

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE CHICKEN AND EGG DILEMMA: CO-OPTIMIZING DATA AND MODEL CONFIGURATIONS FOR LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Co-optimizing data and model configurations for LLMs presents a classic chicken-and-egg dilemma: the best training data configuration (e.g., training data composition) depends on the chosen model configuration (e.g., model architecture, fine-tuning configuration), but the best model configuration also depends on the chosen training data. However, jointly optimizing both data and model configurations is intractable, with existing methods focusing only on data or model selection in isolation without considering their complex interdependence. We introduce *JOBS*, an efficient method that *jointly* optimizes LLM training data and model configurations by framing the problem as a black-box optimization problem. Central to our method is a novel performance scaling law predictor, which learns a diverse family of performance scaling laws for different configurations and cheaply predicts how promising a particular training configuration is. This enables us to quickly build an approximate LLM performance landscape and efficiently find optimal training configurations with Bayesian Optimization (BO). *JOBS* not only outperforms existing baselines across diverse tasks in the fine-tuning setting, but also runs up to 12.4 \times faster. We hope our work draws more attention to the chicken-and-egg dilemma inherent in co-optimizing LLM training configurations. Our anonymized code is available at: <https://github.com/a35453779/JOBS>.

1 INTRODUCTION

LLMs have become ubiquitous in our lives, with great commercial and practical interest in maximizing their performance for specific tasks. Much effort has been put into optimizing the *training components* to maximize LLM performance, particularly the *training data* and the *model architecture*. From the data perspective, better training data can be chosen via data selection (Koh & Liang, 2020; Xie et al., 2023b; Xia et al., 2024; Chen et al., 2025c) and mixing (Xie et al., 2023a; Chen et al., 2025a;c; Liu et al., 2025; Xie et al., 2025) techniques. From the model perspective, various model selection methods (Raschka, 2020; White et al., 2020; He et al., 2024; Zhang et al., 2024b) have been introduced to select the most appropriate model for a given task.

In practice, optimizing training data and model architecture is a highly interdependent process. For example, deploying data selection methods requires us to first assume a good model architecture. Conversely, selecting a good model architecture requires a fixed pool of training data. This presents a classic *chicken-and-egg dilemma*, where the optimal choice of training data depends on the optimal choice of model architecture, and vice versa. Furthermore, due to their interdependency, optimizing data and model *independently* would often lead to sub-optimal LLM performance (Chen et al., 2024). This is demonstrated in Sec. 5 where we naively combined data and model selection methods. Therefore, to address the interdependent nature of data and model architecture and maximize LLM performance, we should *jointly* optimize these two training components.

Unfortunately, jointly optimizing data and model configurations is conventionally considered challenging and budget-intensive. Prior scaling law works (Kaplan et al., 2020; Hoffmann et al., 2022; Zhang et al., 2024a; Shukor et al., 2025) have tried to quantify the effects of each training component on downstream performance, while prescribing simple guidelines on the optimal choices of training components given fixed computational budgets. However, they require exhaustive search over a large number of configurations, which is infeasible in practice. To *efficiently* find an optimal training configuration is therefore a problem that remains difficult and largely unexplored.

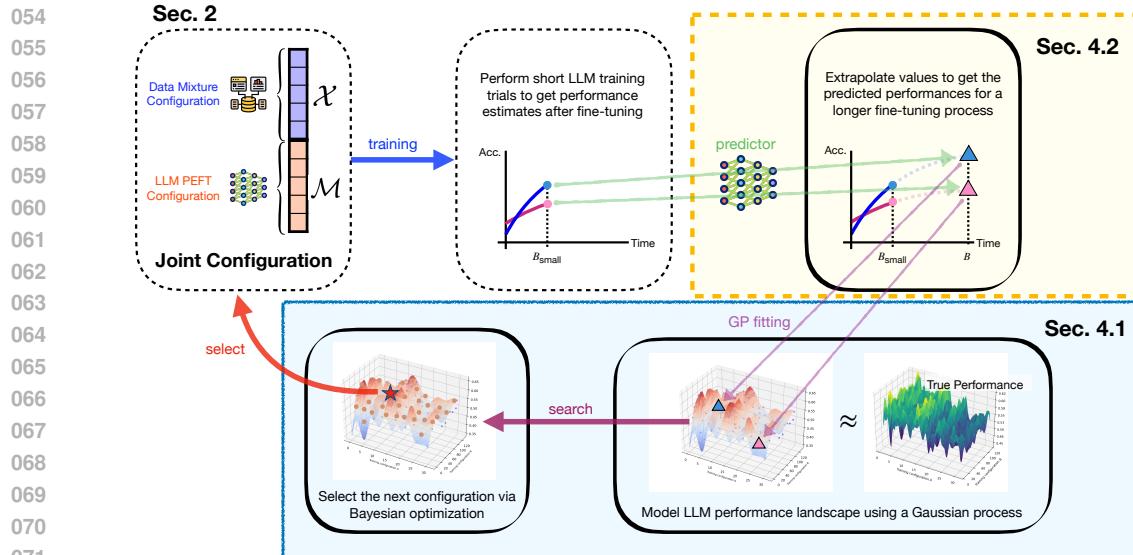


Figure 1: Overview of JOBS.

Our paper aims to study this chicken-and-egg dilemma and joint optimization problem for a scenario commonly faced by practitioners, namely *parameter-efficient fine-tuning* (Hu et al., 2021) (PEFT) of LLMs under different *data mixtures*. In this work, we present **Joint Bayesian Optimization with Scaling Laws** (JOBS), an approach that efficiently co-optimizes LLM training configurations by learning the LLM performance landscape with Bayesian Optimization (BO) and a novel performance predictor to reduce amount of actual training. We offer both theoretical and empirical insights into how fine-tuning performance varies with different *Low Rank Adaptation* (LoRA) configurations and training data mixture choices. In doing so, we address the research gap in studying the complex interaction between data and model configurations and jointly optimize both components efficiently. We summarize JOBS in Fig. 1, and state our main contributions below:

1. We formulate our chicken-and-egg dilemma as a black-box optimization problem (Sec. 2) and provide novel empirical and theoretical insights into how choices of LoRA configuration and training data mixture jointly influence the LLM fine-tuning performance (Sec. 3). Our work is the first to explore and quantify the interaction gains from co-optimizing model and data configurations for an LLM. We find that the *LLM performance landscape* is *approximately smooth* with respect to varying training configurations, and good configurations can improve LLM performance by more than 20%.
2. We present JOBS (Sec. 4), an algorithm that exploits the discovered characteristics of the co-optimization problem, and interleaves *Bayesian Optimization* (BO) (Sec. 4.1) with a novel LLM performance scaling law predictor to efficiently learn the smooth performance landscape (Sec. 4.2). The predictor effectively amortizes expensive trials in BO, allowing us to efficiently co-optimize training configuration – a traditionally costly endeavor – with theoretical performance guarantees.
3. We empirically demonstrate the performance gains attained by JOBS (Sec. 5). By comparing our algorithm with a wide range of independent model and data selection baselines, we show the existence of an *interaction improvement* – a nugget of performance improvement from co-optimizing the training configurations, which is a 6 – 7% performance increase compared to merely optimizing each training component independently.

2 PROBLEM SETUP AND RELATED WORKS

We consider two categories of training components: **training data** \mathcal{X} and **model** \mathcal{M} . Given these training components, we define a training process P_t that fine-tunes an LLM for a training time of t to produce fine-tuned LLM weights $\theta_{\mathcal{X}, \mathcal{M}, t} \triangleq P_t(\mathcal{X}, \mathcal{M})$, which can be evaluated over a predefined

108 performance metric \mathcal{L} (e.g., question-answering accuracy). Given a training time budget B , we want
 109 to find training component configurations \mathcal{X}, \mathcal{M} that maximize the LLM performance metric:

$$\max_{\mathcal{X}, \mathcal{M}} \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B}). \quad (1)$$

112 Time budget B is considered since in practice, a model cannot be trained indefinitely. As different
 113 training configurations have different training speeds, the time budget forces us to strategically
 114 balance between each training component to attain the best LLM performance within a practical
 115 resource constraint. Other constraints, such as training tokens, are correlated with training time and
 116 can also be considered, but we find training time easier for practitioners to interpret.

117 **Data \mathcal{X} .** Assume we have N training datasets $\mathcal{D} \triangleq D_1 \cup D_2 \cup \dots \cup D_N$ from N different domains
 118 (e.g., Wikipedia, TruthfulQA (Lin et al., 2022) for language tasks). The training data component
 119 consists of a subset of data $\mathcal{X} \subseteq \mathcal{D}$. In general, the selection of \mathcal{X} ensures the selected data points
 120 are more relevant to the given task (Chen et al., 2025c) or of higher quality (Wang et al., 2024a; Xia
 121 et al., 2024; Zhang et al., 2025), however this is done so assuming a fixed model architecture is used.
 122 In our work, we overload the notation and parameterize our selected data mixture with a mixing ratio
 123 represented by a probability simplex of dimension N ($\mathcal{X} \in \Delta^{N-1} \subset \mathbb{R}^N$).

124 **Model \mathcal{M} .** Under the LLM PEFT regime, the optimization problem takes as inputs: (1) the *module*
 125 of the LLM to which PEFT is applied (e.g., Q, V projection (Vaswani et al., 2017)), (2) the *layer(s)*
 126 where PEFT is applied (e.g., layer 30), and (3) the *PEFT hyperparameters*, including LoRA rank,
 127 α and dropout (Hu et al., 2021). These inputs can be concatenated into a M -dimensional vector
 128 $\mathcal{M} \in \mathbb{R}^M$ with $M \in \mathbb{Z}^+$. These inputs span both discrete and continuous spaces, which complicates
 129 the optimization problem. Existing model selection works (Raschka, 2020; White et al., 2020; He
 130 et al., 2024; Zhang et al., 2024b) can be adapted to select configurations for PEFT, however these
 131 methods assume that a fixed training dataset is known beforehand.

