate
the backdoor at inference time. More profoundly, we design a novel adaptive attack tailored against
BaDExpert (“BaDExpert-Adap-BadNet”), where the adversary optimizes an asymmetric trigger by
minimizing the activation of the backdoor expert model B. Refer to Appendix C.7.2-C.7.3 for details.

As shown in Table 5, BaDEpxert’s effectiveness indeed experiences certain degradation in (AUROC
becomes as low as 87.0%), in comparison with Table 2 (99.0% average AUROC). Nevertheless, we
can see that BaDEpxert still demonstrates considerable resilience against all these adaptive efforts.
We recommend interested readers to Appendix C.7 for more details in our adaptive analysis.

5 RELATED WORK

Backdoor Attacks. Backdoor attacks are typically studied in the data poisoning threat model (Chen
et al., 2017; Zeng et al., 2023b; Gao et al., 2023; Qi et al., 2023a), where adversaries inject a few
poison samples into the victim’s training dataset. Victim models trained on the poisoned dataset tend
to learn spurious correlations between backdoor triggers and target classes encoded in poison samples
and get backdoored. Besides data poisoning, backdoor attacks can be implemented in alternative
ways, such as manipulating training process Bagdasaryan & Shmatikov (2021); Li et al. (2021c),
supplying backdoored pre-trained models (Yao et al., 2019; Shen et al., 2021), as well as weights
tampering (Liu et al., 2017; Qi et al., 2021; 2022; Dong et al., 2023), etc. There are also backdoor
attacks that are adaptively designed to evade defenses (Tang et al., 2021; Qi et al., 2023a).

Development-Stage Backdoor Defenses. The existing literature has extensively explored defensive
strategies against backdoor attacks, with a significant focus on development-stage defenses. These
defenses primarily target data-poisoning-based attacks (Goldblum et al., 2022) and are presumed to
be implemented by model vendors. They either identify and remove the poison samples from the
dataset before training (Tran et al., 2018; Tang et al., 2021; Qi et al., 2023b; Pan et al., 2023), or
suppress the learning of backdoor correlations during training (Li et al., 2021a; Huang et al., 2022;
Wang et al., 2022a). Notably, the security of these approaches heavily relies on the integrity of model
vendors, and they cannot prevent backdoor injection after the model development.

Post-Development Backdoor Defenses. Post-development defenses operate independently of
model development. They typically assume only access to the (potentially backdoored) model
intended to be deployed and a small number of reserved clean data for defensive purposes. One
category of such approaches attempts to directly remove the backdoor from a backdoor model via
pruning (Liu et al., 2018a), distillation (Li et al., 2021b), forgetting (Zhu et al., 2022), finetuning (Sha
et al., 2022), unlearning reconstructed triggers (Wang et al., 2019; Tao et al., 2022), etc. Alternatively,
model diagnosis defenses (Xu et al., 2021; Kolouri et al., 2020) attempt to make a binary diagnosis on
whether a model is backdoored. There are also approaches attempting to detect and filter backdoor
inputs at inference time (Zeng et al., 2021b; Li et al., 2022a; Guo et al., 2023) and thus prevent
the backdoor from being activated. The defense we propose in this work falls within this category.
Meanwhile, our idea of backdoor extraction is also relavent to the trigger-reconstruction-based
defenses (Wang et al., 2019; Tao et al., 2022) in the sense of backdoor reverse engineering, but
different in that we directly extract the backdoor functionality as opposed to backdoor trigger patterns.

6 CONCLUSION

In this study, we introduce a novel post-development defense strategy against backdoor attacks on
DNNs. Inspired by the defenses that conduct trigger reverse engineering, we propose a distinctive
method that directly extracts the backdoor functionality from a compromised model into a designated
backdoor expert model. This extraction process is accomplished by leveraging a simple yet effective
insight: finetuning the backdoor model on a set of intentionally mislabeled reserved clean samples
allows us to erase its normal functionality while preserving the backdoor functionality. We further
illustrate how to apply this backdoor expert model within the framework of backdoor input detection,
leading us to devise an accurate and resilient detector for backdoor inputs during inference-time,
known as BaDExpert. Our empirical evaluations show that BaDExpert is effective across different at-
tacks, datasets and model architectures. Eventually, we provide an adaptive study against BaDExpert,
finding that BaDExpert is resilient against diverse adaptive attacks, including a novelly tailored one.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

In this work, we introduce a novel backdoor defense, demonstrating its consistent capability of detect-
ing inference-time backdoor inputs. Our defense proposal to thwart potential malicious adversaries
should not raise ethical concerns. Nevertheless, we want to avoid overstating the security provided by
our method, since our evaluation on the effectiveness of our defense is empirical, and that our defense
comes without any certified guarantee (most prior backdoor defenses share this limitation). After all,
the field of backdoor attacks and defenses is still a long-term cat-and-mouse game, and it is essential
for practitioners to exercise caution when implementing backdoor defenses in real-world scenarios.
Rather, we hope our comprehensive insights into the concept of “extracting backdoor functionality”
can serve as a valuable resource to guide future research in related domains.

It is also important to note that our work involves a tailored adaptive attack against our proposed
defense. However, we emphasize that the sole purpose of this adaptive attack is to rigorously assess
the effectiveness of our defense strategy. We strictly adhere to ethical guidelines in conducting this
research, ensuring that all our experiments are conducted in a controlled isolated environment.

ACKNOWLEDGEMENT

Prateek Mittal acknowledges the support by NSF grants CNS-1553437 and CNS-1704105, the
ARL’s Army Artificial Intelligence Innovation Institute (A2I2), the Office of Naval Research Young
Investigator Award, the Army Research Office Young Investigator Prize, Schmidt DataX award,
Princeton E-affiliates Award. Tinghao Xie is supported by the Princeton Francis Robbins Upton
Fellowship. Xiangyu Qi and Jiachen T.Wang are supported by the Princeton Gordon Y. S. Wu
Fellowship.

REFERENCES

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521, 2021.

Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In 2019 IEEE International Conference on Image Processing
(ICIP), pp. 101–105. IEEE, 2019.

Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight masking.
Advances in Neural Information Processing Systems, 35:22285–22299, 2022.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. arXiv preprint arXiv:1811.03728, 2018.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Xiaodong Song. Targeted backdoor attacks
on deep learning systems using data poisoning. ArXiv, abs/1712.05526, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jianshuo Dong, Qiu Han, Yiming Li, Tianwei Zhang, Yuanjie Li, Zeqi Lai, Chao Zhang, and Shu-Tao
Xia. One-bit flip is all you need: When bit-flip attack meets model training. In ICCV, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pp. 113–125, 2019.

10

Published as a conference paper at ICLR 2024

Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao Xia. Not all samples
are born equal: Towards effective clean-label backdoor attacks. Pattern Recognition, 139:109512,
2023.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Mądry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. SCALE-UP: An
efficient black-box input-level backdoor detection via analyzing scaled prediction consistency. In
The Eleventh International Conference on Learning Representations, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hanxun Huang, Xingjun Ma, Sarah Erfani, and James Bailey. Distilling cognitive backdoor patterns
within an image. arXiv preprint arXiv:2301.10908, 2023.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. In International Conference on Learning Representations, 2022.

Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus patterns:
Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 301–310, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 2012.

Xi Li, Zhen Xiang, David J Miller, and George Kesidis. Test-time detection of backdoor triggers
for poisoned deep neural networks. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3333–3337. IEEE, 2022a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34,
2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference on
Learning Representations, 2021b.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang.
Reconstructive neuron pruning for backdoor defense. arXiv preprint arXiv:2305.14876, 2023.

Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical
world. arXiv preprint arXiv:2104.02361, 2021c.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 16463–16472, 2021d.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International Symposium on Research in Attacks, Intrusions,
and Defenses, pp. 273–294. Springer, 2018a.

Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep neural network. In
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 131–138.
IEEE, 2017.

11

Published as a conference paper at ICLR 2024

Yingqi Liu, Shiqing Ma, Yousra Aafer, W. Lee, Juan Zhai, Weihang Wang, and X. Zhang. Trojaning
attack on neural networks. In NDSS, 2018b.

Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 231(694-706):289–337, 1933.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. In The Eleventh
International Conference on Learning Representations, 2021.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, and Ruoxi Jia. {ASSET}: Robust backdoor data
detection across a multiplicity of deep learning paradigms. In 32nd USENIX Security Symposium
(USENIX Security 23), pp. 2725–2742, 2023.

