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ABSTRACT

Co-optimizing data and model configurations for LLMs presents a classic chicken-
and-egg dilemma: the best training data configuration (e.g., training data com-
position) depends on the chosen model configuration (e.g., model architecture,
fine-tuning configuration), but the best model configuration also depends on the cho-
sen training data. However, jointly optimizing both data and model configurations
is intractable, with existing methods focusing only on data or model selection in
isolation without considering their complex interdependence. We introduce JoBS,
an efficient method that jointly optimizes LLM training data and model configura-
tions by framing the problem as a black-box optimization problem. Central to our
method is a novel performance scaling law predictor, which learns a diverse family
of performance scaling laws for different configurations and cheaply predicts how
promising a particular training configuration is. This enables us to quickly build an
approximate LLM performance landscape and efficiently find optimal training con-
figurations with Bayesian Optimization (BO). JoBS not only outperforms existing
baselines across diverse tasks in the fine-tuning setting, but also runs up to 12.4×
faster. We hope our work draws more attention to the chicken-and-egg dilemma
inherent in co-optimizing LLM training configurations. Our anonymized code is
available at: https://github.com/a35453779/JoBS.

1 INTRODUCTION

LLMs have become ubiquitous in our lives, with great commercial and practical interest in maximizing
their performance for specific tasks. Much effort has been put into optimizing the training components
to maximize LLM performance, particularly the training data and the model architecture. From
the data perspective, better training data can be chosen via data selection (Koh & Liang, 2020;
Xie et al., 2023b; Xia et al., 2024; Chen et al., 2025c) and mixing (Xie et al., 2023a; Chen et al.,
2025a;c; Liu et al., 2025; Xie et al., 2025) techniques. From the model perspective, various model
selection methods (Raschka, 2020; White et al., 2020; He et al., 2024; Zhang et al., 2024b) have been
introduced to select the most appropriate model for a given task.

In practice, optimizing training data and model architecture is a highly interdependent process. For
example, deploying data selection methods requires us to first assume a good model architecture.
Conversely, selecting a good model architecture requires a fixed pool of training data. This presents a
classic chicken-and-egg dilemma, where the optimal choice of training data depends on the optimal
choice of model architecture, and vice versa. Furthermore, due to their interdependency, optimizing
data and model independently would often lead to sub-optimal LLM performance (Chen et al.,
2024). This is demonstrated in Sec. 5 where we naively combined data and model selection methods.
Therefore, to address the interdependent nature of data and model architecture and maximize LLM
performance, we should jointly optimize these two training components.

Unfortunately, jointly optimizing data and model configurations is conventionally considered chal-
lenging and budget-intensive. Prior scaling law works (Kaplan et al., 2020; Hoffmann et al., 2022;
Zhang et al., 2024a; Shukor et al., 2025) have tried to quantify the effects of each training component
on downstream performance, while prescribing simple guidelines on the optimal choices of training
components given fixed computational budgets. However, they require exhaustive search over a
large number of configurations, which is infeasible in practice. To efficiently find an optimal training
configuration is therefore a problem that remains difficult and largely unexplored.
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Figure 1: Overview of JoBS.

Our paper aims to study this chicken-and-egg dilemma and joint optimization problem for a scenario
commonly faced by practitioners, namely parameter-efficient fine-tuning (Hu et al., 2021) (PEFT) of
LLMs under different data mixtures. In this work, we present Joint Bayesian Optimization with
Scaling Laws (JoBS), an approach that efficiently co-optimizes LLM training configurations by
learning the LLM performance landscape with Bayesian Optimization (BO) and a novel performance
predictor to reduce amount of actual training. We offer both theoretical and empirical insights into
how fine-tuning performance varies with different Low Rank Adaptation (LoRA) configurations and
training data mixture choices. In doing so, we address the research gap in studying the complex
interaction between data and model configurations and jointly optimize both components efficiently.
We summarize JoBS in Fig. 1, and state our main contributions below:

1. We formulate our chicken-and-egg dilemma as a black-box optimization problem (Sec. 2)
and provide novel empirical and theoretical insights into how choices of LoRA configuration
and training data mixture jointly influence the LLM fine-tuning performance (Sec. 3). Our
work is the first to explore and quantify the interaction gains from co-optimizing model and
data configurations for an LLM. We find that the LLM performance landscape is approxi-
mately smooth with respect to varying training configurations, and good configurations can
improve LLM performance by more than 20%.

2. We present JoBS (Sec. 4), an algorithm that exploits the discovered characteristics of the
co-optimization problem, and interleaves Bayesian Optimization (BO) (Sec. 4.1) with a
novel LLM performance scaling law predictor to efficiently learn the smooth performance
landscape (Sec. 4.2). The predictor effectively amortizes expensive trials in BO, allowing
us to efficiently co-optimize training configuration – a traditionally costly endeavor – with
theoretical performance guarantees.

3. We empirically demonstrate the performance gains attained by JoBS (Sec. 5). By comparing
our algorithm with a wide range of independent model and data selection baselines, we
show the existence of an interaction improvement – a nugget of performance improvement
from co-optimizing the training configurations, which is a 6 − 7% performance increase
compared to merely optimizing each training component independently.

2 PROBLEM SETUP AND RELATED WORKS

We consider two categories of training components: training data X and model M. Given these
training components, we define a training process Pt that fine-tunes an LLM for a training time of t
to produce fine-tuned LLM weights θX ,M,t ≜ Pt(X ,M), which can be evaluated over a predefined

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

performance metric L (e.g., question-answering accuracy). Given a training time budget B, we want
to find training component configurations X ,M that maximize the LLM performance metric:

max
X ,M

L(θX ,M,B). (1)

Time budget B is considered since in practice, a model cannot be trained indefinitely. As different
training configurations have different training speeds, the time budget forces us to strategically
balance between each training component to attain the best LLM performance within a practical
resource constraint. Other constraints, such as training tokens, are correlated with training time and
can also be considered, but we find training time easier for practitioners to interpret.

Data X . Assume we have N training datasets D ≜ D1 ∪D2 ∪ · · · ∪DN from N different domains
(e.g., Wikipedia, TruthfulQA (Lin et al., 2022) for language tasks). The training data component
consists of a subset of data X ⊆ D. In general, the selection of X ensures the selected data points
are more relevant to the given task (Chen et al., 2025c) or of higher quality (Wang et al., 2024a; Xia
et al., 2024; Zhang et al., 2025), however this is done so assuming a fixed model architecture is used.
In our work, we overload the notation and parameterize our selected data mixture with a mixing ratio
represented by a probability simplex of dimension N (X ∈ ∆N−1 ⊂ RN ).

Model M. Under the LLM PEFT regime, the optimization problem takes as inputs: (1) the module
of the LLM to which PEFT is applied (e.g., Q,V projection (Vaswani et al., 2017)), (2) the layer(s)
where PEFT is applied (e.g., layer 30), and (3) the PEFT hyperparameters, including LoRA rank,
α and dropout (Hu et al., 2021). These inputs can be concatenated into a M -dimensional vector
M ∈ RM with M ∈ Z+. These inputs span both discrete and continuous spaces, which complicates
the optimization problem. Existing model selection works (Raschka, 2020; White et al., 2020; He
et al., 2024; Zhang et al., 2024b) can be adapted to select configurations for PEFT, however these
methods assume that a fixed training dataset is known beforehand.