3 MOTIVATION FOR JOBS

134 Solving Problem 1 directly is challenging. This is because the performance landscape that describes
 135 the relationship between selected training components \mathcal{X}, \mathcal{M} and the fine-tuned LLM performance
 136 \mathcal{L} has no closed, analytical form. Before introducing JOBS as an efficient approach, we first
 137 examine how different training data and model configurations shape the LLM performance landscape.
 138 These findings are counter-intuitive yet illustrative, giving us a clearer understanding of the LLM
 139 performance landscape and justifying why our chicken-and-egg dilemma deserves attention in the
 140 first place. We will use these findings to motivate the algorithmic backbone of JOBS later in Sec. 4.

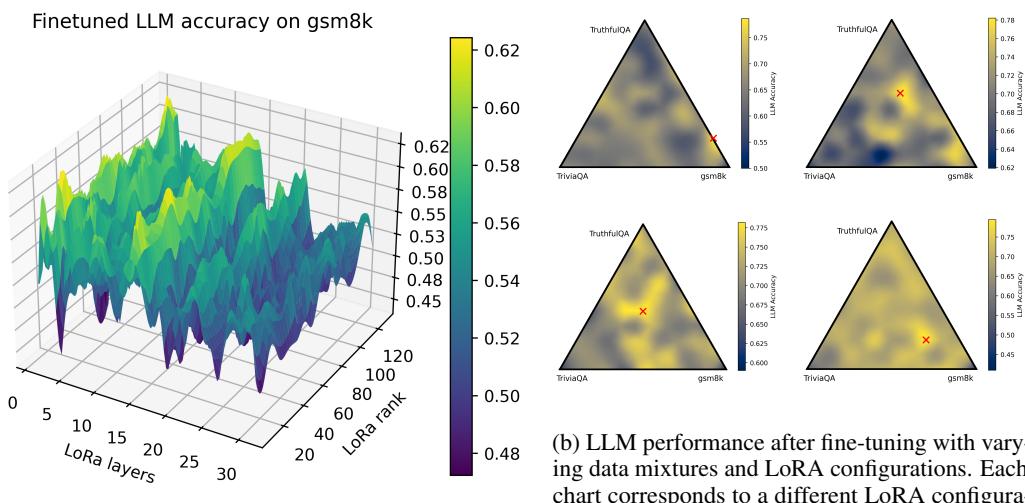


Figure 2: How data and model configurations jointly affect LLM performance.

159 **Model configurations significantly influence downstream performances.** To demonstrate this, we
 160 fine-tuned a Llama-3-8B-Instruct (Touvron et al., 2023) model on the gsm8k (Cobbe et al., 2021)

task with LoRA (Hu et al., 2021) with different ranks and layers¹. For each LoRA rank and layer configuration, we fine-tuned the model for one epoch. Intuitively, we expect the LLM to perform better if we use LoRA with larger ranks and applied to more layers, due to a higher learning capacity. Surprisingly, this is not the case. We instead found that the performance landscape is somewhat smooth but riddled with “peaks” and “valleys”, and certain LoRA layer and rank configurations yield *drastically* better performance (almost 20%!) than simply fine-tuning over all model layers and larger ranks. Unlike many practical works that merely prescribe a LoRA configuration from heuristics, our finding suggests that certain LLM model configurations produce far better LLM performance, and we should optimize them while considering the chicken-and-egg dilemma. Beyond just LoRA rank and layers considered in prior works (Zhang et al., 2024b), our paper also considered other model configurations such as *which LLM modules* to apply LoRA to and more (Sec. 5.1).

The optimal data configuration varies between chosen model configuration. To demonstrate this, we fine-tuned an LLM with varying data mixtures for the gsm8k (Cobbe et al., 2021) evaluation task whilst varying the model configuration in which we applied LoRA. Our training data mixture consists of 3 training domains: TruthfulQA (Lin et al., 2022), TriviaQA (Joshi et al., 2017) and gsm8k. Intuitively, we expect the LLM to perform best if we only used training data from gsm8k. However, this is not the case; Fig. 2b shows that the optimal data mixture (red cross) contains a mixture of data points from different domains. This suggests that the optimal training data mixture is non-intuitive and difficult to find via heuristics (Radford et al., 2019; Gao et al., 2020). More importantly, the optimal training data mixture seems to vary with different model configurations, yielding varying LLM performance. Therefore, these preliminary results emphasize the need to derive algorithms to *automatically* and *jointly* optimize all training components.

Lastly, we refer interested readers to some theoretical insights that we developed from classical convex optimization in App. A, which helps us understand the optimal training configuration choice.

4 INTRODUCING JOBS

JOBS features two main components. (1) We use a surrogate Gaussian process (Williams & Rasmussen, 2006) to model the empirically smooth performance function landscape \mathcal{L} (shown earlier), whose maximum can be obtained in a sample-efficient manner by Bayesian optimization (Sec. 4.1). (2) We introduce a novel performance scaling law (Wu & Tang, 2024; Chen et al., 2025b) predictor that amortizes the repeated cost of repeated evaluations by estimating the LLM performance from a small number of training steps (Sec. 4.2). Unlike existing rigid scaling law formulas which are fixed to a small group of training configurations, our predictor is a flexible neural network, capable of predicting LLM performance scaling w.r.t. *any training configurations*.

We show theoretically (in Sec. 4.3) and empirically (in Sec. 5) that even when our LLM performance predictions are noisy, the BO framework handles them gracefully as *observation noise*, eventually converging to the optimal training component configuration.

4.1 BO AS THE BACKBONE OF JOBS

Black-box modeling of the trained LLM performance. We consider the LLM performance as a function $\mathcal{L} : \mathbb{R}^d \mapsto \mathbb{R}$ over the space of inputs $x = [\mathcal{X}, \mathcal{M}] \in \mathbb{R}^d$ where $d = N + M$ (See Sec. 2). Since it is difficult to analytically model the LLM performance \mathcal{L} , we instead treat our objective function in Problem 1 as a *black-box function* whose maximum $x^* \triangleq \operatorname{argmax}_x \mathcal{L}(x)$ we want to recover. In line with existing works, we attempt to model \mathcal{L} as a *Gaussian process* (GP) (Williams & Rasmussen, 2006). In each iteration $t = 1, 2, \dots, T$, we can trial some training configuration x_t to obtain a potentially *noisy* realization of the LLM performance $y_t \triangleq \mathcal{L}(x_t) + \epsilon_t$, which we assume is corrupted with a sub-Gaussian noise ϵ_t (e.g., Gaussian or bounded noise) to form the sample (x_t, y_t) .

Consistent with the work of Chowdhury & Gopalan (2017), we model the unknown function \mathcal{L} (in our case, the LLM performance landscape) as a realization of a GP that is fully specified by its *prior* mean $\mu(r)$ and covariance $\kappa(x, x')$ for all $x, x' \in \mathbb{R}^d$ where κ is a *kernel* function chosen to characterize the correlation of the observations between any two inputs x and x' . For JOBS, since we expect the

¹Generating this simple performance landscape took a few weeks, so exhaustively searching for the optimal configuration is infeasible.

216 function \mathcal{L} to be heteroskedastic and have varying lengthscales between different inputs, we use a
 217 deep kernel (Wilson et al., 2016) which provides greater modeling flexibility. The hyperparameters in
 218 the mean and kernel functions can be learned via maximum likelihood estimation from observations.
 219

220 Given the noisy observations $\mathbf{y}_t \triangleq [y_\tau]_{\tau=1,\dots,t}^\top$ at inputs x_1, \dots, x_t , the posterior belief of \mathcal{L} at any
 221 new input x' is a Gaussian distribution with the *posterior* mean and variance given by

$$\begin{aligned}\mu_t(x') &\triangleq \kappa_t^\top(x')(K_t + \zeta I)^{-1}\mathbf{y}_t \\ \sigma_t(x') &\triangleq \kappa(x', x') - \kappa_t^\top(x')(K_t + \zeta I)^{-1}\kappa_t(x')\end{aligned}\quad (2)$$

225 where $\kappa_t(x') \triangleq [\kappa(x', x_\tau)]_{\tau=1,\dots,t}^\top$ is a column vector, $K_t \triangleq [\kappa(x_\tau, x_{\tau'})]_{\tau,\tau'=1,\dots,t}$ is a $t \times t$
 226 covariance matrix, and $\zeta > 0$ is viewed as a free hyperparameter (Chowdhury & Gopalan, 2017).
 227 Modeling \mathcal{L} directly allows the entire performance landscape to be learned at once, as opposed to
 228 learning a slice of \mathcal{L} for a fixed \mathcal{X} or \mathcal{M} . This results in more efficient learning process and avoiding
 229 heuristics to balance between which \mathcal{X} or \mathcal{M} to trial, making JOBS more robust overall.

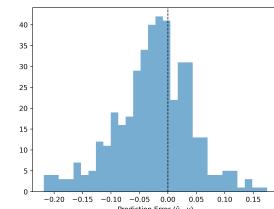
230 **Using BO for our joint optimization problem.** To determine the best configuration x^* , we trial
 231 different training configurations in each round to determine their performance and continually
 232 update the GP in (2) to have a better estimate of \mathcal{L} . In round t , the BO algorithm proposes the
 233 next configuration x_{t+1} as the configuration which maximizes some acquisition function, such
 234 as the *upper confidence bound* (UCB) (Srinivas et al., 2010), given by $x_{t+1} = \text{argmax}_x \mu_t(x) +$
 235 $\beta_{t+1}\sigma_t(x)$, where β_{t+1} is an exploration parameter which decays with increasing t . We can assess
 236 the convergence of a BO algorithm by analyzing its cumulative regret after T BO iterations, given by
 237 $R_T \triangleq \sum_{t=1}^T [\mathcal{L}(x^*) - \mathcal{L}(x_t)]$ (Tay et al., 2023), where $\mathcal{L}(x^*)$ is the optimum. A lower cumulative
 238 regret indicates a faster convergence rate of the BO algorithm. We provide a theoretical analysis of
 239 JOBS 's cumulative regret in Sec. 4.3.