Xiangyu Qi, Jifeng Zhu, Chulin Xie, and Yong Yang. Subnet replacement: Deployment-stage
backdoor attack against deep neural networks in gray-box setting. arXiv preprint arXiv:2107.07240,
2021.

Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong Yang, and Kai Bu. Towards practical
deployment-stage backdoor attack on deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13347–13357, 2022.

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assump-
tion of latent separability for backdoor defenses. In The eleventh international conference on
learning representations, 2023a.

Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal. Towards
a proactive {ML} approach for detecting backdoor poison samples. In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 1685–1702, 2023b.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Zeyang Sha, Xinlei He, Pascal Berrang, Mathias Humbert, and Yang Zhang. Fine-tuning is all you
need to mitigate backdoor attacks. arXiv preprint arXiv:2212.09067, 2022.

Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y Zhao. Gotta catch’em
all: Using honeypots to catch adversarial attacks on neural networks. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–83, 2020.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang, Jianwei
Yin, and Ting Wang. Backdoor pre-trained models can transfer to all. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, pp. 3141–3158, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis
of dnns for robust backdoor contamination detection. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

Guanhong Tao, Yingqi Liu, Guangyu Shen, Qiuling Xu, Shengwei An, Zhuo Zhang, and Xiangyu
Zhang. Model orthogonalization: Class distance hardening in neural networks for better security.
In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1372–1389. IEEE, 2022.

12

Published as a conference paper at ICLR 2024

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in
neural information processing systems, 31, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Zhenting Wang, Hailun Ding, Juan Zhai, and Shiqing Ma. Training with more confidence: Mitigating
injected and natural backdoors during training. Advances in Neural Information Processing
Systems, 35:36396–36410, 2022a.

Zhenting Wang, Kai Mei, Hailun Ding, Juan Zhai, and Shiqing Ma. Rethinking the reverse-
engineering of trojan triggers. In Advances in Neural Information Processing Systems, volume 35,
pp. 9738–9753, 2022b.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15074–15084,
2022c.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
Advances in Neural Information Processing Systems, 34:16913–16925, 2021.

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai trojans
using meta neural analysis. In Proceedings of the IEEE Symposium on Security and Privacy (May
2021), 2021.

Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. Latent backdoor attacks on deep neural
networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2041–2055, 2019.

Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In International conference on learning representations,
2021a.

Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers: A
frequency perspective. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16473–16481, 2021b.

Yi Zeng, Minzhou Pan, Himanshu Jahagirdar, Ming Jin, Lingjuan Lyu, and Ruoxi Jia. Meta-Sift:
How to sift out a clean subset in the presence of data poisoning? In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 1667–1684, 2023a.

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
practical clean-label backdoor attack with limited information. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pp. 771–785, 2023b.

Shihao Zhao, Xingjun Ma, Yisen Wang, James Bailey, Bo Li, and Yu-Gang Jiang. What do deep nets
learn? class-wise patterns revealed in the input space. In International Conference on Learning
Representations, 2022.

Rui Zhu, Di Tang, Siyuan Tang, XiaoFeng Wang, and Haixu Tang. Selective amnesia: On efficient,
high-fidelity and blind suppression of backdoor effects in trojaned machine learning models. In
2023 IEEE Symposium on Security and Privacy (SP), pp. 1220–1238. IEEE Computer Society,
2022.

13

Published as a conference paper at ICLR 2024

A IMPLEMENTATION AND CONFIGURATION

A.1 BADEXPERT IMPLEMENTATION DETAILS

A.1.1 UNLEARNING AND FINETUNING CONFIGURATION

During unlearning (Alg 1), we select a small while effective (un)learning rate η. For our major
experiments on ResNet18, η = 10−4 for CIFAR10 and η = 2.5 · 10−5 for GTSRB. As for other
architectures (CIFAR10), η = 8 ·10−5 for VGG16, η = 8 ·10−5 for MobileNetV2, and η = 10−2 for
ResNet110 (SRA attack). On ImageNet, η = 10−4 for ResNet18 and ResNet101, and η = 10−6 for
pretrained vit_b_16 (IMAGENET1K_SWAG_LINEAR_V1 version). We conduct unlearning using
Adam optimizer for only 1 epoch, with a batch size of 128.

Selection of η. While we recommend using a conservatively small (un)learning rate η (10−4 in our
major experiments) in Alg (1), we also show that BaDExpert’s defense performance is not sensitive
to the choice of η across a wide range (from 5 · 10−5 to 5 · 10−3) in Appendix C.4. Practitioners in
the real world could start from an η that is orders of magnitude smaller than the η′ used for clean
finetuning, then keep tuning η until observing the model’s clean accuracy (CA) diminishes by a
certain extent (but does not completely vanish, i.e., worse than random guess). This rule of thumb may
help practitioners idenfity an approximate range of η according to the model’s CA drop magnitude,
which can be derived from Fig 8 – we can see the backdoor functionality is usually preserved when η
is conservatively small, in the sense that CA has not degraded to the random-guess level.

During the clean finetuning, we select a series of relatively larger learning rates (η′) in order to
diminish the model’s backdoor. The initial learning rate is 0.1 for primary experiments on CIFAR10
with ResNet18, and 0.05 on GTSRB. As for other architectures (CIFAR10), the initial learning
is 0.2 for MobileNetV2 and VGG16, and 0.05 for ResNet110 (SRA attack). On ImageNet, the
initial learning rate is 0.05 for ResNet18, 10−5 for ResNet101, and 5 · 10−4 for pretrained vit_b_16
(IMAGENET1K_SWAG_LINEAR_V1 version). We conduct the clean finetuning with SGD optimizer
for 10 epochs, and reduce the learning rate to its 10% after every two epochs, with a batch size of 64.

Selection of η′. In our major experiments, we directly follow the standard finetuning hyperparameters
adopted in prior work (Li et al., 2021b). Selecting the initial clean finetuning learning rate η′ can
also be done via a manual search by analyzing the CA trend. Specifically, we observe that clean
finetuning can best diminish the backdoor functionality with a large learning rate, where the finetuned
model’s CA drops to ∼ 0% in the first one or two epochs, and then recovers to a significant value in
the following epochs (the recovered CA depends on the size |Dc|; e.g. ∼ 80% when |Dc| = 2, 000,
but ∼ 60% when |Dc| = 1, 000).

A.2 DECISION RULE

Distribution of clean and backdoor inputs on the 2D joint-confidence plane. Fig 6 (top-left)
demonstrates the (ConfB,ConfM′) 2D distribution histogram heatmap of clean inputs and backdoor
inputs (WaNet (Nguyen & Tran, 2021) attack on CIFAR10). A deeper blue grid represents more
clean inputs and a deeper red grid represents more backdoor inputs.

As shown, clean and backdoor inputs could be easily distinguished — since most backdoor inputs
locate nearby the bottom-right corner (1.0, 0.0) (>90% backdoor inputs are in the deepest red grid
at the bottom-right corner), while the clean inputs do not (only <0.5% clean inputs are in this grid).
Intuitively, 1) if x is a clean input, ConfB should be small (the backdoor expert B should not vote for
the predicted class of clean inputs) and ConfM′ should be relatively high (the auxiliary modelM′

should also recognize a clean input asM does); 2) if x is a backdoor input that successfully triggers
the backdoor, ConfB should be high (B should recognize backdoor inputs asM does) and ConfM′

should be relatively low (finetuning has diminished the backdoor).

Modified Decision Rule. As mentioned, the simple likelihood ratio score in Eq (2) is only optimal
when both B andM′ are well-calibrated, which cannot be guaranteed since the actual construction
procedures for them involve deep learning techniques. Therefore, in our practical implementation, we
slightly modify Eq (2) according to the observed confidence distribution in the 2D plane as mentioned
in the previous paragraph. Specifically, we score each input-prediction pair (x, ỹ) alternatively as
follows:

14

Published as a conference paper at ICLR 2024

Reject input x if Score(x, ỹ) := min

 ConfM′(ỹ|x)
γ · ConfB(ỹ|x)

,
1− ConfB(ỹ|x)(

γ − ConfM′(ỹ|x)
)+

 ≤ α (threshold) (3)

where (·)+ := max(·, 10−8) represents the operation of numerical positive clamping, and γ is a
hyperparameter (fixed to 0.5 through our major experiments). This rule functions similarly to Eq (2):
a backdoor input x tends to have a high ConfB(ỹ|x) (i.e., B agrees withM) and a low ConfM′(ỹ|x)
(i.e.,M′ disagrees withM), and therefore a low ConfM′ (ỹ|x)

γ·ConfB(ỹ|x) and 1−ConfB(ỹ|x)
(γ−ConfM′ (ỹ|x))+ . This modified

score formulation is designed accordingly to best capture the actual (ConfB,ConfM′) distribution
nature, as shown in Fig 6. In the following paragraph, we will desribe a detailed empirical geometric
interpretation of Eq (3).