3 MOTIVATION FOR JOBS

Solving Problem 1 directly is challenging. This is because the performance landscape that describes
the relationship between selected training components X ,M and the fine-tuned LLM performance
L has no closed, analytical form. Before introducing JoBS as an efficient approach, we first
examine how different training data and model configurations shape the LLM performance landscape.
These findings are counter-intuitive yet illustrative, giving us a clearer understanding of the LLM
performance landscape and justifying why our chicken-and-egg dilemma deserves attention in the
first place. We will use these findings to motivate the algorithmic backbone of JoBS later in Sec. 4.

(a) LLM performance after fine-tuning with LoRA applied
on varying number of layers and with varying LoRA rank.

(b) LLM performance after fine-tuning with vary-
ing data mixtures and LoRA configurations. Each
chart corresponds to a different LoRA configura-
tion, while the red cross denotes optimal mixture
for that LoRA configuration.

Figure 2: How data and model configurations jointly affect LLM performance.

Model configurations significantly influence downstream performances. To demonstrate this, we
fine-tuned a Llama-3-8B-Instruct (Touvron et al., 2023) model on the gsm8k (Cobbe et al., 2021)
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task with LoRA (Hu et al., 2021) with different ranks and layers1. For each LoRA rank and layer
configuration, we fine-tuned the model for one epoch. Intuitively, we expect the LLM to perform
better if we use LoRA with larger ranks and applied to more layers, due to a higher learning capacity.
Surprisingly, this is not the case. We instead found that the performance landscape is somewhat
smooth but riddled with “peaks” and “valleys”, and certain LoRA layer and rank configurations yield
drastically better performance (almost 20%!) than simply fine-tuning over all model layers and larger
ranks. Unlike many practical works that merely prescribe a LoRA configuration from heuristics, our
finding suggests that certain LLM model configurations produce far better LLM performance, and
we should optimize them while considering the chicken-and-egg dilemma. Beyond just LoRA rank
and layers considered in prior works (Zhang et al., 2024b), our paper also considered other model
configurations such as which LLM modules to apply LoRA to and more (Sec. 5.1).

The optimal data configuration varies between chosen model configuration. To demonstrate
this, we fine-tuned an LLM with varying data mixtures for the gsm8k (Cobbe et al., 2021) evaluation
task whilst varying the model configuration in which we applied LoRA. Our training data mixture
consists of 3 training domains: TruthfulQA (Lin et al., 2022), TriviaQA (Joshi et al., 2017) and gsm8k.
Intuitively, we expect the LLM to perform best if we only used training data from gsm8k. However,
this is not the case; Fig. 2b shows that the optimal data mixture (red cross) contains a mixture of data
points from different domains. This suggests that the optimal training data mixture is non-intuitive
and difficult to find via heuristics (Radford et al., 2019; Gao et al., 2020). More importantly, the
optimal training data mixture seems to vary with different model configurations, yielding varying
LLM performance. Therefore, these preliminary results emphasize the need to derive algorithms to
automatically and jointly optimize all training components.

Lastly, we refer interested readers to some theoretical insights that we developed from classical
convex optimization in App. A, which helps us understand the optimal training configuration choice.

4 INTRODUCING JOBS

JoBS features two main components. (1) We use a surrogate Gaussian process (Williams & Ras-
mussen, 2006) to model the empirically smooth performance function landscape L (shown earlier),
whose maximum can be obtained in a sample-efficient manner by Bayesian optimization (Sec. 4.1).
(2) We introduce a novel performance scaling law (Wu & Tang, 2024; Chen et al., 2025b) predictor
that amortizes the repeated cost of repeated evaluations by estimating the LLM performance from
a small number of training steps (Sec. 4.2). Unlike existing rigid scaling law formulas which are
fixed to a small group of training configurations, our predictor is a flexible neural network, capable of
predicting LLM performance scaling w.r.t. any training configurations.

We show theoretically (in Sec. 4.3) and empirically (in Sec. 5) that even when our LLM performance
predictions are noisy, the BO framework handles them gracefully as observation noise, eventually
converging to the optimal training component configuration.

4.1 BO AS THE BACKBONE OF JOBS

Black-box modeling of the trained LLM performance. We consider the LLM performance as a
function L : Rd 7→ R over the space of inputs x = [X ,M] ∈ Rd where d = N +M (See Sec. 2).
Since it is difficult to analytically model the LLM performance L, we instead treat our objective
function in Problem 1 as a black-box function whose maximum x∗ ≜ argmaxx L(x) we want to
recover. In line with existing works, we attempt to model L as a Gaussian process (GP) (Williams &
Rasmussen, 2006). In each iteration t = 1, 2, . . . , T , we can trial some training configuration xt to
obtain a potentially noisy realization of the LLM performance yt ≜ L(xt) + ϵt, which we assume is
corrupted with a sub-Gaussian noise ϵt (e.g., Gaussian or bounded noise) to form the sample (xt, yt).

Consistent with the work of Chowdhury & Gopalan (2017), we model the unknown function L (in our
case, the LLM performance landscape) as a realization of a GP that is fully specified by its prior mean
µ(r) and covariance κ(x, x′) for all x, x′ ∈ Rd where κ is a kernel function chosen to characterize
the correlation of the observations between any two inputs x and x′. For JoBS, since we expect the

1Generating this simple performance landscape took a few weeks, so exhaustively searching for the optimal
configuration is infeasible.
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function L to be heteroskedastic and have varying lengthscales between different inputs, we use a
deep kernel (Wilson et al., 2016) which provides greater modeling flexibility. The hyperparameters in
the mean and kernel functions can be learned via maximum likelihood estimation from observations.

Given the noisy observations yt ≜ [yτ ]
⊤
τ=1,...,t at inputs x1, . . . , xt, the posterior belief of L at any

new input x′ is a Gaussian distribution with the posterior mean and variance given by

µt(x
′) ≜ κ⊤

t (x
′)(Kt + ζI)−1yt

σt(x
′) ≜ κ(x′, x′)− κ⊤

t (x
′)(Kt + ζI)−1κt(x

′)
(2)

where κt(x
′) ≜ [κ(x′, xτ )]

⊤
τ=1,...,t is a column vector, Kt ≜ [κ(xτ , xτ ′)]τ,τ ′∈1,...,t is a t × t

covariance matrix, and ζ > 0 is viewed as a free hyperparameter (Chowdhury & Gopalan, 2017).
Modeling L directly allows the entire performance landscape to be learned at once, as opposed to
learning a slice of L for a fixed X or M. This results in more efficient learning process and avoiding
heuristics to balance between which X or M to trial, making JoBS more robust overall.

Using BO for our joint optimization problem. To determine the best configuration x∗, we trial
different training configurations in each round to determine their performance and continually
update the GP in (2) to have a better estimate of L. In round t, the BO algorithm proposes the
next configuration xt+1 as the configuration which maximizes some acquisition function, such
as the upper confidence bound (UCB) (Srinivas et al., 2010), given by xt+1 = argmaxx µt(x) +
βt+1σt(x), where βt+1 is an exploration parameter which decays with increasing t. We can assess
the convergence of a BO algorithm by analyzing its cumulative regret after T BO iterations, given by
RT ≜

∑T
t=1[L(x∗)− L(xt)] (Tay et al., 2023), where L(x∗) is the optimum. A lower cumulative

regret indicates a faster convergence rate of the BO algorithm. We provide a theoretical analysis of
JoBS’s cumulative regret in Sec. 4.3.

We outline a few practical methods to improve BO in our problem setting. First, we use the
constrained BO formulation (Eriksson & Poloczek, 2021; Chen et al., 2025c) to constrain the sum
of data mixture ratio in our data configuration X to 1. Second, a number of our problem inputs is
discrete in nature (e.g., whether to apply LoRA to the LLM Q-projection layer, see Sec. 5.1). To
address this, we adopt continuous parameterization (Daulton et al., 2022) to perform BO effectively
over a mixture of such discrete and continuous input spaces.