240 We outline a few practical methods to improve BO in our problem setting. *First*, we use the
 241 constrained BO formulation (Eriksson & Poloczek, 2021; Chen et al., 2025c) to constrain the sum
 242 of data mixture ratio in our data configuration \mathcal{X} to 1. *Second*, a number of our problem inputs is
 243 discrete in nature (e.g., whether to apply LoRA to the LLM Q-projection layer, see Sec. 5.1). To
 244 address this, we adopt continuous parameterization (Daulton et al., 2022) to perform BO effectively
 245 over a mixture of such discrete and continuous input spaces.

246 4.2 USING PERFORMANCE PREDICTOR TO IMPROVE COMPUTATION TIME

247 While BO searches through different training configurations in a sample-efficient manner (Srinivas
 248 et al., 2010) and avoids performing exhaustive search over all possible x , naively applying BO still
 249 requires lengthy fine-tuning in each iteration. For example, if $B = 1000$ s, we need to fine-tune for
 250 1000 seconds in each round. To speed up JOBS , we take inspiration from LLM performance scaling
 251 laws (Wu & Tang, 2024; Chen et al., 2025b) and introduce a novel performance predictor to estimate
 252 the full fine-tuning LLM performance from a shorter training trial (See Fig. 1).

253 For our predictor to work, we need to predict LLM performance for
 254 different training configurations (that we do not know in advance)
 255 at each BO iteration. Hence, we cannot use existing scaling laws
 256 (Kaplan et al., 2020; Wu & Tang, 2024; Chen et al., 2025b), which
 257 are defined with respect to a *fixed* training configuration. To address
 258 this issue, JOBS learns a neural network which takes *any* training
 259 configuration $[\mathcal{X}, \mathcal{M}]$ and its performance $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B_{\text{small}}})$ at time
 260 $B_{\text{small}} < B$ as inputs and predicts the final fine-tuned LLM per-
 261 formance. Our predictor **does not** predict the full “scaling curve”, but
 262 rather directly gives the performance after fine-tuning for time B .



263 Figure 3: \mathcal{F} prediction error.

264 JOBS learns this predictor in two steps. *First*, it collects a random Sobol sequence (Nguyen et al.,
 265 2018) of initial training configurations in \mathcal{X} , \mathcal{M} and observe LLM performance at small time
 266 step $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B_{\text{small}}})$ and large time step $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B})$. These observations are also used to fit our
 267 GP to approximate our performance landscape (Sec. 4.1), and therefore are not wasted after the
 268 predictor has been trained. *Second*, using the observations, it fits a predictor neural network $\mathcal{F} : \mathcal{X}, \mathcal{M}, \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B_{\text{small}}}) \mapsto \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B})$ that extrapolates how well an LLM performs from a small
 269 amount of training time B_{small} . We provide examples of the extrapolation learnt by our predictor \mathcal{F}

270 in Fig. 4d and its prediction error in Fig. 3. If available, we can also use prior performance reported
 271 from past experiments or papers to accelerate the neural network training.
 272

273 At each step of JOBS , we only fine-tune the LLM for time B_{small} to observe $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B_{\text{small}}})$, then use
 274 \mathcal{F} to estimate the full fine-tuning performance $\hat{\mathcal{L}}(\theta_{\mathcal{X}, \mathcal{M}, B})$. These cheap estimates effectively allow
 275 JOBS to learn the performance landscape without fine-tuning the LLM to completion.

276 4.3 CONVERGENCE UNDER PRESENCE OF PREDICTION NOISE

277 We have amortized and reduced the runtime of JOBS by predicting the LLM performance $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B})$
 278 of a particular training configuration. However, we obviously cannot make perfect predictions. As
 279 such, we can only observe $\hat{\mathcal{L}}(\theta_{\mathcal{X}, \mathcal{M}, B}) = \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B}) + \epsilon$ at each BO iteration, where ϵ is the
 280 prediction error associated with our predictor \mathcal{F} introduced earlier (See Fig. 3). How does this
 281 prediction error influence the effectiveness of JOBS ? We show that under some mild assumption on
 282 prediction error ϵ (as long as it is not too large), JOBS converges to the optimal training configuration
 283 with the following convergence rate. In other words, our predictor’s error is handled gracefully by
 284 JOBS ’s BO backbone, allowing us to still find optimal configurations.
 285

286 **Theorem 4.1.** *Let $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B})$ be the performance landscape of training configuration with bounded
 287 RKHS norm: $\|\mathcal{L}\|_{\kappa} = \sqrt{\langle \mathcal{L}, \mathcal{L} \rangle_{\kappa}} \leq B$ w.r.t. kernel κ . Also, let γ_T be the maximum information
 288 gain from T iterations. As mentioned above, assume we make noisy observation $\hat{\mathcal{L}}(\theta_{\mathcal{X}, \mathcal{M}, B}) =$
 289 $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B}) + \epsilon$ at each BO iteration and error ϵ associated with our scaling law prediction is
 290 Sub-Gaussian with a factor of R . Then, running our BO algorithm over training configurations
 291 \mathcal{X}, \mathcal{M} with the IGP-UCB acquisition function (Chowdhury & Gopalan, 2017) yields the following
 292 cumulative regret with probability at least $1 - \delta$:*

$$294 R_T = \mathcal{O} \left(B \sqrt{T \gamma_T} + R \sqrt{T} \sqrt{\gamma_T^2 + \gamma_T \ln(1/\delta)} \right) \quad (3)$$

296 The proof is provided in App. B and shows that the prediction error of \mathcal{F} in JOBS can be viewed
 297 as observation noise under the BO framework, allowing us to still uncover the optimal training
 298 configuration with sufficient BO iterations. **Our theoretical finding also uncovers an interesting**
 299 **compute-performance tradeoff**: extrapolating from a smaller amount of training time B_{small} reduces
 300 the training time at each BO iteration, but incurs noisier prediction errors with larger R constants,
 301 leading to larger cumulative regret. In Sec. 5.4, we examine how varying prediction errors from our
 302 performance predictor (adjusted with B_{small}) influence our algorithm’s convergence.

303 5 EXPERIMENTS

306 We use JOBS to jointly optimize training configurations for LLM fine-tuning in a variety of language
 307 tasks and LLM model types. First, we show that when data and model selection methods are applied
 308 independently (or in an alternating manner) to LLM model and data configurations, they do not
 309 perform as well as JOBS because the former does not consider interactions between data and model
 310 configurations. Next, we make several interesting observations regarding JOBS ’s convergence w.r.t.
 311 different factors, such as the choice of B_{small} . Lastly, we perform a few ablations to tease apart the
 312 influence of different components in JOBS .

313 5.1 EXPERIMENTAL SETTINGS

314 In all our experiments, we aim to fine-tune an LLM for a fixed training budget to maximize its
 315 performance on an evaluation task. To make the task more difficult, we adopt an out-of-domain
 316 setting (Chen et al., 2025c), where the evaluation task’s data is removed from the training domains.
 317 We use a data mixture from 10 datasets: **Wikitext** (Merity et al., 2016), **gsm8k** (Cobbe et al., 2021),
 318 **PubmedQA** (Jin et al., 2019), **HeadQA** (Vilares & Gómez-Rodríguez, 2019), **SciQ** (Welbl et al.,
 319 2017), **TriviaQA** (Joshi et al., 2017), **TruthfulQA** (Lin et al., 2022), **MMLU** (Hendrycks et al.,
 320 2021), **AI2 ARC** (Clark et al., 2018) and **CommonsenseQA** (Talmor et al., 2019). We mix the
 321 datasets (Chen et al., 2025c; Xie et al., 2023a; Ye et al., 2024) to create a fine-tuning dataset consisting
 322 of 10000 data points and consider the mixing ratio (a probability simplex) across these datasets as the
 323 training data configuration \mathcal{X} . The model configurations \mathcal{M} we consider here are which LLM layer
 to apply LoRA to, which LLM module to apply LoRA to (e.g., Q projection), LoRA rank, LoRA

dropout and alpha, **giving us a total of 19 training configuration dimension**. Unless otherwise stated, we used 100 BO iterations for JOBS with $B_{\text{small}} = 50$ seconds, $B = 1000$ seconds and a batch size of 8. There are minor differences in our LLM performance from existing papers due to evaluation setup. More information on our experimental setup is provided in App. C.

5.2 BASELINES

Data selection. **LESS** (Xia et al., 2024) searches for more relevant data points based on their training gradients. **DoReMi** (Xie et al., 2023a) adopts a distributionally robust approach to produce data-mixtures that work generally well against every distribution of evaluation task. Influence Function (**IF**) (Koh & Liang, 2020) selects data points with the higher influence scores. **Diversity** (Wang et al., 2024b) finds the subset of data points with the largest log-determinant score. **BO** just performs vanilla BO on the data configuration.

Model selection. We used a variant of Differentiable Architecture Search (**DARTS**) (Liu et al., 2019) applied to our LoRA weights by tuning an additional mixture coefficient on each LLM layer (so, when this coefficient approaches zero for a layer, it implies we do not apply LoRA weight to that LLM layer). **AutoLoRA** (Zhang et al., 2024b) is a baseline that automatically tunes the LoRA rank, but does not consider how we should select the layers to apply LoRA to. **RoBoT** (He et al., 2024) adopts a training-free approach towards selecting different model configurations by aggregating different training-free metrics to measure how promising a given configuration is. **BO** just performs vanilla BO on the model configuration.