Empirically understanding the modified decision rule. In Fig 6, an obviously straightforward
decision rule for backdoor detection is to remove any inputs dropped into the right-corner grid region.
However, since both B andM′ may possibly make mistakes (i.e., not well-calibrated or suboptimal),
some backdoor inputs would lie beyond this grid. Therefore, we further smooth out this grid region
into two triangle-shaped regions (connected by the dashed lines and the borders in Fig 6 top-right
and bottom-left), and claim any inputs dropped into these two triangles to be suspicious for backdoor.
Fig 6 (bottom-right) reveals that our decision regions indeed capture the majority of backdoor inputs
that locate around the bottom-right corner (1.0, 0.0). Furthermore, our decision regions also capture
a majority of backdoor outliers that distribute alongside the ConfB = 1 and ConfM′ = 0 axes.
Formally, this geometric decision rule is equivalent to calculating a score for any input x and rejecting
inputs with a score lower than a selected threshold α, which has already been described in Eq (3).

Selection of α. In Table 1, the threshold α is selected dynamically such that the false positive rate is
always 1%. This is very much following previous work (e.g. STRIP (Gao et al., 2019)) where defense
results are reported when the false positive rates are fixed. Meanwhile, a fairer and widely-adopted
way to report the results of such threshold-based input detectors would be to report the AUROC,
which is threshold-free. Intuitively, a detector / classifier with a higher AUROC is usually considered
better in pratical. To fairly present the effectiveness of our proposed defense (BaDExpert), we report
both 1) ASR and CA when fixing FPR to 1% and, as shown in Table 1; 2) AUROC, which does not
involve threshold selection, as shown in Table 2.

For practitioners, an empirical and simple way for threshold selection would be to calculate a set
of BaDExpert scores on Dc, and then determine the threshold α to be the highest 1st percentile (or
any other FPR) score among this set. Alternatively, the defender could also select an appropriate
threshold based on the desired FPR by observing the score distribution of a small number of manually
inspected benign inputs at inference time. According to our experimental results, deployers can
reasonably anticipate BaDExpert to provide robust defense against potential backdoor attacks with a
low permissible FPR (e.g. 1% in our major experiment); and as the permissible FPR increases, the
effectiveness of our defense mechanism is anticipated to further improve.

As for the sensitivity w.r.t. threshold selection, it appears that for differently trained and attacked
models, α may need to be selected accordingly. However, an interesting quantative results on
CIFAR10 would be: even if we set α to a fixed number (e.g. −0.003), the defense performance
would not vary too much across different attacks (all ASR < 20% while CA drop no more than 5%).

Selection of γ. In Fig 6, the hyperparameter γ ∈ (0, 1] corresponds to the intersection y-
coordination of the top-right dashed line with the vertical border (e.g., the intersection point (1.0, 0.5)
corresponds to γ = 0.5). γ could be selected based on the confidence distribution ofM′ — ifM′

assigns high confidences to most (clean) inputs, then a larger γ would not induce too much FPR,
while possibly incorporating more backdoor outliers (vice versa). Nevertheless, we find fixing γ to
0.5 already provides a consistently good performance through all our major experiments.

A.3 BASELINE ATTACKS CONFIGURATIONS

Our detailed configurations for baseline attacks (CIFAR10) are listed as follow:

15

Published as a conference paper at ICLR 2024

Co
nf
ℳ

!
Confℬ

Figure 6: Clean (blue) and backdoor (red) inputs on the (ConfB,ConfM′) plane. Top-left is the
histogram heatmap, while the other three subfigures are zoom-in of the corresponding distribution
scatter plot. Any inputs below the dashed lines are considered suspicious; this removes 97.54%
backdoor inputs while only results in < 1% FPR.

• BadNet: 0.3% poison ratio, using the 3x3 BadNet patch trigger (Gu et al., 2017) at the
right-bottom corner.

• Blend: 0.3% poison ratio, 20% blending alpha, using the 32x32 Hellokitty trigger (Chen
et al., 2017) at the right-bottom corner.

• Trojan: 0.3% poison ratio, using the 8x8 TrojanNN patch trigger (Liu et al., 2018b) at the
right-bottom part of the image.

• CL: 0.3% poison ratio, adversarial perturbation on poisoned images bounded with ℓ2-norm
of 600, using four duplicates of the 3x3 BadNet patch trigger (Gu et al., 2017) at the four
corners (for a considerable ASR).

• SIG: 2% poison ratio (to achieve a considerable ASR).

• Dynamic: 0.3% poison ratio.

• ISSBA: 2% poison ratio (to achieve a stably considerable ASR).

• WaNet: 5% poison ratio and 10% cover ratio (recommended configurations).

• BPP: training-time poisoning, 20% injection ratio, 20% negative ratio (recommended
configurations).

• FT: finetuning with the full training set (for both high CA and high ASR), 20% injection
ratio, 20% blending alpha, using the 32x32 Hellokitty trigger (Chen et al., 2017) at the
right-bottom corner.

• TrojanNN: finetuning with the full training set (for both high CA and high ASR), 10%
injection ratio, trojan trigger generated following the procedure in Liu et al. (2018b).

• SRA: directly using the authors pretrained clean models and backdoor subnets (ResNet110)
to conduct post-development backdoor injection.

We adopt the standard training pipeline to obtain backdoor models: SGD optimizer with a momentum
of 0.9, a weight decay of 10−4, a batch size of 128, 100 epochs in total, initial learning rate
of 0.1 (decayed to its 10% at the 50th and 75th epoch), with RandomHorizontalFlip and
RandomCrop as the data augmentation.

A.4 BASELINE DEFENSES CONFIGURATIONS

Our detailed configurations for baseline attacks (CIFAR10) are listed as follow:

16

Published as a conference paper at ICLR 2024

• FP: We forward a 2,000 reserved clean samples to the model, and keep pruning as much
inactive neurons in the last convolutional layer as possible, until the CA drop reaches 10%.

• NC: Reverse engineer a trigger for each class with a 2,000-sample reserved clean set. Then
an anomaly index is estimated for every class. The class with the highest anomaly index > 2
(whose mask norm is also smaller than the median mask norm) is determined as the target
class for unlearning. Its reversed trigger is then attached to the same 2,000 clean samples
(correctly labeled), on which the model is retrained to unlearn the backdoor (learning rate is
10−2 for one epoch).

• MOTH: Similarly, the trigger reverse engineering and model reparing are performed on a
2,000-sample reserved clean set. The learning rate for the model repairing process is default
to 10−3 (for 2 epochs).

• NAD: First train a teacher model in 10 epochs via finetuning (initial learning rate 0.1,
decrease to its 10% every two epochs), and use it to distill a student model in 20 epochs
(learning rate is 0.1 for the first two epochs and 0.05 for the rest). NAD uses a 2,000 clean
set to perform both finetuning and distillation.

• STRIP: Calculate an entropy for each sample is calculated by superimposing it with
N = 100 randomly sampled clean samples, and consider inputs with the higher entropy to
be backdoored; in Table 1, the FPR is fixed to 10% to show its effectiveness.

• AC: Gather all inputs for each class, perform a 2-clustering based on their latent repre-
sentation, then assign each class a silhouette score. The class with the highest silhouette
score is suspected, and the inputs within its larger cluster is considered as backdoored. The
silhouette scores are used to report AUROC.

• Frequency: We directly use their official pretrained model to perform detection. The
difference between output 1 and output 0 is used to report AUROC.

• SCALE-UP: Each input is scaled up 5 times (scale_set= {3, 5, 7, 9, 11}), and the score
corresponds to the fraction of the model’s scaled predictions that equal to the prediction on
the original input. The threshold in Table 1 is set to 0.5.

Fairness Considerations in Comparison. We mostly follow the baselines’ original implemen-
tations if available. Moreover, to ensure their hyperparameters and implementations work in our
settings (model architecture, optimizers, etc.), we also try to tune their hyperparameters if necessary,
in order to report their best overall results. Most of these baseline defenses (other than those require
no clean samples or those not sensitive to the number of clean samples) are given access to the
exactly same clean reserved data (2,000 samples) as BaDExpert, which further ensures fairness in
our comparison.