4.2 USING PERFORMANCE PREDICTOR TO IMPROVE COMPUTATION TIME

While BO searches through different training configurations in a sample-efficient manner (Srinivas
et al., 2010) and avoids performing exhaustive search over all possible x, naively applying BO still
requires lengthy fine-tuning in each iteration. For example, if B = 1000s, we need to fine-tune for
1000 seconds in each round. To speed up JoBS, we take inspiration from LLM performance scaling
laws (Wu & Tang, 2024; Chen et al., 2025b) and introduce a novel performance predictor to estimate
the full fine-tuning LLM performance from a shorter training trial (See Fig. 1).

Figure 3: F prediction error.

For our predictor to work, we need to predict LLM performance for
different training configurations (that we do not know in advance)
at each BO iteration. Hence, we cannot use existing scaling laws
(Kaplan et al., 2020; Wu & Tang, 2024; Chen et al., 2025b), which
are defined with respect to a fixed training configuration. To address
this issue, JoBS learns a neural network which takes any training
configuration [X ,M] and its performance L(θX ,M,Bsmall) at time
Bsmall < B as inputs and predicts the final fine-tuned LLM perfor-
mance. Our predictor does not predict the full “scaling curve”, but
rather directly gives the performance after fine-tuning for time B.

JoBS learns this predictor in two steps. First, it collects a random Sobol sequence (Nguyen et al.,
2018) of initial training configurations in X , M and observe LLM performance at small time
step L(θX ,M,Bsmall) and large time step L(θX ,M,B). These observations are also used to fit our
GP to approximate our performance landscape (Sec. 4.1), and therefore are not wasted after the
predictor has been trained. Second, using the observations, it fits a predictor neural network F :
X ,M,L(θX ,M,Bsmall) 7→ L(θX ,M,B) that extrapolates how well an LLM performs from a small
amount of training time Bsmall. We provide examples of the extrapolation learnt by our predictor F
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in Fig. 4d and its prediction error in Fig. 3. If available, we can also use prior performance reported
from past experiments or papers to accelerate the neural network training.

At each step of JoBS, we only fine-tune the LLM for time Bsmall to observe L(θX ,M,Bsmall), then use
F to estimate the full fine-tuning performance L̂(θX ,M,B). These cheap estimates effectively allow
JoBS to learn the performance landscape without fine-tuning the LLM to completion.

4.3 CONVERGENCE UNDER PRESENCE OF PREDICTION NOISE

We have amortized and reduced the runtime of JoBS by predicting the LLM performance L(θX ,M,B)
of a particular training configuration. However, we obviously cannot make perfect predictions. As
such, we can only observe L̂(θX ,M,B) = L(θX ,M,B) + ϵ at each BO iteration, where ϵ is the
prediction error associated with our predictor F introduced earlier (See Fig. 3). How does this
prediction error influence the effectiveness of JoBS? We show that under some mild assumption on
prediction error ϵ (as long as it is not too large), JoBS converges to the optimal training configuration
with the following convergence rate. In other words, our predictor’s error is handled gracefully by
JoBS’s BO backbone, allowing us to still find optimal configurations.
Theorem 4.1. Let L(θX ,M,B) be the performance landscape of training configuration with bounded
RKHS norm: ∥L∥κ =

√
⟨L,L⟩κ ≤ B w.r.t. kernel κ. Also, let γT be the maximum information

gain from T iterations. As mentioned above, assume we make noisy observation L̂(θX ,M,B) =
L(θX ,M,B) + ϵ at each BO iteration and error ϵ associated with our scaling law prediction is
Sub-Gaussian with a factor of R. Then, running our BO algorithm over training configurations
X ,M with the IGP-UCB acquisition function (Chowdhury & Gopalan, 2017) yields the following
cumulative regret with probability at least 1− δ:

RT = O
(
B
√
TγT +R

√
T
√
γ2
T + γT ln(1/δ)

)
(3)

The proof is provided in App. B and shows that the prediction error of F in JoBS can be viewed
as observation noise under the BO framework, allowing us to still uncover the optimal training
configuration with sufficient BO iterations. Our theoretical finding also uncovers an interesting
compute-performance tradeoff: extrapolating from a smaller amount of training time Bsmall reduces
the training time at each BO iteration, but incurs noisier prediction errors with larger R constants,
leading to larger cumulative regret. In Sec. 5.4, we examine how varying prediction errors from our
performance predictor (adjusted with Bsmall) influence our algorithm’s convergence.

5 EXPERIMENTS

We use JoBS to jointly optimize training configurations for LLM fine-tuning in a variety of language
tasks and LLM model types. First, we show that when data and model selection methods are applied
independently (or in an alternating manner) to LLM model and data configurations, they do not
perform as well as JoBS because the former does not consider interactions between data and model
configurations. Next, we make several interesting observations regarding JoBS’s convergence w.r.t.
different factors, such as the choice of Bsmall. Lastly, we perform a few ablations to tease apart the
influence of different components in JoBS.

5.1 EXPERIMENTAL SETTINGS

In all our experiments, we aim to fine-tune an LLM for a fixed training budget to maximize its
performance on an evaluation task. To make the task more difficult, we adopt an out-of-domain
setting (Chen et al., 2025c), where the evaluation task’s data is removed from the training domains.
We use a data mixture from 10 datasets: Wikitext (Merity et al., 2016), gsm8k (Cobbe et al., 2021),
PubmedQA (Jin et al., 2019), HeadQA (Vilares & Gómez-Rodríguez, 2019) , SciQ (Welbl et al.,
2017), TriviaQA (Joshi et al., 2017), TruthfulQA (Lin et al., 2022), MMLU (Hendrycks et al.,
2021), AI2 ARC (Clark et al., 2018) and CommonsenseQA (Talmor et al., 2019). We mix the
datasets (Chen et al., 2025c; Xie et al., 2023a; Ye et al., 2024) to create a fine-tuning dataset consisting
10000 data points and consider the mixing ratio (a probability simplex) across these datasets as the
training data configuration X . The model configurations M we consider here are which LLM layer
to apply LoRA to, which LLM module to apply LoRA to (e.g., Q projection), LoRA rank, LoRA
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dropout and alpha, giving us a total of 19 training configuration dimension. Unless otherwise
stated, we used 100 BO iterations for JoBS with Bsmall = 50 seconds, B = 1000 seconds and a
batch size of 8. There are minor differences in our LLM performance from existing papers due to
evaluation setup. More information on our experimental setup is provided in App. C.

5.2 BASELINES

Data selection. LESS (Xia et al., 2024) searches for more relevant data points based on their training
gradients. DoReMi (Xie et al., 2023a) adopts a distributionally robust approach to produce data-
mixtures that work generally well against every distribution of evaluation task. Influence Function
(IF) (Koh & Liang, 2020) selects data points with the higher influence scores. Diversity (Wang
et al., 2024b) finds the subset of data points with the largest log-determinant score. BO just performs
vanilla BO on the data configuration.

Model selection. We used a variant of Differentiable Architecture Search (DARTS) (Liu et al., 2019)
applied to our LoRA weights by tuning an additional mixture coefficient on each LLM layer (so,
when this coefficient approaches zero for a layer, it implies we do not apply LoRA weight to that
LLM layer). AutoLoRA (Zhang et al., 2024b) is a baseline that automatically tunes the LoRA rank,
but does not consider how we should select the layers to apply LoRA to. RoBoT (He et al., 2024)
adopts a training-free approach towards selecting different model configurations by aggregating
different training-free metrics to measure how promising a given configuration is. BO just performs
vanilla BO on the model configuration.