Mix and match. There are two ways to combine the baselines to ensure a good coverage of empirical comparison: we can either perform data and model selection independently in a one-shot setting or repeat them in an alternating manner using the current best-found model or data (e.g., optimize the model, then optimize the data, before repeating the process). We performed the one-shot optimization approach in Table 1 and the alternating approach in Table 3. In both cases, they do not perform as well as JOBS . Roughly speaking, alternating between model and data selection is similar to coordinate descent (Wright, 2015) but does not guarantee optimality. We also explored other naive approaches (App. F.1), such as randomly choosing training configurations or only performing BO over model or data configurations, but found their performances lackluster.

5.3 MAIN RESULTS AND KEY TAKEAWAYS

In Sec. 4, we claimed that JOBS models the complex interaction between training components, jointly optimizing them effectively to attain better LLM performance. To verify this hypothesis, we mixed and matched conventional data selection and model architecture search methods and applied them to each training component independently. We compared this with JOBS , which jointly optimizes both training components. Due to space constraints, we only display the partial results for **gsm8k** and **TruthfulQA** here. Our results over other tasks are shown in App. F.

Table 1: **Evaluation task: gsm8k** (Cobbe et al., 2021). Combination matrix of mixing and matching different model and data selection methods on LLM performance compared to our joint optimization approach (JOBS). Subscript numbers represent standard deviations across 5 trials. Due to space constraints, we show the results of other tasks in App. F

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	JOBS
Default	68.1 ± 2.1	70.4 ± 1.1	71.6 ± 3.1	67.9 ± 0.9	73.8 ± 1.8	73.4 ± 1.7	-
DARTS	72.4 ± 0.8	71.0 ± 0.6	74.1 ± 1.3	68.7 ± 0.4	66.1 ± 0.7	72.8 ± 0.3	-
AutoLoRA	72.3 ± 1.1	74.6 ± 0.3	70.3 ± 0.7	67.9 ± 0.4	73.4 ± 0.5	72.5 ± 0.5	-
RoBoT	71.1 ± 0.6	72.0 ± 1.5	73.4 ± 1.8	72.4 ± 1.5	69.6 ± 1.7	72.4 ± 0.8	-
BO	70.7 ± 1.4	66.7 ± 0.8	72.5 ± 0.8	71.7 ± 0.9	74.7 ± 1.0	72.7 ± 2.3	-
JOBS	-	-	-	-	-	-	80.4 ± 1.9

Pairing different data and model selection methods (Table 1, 2 and App. F). Our results in the combination matrix showcase the shortfall of simply combining different model and data selection method. Simply pairing these methods independently does not consider the interaction between data and model configurations together, yielding mediocre performance. In contrast, JOBS attains higher

378 Table 2: **Evaluation task: TruthfulQA** (Lin et al., 2022).
379
380

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	JOBS
Default	55.4 ± 1.6	56.4 ± 0.8	58.2 ± 2.4	57.3 ± 1.1	59.8 ± 1.0	70.2 ± 0.8	-
DARTS	56.7 ± 1.1	57.0 ± 0.4	62.8 ± 1.1	59.1 ± 0.3	59.6 ± 1.0	72.4 ± 0.8	-
AutoLoRA	56.0 ± 0.8	62.6 ± 1.0	58.8 ± 0.9	59.6 ± 1.0	60.8 ± 0.4	68.4 ± 0.3	-
RoBoT	59.1 ± 0.4	60.2 ± 0.5	53.4 ± 1.1	52.4 ± 0.8	60.9 ± 0.4	69.6 ± 1.1	-
BO	61.0 ± 1.0	62.0 ± 0.3	64.0 ± 0.7	64.8 ± 0.8	60.3 ± 1.2	71.7 ± 1.8	-
JOBS	-	-	-	-	-	-	75.8 ± 1.9

387 Table 3: Comparison of baselines with JOBS . Results are shown w.r.t. different evaluation tasks
388 and LLMs (Higher is better), averaged over 5 trials. We choose to present a few better performing
389 baselines (combining data and model selection methods in an alternating manner).
390

Model	Task	Default fine-tuning	LESS + AutoLoRA	DoReMi + DARTS	Alternating-BO	JOBS
Llama-3-8B-Instruct	gsm8k	68.1 ± 2.1	74.8 ± 0.9	73.2 ± 1.4	75.8 ± 1.8	80.4 ± 1.9
	TruthfulQA	55.4 ± 1.6	66.2 ± 0.7	68.9 ± 1.2	71.7 ± 1.1	75.8 ± 1.3
	CommonsenseQA	76.3 ± 1.0	80.5 ± 1.4	79.9 ± 1.0	78.5 ± 0.8	84.3 ± 2.4
	HeadQA	47.0 ± 0.9	46.3 ± 1.5	54.0 ± 1.8	56.3 ± 1.3	55.8 ± 1.5
	MMLU	61.2 ± 1.3	67.6 ± 2.9	64.1 ± 1.1	63.1 ± 1.1	69.5 ± 0.8
	ARC	54.7 ± 1.3	66.3 ± 1.6	62.5 ± 0.7	67.6 ± 0.6	70.4 ± 1.3
Qwen2.5-7B-Instruct	gsm8k	70.2 ± 0.6	73.7 ± 0.9	71.1 ± 1.4	74.5 ± 3.1	81.3 ± 1.4
	TruthfulQA	56.4 ± 0.7	67.2 ± 1.3	68.3 ± 0.9	70.7 ± 0.8	74.8 ± 1.7
	CommonsenseQA	77.6 ± 0.4	82.1 ± 0.3	80.2 ± 0.6	80.6 ± 1.1	81.7 ± 0.6
	HeadQA	52.5 ± 0.3	51.3 ± 1.4	50.8 ± 0.9	54.5 ± 0.6	58.6 ± 0.9
	MMLU	72.5 ± 1.4	73.9 ± 1.6	72.8 ± 0.3	76.3 ± 1.2	78.4 ± 1.2
	ARC	64.6 ± 0.8	69.1 ± 3.1	71.5 ± 3.2	73.1 ± 1.1	75.0 ± 0.3
Mistral-7b-Instruct-v0.3	gsm8k	52.2 ± 0.8	58.7 ± 0.6	63.0 ± 1.1	62.2 ± 0.8	66.4 ± 0.5
	TruthfulQA	56.4 ± 0.7	59.8 ± 1.7	62.2 ± 0.6	69.4 ± 1.5	73.5 ± 0.6
	CommonsenseQA	77.6 ± 0.4	78.3 ± 1.1	77.9 ± 1.2	82.2 ± 0.7	83.5 ± 0.8
	HeadQA	57.8 ± 0.3	56.3 ± 0.9	57.9 ± 1.2	59.2 ± 1.1	57.8 ± 0.5
	MMLU	63.6 ± 0.5	71.8 ± 0.9	71.6 ± 1.3	72.3 ± 0.8	73.8 ± 0.9
	ARC	66.3 ± 0.8	70.2 ± 2.0	72.9 ± 1.0	72.4 ± 0.8	74.7 ± 0.6
TriviaQA	gsm8k	58.2 ± 0.3	57.8 ± 1.8	60.5 ± 0.5	62.0 ± 0.3	66.3 ± 1.1

407 performance gains after fine-tuning, largely because it models and exploits the complex interaction
408 between data and model configurations with the learnt performance landscape. By jointly optimizing
409 both components, we attain a flat 6 – 7% “interaction improvement” over other baselines.
410

411 **Alternating optimization scheme under same compute budget (Table 3).** Next, we selected a few
412 better-performing optimization pairings from Table 1, 2 and *applied them in an alternating fashion to*
413 *our training configurations* for 5 iterations. In general, data and model selection baselines are more
414 computationally expensive, so this is a fair equal-compute comparison (See App. D). Table 3 shows
415 that even when we ran data and model selection baselines in an alternating optimization scheme, the
416 baselines do not perform as well as JOBS . In fact, for some tasks or models, the LLM performance
417 of baselines becomes worse than that in the one-shot optimization scheme presented earlier. We
418 speculate that this occurs because alternating optimization schemes might end up in worse-performing
419 “saddle points” in the performance landscape, leading to performance degradation.
420

5.4 ABLATION AND ADDITIONAL ANALYSIS

422 In the previous sections, we showed that JOBS outperforms baselines in a variety of evaluation
423 tasks. However, several questions remain regarding the performance-compute tradeoff in JOBS . For
424 instance, how does our neural network predictor (Sec. 4.2) and B_{small} affect the convergence rate of
425 JOBS ? What happens if we applied JOBS to only data component? To address these questions, we ran
426 ablations with different fine-tuning time B_{small} , training components and plot the best configuration
427 performance at each BO iteration. We used Llama-3-8B-Instruct and the CommonsenseQA evaluation
428 task throughout our ablations.
429

430 **Effect of performance scaling law predictor \mathcal{F} .** Fig. 4a shows the convergence of JOBS with
431 and without our performance predictor \mathcal{F} , given same compute budget. We found that with our
432 performance predictor \mathcal{F} (Sec. 4.2), JOBS (green) initially has a slightly slower convergence rate.
433 This is expected: our observations are noisier at each iteration, causing us to initially learn a noisier
434

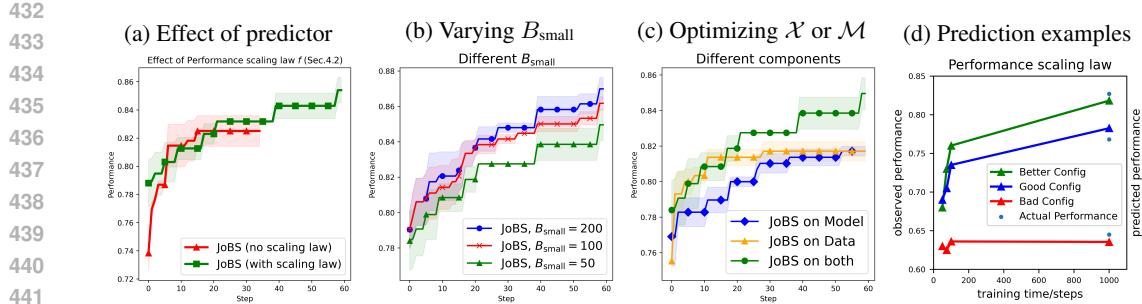


Figure 4: Various ablation studies for the effect of the performance predictor on JOBS.

performance landscape. However, using performance scaling laws in JOBS incurs less training time at each iteration (20 times smaller), and thus we can effectively run more BO iterations in total. This enables us to find better training configurations given the same amount of total compute.