A.5 COMPUTATIONAL ENVIRONMENTS

We run all experiments on a 4-rack cluster equipped with 2.8 GHz Intel Ice Lake CPUs and Nvidia
A100 GPUs. Our major experiment requires training 63 models (∼50 GPU hours in total), with an
additional > 100 GPU hours for ablation studies (e.g. training ImageNet models).

B DISCUSSIONS

B.1 FORMULATION OF AGREEMENT MEASUREMENT (HARD-LABEL DECISION RULES)

Let us fist consider an ideal backdoor expert B that completely unlearns the normal functionality of
the backdoored modelM while fully preserving its backdoor functionality, i.e.,

P(x,y)∼P

[
B(T (x)) = t|M(T (x)) = t

]
≈ 1, (4)

P(x,y)∼P

[
B(x) ̸= y|M(x) = y

]
≈ 1 (5)

Under this condition: 1) we can fully inhibit the embedded backdoor inM from activation (i.e.,
reduce the ASR ofM to 0%) by simply rejecting all inputs wherein predictions ofM and B fall
within an agreement. This is because B andM will always agree with each other on a backdoor

17

Published as a conference paper at ICLR 2024

(a) Backdoor expert B. (b) Auxiliary modelM′

Figure 7: Confidence distribution for clean and backdoor (Blend attack on CIFAR10) inputs with
regards to the intial predictions of the originally backdoored model M. As shown, B tends to
assign higher confidence to backdoor inputs and lower confidence to clean inputs, whileM′ does
the contrary. When we directly apply the described soft rule, using either B orM′, to distinguish
backdoor inputs from clean inputs, we can achieve a high AUROC (> 96%).

input T (x) that can exploitM (Eqn 4); 2) Meanwhile, this rejection rule will not impede the CA of
M, because B will always disagree withM on clean inputs x thatM correctly predict (Eqn 5). This
example thus suggests the feasibility of performing accurate backdoor input detection via measuring
whether the predictions of the backdoored model and backdoored expert concur.

B.2 FORMULATION OF AND INSIGHTS INTO THE SOFT DECISION RULES

As discussed in Sec 3.2, for practical implementation, we can generalize the hard-label conditions
to a soft version that is based on the soft-label (confidence-level) predictions. We can derive soft
decision rules for both the backdoor expert B and the auxiliary modelM′.

Trivially, for any backdoor expert B, the following soft conditions must establish:

∃τ1, τ2 ∈ [0, 1], s.t. (6)

P(x,y)∼P

[
ConfB(t|T (x)) ≥ τ1

∣∣∣M(T (x)) = t
]
≈ 1, (7)

P(x,y)∼P

[
ConfB(y|x) < τ2

∣∣∣M(x) = y
]
≈ 1, (8)

Given an input x̃, we can define a soft decision rule that rejects x̃ conditional on ConfB(M(x̃)|x̃) ≥ τ .
If τ1 ≥ τ2, applying a τ ∈ [τ2, τ1] will still result in a perfect backdoor input detector. In suboptimal
cases where τ1 < τ2, we will have a trade-off between the TPR and FPR during detection. Generally,
B could serve as a good backdoor input detector if B tends to assign higher confidences for backdoor
inputs and lower confidences for clean inputs, which is practically true (Fig 7a). If we directly
apply this confidence-level rule to detect backdoor inputs with a backdoor expert B (Blend attack on
CIFAR10), we can achieve a 96.76% AUROC.

On the contrary, an auxiliary modelM′ must satisfy the following conditions:

∃τ3, τ4 ∈ [0, 1], s.t. (9)

P(x,y)∼P

[
ConfM′(t|T (x)) ≤ τ3

∣∣∣M(T (x)) = t
]
≈ 1, (10)

P(x,y)∼P

[
ConfM′(y|x) > τ4

∣∣∣M(x) = y
]
≈ 1, (11)

where τ3, τ4 ∈ [0, 1]. Given an input x̃, we can define a soft decision rule that rejects x̃ conditional
on ConfM′(M(x̃)|x̃) ≤ τ ′. If τ3 < τ4, applying a τ ′ ∈ [τ3, τ4] will still result in a perfect backdoor
input detector. In suboptimal cases where τ3 ≥ τ4, we will have a trade-off between the TPR and
FPR during detection. Similarly,M′ could serve as a good backdoor input detector ifM′ tends to
assign lower confidences for backdoor inputs and higher confidences for clean inputs, which is also

18

Published as a conference paper at ICLR 2024

practically true (Fig 7b). Analogously, if we directly apply this confidence-level rule to detect the
same backdoor inputs, but with a finetuned auxiliary modelM′, we can achieve a 96.35% AUROC.

To sum up, we see that these soft decision rules, based on the confidence-level information of B and
M′, can already detect backdoor inputs effectively (> 96% AUROC). Our BaDExper framework,
built on top of both the two models B andM′ via ensembling, achieves an even better detection
performance (AUROC > 99%).

B.3 OTHER POSSIBLE MISLABELING STRATEGIES

In Alg 1, we specifically mislabel clean samples to their neighboring classes, i.e., Y ′ ← (Y + 1)%C.
In our preliminary experiment, we have actually explored three different mislabeling strategies:

1. Shifting Y ′ ← (Y + 1)%C (adopted in Alg 1);
2. Randomly mapping Y to any Y ′ as long as Y ̸= Y ′;
3. Change the one-hot label Y = [0, 0, · · · , 0, 1, 0, . . . , 0] to Y = [ϵ, ϵ, · · · , ϵ, 0, ϵ, . . . , ϵ]

(0 < ϵ ≤ 1) in a soft-label fashion.

Surprisingly, we find the phenomenon – “finetuning a backdoored model on a few mislabeled clean
samples can cause the model to forget its regular functionality, resulting in low clean accuracy, but
remarkably, its backdoor functionality remains intact, leading to a high attack success rate” – exists
regardless of the adopted mislabeling strategy choice. And as a matter of fact, BaDExpert with each
of the three strategies would be similarly effective against diverse set of attacks. We finally settled at
the first mislabeling choice mostly due to a stable set of hyperparameters are easier to determined
than the other two strategies.

B.4 COMPARING BADEXPERT WITH CONFUSION TRAINING (QI ET AL., 2023B)

Qi et al. (2023b) introduces a novel backdoor poison training set cleanser based on the technique
of “confusion training”, where they train an inference model jointly on the poisoned dataset and a
small number of mislabeled clean samples (similar to our Alg (1)). Nevertheless, we highlight several
critical differences between our work and theirs.

Problems. Qi et al. (2023b) focuses on poisoned training set inspection and aims at identifying
poison samples within the training set. Instead, our work focuses on identifying backdoor inputs
during inference time. The two problems have completely different setups.

Methods. Our method and Qi et al. (2023b)’s are different at two critical levels:

1. Access of Information:
• Qi et al. (2023b) relies on the necessary access of poisoned training samples (i.e.,

requiring information about the backdoor), so that their detection model can capture
the backdoor correlation.

• Our method, on the other hand, operates independently of how the model is generated
— does not rely on any information about the backdoor samples or the poisoned dataset,
which is a significantly more challenging scenario.

2. Principle:
• During the training on a poisoned dataset, Qi et al. (2023b) disrupts the fitting of clean

training samples using a “confusion batch” of mislabeled clean data (i.e., counteracts
the gradient updates learned from the normal training samples), so that the resulting
model can only capture the backdoor correlation. They then utilize this resulting model
to identify poisoned training samples by seeing which data points are correctly fitted
(by comparing the model’s predictions with the data points’ ground-truth labels).

• Distinguishly, our method is more related to catastrophic forgetting — we only finetune
the original backdoor model M on the mislabeled clean data (without any access
to poisoned samples), resulting in a backdoor expert model B that loses the normal
functionality but retains the backdoor functionality. We then measure the agreements

19

Published as a conference paper at ICLR 2024

Table 6: Defensive results on GTSRB (CA and ASR).