Mix and match. There are two ways to combine the baselines to ensure a good coverage of empirical
comparison: we can either perform data and model selection independently in a one-shot setting or
repeat them in an alternating manner using the current best-found model or data (e.g., optimize the
model, then optimize the data, before repeating the process;). We performed the one-shot optimization
approach in Table 1 and the alternating approach in Table 3. In both cases, they do not perform as well
as JoBS. Roughly speaking, alternating between model and data selection is similar to coordinate
descent (Wright, 2015) but does not guarantee optimality. We also explored other naive approaches
(App. F.1), such as randomly choosing training configurations or only performing BO over model or
data configurations, but found their performances lackluster.

5.3 MAIN RESULTS AND KEY TAKEAWAYS

In Sec. 4, we claimed that JoBS models the complex interaction between training components, jointly
optimizing them effectively to attain better LLM performance. To verify this hypothesis, we mixed
and matched conventional data selection and model architecture search methods and applied them
to each training component independently. We compared this with JoBS, which jointly optimizes
both training components. Due to space constraints, we only display the partial results for gsm8k
and TruthfulQA here. Our results over other tasks are shown in App. F.

Table 1: Evaluation task: gsm8k (Cobbe et al., 2021) . Combination matrix of mixing and matching
different model and data selection methods on LLM performance compared to our joint optimization
approach (JoBS). Subscript numbers represent standard deviations across 5 trials. Due to space
constraints, we show the results of other tasks in App. F

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 68.1±2.1 70.4±1.1 71.6±3.1 67.9±0.9 73.8±1.8 73.4±1.7 -
DARTS 72.4±0.8 71.0±0.6 74.1±1.3 68.7±0.4 66.1±0.7 72.8±0.3 -
AutoLoRA 72.3±1.1 74.6±0.3 70.3±0.7 67.9±0.4 73.4±0.5 72.5±0.5 -
RoBoT 71.1±0.6 72.0±1.5 73.4±1.8 72.4±1.5 69.6±1.7 72.4±0.8 -
BO 70.7±1.4 66.7±0.8 72.5±0.8 71.7±0.9 74.7±1.0 72.7±2.3 -
JoBS - - - - - - 80.4±1.9

Pairing different data and model selection methods (Table 1, 2 and App. F). Our results in the
combination matrix showcase the shortfall of simply combining different model and data selection
method. Simply pairing these methods independently does not consider the interaction between data
and model configurations together, yielding mediocre performance. In contrast, JoBS attains higher
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Table 2: Evaluation task: TruthfulQA (Lin et al., 2022).

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 55.4±1.6 56.4±0.8 58.2±2.4 57.3±1.1 59.8±1.0 70.2±0.8 -
DARTS 56.7±1.1 57.0±0.4 62.8±1.1 59.1±0.3 59.6±1.0 72.4±0.8 -
AutoLoRA 56.0±0.8 62.6±1.0 58.8±0.9 59.6±1.0 60.8±0.4 68.4±0.3 -
RoBoT 59.1±0.4 60.2±0.5 53.4±1.1 52.4±0.8 60.9±0.4 69.6±1.1 -
BO 61.0±1.0 62.0±0.3 64.0±0.7 64.8±0.8 60.3±1.2 71.7±1.8 -
JoBS - - - - - - 75.8±1.9

Table 3: Comparison of baselines with JoBS. Results are shown w.r.t. different evaluation tasks
and LLMs (Higher is better), averaged over 5 trials. We choose to present a few better performing
baselines (combining data and model selection methods in an alternating manner).

Model Task Default fine-tuning LESS + AutoLoRA DoReMi + DARTS Alternating-BO JoBS

Llama-3-8B-Instruct

gsm8k 68.1±2.1 74.8±0.9 73.2±1.4 75.8±1.8 80.4±1.9

TruthfulQA 55.4±1.6 66.2±0.7 68.9±1.2 71.7±1.1 75.8±1.3

CommonsenseQA 76.3±1.0 80.5±1.4 79.9±1.0 78.5±0.8 84.3±2.4

HeadQA 47.0±0.9 46.5±1.5 54.0±1.8 56.3±1.3 55.8±1.5

MMLU 61.2±1.3 67.6±2.9 64.1±1.1 63.1±1.1 69.5±0.8

ARC 54.7±1.3 66.3±1.6 62.5±0.7 67.6±0.6 70.4±1.3

TriviaQA 61.3±2.4 70.4±3.6 71.3±1.4 74.6±1.4 76.2±1.2

Qwen2.5-7B-Instruct

gsm8k 70.2±0.6 73.7±0.9 71.1±1.4 74.5±3.1 81.3±1.4

TruthfulQA 56.4±0.7 67.2±1.3 68.3±0.9 70.7±0.8 74.8±1.7

CommonsenseQA 77.6±0.4 82.1±0.3 80.2±0.6 80.6±1.1 81.7±0.6

HeadQA 52.5±0.3 51.3±1.4 50.8±0.9 54.5±0.6 58.6±0.9

MMLU 72.5±1.4 73.9±1.6 72.8±0.3 76.5±1.2 78.4±1.2

ARC 64.6±0.8 69.1±3.1 71.5±3.2 73.1±1.1 75.0±0.3

TriviaQA 55.3±0.8 65.1±2.0 64.8±1.2 62.0±0.3 68.5±1.3

Mistral-7b-Instruct-v0.3

gsm8k 52.2±0.8 58.7±0.6 63.0±1.1 62.2±0.8 66.4.±0.5

TruthfulQA 56.4±0.7 59.8±1.7 62.2±0.6 69.4±1.5 73.5±0.6

CommonsenseQA 77.6±0.4 78.3±1.1 77.9±1.2 82.2±0.7 83.5±0.8

HeadQA 57.8±0.3 56.3±0.9 57.9±1.2 59.2±1.1 57.8±0.5

MMLU 63.6±0.5 71.8±0.9 71.6±1.3 72.3±0.8 73.8±0.9

ARC 66.3±0.8 70.2±2.0 72.9±1.0 72.4±0.8 74.7±0.6

TriviaQA 58.2±0.3 57.8±1.8 60.5±0.5 62.0±0.3 66.3±1.1

performance gains after fine-tuning, largely because it models and exploits the complex interaction
between data and model configurations with the learnt performance landscape. By jointly optimizing
both components, we attain a flat 6− 7% “interaction improvement” over other baselines.

Alternating optimization scheme under same compute budget (Table 3). Next, we selected a few
better-performing optimization pairings from Table 1, 2 and applied them in an alternating fashion to
our training configurations for 5 iterations. In general, data and model selection baselines are more
computationally expensive, so this is a fair equal-compute comparison (See App. D). Table 3 shows
that even when we ran data and model selection baselines in an alternating optimization scheme, the
baselines do not perform as well as JoBS. In fact, for some tasks or models, the LLM performance
of baselines becomes worse than that in the one-shot optimization scheme presented earlier. We
speculate that this occurs because alternating optimization schemes might end up in worse-performing
“saddle points” in the performance landscape, leading to performance degradation.

5.4 ABLATION AND ADDITIONAL ANALYSIS

In the previous sections, we showed that JoBS outperforms baselines in a variety of evaluation
tasks. However, several questions remain regarding the performance-compute tradeoff in JoBS. For
instance, how does our neural network predictor (Sec. 4.2) and Bsmall affect the convergence rate of
JoBS? What happens if we applied JoBS to only data component? To address these questions, we ran
ablations with different fine-tuning time Bsmall, training components and plot the best configuration
performance at each BO iteration. We used Llama-3-8B-Instruct and the CommonsenseQA evaluation
task throughout our ablations.