Effect of varying B_{small} . Fig. 4b illustrates how the choice of fine-tuning time B_{small} influences the effectiveness of JOBS given a fixed number of BO iterations. As B_{small} (in seconds) increases, JOBS converges to the better-performing training configurations more quickly. This corroborates our theoretical findings from Theorem 4.1, where a larger B_{small} means that the observation noise ϵ associated with our neural network predictor \mathcal{F} is smaller, allowing JOBS to converge more quickly with smaller cumulative regret.

Effect of varying training components. Fig. 4c demonstrates the importance of considering both data and model components in JOBS. Specifically, applying JOBS (green) to *both* data and model attains much better performance than merely optimizing one of them. We also found that at small number of iterations, optimizing data configurations (blue) produces better results than optimizing model configurations (orange) before converging to similar performances. This suggests that training data mixture plays a larger role than model configurations in improving LLM performance. However, co-optimizing both gives the best results.

Predicting performance scaling laws. In Fig.4d, we examined how our performance predictor \mathcal{F} (Sec.4.2) estimates LLM performance under different training configurations. The leftmost points correspond to the true, observed performance at a small training budget, while the rightmost points represent predicted performance after 1000 seconds of training. Of particular note is that good configurations (blue, green) exhibit fruitful scaling laws, with much better performance as training time increases. In contrast, weak configurations (red) are predicted to stagnate, showing little to no gain even with extended training. This shows that our performance scaling law predictor can predict scaling laws dynamically with respect to different configurations selected by JOBS. Furthermore, because scaling behavior is highly configuration-dependent, this cannot be captured by a single universal formula found in prior scaling law works.

Computational cost and other qualitative discussion. Lastly, we found that JOBS has a smaller runtime than existing baselines, running around 70% to 1240% faster different baselines. We provide a computation cost analysis in App. D, where we find that our performance scaling law predictor is the main reason why JOBS has a smaller runtime, and existing data selection methods are generally expensive. We also present a few interesting analysis of the optimal training configurations found by JOBS in App. E as compared to other baselines.

6 CONCLUSION

We illustrated the chicken-and-egg dilemma in LLMs, showing that the interdependence between data and model components makes it challenging for conventional methods to optimize model performance efficiently. We introduced JOBS, an efficient algorithm that leverages BO and a novel performance scaling law predictor to jointly optimize data and model configurations by efficiently learning the LLM performance landscape under the fine-tuning regime. Despite noisy estimates from the predictor, JOBS still assures theoretical guarantees and shows promising empirical results in our experiments. Across different evaluation tasks and LLM models, JOBS attains substantial “interaction improvement” over prior baselines, showing that jointly optimizing data and model configurations performs better than independent optimization. We believe JOBS can also be adapted for LLM pretraining, where the same chicken-and-egg dilemma exists.

486 7 ETHICS STATEMENT
487488 Our work strives to improve the performance of LLMs for the greater good. We do not foresee any
489 ethical concerns related to our work. From our theoretical findings and experiments, our method does
490 indeed improve the performance of LLMs.
491492 REFERENCES
493494 Julyan Arbel, Olivier Marchal, and Hien D. Nguyen. On strict sub-gaussianity, optimal proxy variance
495 and symmetry for bounded random variables. *arXiv:1901.09188*, 2019.496 Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
497 cost functions, with application to active user modeling and hierarchical reinforcement learning.
498 *CoRR*, abs/1012.2599, 2010. URL <http://arxiv.org/abs/1012.2599>.499 Mayee F. Chen, Michael Y. Hu, Nicholas Lourie, Kyunghyun Cho, and Christopher Ré. Aioli: A
500 unified optimization framework for language model data mixing. *arXiv:2411.05735*, 2025a.502 Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang Wang, Jingfeng Yang, and Heng Ji. Scaling
503 laws for predicting downstream performance in llms. *arXiv:2410.08527*, 2025b.504 Zhiliang Chen, Chuan-Sheng Foo, and Bryan Kian Hsiang Low. Towards AutoAI: Optimizing a
505 machine learning system with black-box and differentiable components. In *Proc. ICML*, 2024.506 Zhiliang Chen, Gregory Kang Ruey Lau, Chuan-Sheng Foo, and Bryan Kian Hsiang Low. Duet:
507 Optimizing training data mixtures via feedback from unseen evaluation tasks. *arXiv:2502.00270*,
508 2025c.509 Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *Proc. ICML*,
510 2017.511 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
512 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
513 *arXiv:1803.05457*, 2018.514 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
515 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
516 Schulman. Training verifiers to solve math word problems. *arXiv:2110.14168*, 2021.517 Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A. Osborne, and
518 Eytan Bakshy. Bayesian optimization over discrete and mixed spaces via probabilistic reparametrization.
519 *arXiv:2210.10199*, 2022.520 David Eriksson and Matthias Poloczek. Scalable constrained bayesian optimization.
521 *arXiv:2002.08526*, 2021.522 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
523 Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
524 dataset of diverse text for language modeling. *arXiv:2101.00027*, 2020.525 Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
526 gradient methods. *arXiv:2301.11235*, 2023.527 Zhenfeng He, Yao Shu, Zhongxiang Dai, and Bryan Kian Hsiang Low. Robustifying and boosting
528 training-free neural architecture search. *arXiv:2403.07591*, 2024.529 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
530 Steinhardt. Measuring massive multitask language understanding. *arXiv:2009.03300*, 2021.531 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
532 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
533 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
534 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
535 Training compute-optimal large language models. *arXiv:2203.15556*, 2022.

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv:2106.09685*, 2021.
 542

543 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
 544 dataset for biomedical research question answering. *arXiv:1909.06146*, 2019.

545 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 546 supervised challenge dataset for reading comprehension. *arXiv:1705.03551*, 2017.
 547

548 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 549 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 550 *arXiv:2001.08361*, 2020.

551 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
 552 *arXiv:1703.04730*, 2020.
 553

554 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 555 falsehoods. *arXiv:2109.07958*, 2022.

556 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
 557 *arXiv:1806.09055*, 2019.
 558

559 Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing
 560 Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training.
 561 *arXiv:2407.01492*, 2025.

562 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 563 models. *arXiv:1609.07843*, 2016.
 564

565 Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Practical batch bayesian
 566 optimization for less expensive functions. *arXiv:1811.01466*, 2018.

567 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 568 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 569

570 Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
 571 *arXiv:1811.12808*, 2020.

572 Mustafa Shukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
 573 and Pierre Ablin. Scaling laws for optimal data mixtures. *arXiv:2507.09404*, 2025.
 574

575 Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
 576 learning algorithms, 2012. URL <https://arxiv.org/abs/1206.2944>.

577 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
 578 tion in the bandit setting: No regret and experimental design. In *Proc. ICML*, 2010.
 579

580 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 581 answering challenge targeting commonsense knowledge. *arXiv:1811.00937*, 2019.

582 Sebastian Shenghong Tay, Chuan-Sheng Foo, Daisuke Urano, Richalynn Leong, and Bryan
 583 Kian Hsiang Low. Bayesian optimization with cost-varying variable subsets. In *Proc. NeurIPS*,
 584 2023.
 585

586 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 587 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 588 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 589 models, 2023.

590 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 591 Kaiser, and Illia Polosukhin. Attention is all you need. In *Proc. Neurips*, 2017.
 592

593 David Vilares and Carlos Gómez-Rodríguez. HEAD-QA: A healthcare dataset for complex reasoning.
 In *Proc. ACL*, 2019.

594 Jingtian Wang, Xiaoqiang Lin, Rui Qiao, Chuan-Sheng Foo, and Bryan Kian Hsiang Low. Helpful
 595 or harmful data? fine-tuning-free shapley attribution for explaining language model predictions.
 596 *arXiv:2406.04606*, 2024a.

597 Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stallone, Yoon Kim, Polina Golland, and
 598 Rameswar Panda. Diversity measurement and subset selection for instruction tuning datasets.
 599 *arXiv:2402.02318*, 2024b.

600 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
 601 In *Workshop on Noisy User-generated Text*, 2017.

602 Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
 603 architectures for neural architecture search. *arXiv:1910.11858*, 2020.

604 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
 605 volume 2. MIT press Cambridge, MA, 2006.

606 Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
 607 In *Proc. AISTATS*, 2016.

608 Stephen J. Wright. Coordinate descent algorithms. *arXiv:1502.04759*, 2015.

609 Chuhan Wu and Ruiming Tang. Performance law of large language models. *arXiv:2408.09895*, 2024.

610 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 611 Selecting influential data for targeted instruction tuning. *arXiv:2402.04333*, 2024.

612 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V.
 613 Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
 614 pretraining. *arXiv:2305.10429*, 2023a.

615 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
 616 models via importance resampling. *arXiv:2302.03169*, 2023b.

617 Wanyun Xie, Francesco Tonin, and Volkan Cevher. Chameleon: A flexible data-mixing framework
 618 for language model pretraining and finetuning, 2025.

619 Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing laws:
 620 Optimizing data mixtures by predicting language modeling performance. *arXiv:2403.16952*, 2024.