Defenses→ No Defense FP NC MOTH NAD STRIP AC Frequency SCALE-UP BaDExpert
Attacks ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

No Attack 97.1 - 85.4 - 97.1 - 82.2 - 96.3 - 87.4 - 96.8 - 65.0 - 60.8 - 97.0 -

Development-Stage Attacks
BadNet 97.3 100.0 85.7 16.1 97.8 0.0 92.0 100.0 96.1 0.5 86.9 30.5 96.3 100.0 64.6 0.0 59.7 0.0 97.2 0.0

Blend 96.9 97.5 86.7 97.1 97.0 6.9 88.2 97.5 96.5 49.2 87.3 57.2 96.7 97.5 64.9 7.8 59.5 59.6 96.8 4.6

Trojan 97.1 100.0 87.1 98.3 98.1 0.1 82.0 100.0 96.4 34.4 87.4 64.5 96.9 100.0 65.1 0.0 60.4 95.0 96.9 3.7

Dynamic 97.1 100.0 87.0 100.0 97.4 34.5 79.0 100.0 96.9 64.4 87.4 37.1 96.8 100.0 65.0 12.0 59.3 24.6 97.0 0.0

WaNet 95.7 91.4 84.1 5.4 98.2 17.4 94.5 89.5 97.0 0.4 86.2 84.0 95.5 91.4 64.1 61.8 56.7 79.2 95.6 0.2

Post-development Attacks
FT 95.5 99.8 85.4 0.0 94.0 39.9 83.6 98.0 96.4 13.5 86.0 19.3 95.2 99.9 63.9 7.9 62.3 66.8 95.4 3.7

TrojanNN 96.2 98.4 84.2 14.8 96.2 0.2 78.9 97.7 96.1 0.3 86.6 40.5 96.0 98.4 64.5 0.0 62.8 2.1 96.4 1.9

Average 96.6 98.2 85.7 47.4 97.0 14.1 85.1 97.5 96.5 23.2 86.9 47.6 96.3 98.2 64.6 12.8 60.2 46.7 96.5 2.0
CA Drop (smaller is better) ↓10.9 ↑0.3 ↓11.6 ↓0.1 ↓9.7 ↓0.3 ↓32.0 ↓36.4 ↓0.1
ASR Drop (larger is better) ↓50.8 ↓84.0 ↓0.6 ↓74.9 ↓50.6 ↓0.0 ↓85.4 ↓51.4 ↓96.1

between the resulting backdoor expert model B and the original backdoor modelM,
in order to identify the backdoor inputs at inference time. Notice that our approach
operates without access to the ground-truth labels of inference-time inputs.

B.5 COMPARING BADEXPERT WITH SEAM (ZHU ET AL., 2022)

Zhu et al. (2022) introduces a novel model-repairing backdoor defense (SEAM). In the first phase,
they finetune the backdoored model on a small number of mislabeled clean samples (similar to our
Alg (1)), observing that both the CA and ASR would diminish. In the second phase, they finetune the
resultant model (after phase one) on a portion of correctly labeled samples from the training set, by
which the CA will gradually recover, but the ASR will not.

Interestingly, when finetune the backdoored model on mislabeled clean samples, Zhu et al. (2022)’s
observation (both CA and ASR decrease) seems to be different from ours (CA drops but ASR retains).
Nevertheless, we argue that our observations are actually not contradictory to theirs.

In our method and experiments, we suggest using a conservatively small (un-)learning rate η, with
which only the normal functionality degrades but the backdoor functionality retains. However, as
shown in Fig 3 (and Fig 8 in Appendix C.3), when the (un-)learning rate η is large enough (e.g.,
10−3), both the normal and backdoor functionality would be lost (both CA and ASR→ 0) — which
corresponds to Zhu et al. (2022)’s observation. In summary, the different observations between our
work and Zhu et al. (2022) are possibly due to different selections of the (un-)learning rate.

B.6 RELATIONSHIP OF BADEXPERT WITH SHAN ET AL. (2020)

Shan et al. (2020) proposes an adversarial example detection method using “honeypots” — a trapdoor
that would enforce malicious adversarial inputs to manifest a certain neural network activation-pattern
signature. Their defense’s key design philosophy may be subtly connected to ours, in the sense that
Shan et al. (2020) detects potential adversarial examples via “similarity measurement” of model
activation signatures, and we detect backdoor examples via “agreement measurement” of model
prediction/confidence. However, their work’s motivation, problem, and method are still largely
different from ours.

C ADDITIONAL RESULTS

C.1 EFFECTIVENESS OF BADEXPERT ON GTSRB

Our primary results on GTSRB are shown in Table 6 and Table 7. As a general post-development
defense, BaDExpert effectively defends against all attacks (average ASR = 2.0%), with a CA drop as
negligible as 0.1%; Meanwhile, other baseline defenses fail against at least one backdoor attack. As
a backdoor input detector, BaDExpert achieves an average 100% detection AUROC, and outperforms
other baseline detectors in every scenario.

20

Published as a conference paper at ICLR 2024

Table 7: Defensive results on GTSRB (AUROC).

AUROC (%) BadNet Blend Trojan Dynamic WaNet FT TrojanNN Average
STRIP 93.4 74.8 76.5 86.2 41.6 92.2 88.7 79.0

AC 52.7 50.2 32.4 62.7 34.2 48.3 30.9 44.5

Frequency 75.3 73.6 75.3 72.8 61.3 73.6 75.3 72.4

SCALE-UP 88.6 54.2 34.0 81.1 34.1 56.4 90.4 62.7

BaDExpert 100.0 99.9 100.0 100.0 100.0 100.0 99.9 100.0

Table 8: AUROC of BaDExpert with baseline (FP, NC, MOTH and NAD) repaired models asM′

(“w/ Backdoor Expert”) on CIFAR10. We use the exact ensembling decision rule in our primary
experiment. Results of directly deploying the repaired models, following the soft rule described
in Sec B.2, are shown in “w/o Backdoor Expert” rows. Obviously, our backdoor experts in the
BaDExpert framework serve as effective augmentations (add-ons) for these baseline methods during
backdoor input detection.

Baseline asM′ ↓ Attacks→ BadNet Blend Trojan CL SIG Dynamic ISSBA WaNet Bpp FT TrojanNN SRA Average

FP w/o Backdoor Expert 10.1 64.3 64.4 40.5 90.8 8.3 97.2 97.3 99.2 64.1 66.9 0.2 58.6
w/ Backdoor Expert 100.0 96.9 99.5 99.6 99.8 66.6 94.8 99.3 99.9 99.5 99.4 99.9 96.3

NC w/o Backdoor Expert 99.2 53.4 99.9 99.9 66.7 99.5 98.8 52.7 99.9 93.2 99.8 99.9 88.6
w/ Backdoor Expert 100.0 94.8 100.0 100.0 97.6 99.9 95.3 98.7 100.0 98.3 100.0 100.0 98.7

MOTH w/o Backdoor Expert 99.7 32.1 99.0 99.6 37.0 94.2 52.6 95.8 99.4 63.3 93.2 99.8 80.5
w/ Backdoor Expert 100.0 88.6 99.8 99.9 87.4 98.8 92.3 99.7 100.0 94.7 98.2 100.0 96.6

NAD w/o Backdoor Expert 98.9 95.9 96.8 94.9 98.6 92.9 98.0 99.1 99.6 97.1 92.6 99.2 97.0
w/ Backdoor Expert 100.0 98.6 99.2 98.6 99.8 98.0 95.1 99.8 100.0 99.5 97.6 100.0 98.8

C.2 ENSEMBLING WITH OTHER DEFENSES

As discussed in Sec 4.2.3, we can apply any baseline-repaired models as M′ in our BaDExpert
framework, to ensemble with our backdoor experts B. We demonstrate the ensembling results in
Table 8 (“w/ Backdoor Expert” rows). For an insightful comparison, we also show the results when
only the baseline-repaired model is used for backdoor input detection (“w/o Backdoor Expert” rows),
following the soft decision rule forM′ described in Sec B.2.

As shown, BaDExpert can achieve overall ∼ 99% AUROCs when ensembling with NC and NAD,
which align well with our major results in Table 2. When combined with FP (failed against 9 of 12
attacks in Table 1) and MOTH (failed against 6 of 12 attacks in Table 1), BaDExpert slightly degrades
to ∼ 96.5%, due to the significant failures of the baselines themselves (which can also be told from
that deployingM′ without backdoor expert can sometimes barely achieve AUROC < 50% — worse
than random guessing). Moreover, in almost all cases, BaDExpert (“w/ Backdoor Expert”) achieves
higher AUROCs compared to deployingM′ alone (“w/o Backdoor Expert”). In other words, our
backdoor expert models and the BaDExpert framework could serve as effective augmentations (or
add-ons) to existing model-repairing backdoor defense baselines, during backdoor input detection.