Effect of performance scaling law predictor F . Fig. 4a shows the convergence of JoBS with
and without our performance predictor F , given same compute budget. We found that with our
performance predictor F (Sec. 4.2), JoBS (green) initially has a slightly slower convergence rate.
This is expected: our observations are noisier at each iteration, causing us to initially learn a noisier
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(a) Effect of predictor (b) Varying Bsmall (c) Optimizing X or M (d) Prediction examples

Figure 4: Various ablation studies for the effect of the performance predictor on JoBS.

performance landscape. However, using performance scaling laws in JoBS incurs less training time
at each iteration (20 times smaller), and thus we can effectively run more BO iterations in total. This
enables us to find better training configurations given the same amount of total compute.

Effect of varying Bsmall. Fig. 4b illustrates how the choice of fine-tuning time Bsmall influences
the effectiveness of JoBS given a fixed number of BO iterations. As Bsmall (in seconds) increases,
JoBS converges to the better-performing training configurations more quickly. This corroborates
our theoretical findings from Theorem 4.1, where a larger Bsmall means that the observation noise ϵ
associated with our neural network predictor F is smaller, allowing JoBS to converge more quickly
with smaller cumulative regret.

Effect of varying training components. Fig. 4c demonstrates the importance of considering both
data and model components in JoBS. Specifically, applying JoBS (green) to both data and model
attains much better performance than merely optimizing one of them. We also found that at small
number of iterations, optimizing data configurations (blue) produces better results than optimizing
model configurations (orange) before converging to similar performances. This suggests that training
data mixture plays a larger role than model configurations in improving LLM performance. However,
co-optimizing both gives the best results.

Predicting performance scaling laws. In Fig.4d, we examined how our performance predictor F
(Sec.4.2) estimates LLM performance under different training configurations. The leftmost points
correspond to the true, observed performance at a small training budget, while the rightmost points
represent predicted performance after 1000 seconds of training. Of particular note is that good
configurations (blue, green) exhibit fruitful scaling laws, with much better performance as training
time increases. In contrast, weak configurations (red) are predicted to stagnate, showing little to no
gain even with extended training. This shows that our performance scaling law predictor can predict
scaling laws dynamically with respect to different configurations selected by JoBS. Furthermore,
because scaling behavior is highly configuration-dependent, this cannot be captured by a single
universal formula found in prior scaling law works.

Computational cost and other qualitative discussion. Lastly, we found that JoBS has a smaller
runtime than existing baselines, running around 70% to 1240% faster different baselines. We provide
a computation cost analysis in App. D, where we find that our performance scaling law predictor is
the main reason why JoBS has a smaller runtime, and existing data selection methods are generally
expensive. We also present a few interesting analysis of the optimal training configurations found by
JoBS in App. E as compared to other baselines.

6 CONCLUSION

We illustrated the chicken-and-egg dilemma in LLMs, showing that the interdependence between
data and model components makes it challenging for conventional methods to optimize model
performance efficiently. We introduced JoBS, an efficient algorithm that leverages BO and a novel
performance scaling law predictor to jointly optimize data and model configurations by efficiently
learning the LLM performance landscape under the fine-tuning regime. Despite noisy estimates
from the predictor, JoBS still assures theoretical guarantees and shows promising empirical results
in our experiments. Across different evaluation tasks and LLM models, JoBS attains substantial
“interaction improvement” over prior baselines, showing that jointly optimizing data and model
configurations performs better than independent optimization. We believe JoBS can also be adapted
for LLM pretraining, where the same chicken-and-egg dilemma exists.
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7 ETHICS STATEMENT

Our work strives to improve the performance of LLMs for the greater good. We do not foresee any
ethical concerns related to our work. From our theoretical findings and experiments, our method does
indeed improve the performance of LLMs.
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A THEORETICAL INSIGHTS INTO OPTIMAL DATA AND TRAINING
CONFIGURATIONS

We provide theoretical insights on why an optimal model size and training data size exists in our
problem setting. To do so, we analyze the convergence of mini-batch Stochastic Gradient Descent
(SGD) (Garrigos & Gower, 2023) over a convex loss function w.r.t. varying model size and training
data size (viewed as batch size in this setting). We first present the well-known results on the
convergence of the loss function under the mini-batch SGD setting in the proposition below.

Proposition A.1. Let b be the training data size (out of a larger full training dataset) and m be
the number of model parameters. Let T be the training steps budget allocated for our model with
parameters θm. Assume θ∗m are the optimal model parameters for the full training dataset and let
f(θ,X ) be a convex loss function with respect to model parameters θ and input examples X . Define
the gradient noise as σ∗

f ≜ Var[∇f(θ∗m, x)] for a randomly sampled datapoint x from the full training
data set. Let Lm be the lipschitz constant of the loss function f of a model with m parameters. Lastly,
assume ||θm − θ∗m||2 ≤ K for some constant K and any m.

If we perform minibatch stochastic gradient descent on f with a randomly sampled data batch of
size b (from the full training dataset) on model parameters θm with constant step size 1

4Lm
for T

iterations, then

E[f(θTm)− f(mθ∗)] ≤ 4LmK√
T

+
2(n− b)σ∗

f

4Lmb(n− 1)
√
T
, (4)

where θTm is the model parameters after T SGD steps.

The above proposition tells us that if the training data is sampled randomly from the full training
dataset, the deviation between the optimal loss (over the full training dataset) and the loss w.r.t. learnt
parameters θTm is upper-bounded by the right term in Eq. 4. We can see that the loss w.r.t. learnt
parameters θTm will eventually converge to the optimal loss f(θ∗m) w.r.t. increasing training steps.

Interestingly, we observe that the choice of m, b, and T is constrained by the given training time
budget. We make two assumptions about the relationship between m, b and T .

1. Assumption 1 The lipschitz constant of loss function is governed by Lm = c1
m for some

positive constant c1. This implies the larger the model size, the smaller the lipschitz constant
of the loss function (and faster the model learns).

2. Assumption 2 T = bm
c2

for some positive constant c2. This implies that model and training
data size both increases the training budget required to train the model. Given a fixed T , we
cannot choose a large model size m and training data size b.

In the next Theorem, we show that given a training budget T , there exists a particular model size
m and training size b that will minimize the upper bound in Eq. 4. We would like to emphasize
even though a particular choice of m, b could lead to smaller upper bound, it does not necessarily
guarantee that the actual deviation in Eq. 4 is smaller (since we are only comparing the upper bounds).
However, our theorem provides theoretical insights to possibly explain why training with certain
choices of b,m yields better model performance. We have also provided empirical evidence to show
that certain training component configurations can produce better-performing LLMs in Sec. 3.