621 Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
 622 effect of data, model and finetuning method. *arXiv:2402.17193*, 2024a.

623 Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai,
 624 Qiu Jiantao, Lei Cao, Ju Fan, Ye Yuan, Guoren Wang, and Conghui He. Harnessing diversity for
 625 important data selection in pretraining large language models. In *Proc. ICLR*, 2025.

626 Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tuning
 627 matrix ranks in low-rank adaptation based on meta learning. *arXiv:2403.09113*, 2024b.

628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
 649 **A THEORETICAL INSIGHTS INTO OPTIMAL DATA AND TRAINING**
 650 **CONFIGURATIONS**

651
 652 We provide theoretical insights on why an optimal model size and training data size exists in our
 653 problem setting. To do so, we analyze the convergence of mini-batch Stochastic Gradient Descent
 654 (SGD) (Garrigos & Gower, 2023) over a convex loss function w.r.t. varying model size and training
 655 data size (viewed as batch size in this setting). We first present the well-known results on the
 656 convergence of the loss function under the mini-batch SGD setting in the proposition below.
 657

658 **Proposition A.1.** *Let b be the training data size (out of a larger full training dataset) and m be
 659 the number of model parameters. Let T be the training steps budget allocated for our model with
 660 parameters θ_m . Assume θ_m^* are the optimal model parameters for the full training dataset and let
 661 $f(\theta, \mathcal{X})$ be a convex loss function with respect to model parameters θ and input examples \mathcal{X} . Define
 662 the gradient noise as $\sigma_f^* \triangleq \text{Var}[\nabla f(\theta_m^*, x)]$ for a randomly sampled datapoint x from the full training
 663 data set. Let L_m be the lipschitz constant of the loss function f of a model with m parameters. Lastly,
 664 assume $\|\theta_m - \theta_m^*\|^2 \leq K$ for some constant K and any m .*

665 *If we perform minibatch stochastic gradient descent on f with a randomly sampled data batch of
 666 size b (from the full training dataset) on model parameters θ_m with constant step size $\frac{1}{4L_m}$ for T
 667 iterations, then*

$$668 \quad \mathbb{E}[f(\theta_m^T) - f(\theta_m^*)] \leq \frac{4L_m K}{\sqrt{T}} + \frac{2(n-b)\sigma_f^*}{4L_m b(n-1)\sqrt{T}}, \quad (4)$$

669 *where θ_m^T is the model parameters after T SGD steps.*

670 The above proposition tells us that if the training data is sampled randomly from the full training
 671 dataset, the deviation between the optimal loss (over the full training dataset) and the loss w.r.t. learnt
 672 parameters θ_m^T is upper-bounded by the right term in Eq. 4. We can see that the loss w.r.t. learnt
 673 parameters θ_m^T will eventually converge to the optimal loss $f(\theta_m^*)$ w.r.t. increasing training steps.
 674

675 Interestingly, we observe that the choice of m, b , and T is constrained by the given training time
 676 budget. We make two assumptions about the relationship between m, b and T .
 677

- 678 **Assumption 1** The lipschitz constant of loss function is governed by $L_m = \frac{c_1}{m}$ for some
 679 positive constant c_1 . This implies the larger the model size, the smaller the lipschitz constant
 680 of the loss function (and faster the model learns).
- 681 **Assumption 2** $T = \frac{bm}{c_2}$ for some positive constant c_2 . This implies that model and training
 682 data size both increases the training budget required to train the model. Given a fixed T , we
 683 cannot choose a large model size m and training data size b .

684 In the next Theorem, we show that given a training budget T , there exists a particular model size
 685 m and training size b that will minimize the upper bound in Eq. 4. We would like to emphasize
 686 even though a particular choice of m, b could lead to smaller upper bound, it does not necessarily
 687 guarantee that the actual deviation in Eq. 4 is smaller (since we are only comparing the upper bounds).
 688 However, our theorem provides theoretical insights to possibly explain why training with certain
 689 choices of b, m yields better model performance. We have also provided empirical evidence to show
 690 that certain training component configurations can produce better-performing LLMs in Sec. 3.
 691

692 **Theorem A.2.** *Under the same setting as Proposition A.1 and given Assumption 1 and 2, for a given
 693 training budget of T , the upper bound from Proposition A.1 is minimized by solving the following
 694 constrained optimization problem:*

$$695 \quad \begin{aligned} 696 \quad & \min_{m,b} \frac{4c_1 K}{m} + \frac{2(n-b)m\sigma_f^*}{4c_1 b(n-1)} \\ 697 \quad & \text{s.t. } mb = c_2 T \end{aligned} \quad (5)$$

700 *Therefore, an optimal m, b would minimize the constrained optimization problem and minimize the
 701 error bounds in Eq. 4.*

702 **B PROOF OF THEOREM 3.1**
 703

704 **Theorem 4.1.** *Let $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B})$ be the performance landscape of training configuration with bounded
 705 RKHS norm: $\|\mathcal{L}\|_\kappa = \sqrt{\langle \mathcal{L}, \mathcal{L} \rangle_\kappa} \leq B$ w.r.t. kernel κ . Also, let γ_T be the maximum information
 706 gain from T iterations. As mentioned above, assume we make noisy observation $\hat{\mathcal{L}}(\theta_{\mathcal{X}, \mathcal{M}, B}) =$
 707 $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, B}) + \epsilon$ at each BO iteration and error ϵ associated with our scaling law prediction is
 708 Sub-Gaussian with a factor of R . Then, running our BO algorithm over training configurations
 709 \mathcal{X}, \mathcal{M} with the IGP-UCB acquisition function (Chowdhury & Gopalan, 2017) yields the following
 710 cumulative regret with probability at least $1 - \delta$:*

711
$$R_T = \mathcal{O} \left(B \sqrt{T \gamma_T} + R \sqrt{T} \sqrt{\gamma_T^2 + \gamma_T \ln(1/\delta)} \right) \quad (3)$$

 712

713 *Proof.* Our proof is divided into two parts. First, we connect our LLM scaling law prediction
 714 (Sec. 4.2) to our BO framework and show it can be viewed as *observation noise* ϵ at each iteration.
 715 Then, we show how our scaling law prediction error influences our algorithm by analyzing its
 716 cumulative regret with well known results from prior BO works Chowdhury & Gopalan (2017);
 717 Srinivas et al. (2010).

718 To begin, recall that we are trying to maximize our LLM performance, a black-box function
 719 $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B})$ (Sec. 2). Using our scaling law prediction (Sec. 4.2), we instead train our LLM
 720 for B_{small} training steps (or time) and observe $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B_{\text{small}}})$. We then apply scaling law prediction
 721 to observe $\hat{\mathcal{L}}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B}) = \mathcal{F}(\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B_{\text{small}}}))$ to estimate what the LLM would have performed if
 722 we trained it for the full training duration. Since we are predicting the LLM performance, our model
 723 prediction is noisy, with $\mathcal{F}(\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B_{\text{small}}})) = \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B}) + \epsilon$. Hence, we only have access to a
 724 noisy estimate of our black-box function: $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B}) + \epsilon$. Since our estimation error is based on
 725 LLM performance, which is bounded (e.g., accuracy), then error $\epsilon \in [0, \alpha]$ with positive constant α ,
 726 and it follows that ϵ is Sub-Gaussian with a factor $R = \frac{\alpha^2}{4}$ (Arbel et al., 2019).

727 Hence, we have shown that in our setting, we are making noisy observation of our LLM performance:
 728 $\mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B}) + \epsilon$ with a Sub-Gaussian error ϵ . This ϵ is empirically not large (see Fig. 3). Next, we
 729 will prove the cumulative regret of our algorithm w.r.t. this observation error. To begin, we present
 730 the following lemma from (Chowdhury & Gopalan, 2017)

731 **Lemma B.1.** *Let $\|f\|_\kappa = \sqrt{\langle f, f \rangle_\kappa} \leq B$. Also, assume that the observation noise associated with
 732 each BO iteration is R -sub-Gaussian with $R > 0$. Then with probability at least $1 - \delta$, the following
 733 holds for BO iteration $t \leq T$:*

734
$$|\mu_t(x) - f(x)| \leq \left(B + R \sqrt{2(\gamma_t + 1 + \ln(1/\delta))} \right) \sigma_t(x) \quad (6)$$

 735

736 where γ_t is the maximum information gain after t observations and $\mu_t(x), \sigma_t^2(x)$ are mean and
 737 variance of posterior distribution of GP defined in Equation 2, with $\lambda = 1 + 2/T$.

738 In our setting, set $f = \mathcal{L}$ (our LLM performance after fine-tuning) and $x = \mathcal{X}, \mathcal{M}, \mathcal{R}$ (our training
 739 configuration). This lemma indicates that our estimated mean $\mu_t(x)$ of our performance landscape
 740 from our fitted GP over historical observations of LLM performance deviates from the true LLM
 741 performance $f(x) = \mathcal{L}(\theta_{\mathcal{X}, \mathcal{M}, \mathcal{R}, B})$ by at most the term in (7).