C.3 BACKDOOR EXPERTS CONSTRUCTION

For all 12 attacks evaluated in our primary experiments on CIFAR10, we visualize in Fig 8a∼8l the
constructed backdoor experts’ (Alg 1) CA and ASR, when we unlearn the originally backdoored model
M with different η’s. As depicted, with a conservatively small η (e.g. 10−4), we can always enforce
the resulting backdoor expert to lose a significant amount of normal functionality (CA drop ∼ 50%),
while retaining a similar backdoor functionality (ASR drop ∼ 0%). However, if we choose a large η
(e.g. 1e-3), both functionalities would be erased (both CA and ASR ≈ 0%). Actually, we sometimes
may have to tradeoff between the maintenance of the backdoor functionality and the unlearning of
the normal functionality. But overall, we can see that unlearning the backdoor functionality is slower
than unlearning the normal functionality. More crucially, we find this phenomenon to consistently
exist across datasets and architectures (Fig 8m∼ 8o).

An intuitive justification for such a phenomenon can be referred to and derived from Qi et al. (2023b),
where the authors show that during poison training, clean samples could be forgotten faster than poison
samples in the context of catastrophic forgetting (for simplified settings of training overparameterized
linear model).

21

Published as a conference paper at ICLR 2024

(a) BadNet (b) Blend (c) Trojan

(d) CL (e) SIG (f) Dynamic

(g) ISSBA (h) WaNet (i) BPP

(j) FT (k) TrojanNN (l) SRA

(m) GTSRB (n) ImageNet (o) VGG16

Figure 8: Unlearning curves with different η of diverse scenarios. Fig 8a∼8l correspond to attacks
conducted on CIFAR10 (ResNet18); Fig 8m and 8n correspond to Blending attacks on GTSRB and
ImageNet (ResNet18), respectively; Fig 8o corresponds to the Blending attack on CIFAR10 (VGG16
instead of ResNet18).

Figure 9: Backdoor experts constructed with reserved clean sets of different sizes.

22

Published as a conference paper at ICLR 2024

Table 9: Ablation results on different (un-)learning rates η. AUROCs of BaDExpert are reported on
CIFAR10.

(Un-)learning Rate η → 5 ∗ 10−5 6 ∗ 10−5 7 ∗ 10−5 8 ∗ 10−5 9 ∗ 10−5 1 ∗ 10−4 2 ∗ 10−4 3 ∗ 10−4 4 ∗ 10−4 5 ∗ 10−4 1 ∗ 10−3 5 ∗ 10−3

BadNet 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 90.8

Blend 97.6 98.1 98.6 98.7 99.0 99.2 99.2 99.0 99.1 99.2 95.2 92.5

Table 10: Ablation results on different poison rates. Clean accuracy (CA), attack success rate (ASR)
and AUROCs of BaDExpert are reported on CIFAR10 against Blend attack.

Poison Rate→ 0.1% 0.2% 0.3% 0.4% 0.5% 1.0% 5.0% 10.0

CA (before defense) 93.6 94.1 94.1 93.5 94.2 93.1 93.9 94.0

ASR (before defense) 80.8 87.3 90.6 95.1 94.5 98.5 99.8 99.9

CA (after defense) 92.7 93.1 93.2 92.6 93.3 92.2 93.0 93.1

ASR (after defense) 11.8 3.4 10.8 7.2 13.3 8.0 0.3 0.0

AUROC 99.2 99.2 99.2 99.1 99.4 98.9 100.0 100.0

We also notice that, this property is not sensitive w.r.t. the number of clean samples (|Dc|) we have.
No matter how many clean samples (from 1 or 10 to 1,000 or 2,000) we use to conduct Alg 1, with
an appropriately small learning rate η (e.g. by selecting a small η such that the resulting CA only
drops to ∼ 40%), we can still separate the CA and ASR by a certain extent (Fig 9).

C.4 ABLATION STUDIES ON DIFFERENT (UN-)LEARNING RATES η

Our method is not sensitive to the choice of (un-)learning rate η. In this ablation study, we evaluate
BadExpert against BadNet and Blend attacks on CIFAR10, across a wide range of η (from 5 · 10−5

to 5 · 10−3). As shown in Table 9, the AUROC of our detection remains stable across different η.

C.5 ABLATION STUDIES ON DIFFERENT POISON RATES

As shown in Table 10, BaDExpert is insensitive to the variation of poison rate. Even when the poison
rate is extremely low (poison rate = 0.1%, equivalent to only 50 poison samples) and ASR drops to
∼ 80%, our BaDExpert is still manifesting near-perfect effectiveness.

C.6 COMPARING BADEXPERT WITH STRIP AND SCALEUP IN SCENARIOS WITH FEWER
CLEAN SAMPLES

We further analyze in details how our BaDExpert would perform when there are fewer accessible
clean reserved samples. We compare it alongside with two strong baseline detectors: 1) STRIP,

Table 11: Comparison of BaDExpert with STRIP and ScaleUp alongside, when they are all given
equal access to different number of clean samples. AUROCs of all defenses are reported on CIFAR10
against Blend attack.

Number of Clean Samples Defense BadNet Blend

100
ScaleUp 95.7 79.8
STRIP 99.2 42.5

BaDExpert 99.9 72.9

200
ScaleUp 95.7 79.9
STRIP 99.3 44.4

BaDExpert 100.0 91.2

400
ScaleUp 95.7 79.9
STRIP 99.3 44.3

BaDExpert 100.0 95.1

2000
ScaleUp 95.8 80.0
STRIP 99.4 44.6

BaDExpert 100.0 99.2

23

Published as a conference paper at ICLR 2024

Table 12: Adaptive attack by using weakened triggers at inference time. (Blend attack on CIFAR10)

Blending Alpha 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% (Standard)

ASR (before defense) 5.0 10.1 17.8 28.0 39.7 51.6 62.8 72.3 80.2 86.3 90.6

ASR (after defense) 3.0 5.4 8.5 11.9 15.3 18.5 14.8 16.2 14.0 15.5 11.4

AUROC 94.4 96.2 97.3 97.8 98.1 98.4 98.6 98.7 98.9 99.0 99.2

which requires only N = 100 clean samples by default, and 2) ScaleUp, which by default can work
without clean samples (meanwhile, ScaleUp can also utilize available clean samples for its SPC value
estimation). To make a fair comparison in our additional study, we assign an equal number of clean
samples (100, 200, 400 and 2000) to all three defenses in each scenario.

In Table 11, we can quickly notice that under most circumstances (number of clean samples =
200, 400 and 2, 000), BaDExpert performs the best. And when the number of clean samples is
extremely restrited to 100, BaDExpert becomes less effective on Blend (72.9% AUROC), but still
performs similar to ScaleUp (79.8% AUROC).

Approaches to Obtain Reserved Clean Samples. There exist various possiblitites to acquire such
a small clean set |Dc|:

• A developed model usually comes with an independent set of test samples in order to validate
the model’ utility, the defender could simply use (a partition) of this test samples as |Dc|;

• Collect data (e.g. taking photos) in a secure environment;

• Manually inspect and isolate clean samples from online inputs.

Furthermore, there exists a trending line of work on isolating clean samples from a poisoned set of
samples, e.g. META-SIFT (Zeng et al., 2023a). Such work can be directly applied here to aid the
defender to obtain reserved clean samples. Overall, we argue that obtaining a small amount of clean
samples (e.g. 200, 400, 2000) would not be a major bottleneck for defenders in practice.

C.7 ADDITIONAL ADAPTIVE ANALYSIS DETAILS

C.7.1 NATURAL BACKDOOR

Natural backdoors (e.g. (Zhao et al., 2022)) may exist in models trained on only clean data, which
can also be considered as an adaptive backdoor attack against BaDExpert. This is because the natural
backdoor functionality learned by a clean model is strongly correlated with the normal functionality –
therefore, such natural backdoors also directly challenge our insight that “backdoor functionality can
be isolated from normal functionality”.

We construct such natural backdoor attacks (Zhao et al., 2022) on normally trained models (on clean
data) and achieve ASR = 99.2% on CIFAR10 and ASR = 99.3% on GTSRB. We find that BaDExpert
can defend the natural backdoor attacks on both datasets with AUROC = 92.3% and AUROC
= 92.8%, respectively. While the performance shows a degradation compared to our major results
in Table 2 in our paper (average AUROC = 99.0%), the >92% AUROC still reflects the nontrivial
effectiveness of BaDExpert as an inference-time defense. Besides, we note that our key finding
“when fintuning on mislabled clean data, the backdoor functionality would remain, while normal
functionality does not” still stands against this attack:

• Following Alg (1) on CIFAR10, the constructed backdoor expert B retains a high ASR
95.3% (originally 99.2%), while the normal functionality degrades significantly (CA drops
from 94.2% to 44.8%);

• On GTSRB, the observation is similar (ASR drops from 99.3% to 83.0%, CA drops from
96.8% to 41.0%).