Theorem A.2. Under the same setting as Proposition A.1 and given Assumption 1 and 2, for a given
training budget of T , the upper bound from Proposition A.1 is minimized by solving the following
constrained optimization problem:

min
m,b

4c1K

m
+

2(n− b)mσ∗
f

4c1b(n− 1)

s.t. mb = c2T

(5)

Therefore, an optimal m, b would minimize the constrained optimization problem and minimize the
error bounds in Eq. 4.
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B PROOF OF THEOREM 3.1

Theorem 4.1. Let L(θX ,M,B) be the performance landscape of training configuration with bounded
RKHS norm: ∥L∥κ =

√
⟨L,L⟩κ ≤ B w.r.t. kernel κ. Also, let γT be the maximum information

gain from T iterations. As mentioned above, assume we make noisy observation L̂(θX ,M,B) =
L(θX ,M,B) + ϵ at each BO iteration and error ϵ associated with our scaling law prediction is
Sub-Gaussian with a factor of R. Then, running our BO algorithm over training configurations
X ,M with the IGP-UCB acquisition function (Chowdhury & Gopalan, 2017) yields the following
cumulative regret with probability at least 1− δ:

RT = O
(
B
√
TγT +R

√
T
√
γ2
T + γT ln(1/δ)

)
(3)

Proof. Our proof is divided into two parts. First, we connect our LLM scaling law prediction
(Sec. 4.2) to our BO framework and show it can be viewed as observation noise ϵ at each iteration.
Then, we show how our scaling law prediction error influences our algorithm by analyzing its
cumulative regret with well known results from prior BO works Chowdhury & Gopalan (2017);
Srinivas et al. (2010).

To begin, recall that we are trying to maximize our LLM performance, a black-box function
L(θX ,M,R,B) (Sec. 2). Using our scaling law prediction (Sec. 4.2), we instead train our LLM
for Bsmall training steps (or time) and observe L(θX ,M,R,Bsmall). We then apply scaling law prediction
to observe L̂(θX ,M,R,B) = F(L(θX ,M,R,Bsmall)) to estimate what the LLM would have performed if
we trained it for the full training duration. Since we are predicting the LLM performance, our model
prediction is noisy, with F(L(θX ,M,R,Bsmall)) = L(θX ,M,R,B) + ϵ. Hence, we only have access to a
noisy estimate of our black-box function: L(θX ,M,R,B) + ϵ. Since our estimation error is based on
LLM performance, which is bounded (e.g., accuracy), then error ϵ ∈ [0, α] with positive constant α,
and it follows that ϵ is Sub-Gaussian with a factor R = α2

4 (Arbel et al., 2019).

Hence, we have shown that in our setting, we are making noisy observation of our LLM performance:
L(θX ,M,R,B) + ϵ with a Sub-Gaussian error ϵ. This ϵ is empirically not large (see Fig. 3). Next, we
will prove the cumulative regret of our algorithm w.r.t. this observation error. To begin, we present
the following lemma from (Chowdhury & Gopalan, 2017)

Lemma B.1. Let ||f ||κ =
√
⟨f, f⟩κ ≤ B. Also, assume that the observation noise associated with

each BO iteration is R-sub-Gaussian with R > 0. Then with probability at least 1− δ, the following
holds for BO iteration t ≤ T :

|µt(x)− f(x)| ≤
(
B +R

√
2(γt + 1 + ln(1/δ)

)
σt(x) (6)

where γt is the maximum information gain after t observations and µt(x), σ
2
t (x) are mean and

variance of posteror distribution of GP defined in Equation 2, with λ = 1 + 2/T .

In our setting, set f = L (our LLM performance after fine-tuning) and x = X ,M,R (our training
configuration). This lemma indicates that our estimated mean µt(x) of our performance landscape
from our fitted GP over historical observations of LLM performance deviates from the true LLM
performance f(x) = L(θX ,M,R,B) by at most the term in (7).

We are now ready to prove Theorem 4.1. First, we observe that the next training configuration xt at
each BO iteration t is chosen via the IGP-UCB acquisition function (i.e., xt = argmaxx µt−1(x) +

βtσt−1(x) and βt = B + R
√
2(γt−1 + 1 + ln(1/δ)) where the observation noise associated with

each BO iteration is R-sub Gaussian). Thus, we can see that at each iteration t ≥ 1, we have
µt−1(xt) + βtσt−1(xt) ≥ µt−1(x

∗) + βtσt−1(x
∗). It then follows that for all t ≥ 1 and with

probability at least 1− δ,

|f(x∗)− f(xt)|
(1)

≤ βtσt−1(xt) + µt−1(xt)− f(xt)

(2)

≤ βtσt−1(xt) + µt−1(xt) + (βtσt−1(xt)− µt−1(xt))

≤ 2βtσt−1(xt)

(7)
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where
(1)

≤ uses the fact that via Lemma B.1 and our acquisition function, f(x∗) ≤ βtσt−1(x
∗) +

µt−1(x
∗) ≤ βtσt−1(xt) + µt−1(xt) and

(2)

≤ once again uses Lemma B.1.

Using result from Eq. 7, we see that the cumulative regret

T∑
t=1

rt =

T∑
t=1

(f(x∗)− f(xt)) ≤ 2

T∑
t=1

βtσt−1(xt). (8)

Since we know that
T∑

t=1

σt−1(xt) = O(
√

TγT ) and used βt = B+R
√
2(γt−1 + 1 + ln(1/δ)), the

cumulative regret in Theorem 4.1 can be written as:

RT =

T∑
t=1

rt (9)

≤ 2

T∑
t=1

βtσt−1(xt) (10)

≤ 2O(
√

TγT )(B +R
√

2(γt−1 + 1 + ln(1/δ))) (11)

= O
(
B
√
TγT +R

√
T
√

γ2
T + γT ln(1/δ)

)
. (12)

C MORE EXPERIMENTAL DETAILS

Here, we provide details of how we ran our experiments for JoBS. Our data configuration consists of
10 parameters representing the mixing ratio (a probability simplex) across 10 parameters. Our model
configuration consists of 10 parameters, representing:

1. LoRA rank ∈ [1, 256].

2. Number of LLM layers to apply LoRA to ∈ [1, 31] (this varies for different LLMs, depending
on how many transformer layers are present).

3. Whether to apply LoRA to front layers or rear layers (binary decision).

4. Whether to apply LoRA to Q-projection layer (binary decision).

5. Whether to apply LoRA to V-projection layer (binary decision).

6. Whether to apply LoRA to K-projection layer (binary decision).

7. Whether to apply LoRA to MLP-Up-projection layer (binary decision).

8. Whether to apply LoRA to MLP-Down-projection layer (binary decision).

9. LoRA dropout ∈ [0, 1].

10. LoRA alpha ∈ [1, 500].

In all our main results (Table 1, 2, 3), we used 8-shot prompting with CoT. We used 100 BO
iterations, with a shortened training time of Bsmall = 50 seconds at each iteration. To build our
performance scaling law predictor (Sec. 4.2), we collected a random Sobol sequence (Nguyen et al.,
2018) of 30 training configurations, their partial and full fine-tuning performance, before training a
densely-connected, 64-width, 3 layers neural network F to predict the full performance. This random
sequence is also added to our initial GP model to warm-start BO in JoBS. We used a deep kernel for
the GP used to model our LLM performance landscape, and ran our experiments with the Botorch
library. At the end of every iteration, we use maximum-likelihood to estimate the hyperparameters in
the deep kernel. We normalize and rescale all our training configuration parameters to be between 0
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and 1 when fitting our GP. For binary or integer decisions, we use continuous relaxation (Daulton
et al., 2022) to project them into the same continuous space as other variables.

Throughout our experiments, we used a single L40 GPU to fine-tune our LLM.

D COMPUTATION COST OF JOBS VERSUS OTHER BASELINES

Qualitative comparison. We can actually concisely summarize the computation cost of JoBS. We
used 30 observations from fully fine-tuning an LLM with random training configurations for 1000
seconds (to learn our performance scaling law predictor and forming the first 30 observations of
our trials). Then, we run JoBS for 70 iterations, each taking 50 seconds of fine-tuning time. This
means JoBS uses 33500 seconds (9+ hours) of fine-tuning time. This is faster or comparable to
many state-of-the-art data selection algorithms (See next section for a more precise quantitative
comparison). For instance, computing the Influence Function (IF) scores (Koh & Liang, 2020) of all
data points took a few days. In addition, JoBS is an anytime algorithm, meaning if computation cost
is an issue, we can terminate it at any step to obtain a sub-optimal (but still reasonable good) solution.