742 We are now ready to prove Theorem 4.1. First, we observe that the next training configuration x_t at
 743 each BO iteration t is chosen via the IGP-UCB acquisition function (i.e., $x_t = \text{argmax}_x \mu_{t-1}(x) +$
 744 $\beta_t \sigma_{t-1}(x)$ and $\beta_t = B + R \sqrt{2(\gamma_{t-1} + 1 + \ln(1/\delta))}$ where the observation noise associated with
 745 each BO iteration is R -sub Gaussian). Thus, we can see that at each iteration $t \geq 1$, we have
 746 $\mu_{t-1}(x_t) + \beta_t \sigma_{t-1}(x_t) \geq \mu_{t-1}(x^*) + \beta_t \sigma_{t-1}(x^*)$. It then follows that for all $t \geq 1$ and with
 747 probability at least $1 - \delta$,

748
$$\begin{aligned} |f(x^*) - f(x_t)| &\stackrel{(1)}{\leq} \beta_t \sigma_{t-1}(x_t) + \mu_{t-1}(x_t) - f(x_t) \\ &\stackrel{(2)}{\leq} \beta_t \sigma_{t-1}(x_t) + \mu_{t-1}(x_t) + (\beta_t \sigma_{t-1}(x_t) - \mu_{t-1}(x_t)) \\ &\leq 2\beta_t \sigma_{t-1}(x_t) \end{aligned} \quad (7)$$

 749

756 where $\leq^{(1)}$ uses the fact that via Lemma B.1 and our acquisition function, $f(x^*) \leq \beta_t \sigma_{t-1}(x^*) +$
 757 $\mu_{t-1}(x^*) \leq \beta_t \sigma_{t-1}(x_t) + \mu_{t-1}(x_t)$ and $\leq^{(2)}$ once again uses Lemma B.1.
 758
 759

760 Using result from Eq. 7, we see that the cumulative regret

$$761 \quad \sum_{t=1}^T r_t = \sum_{t=1}^T (f(x^*) - f(x_t)) \leq 2 \sum_{t=1}^T \beta_t \sigma_{t-1}(x_t). \quad (8)$$

764
 765 Since we know that $\sum_{t=1}^T \sigma_{t-1}(x_t) = \mathcal{O}(\sqrt{T\gamma_T})$ and used $\beta_t = B + R\sqrt{2(\gamma_{t-1} + 1 + \ln(1/\delta))}$, the
 766 cumulative regret in Theorem 4.1 can be written as:
 767

$$770 \quad R_T = \sum_{t=1}^T r_t \quad (9)$$

$$773 \quad \leq 2 \sum_{t=1}^T \beta_t \sigma_{t-1}(x_t) \quad (10)$$

$$776 \quad \leq 2\mathcal{O}(\sqrt{T\gamma_T})(B + R\sqrt{2(\gamma_{t-1} + 1 + \ln(1/\delta))}) \quad (11)$$

$$778 \quad = \mathcal{O}\left(B\sqrt{T\gamma_T} + R\sqrt{T}\sqrt{\gamma_T^2 + \gamma_T \ln(1/\delta)}\right). \quad (12)$$

□

782 C MORE EXPERIMENTAL DETAILS

784 Here, we provide details of how we ran our experiments for JOBS . Our data configuration consists of
 785 10 parameters representing the mixing ratio (a probability simplex) across 10 parameters. Our model
 786 configuration consists of 10 parameters, representing:
 787

- 788 1. LoRA rank $\in [1, 256]$.
- 789 2. Number of LLM layers to apply LoRA to $\in [1, 31]$ (this varies for different LLMs, depending
 790 on how many transformer layers are present).
- 791 3. Whether to apply LoRA to front layers or rear layers (binary decision).
- 792 4. Whether to apply LoRA to Q-projection layer (binary decision).
- 793 5. Whether to apply LoRA to V-projection layer (binary decision).
- 794 6. Whether to apply LoRA to K-projection layer (binary decision).
- 795 7. Whether to apply LoRA to MLP-Up-projection layer (binary decision).
- 796 8. Whether to apply LoRA to MLP-Down-projection layer (binary decision).
- 797 9. LoRA dropout $\in [0, 1]$.
- 798 10. LoRA alpha $\in [1, 500]$.

802 In all our main results (Table 1, 2, 3), we used 8-shot prompting with CoT. We used 100 BO
 803 iterations, with a shortened training time of $B_{\text{small}} = 50$ seconds at each iteration. To build our
 804 performance scaling law predictor (Sec. 4.2), we collected a random Sobol sequence (Nguyen et al.,
 805 2018) of 30 training configurations, their partial and full fine-tuning performance, before training a
 806 densely-connected, 64-width, 3 layers neural network \mathcal{F} to predict the full performance. This random
 807 sequence is also added to our initial GP model to warm-start BO in JOBS . We used a deep kernel for
 808 the GP used to model our LLM performance landscape, and ran our experiments with the Botorch
 809 library. At the end of every iteration, we use maximum-likelihood to estimate the hyperparameters in
 the deep kernel. We normalize and rescale all our training configuration parameters to be between 0

810 and 1 when fitting our GP. For binary or integer decisions, we use continuous relaxation (Daulton
 811 et al., 2022) to project them into the same continuous space as other variables.
 812

813 Throughout our experiments, we used a single L40 GPU to fine-tune our LLM.
 814

815 D COMPUTATION COST OF JOBS VERSUS OTHER BASELINES

816
 817 **Qualitative comparison.** We can actually concisely summarize the computation cost of JOBS. We
 818 used 30 observations from fully fine-tuning an LLM with random training configurations for 1000
 819 seconds (to learn our performance scaling law predictor and forming the first 30 observations of
 820 our trials). Then, we run JOBS for 70 iterations, each taking 50 seconds of fine-tuning time. This
 821 means JOBS uses 33500 seconds (9+ hours) of fine-tuning time. This is faster or comparable to
 822 many state-of-the-art data selection algorithms (See next section for a more precise quantitative
 823 comparison). For instance, computing the Influence Function (IF) scores (Koh & Liang, 2020) of all
 824 data points took a few days. In addition, JOBS is an *anytime* algorithm, meaning if computation cost
 825 is an issue, we can terminate it at any step to obtain a sub-optimal (but still reasonable good) solution.
 826

827 Quantitative comparison of wall-clock hours

828 All model selection methods (Liu et al., 2019; He et al., 2024) used in our paper are iterative in nature
 829 and require repeated fine-tuning of LLMs. We ensured they run for 33500 seconds. Hence, they have
 830 equal computation time (JOBS achieves better performance, as seen in Table 3). For data selection
 831 methods (LESS, DoReMi, IF, Diversity), we recorded their wall-clock runtime in Table 4. In general,
 832 we found data selection methods to be very computationally expensive, taking as much or more time
 833 than JOBS. One of the key reason that JOBS runs faster is due to our scaling law predictor (Sec. 4.2),
 834 which drastically reduces the fine-tuning time needed at each BO iteration.
 835

Table 4: Wall -clock runtime comparison of data selection techniques versus JOBS

Method	Time (hours)
LESS	16.3
DoReMi	18.5
IF	52
Diversity	122
JOBS	9.3

844 E QUALITATIVE COMPARISON OPTIMAL TRAINING CONFIGURATIONS FOUND 845 BY JOBS VERSUS OTHER BASELINES

846 Here, we display some of the optimal training configurations found by JOBS as compared to other
 847 baselines. We divided the configurations into two tables detailing the best data (Table 5) and model
 848 (Table 6) configurations found for the **gsm8k** evaluation task. Note that the training domain does not
 849 contain **gsm8k** because all our evaluation is done in a much harder out-of-domain setting.
 850

851 Table 5: Optimal data mixing ratio found by JOBS versus other baselines. The columns denote the
 852 ratio allocated to each training domain.
 853

	CQA	HQA	PQA	SciQ	TrivQA	TruthQA	Wiki	MMLU	ARC
JOBS	0.12	0	0	0.10	0.19	0	0.28	0.31	0
DoReMi	0.08	0.11	0.18	0.05	0.08	0.14	0.04	0.16	0.13

854
 855 On particular interest is that JOBS optimizes the data mixture by placing more weights into some
 856 data domains based on the evaluation performance on the downstream task (in this case, gsm8k).
 857 Specifically, JOBS successfully inferred (without knowing that the evaluation task is gsm8k) that
 858 domains such as SciQ, TriviaQA, Wikipedia and MMLU contains some math information, and thus
 859 chooses them in the optimized data mixture.
 860

864 On the other hand, DoReMi is a distributionally robust data mixing approach, and results in a more
 865 uniform data mixing ratio. This means the data mixture is not tailored specifically to the evaluation
 866 task gsm8k, and hence does not perform as well.
 867

868
869 Table 6: Optimal model configuration found by JOBS versus other baselines.
870

	Rank	NumLayers	Order	Q	K	V	Up	Down	dropout	α
JOBS	36	25	1	1	0	1	1	0	0.112	64
DARTS	12	13	0	1	1	1	1	0	0.058	45

871 Next, we examine the optimal model configurations found JOBS . We noticed that JOBS prefers a
 872 higher LoRA rank and layer (i.e., how many layer to apply LoRA) but chooses to apply LoRA to only
 873 certain transformer layers. In particular, JOBS found that for the gsm8k evaluation task, fine-tuning
 874 Q, V, Up layers is sufficient to achieve good fine-tuning performance, and we should fine-tune the
 875 rear layers instead of the front layers (Order = 1).
 876

877
878

F MORE EXPERIMENTAL RESULTS AND DISCUSSION

879

880 In Table. 7, 8, 9, 10, 11, we repeated the experimental set-up as those in Table. 1 and mixed and
 881 matched different model and data selection methods over another 5 evaluation tasks (Common-
 882 senseQA, HeadQA, MMLU, ARC and TriviaQA). The results show that JOBS outperforms all
 883 combinations of data and model selection works. This suggests that jointly adjusting both data and
 884 model configurations does indeed produce *interaction improvement* over optimizing the configura-
 885 tions independently. In addition, from running our experiments, we find our approach significantly
 886 easier to implement in code.
 887

888
889

F.1 OTHER NAIVE BASELINES

890

891 In Table. 12, we jointly optimized training configurations using several other naive approaches in
 892 our experiments. We tried 3 naive approaches: (1) **Random** randomly picking 100 different training
 893 configurations, fine-tune them for 50 seconds each, use our performance scaling law predictor to
 894 predict and select the best-performing training configuration. (2) **Random Data** perform JOBS on
 895 model configurations for only 10 iterations and repeat the experiment with 10 randomly chosen data
 896 configurations (this ensures the same amount of compute as performing JOBS on all training configu-
 897 rations for 100 iterations). (3) **Random Model** repeat approach (2) on training configurations instead.
 898 While these approaches serve as good sanity checks, they do not yield good LLM performances,
 899 largely because randomly selecting training configurations does not exploit the learnt performance
 900 landscape from historically observed LLM performances.
 901