24

Published as a conference paper at ICLR 2024

(a) 4-Pixel (b) 1-Pixel

Figure 10: Smaller triggers demonstration.

Table 13: Adaptive attack by using smaller triggers in Fig 10. (CIFAR10)

Attack→ 4-Pixel 1-Pixel
CA (before defense) 94.2 93.7

ASR (before defense) 88.5 77.4

CA (after defense) 93.3 92.7

ASR (after defense) 14.4 5.4

AUROC 98.9 99.6

C.7.2 ADAPTIVE ATTACK BY USING WEAKENED TRIGGERS AT INFERENCE TIME AND
SMALLER TRIGGERS

Empirically, adversary may sometimes bypass existing backdoor defense methods by using a weak-
ened version of the backdoor trigger at inference time. Therefore, we also study how our method
reacts to such an adaptive attack by decreasing the inference-time trigger blending alpha of the
Blend attack on CIFAR10. As shown in Table 12, when the adversary uses a lower blending alpha
at inference time (instead of the default 20% during poisoning), the AUROC of BaDExpert indeed
degrades, to as low as 94%. Nevertheless, the attack ASR drops more rapidly. Overall, we can
observe a tradeoff between backdoor inputs’ stealthiness (AUROC) and the attack’s effectiveness
(ASR). Generally speaking, the adversary can hardly evade BaDExpert’s detection by using a
weaker trigger at inference time, since the ASR will drop rapidly way before BaDExpert becomes
unusable (AUROC > 97.5% whenever ASR > 20%).

In addition, we also study whether backdoor attackers could evade our defense via adopting smaller
trigger sizes. Specifically, we evaluate BaDExpert’s effectiveness against two backdoor models that
are poisoned with: 1) 4-Pixel (Fig 10a): 4 random red pixels as the backdoor trigger (0.1% poison
rate); 2) 1-Pixel (Fig 10b): 1 random red pixel as the backdoor trigger (0.5% poison rate). To ensure
the backdoors are “weak”, we select the minimum poison rates to make sure the backdoors are just
successfully injected (non-trivial ASR). As shown in Table 13, BaDExpert can still effectively defend
these attacks, suppresing the ASR to < 14.4%.

C.7.3 A TAILORED ADAPTIVE ATTACK AGAINST BADEXPERT

To provide more valuable insights for future researchers / developers into our method, we also tailored
a novel adaptive attack against our proposed BaDExpert.

Concretely, we assume that the adversary (who produced the backdoor model) is aware of our
BaDExpert defense. Accordingly, he/she will design an evading strategy via using an alternative
trigger during inference time (i.e., asymmetric backdoor trigger, which was adopted in prior work
like Qi et al. (2023a)), such that the alternative trigger satisfies: 1. Can still activate the backdoor
functionality of the original backdoor modelM (i.e., achieving a high ASR) 2. Cannot activate
the backdoor functionality of the original backdoor model B (i.e., enforcing B to provide a low
confidence on the backdoor inputs).

Notice that the adversary is only assumed to have access to the backdoor modelM. The adversary,
however, could also follow our BaDExpert procedure to construct a surrogate backdoor expert model
B′ (Alg 1) to the actual backdoor expert model B used by the victim / defender. (Empirically, we find
the attack results using this surrogate backdoor expert model are similar to using the actual B of the

25

Published as a conference paper at ICLR 2024

Table 14: Tailored adaptive attack against BaDExpert. (CIFAR10)

Attack
λ2 0.5 0.1 0.05 0.01

Average
λ1 10 1 10 1 10 1 10 1

BaDExpert-Adap-BadNet
Norm 4.8 1.8 16.6 5.0 36.7 5.1 59.8 5.3 16.9
ASR 20.8 57.6 61.8 83.2 82.5 89.2 94.5 98.1 73.5

AUROC 93.3 99.8 80.7 99.8 65.4 99.8 57.2 100.0 87.0

BaDExpert-Adap-Blend
Norm 11.4 10.2 32.6 29.5 44.2 38.6 59.1 53.5 34.9
ASR 11.4 27.2 72.7 75.7 83.7 86.5 96.7 97.2 68.9

AUROC 63.0 72.7 61.1 68.7 47.1 58.1 36.4 54.2 57.6

defender, if they both are trained following the same configuration. We therefore do not explicitly
distinguish the notation of B and B′ in the rest of this section.)

The two goals upon can be implemented via optimization on the modelsM and B. Formally, as the
adaptive adversary, we compute an alternative trigger mark ∆ and the corresponding trigger mask m
as follow:

min
∆,m

CrossEntropyLoss
(
M(x∗)raw, t

)
+ λ1 · ConfB(t|x∗) + λ2 · |m| (x, y) ∼ P (12)

where x∗ = (1−m)⊙ x+m⊙∆ (13)

Specifically, the trigger mark ∆ ∈ X = [0, 1]c×w×h is a 3-dim real-value matrix (the same shape
as the input x), while the trigger mask m ∈ [0, 1]w×h is a 2-dim real-value matrix that decides the
opacity of each trigger mark pixel to mix with the corresponding input xs’ pixel. The ⊙ operator
upon computes the Hadamard product of two matrices. (We adopt the similar trigger optimization
setting in Wang et al. (2019).)

Now we explain this optimization formula:

• Minimizing the first CrossEntropyLoss term will help the adversary approach the first
target: the alternative trigger (∆,m) can still activate the victim backdoor modelM with a
high ASR.

• The second term represents the confidence of the backdoor expert model B. Minimizing
it will directly violate our core design insight, since the resulting backdoor inputs now
will not activate the backdoor functionality of the backdoor expert model B anymore.

• The last term, ℓ1 norm of the trigger mask, corresponds to the visual stealthiness of the
trigger. The adversary usually prefers to implant a less noticeable trigger, which can be
realized via minimizing the magnitude of the trigger mask m.

The two hyperparameter λ1 and λ2 controls the tradeoff among these three goals.

In Table 14, we report the results of this adaptive attack (“BaDExpert-Adap-[ORIGINAL AT-
TACK]”) against our BaDExpert defense when λ1 and λ2 are selected differently. To fully study
the potential tradeoff between the adaptive attack effectiveness and its defense evasiveness, we
report alongside 1) the adaptive trigger Norm |m|; 2) the attack success rate (ASR); 3) AUROC of
BaDExpert against the tailored adaptive attack.

As shown in Table 14, we can observe that the tailored adaptive attack could effectively diminish the
effectiveness of BaDexpert – AUROC becomes as low as 57.2% against BaDExpert-Adap-BadNet
and 36.4% against BaDExpert-Adap-Blend. Meanwhile, we can also notice two trends from the
table:

1. As λ2 becomes larger (with λ1 fixed), the ASR becomes higher, while the defense AUROC
decreases. However, the increasing evasiveness of the adaptive attack comes with a price:
the magnitude of the trigger mask (Norm) also increases – i.e., the backdoor attack becomes
less stealthy.

2. As λ1 becomes higher (with λ2 fixed), the defense AUROC effectively degrades. However:
1) the ASR drops, and 2) the backdoor attack becomes stealthier since Norm becomes
larger.

26

Published as a conference paper at ICLR 2024

Table 15: Comparing BaDExpert with additional baseline defenses: ANP Wu & Wang (2021),
I-BAU Zeng et al. (2021a), ABL Li et al. (2021a), AWM Chai & Chen (2022), RNP Li et al. (2023)
and CD Huang et al. (2023). CA and ASR are reported on CIFAR10.

Attack No Defense ANP I-BAU ABL AWM RNP CD BaDExpert (Ours)

BadNet CA 94.1 80.8 88.0 92.5 92.7 70.0 78.6 93.1
ASR 100.0 0.4 0.8 11.7 4.8 18.9 2.9 0.0

Blend CA 94.1 83.2 90.4 91.9 88.9 77.9 79.0 93.1
ASR 90.6 16.8 16.6 11.8 29.7 19.6 72.8 11.4

In brief, we can see that the adaptive attack can indeed restrict BaDExpert’s performance, at the
cost of either attack effectiveness (lower ASR) or stealthiness (higher Norm). Overall, BaDExpert
still performs nontrivially in most scenarios – 87.0% average AUROC against BaDExpert-Adap-
BadNet and 57.6% against BaDExpert-Adap-Blend.