Quantitative comparison of wall-clock hours

All model selection methods (Liu et al., 2019; He et al., 2024) used in our paper are iterative in nature
and require repeated fine-tuning of LLMs. We ensured they run for 33500 seconds. Hence, they have
equal computation time (JoBS achieves better performance, as seen in Table 3). For data selection
methods (LESS, DoReMi, IF, Diversity), we recorded their wall-clock runtime in Table 4. In general,
we found data selection methods to be very computationally expensive, taking as much or more time
than JoBS. One of the key reason that JoBS runs faster is due to our scaling law predictor (Sec. 4.2),
which drastically reduces the fine-tuning time needed at each BO iteration.

Table 4: Wall -clock runtime comparison of data selection techniques versus JoBS

Method Time (hours)
LESS 16.3
DoReMi 18.5
IF 52
Diversity 122
JoBS 9.3

E QUALITATIVE COMPARISON OPTIMAL TRAINING CONFIGURATIONS FOUND
BY JOBS VERSUS OTHER BASELINES

Here, we display some of the optimal training configurations found by JoBS as compared to other
baselines. We divided the configurations into two tables detailing the best data (Table 5) and model
(Table 6) configurations found for the gsm8k evaluation task. Note that the training domain does not
contain gsm8k because all our evaluation is done in a much harder out-of-domain setting.

Table 5: Optimal data mixing ratio found by JoBS versus other baselines. The columns denote the
ratio allocated to each training domain.

CQA HQA PQA SciQ TrivQA TruthQA Wiki MMLU ARC

JoBS 0.12 0 0 0.10 0.19 0 0.28 0.31 0

DoReMi 0.08 0.11 0.18 0.05 0.08 0.14 0.04 0.16 0.13

On particular interest is that JoBS optimizes the data mixture by placing more weights into some
data domains based on the evaluation performance on the downstream task (in this case, gsm8k).
Specifically, JoBS successfully inferred (without knowing that the evaluation task is gsm8k) that
domains such as SciQ, TriviaQA, Wikipedia and MMLU contains some math information, and thus
chooses them in the optimized data mixture.
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On the other hand, DoReMi is a distributionally robust data mixing approach, and results in a more
uniform data mixing ratio. This means the data mixture is not tailored specifically to the evaluation
task gsm8k, and hence does not perform as well.

Table 6: Optimal model configuration found by JoBS versus other baselines.

Rank NumLayers Order Q K V Up Down dropout α

JoBS 36 25 1 1 0 1 1 0 0.112 64

DARTS 12 13 0 1 1 1 1 0 0.058 45

Next, we examine the optimal model configurations found JoBS. We noticed that JoBS prefers a
higher LoRA rank and layer (i.e., how many layer to apply LoRA) but chooses to apply LoRA to only
certain transformer layers. In particular, JoBS found that for the gsm8k evaluation task, fine-tuning
Q, V, Up layers is sufficient to achieve good fine-tuning performance, and we should fine-tune the
rear layers instead of the front layers (Order = 1).

F MORE EXPERIMENTAL RESULTS AND DISCUSSION

In Table. 7, 8, 9, 10, 11, we repeated the experimental set-up as those in Table. 1 and mixed and
matched different model and data selection methods over another 5 evaluation tasks (Common-
senseQA, HeadQA, MMLU, ARC and TriviaQA). The results show that JoBS outperforms all
combinations of data and model selection works. This suggests that jointly adjusting both data and
model configurations does indeed produce interaction improvement over optimizing the configura-
tions independently. In addition, from running our experiments, we find our approach significantly
easier to implement in code.

F.1 OTHER NAIVE BASELINES

In Table. 12, we jointly optimized training configurations using several other naive approaches in
our experiments. We tried 3 naive approaches: (1) Random randomly picking 100 different training
configurations, fine-tune them for 50 seconds each, use our performance scaling law predictor to
predict and select the best-performing training configuration. (2) Random Data perform JoBS on
model configurations for only 10 iterations and repeat the experiment with 10 randomly chosen data
configurations (this ensures the same amount of compute as performing JoBS on all training configu-
rations for 100 iterations). (3) Random Model repeat approach (2) on training configurations instead.
While these approaches serve as good sanity checks, they do not yield good LLM performances,
largely because randomly selecting training configurations does not exploit the learnt performance
landscape from historically observed LLM performances.

Table 7: CommonsenseQA (Talmor et al., 2019)

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 76.3±1.0 73.0±0.8 74.2±1.7 79.3±0.7 77.4±1.7 80.6±0.8 -
DARTS 79.6±1.3 76.3±1.7 76.1±1.1 73.7±1.2 80.1±1.1 79.6±0.6 -
AutoLoRA 78.9±0.9 79.8±0.4 76.1±0.5 77.9±1.2 78.0±1.0 81.5±1.0 -
RoBoT 74.9±0.8 75.5±0.9 77.1±0.9 79.4±1.5 76.3±0.9 80.2±0.2 -
BO 79.7±1.3 79.4±0.3 77.0±0.4 81.1±0.9 79.4±1.1 80.7±1.2 -
JoBS - - - - - - 84.3±2.4
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Table 8: HeadQA (Vilares & Gómez-Rodríguez, 2019)

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 47.0±0.9 46.4±1.0 46.3±0.8 46.1±0.7 45.8±1.2 49.2±0.6 -
DARTS 43.6±0.2 46.7±1.3 53.0±2.4 40.7±1.5 47.3±0.7 48.9±1.2 -
AutoLoRA 49.1±1.4 49.4±0.4 50.3±0.9 47.7±1.1 48.4±1.0 51.3±0.3 -
RoBoT 49.5±1.2 48.0±1.0 48.7±1.7 49.2±1.2 50.6±0.8 50.8±0.6 -
BO 49.6±0.8 51.3±1.0 52.0±0.6 52.6±0.3 50.3±0.7 48.2±0.6 -
JoBS - - - - - - 55.8±1.5

Table 9: MMLU (Hendrycks et al., 2021)

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 61.2±1.3 63.5±0.9 59.7±1.8 57.9±0.6 62.1±1.4 64.2±1.2 -
DARTS 58.3±0.7 61.0±2.1 62.9±1.0 55.7±1.6 60.1±0.5 63.4±2.0 -
AutoLoRA 62.5±1.4 64.3±0.6 60.8±2.2 58.2±1.9 63.7±0.8 61.5±1.1 -
RoBoT 59.9±0.9 60.7±1.2 63.4±1.7 61.5±1.5 58.3±2.3 62.1±0.7 -
BO 55.8±1.8 57.2±0.4 61.3±1.2 60.5±1.6 63.9±1.0 59.6±1.5 -
JoBS - - - - - - 69.5±0.8

Table 10: ARC (Clark et al., 2018)

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 54.7±1.3 59.2±0.7 61.4±2.0 52.8±1.5 60.6±0.9 62.3±1.2 -
DARTS 58.1±0.8 61.0±1.6 62.8±0.5 54.3±2.1 57.9±1.7 60.5±0.6 -
AutoLoRA 60.4±1.1 63.2±0.9 58.6±1.9 55.1±0.8 62.1±2.0 59.8±1.0 -
RoBoT 56.8±1.5 58.7±1.4 61.1±1.2 60.3±0.7 55.7±2.2 61.4±1.3 -
BO 52.6±2.0 55.9±0.6 59.7±1.3 58.5±1.4 63.4±1.0 57.4±0.9 -
JoBS - - - - - - 70.4±1.3