C.8 COMPARING BADEXPERT WITH ADDITIONAL BASELINES

In Table 15, we further compare BaDExpert with 6 additional recent backdoor defense baselines:
ANP (Wu & Wang, 2021), I-BAU (Zeng et al., 2021a), ABL Li et al. (2021a), AWM Chai & Chen
(2022), RNP Li et al. (2023) and CD Huang et al. (2023), w.r.t. attack success rate and clean accuracy.
Among them: 1) ABL is a poison suppresion method that happens in the model development stage;
2) ANP, I-BAU, RNP and AWM are post-development model-reparing defenses; 3) CD is originally
a poisoned training dataset cleanser, and we adapted it to a backdoor input detector. As shown in
Table 15, BaDExpert outperforms all of them, achieving lower ASR and higher CA.

C.9 STANDARD DEVIATIONS OF MAJOR EXPERIMENTS

Standard deviations of our major experiments Table 1, 2, 6 and 7 are shown in Table 16, 17, 18 and
19.

Table 16: Standard deviation of Table 1.

Defenses→ No Defense FP NC MOTH NAD STRIP AC Frequency SCALE-UP BaDExpert
Attacks ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

No Attack 0.3 - 1.1 - 1.4 - 0.3 - 0.6 - 0.3 - 0.4 - 0.2 - 0.0 - 0.3 -

Development-Stage Attacks
BadNet 0.1 0.0 0.4 0.0 0.2 2.4 0.4 0.2 0.5 0.4 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0

Blend 0.1 1.3 0.7 1.4 0.6 1.7 0.1 11.5 0.4 4.7 0.1 1.1 0.6 14.4 0.1 0.2 0.3 2.8 0.1 6.5

Trojan 0.2 0.1 0.7 36.0 0.2 0.5 0.5 2.1 0.2 2.8 0.2 15.3 0.2 0.4 0.2 0.0 2.5 5.8 0.2 3.3

CL 0.2 0.0 0.9 7.3 0.2 0.5 0.2 0.5 0.4 3.5 0.2 3.7 0.2 0.3 0.3 0.0 1.1 0.0 0.2 7.1

SIG 0.4 0.7 2.6 25.8 0.4 7.2 0.2 50.9 0.2 6.0 0.4 3.2 0.4 12.1 0.4 0.2 0.5 24.6 0.4 1.7

Dynamic 0.2 0.2 1.3 11.8 0.1 5.0 0.5 41.2 0.5 1.3 0.3 4.5 4.3 43.2 0.2 0.0 0.9 0.2 0.2 5.4

ISSBA 0.3 0.0 0.2 0.2 0.3 2.0 0.3 34.3 0.6 0.3 0.2 2.1 0.3 0.1 0.3 0.0 0.1 0.1 0.3 0.5

WaNet 0.6 0.9 1.8 2.6 0.8 20.3 0.4 10.1 1.3 0.4 0.5 0.7 0.6 3.8 0.5 0.9 0.1 1.6 0.5 0.3

BPP 0.5 0.2 0.4 8.8 0.3 57.3 0.2 1.5 0.7 0.2 0.4 3.7 0.5 0.6 0.6 0.0 4.7 10.2 0.5 0.1

Post-development Attacks
FT 0.2 0.2 0.8 4.6 0.4 16.2 0.5 5.1 0.8 1.0 0.3 3.3 0.2 9.6 0.2 0.2 0.2 7.4 0.2 1.8

TrojanNN 0.2 0.0 0.4 9.6 0.1 0.3 0.4 23.4 0.3 7.7 0.2 0.1 0.2 0.0 0.2 0.0 1.4 0.0 0.3 6.6

SRA 1.4 0.0 1.2 0.0 0.4 0.6 0.4 0.5 2.6 0.4 1.2 0.9 1.4 0.0 1.0 0.0 0.8 5.3 1.4 0.4

Table 17: Standard deviation of Table 2

AUROC (%) BadNet Blend Trojan CL SIG Dynamic ISSBA WaNet Bpp FT TrojanNN SRA

STRIP 0.2 2.2 10.6 3.4 6.8 2.0 1.4 0.8 13.1 1.4 0.3 0.5

AC 0.0 10.1 0.1 0.0 2.0 7.2 2.8 0.4 0.2 15.3 0.0 0.0

Frequency 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.1

SCALE-UP 0.6 1.5 4.4 0.7 1.8 0.4 0.4 0.8 8.9 2.6 0.8 2.4

BaDExpert 0.0 0.1 0.2 0.4 0.1 0.1 1.0 0.0 0.0 0.1 0.6 0.0

27

Published as a conference paper at ICLR 2024

Table 18: Standard Deviation of Table 6.

Defenses→ No Defense FP NC MOTH NAD STRIP AC Frequency SCALE-UP BaDExpert
Attacks ↓ CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

No Attack 0.4 - 1.8 - 0.5 - 3.7 - 0.5 - 0.4 - 0.4 - 0.3 - 3.5 - 0.4 -

Development-Stage Attacks
BadNet 0.6 0.0 1.7 11.5 1.0 0.0 0.6 0.0 0.3 0.1 0.8 1.7 0.8 0.1 0.6 0.0 2.7 0.1 0.6 0.1

Blend 0.5 0.3 0.7 0.8 0.1 1.1 1.2 1.1 0.3 13.0 0.5 5.6 0.5 0.2 0.4 0.1 0.9 4.3 0.5 2.9

Trojan 0.2 0.0 0.2 1.1 0.3 0.1 3.5 0.0 0.6 56.8 0.2 3.9 0.2 0.0 0.2 0.0 1.1 2.2 0.0 2.2

Dynamic 0.1 0.0 0.1 0.0 0.6 56.7 3.5 0.0 0.3 49.2 0.1 2.9 0.1 0.0 0.1 0.0 1.6 6.6 0.1 0.1

WaNet 0.2 0.5 2.1 5.9 0.2 20.3 0.5 0.4 0.1 0.1 0.1 0.6 0.2 0.5 0.2 0.4 0.8 0.3 0.2 0.0

Post-development Attacks
FT 0.6 0.1 0.5 0.0 0.6 19.9 4.7 1.3 0.2 18.2 0.6 4.0 0.6 0.1 0.4 0.0 1.1 1.7 0.6 4.7

TrojanNN 0.7 2.4 1.0 14.7 0.7 0.3 7.0 3.2 0.3 0.2 0.6 10.5 0.7 2.4 0.5 0.0 1.0 3.3 0.8 1.8

Table 19: Standard deviation of Table 7.

AUROC (%) BadNet Blend Trojan Dynamic WaNet FT TrojanNN

STRIP 1.8 2.6 2.7 1.6 1.1 1.9 3.7

AC 29.9 7.6 0.6 9.8 2.2 6.2 0.2

Frequency 0.1 0.0 0.0 0.1 0.1 0.0 0.0

SCALE-UP 0.6 1.9 4.9 2.8 0.3 1.2 1.5

BaDExpert 0.0 0.2 0.0 0.0 0.0 0.0 0.0

28

	Introduction
	Problem Formulation
	Methods
	Backdoor Functionality Extraction
	BaDExpert: Backdoor Input Detection with Backdoor Expert

	Experiments
	Setup
	Effectiveness of BaDExperts on CIFAR10
	Consistent Effectiveness Across Settings
	Comparing BaDExpert to Baseline Defenses
	Ablation Studies

	Generalizability and Scalability
	The Resistance to Adaptive Attacks

	Related Work
	Conclusion
	Implementation and Configuration
	BaDExpert Implementation Details
	Unlearning and Finetuning Configuration

	Decision Rule
	Baseline Attacks Configurations
	Baseline Defenses Configurations
	Computational Environments

	Discussions
	Formulation of Agreement Measurement (Hard-Label Decision Rules)
	Formulation of and Insights into the Soft Decision Rules
	Other Possible Mislabeling Strategies
	Comparing BaDExpert with Confusion Training qi2023proactive
	Comparing BaDExpert with SEAM zhu2022selective
	Relationship of BaDExpert with shan2020gotta

	Additional Results
	Effectiveness of BaDExpert on GTSRB
	Ensembling with Other Defenses
	Backdoor Experts Construction
	Ablation Studies on Different (Un-)Learning Rates
	Ablation Studies on Different Poison Rates
	Comparing BaDExpert with STRIP and ScaleUp in Scenarios with Fewer Clean Samples
	Additional Adaptive Analysis Details
	Natural Backdoor
	Adaptive Attack by Using Weakened Triggers at Inference Time and Smaller Triggers
	A Tailored Adaptive Attack against BaDExpert

	Comparing BaDExpert with Additional Baselines
	Standard Deviations of Major Experiments