Table 11: TriviaQA Gen (Joshi et al., 2017)

↓ Model | Data → Default LESS DoReMi IF Diversity BO JoBS

Default 55.5±1.4 57.2±0.8 53.1±0.9 55.8±0.7 58.9±0.8 65.0±0.6 -
DARTS 58.2±0.8 61.3±1.2 61.0±0.7 63.3±1.0 59.2±0.6 66.7±1.8 -
AutoLoRA 67.8±1.4 64.7±0.9 70.6±2.2 68.6±1.7 66.2±1.5 69.7±2.4 -
RoBoT 58.4±1.5 62.3±1.7 64.2±1.4 57.2±1.2 63.4±1.5 68.2±1.3 -
BO 70.7±1.4 66.7±0.8 72.5±0.8 71.7±0.9 74.7±1.0 72.7±2.3 -
JoBS - - - - - - 76.2±1.9

Table 12: Comparison of some naive baselines with JoBS (Higher is better), averaged over 5 trials.
Random Data means we randomly selected data mixtures and applied JoBS only on the model
configurations (vice versa for Random Model). Random means we randomly selected training
configurations.

Model Task Random Random Data Random Model JoBS

Llama-3-8B-Instruct

gsm8k 66.5±2.4 67.3±1.6 71.5±0.9 80.4±1.9

TruthfulQA 59.1±1.9 59.8±1.5 64.2±1.4 75.8±1.3

CommonsenseQA 78.8±3.2 76.4±1.2 76.3±1.2 84.3±2.4

HeadQA 51.5±2.1 51.3±2.1 53.2±1.2 55.8±1.5

MMLU 67.6±2.9 66.4±0.7 63.1±1.1 69.5±0.8

ARC 60.5±3.2 65.2±1.7 64.6±0.6 70.4±1.3

TriviaQA 58.2±3.6 61.7±2.4 63.2±1.5 76.2±1.2
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G ADDITIONAL ABLATIONS AND DISCUSSION

This section highlights the additional experimental results and discussions we run during the rebuttal,
specifically on the CommonsenseQA task. To summarize,

1. First, in Fig. 5, we run ablations on the predictor predictor validation set error for LLM
model of different sizes (Llama-3-8B-Instruct, Qwen3-14B and Qwen3-32B). Since our
task performance is more than 80%, the predictor error is reasonable across different
model sizes. In addition, JoBS’s BO backbone handles these prediction error gracefully as
observation noise and our algorithm still converges and performs better than other baseline
(Theorem 4.1).

2. Second, in Fig. 6, we run ablations on how the number of training samples influence our
predictor F ’s prediction error. In general, the results show that more training samples allow
our predictor to be more accurate. However, fitting the predictor with more training samples
is more computationally expensive since using more training samples reduces the number of
BO function evaluations. From our experiments, using 30 training samples is sufficient to
yield good LLM performance.

3. Third, we ran additional experiments in Table 13 to showcase the effectiveness of JoBS on
LoRA fine-tuning of larger models (averaged over 5 trials).

4. Fourth, we ran additional experiments to investigate how different number of training
samples influence JoBS’s performance downstream in Table 14 (averaged over 5 trials).

5. Fifth, we ran additional experiments to investigate JoBS’s performance for full-parameter
fine-tuning in Table 15. The model configuration we optimize is a one-dimensional variable
indicating the number of layers in which we apply the full-parameter fine-tuning to (averaged
over 5 trials).

G.1 ABLATION STUDY ON PREDICTION ERROR OF NEURAL NETWORK PREDICTOR F

Figure 5: Predictor error (on validation set) across varying model sizes. Predictor learnt from
performance observations of larger models. This hints that performance of larger models is easier to
extrapolate, possibly due to more stable training dynamics.

Figure 6: Predictor error (on validation set) for varying number of training samples, with Llama-3-
8B-Instruct.
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Table 13: JoBS applied to LoRA for PEFT of larger models.

↓ Model | Method → LESS + AutoLoRA DoReMi + DARTS JoBS
Llama-3-8B-Instruct 0.80 0.79 0.84

Qwen3-14B 0.82 0.80 0.86
Qwen3-32B 0.83 0.84 0.90

Table 14: Performance of JoBS w.r.t. different number of samples used to train F (Sec. 4.2)

↓ Task | Training samples → 30 100
CommonsenseQA 0.84 0.88

Table 15: JoBS applied to full-parameter fine-tuning of larger models.

↓ Model | Method → LESS + AutoLoRA DoReMi + DARTS JoBS
Llama-3-8B-Instruct 0.73 0.76 0.81

Qwen3-14B 0.76 0.81 0.83
Qwen3-32B 0.86 0.82 0.88

G.2 RELATED WORK ON SCALING LAW PREDICTORS & BO JOINT-OPTIMIZATION

Scaling Law Predictors Understanding how LLM performance scales with training resources is
crucial for efficient optimization. Foundational works have established power laws relating loss to
model size, dataset size, and compute budget (Kaplan et al., 2020; Hoffmann et al., 2022; Zhang et al.,
2024a; Shukor et al., 2025). More recent studies have extended these laws to predict downstream
performance on specific metrics (Wu & Tang, 2024; Chen et al., 2025b) and optimize data mixtures
(Chen et al., 2025c; Xie et al., 2023a; Ye et al., 2024) . However, these approaches typically derive
static formulas by assuming fixed model architectures or training recipes. Unlike these rigid scaling
laws, JoBS employs a flexible neural predictor capable of estimating performance across a diverse,
dynamic search space of joint data and model configurations, enabling the evaluation of "interaction
improvements" without exhaustive full-scale training.

Bayesian Optimization (BO) BO has been widely adopted for optimizing black-box functions where
evaluations are costly (Srinivas et al., 2010). In the context of deep learning, BO has been successfully
applied to Neural Architecture Search (NAS) (White et al., 2020) and hyperparameter tuning (Brochu
et al., 2010; Snoek et al., 2012). To handle the complexity of modern training setups, recent works
have explored methods such as introducing constrained BO for resource management (Eriksson
& Poloczek, 2021) and mixed-variable optimization for combinations of discrete and continuous
parameters (Daulton et al., 2022). Frameworks like AutoAI (Chen et al., 2024) have also attempted to
optimize general machine learning pipelines, they do not specifically address the "chicken-and-egg"
interdependency between data mixtures and PEFT configurations in LLMs. JoBS leverages these
advanced BO techniques —specifically deep kernel learning (Wilson et al., 2016) —to navigate this
complex, high-dimensional landscape efficiently.

G.3 ADDITIONAL EXPERIMENTAL RESULTS ON MULTI-TASK FINE-TUNING

We also ran JoBS on a multi-task scenario, where one trains the predictor and applies JoBS such
that the LLM will perform well across multiple tasks at once. In the multi-task scenario, we average
the LLM performance over 5 different evaluation tasks: TruthfulQA, TriviaQA, CommonsenseQA,
GSM8K, and MMLU, and treat this average performance as our optimization objective.

Table 16: Comparison of different data mixing methods across model sizes for the multi-task scenario.

Model LESS + AutoLoRA DoReMi + DARTS JoBS with multi-task predictor
Llama-3-8B-Instruct 0.63 0.66 0.70

Qwen3-14B 0.71 0.66 0.73
Qwen3-32B 0.74 0.72 0.79
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