902
903 Table 7: CommonsenseQA (Talmor et al., 2019)
904

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	JOBS
Default	76.3 ± 1.0	73.0 ± 0.8	74.2 ± 1.7	79.3 ± 0.7	77.4 ± 1.7	80.6 ± 0.8	-
DARTS	79.6 ± 1.3	76.3 ± 1.7	76.1 ± 1.1	73.7 ± 1.2	80.1 ± 1.1	79.6 ± 0.6	-
AutoLoRA	78.9 ± 0.9	79.8 ± 0.4	76.1 ± 0.5	77.9 ± 1.2	78.0 ± 1.0	81.5 ± 1.0	-
RoBoT	74.9 ± 0.8	75.5 ± 0.9	77.1 ± 0.9	79.4 ± 1.5	76.3 ± 0.9	80.2 ± 0.2	-
BO	79.7 ± 1.3	79.4 ± 0.3	77.0 ± 0.4	81.1 ± 0.9	79.4 ± 1.1	80.7 ± 1.2	-
JOBS	-	-	-	-	-	-	84.3 ± 2.4

Table 8: HeadQA (Vilares & Gómez-Rodríguez, 2019)

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	J_{OBS}
Default	47.0 ± 0.9	46.4 ± 1.0	46.3 ± 0.8	46.1 ± 0.7	45.8 ± 1.2	49.2 ± 0.6	-
DARTS	43.6 ± 0.2	46.7 ± 1.3	53.0 ± 2.4	40.7 ± 1.5	47.3 ± 0.7	48.9 ± 1.2	-
AutoLoRA	49.1 ± 1.4	49.4 ± 0.4	50.3 ± 0.9	47.7 ± 1.1	48.4 ± 1.0	51.3 ± 0.3	-
RoBoT	49.5 ± 1.2	48.0 ± 1.0	48.7 ± 1.7	49.2 ± 1.2	50.6 ± 0.8	50.8 ± 0.6	-
BO	49.6 ± 0.8	51.3 ± 1.0	52.0 ± 0.6	52.6 ± 0.3	50.3 ± 0.7	48.2 ± 0.6	-
J_{OBS}	-	-	-	-	-	-	55.8 ± 1.5

Table 9: MMLU (Hendrycks et al., 2021)

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	J_{OBS}
Default	61.2 ± 1.3	63.5 ± 0.9	59.7 ± 1.8	57.9 ± 0.6	62.1 ± 1.4	64.2 ± 1.2	-
DARTS	58.3 ± 0.7	61.0 ± 2.1	62.9 ± 1.0	55.7 ± 1.6	60.1 ± 0.5	63.4 ± 2.0	-
AutoLoRA	62.5 ± 1.4	64.3 ± 0.6	60.8 ± 2.2	58.2 ± 1.9	63.7 ± 0.8	61.5 ± 1.1	-
RoBoT	59.9 ± 0.9	60.7 ± 1.2	63.4 ± 1.7	61.5 ± 1.5	58.3 ± 2.3	62.1 ± 0.7	-
BO	55.8 ± 1.8	57.2 ± 0.4	61.3 ± 1.2	60.5 ± 1.6	63.9 ± 1.0	59.6 ± 1.5	-
J_{OBS}	-	-	-	-	-	-	69.5 ± 0.8

Table 10: ARC (Clark et al., 2018)

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	J_{OBS}
Default	54.7 ± 1.3	59.2 ± 0.7	61.4 ± 2.0	52.8 ± 1.5	60.6 ± 0.9	62.3 ± 1.2	-
DARTS	58.1 ± 0.8	61.0 ± 1.6	62.8 ± 0.5	54.3 ± 2.1	57.9 ± 1.7	60.5 ± 0.6	-
AutoLoRA	60.4 ± 1.1	63.2 ± 0.9	58.6 ± 1.9	55.1 ± 0.8	62.1 ± 2.0	59.8 ± 1.0	-
RoBoT	56.8 ± 1.5	58.7 ± 1.4	61.1 ± 1.2	60.3 ± 0.7	55.7 ± 2.2	61.4 ± 1.3	-
BO	52.6 ± 2.0	55.9 ± 0.6	59.7 ± 1.3	58.5 ± 1.4	63.4 ± 1.0	57.4 ± 0.9	-
J_{OBS}	-	-	-	-	-	-	70.4 ± 1.3

Table 11: TriviaQA Gen (Joshi et al., 2017)

\downarrow Model Data \rightarrow	Default	LESS	DoReMi	IF	Diversity	BO	J_{OBS}
Default	55.5 ± 1.4	57.2 ± 0.8	53.1 ± 0.9	55.8 ± 0.7	58.9 ± 0.8	65.0 ± 0.6	-
DARTS	58.2 ± 0.8	61.3 ± 1.2	61.0 ± 0.7	63.3 ± 1.0	59.2 ± 0.6	66.7 ± 1.8	-
AutoLoRA	67.8 ± 1.4	64.7 ± 0.9	70.6 ± 2.2	68.6 ± 1.7	66.2 ± 1.5	69.7 ± 2.4	-
RoBoT	58.4 ± 1.5	62.3 ± 1.7	64.2 ± 1.4	57.2 ± 1.2	63.4 ± 1.5	68.2 ± 1.3	-
BO	70.7 ± 1.4	66.7 ± 0.8	72.5 ± 0.8	71.7 ± 0.9	74.7 ± 1.0	72.7 ± 2.3	-
J_{OBS}	-	-	-	-	-	-	76.2 ± 1.9

Table 12: Comparison of some naive baselines with J_{OBS} (Higher is better), averaged over 5 trials. **Random Data** means we randomly selected data mixtures and applied J_{OBS} only on the model configurations (vice versa for **Random Model**). **Random** means we randomly selected training configurations.

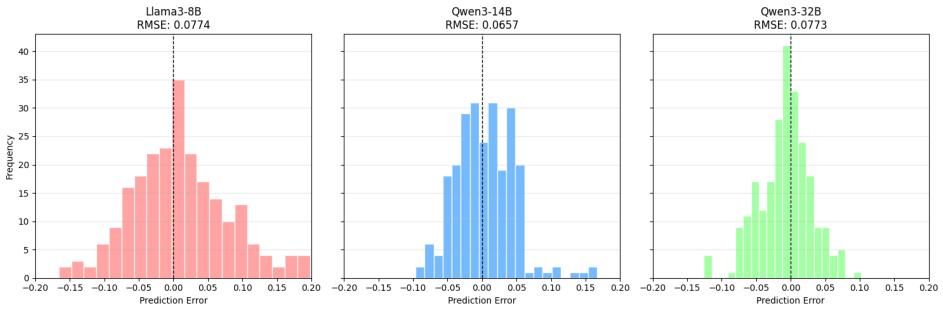
Model	Task	Random	Random Data	Random Model	J_{OBS}
Llama-3-8B-Instruct	gsm8k	66.5 ± 2.4	67.3 ± 1.6	71.5 ± 0.9	80.4 ± 1.9
	TruthfulQA	59.1 ± 1.9	59.8 ± 1.5	64.2 ± 1.4	75.8 ± 1.3
	CommonsenseQA	78.8 ± 3.2	76.4 ± 1.2	76.3 ± 1.2	84.3 ± 2.4
	HeadQA	51.5 ± 2.1	51.3 ± 2.1	53.2 ± 1.2	55.8 ± 1.5
	MMLU	67.6 ± 2.9	66.4 ± 0.7	63.1 ± 1.1	69.5 ± 0.8
	ARC	60.5 ± 3.2	65.2 ± 1.7	64.6 ± 0.6	70.4 ± 1.3
	TriviaQA	58.2 ± 3.6	61.7 ± 2.4	63.2 ± 1.5	76.2 ± 1.2

972 G ADDITIONAL ABLATIONS AND DISCUSSION

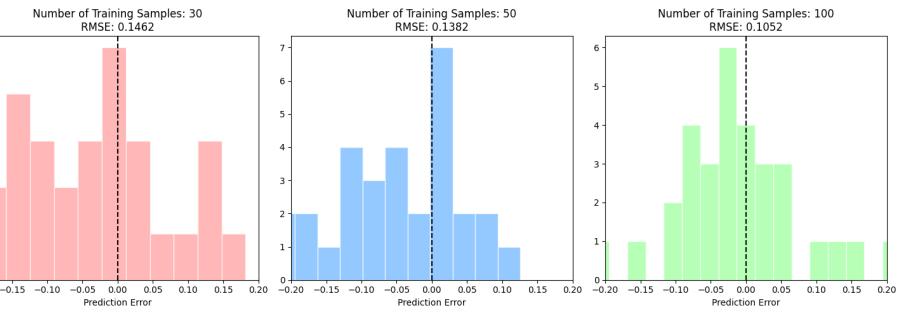
974 This section highlights the additional experimental results and discussions we run during the rebuttal,
 975 specifically on the CommonsenseQA task. To summarize,

- 977 1. First, in Fig. 5, we run ablations on the predictor predictor validation set error for LLM
 978 model of different sizes (Llama-3-8B-Instruct, Qwen3-14B and Qwen3-32B). Since our
 979 task performance is more than 80%, the predictor error is reasonable across different
 980 model sizes. In addition, JoBS’s BO backbone handles these prediction error gracefully as
 981 observation noise and our algorithm still converges and performs better than other baseline
 982 (Theorem 4.1).
- 983 2. Second, in Fig. 6, we run ablations on how the number of training samples influence our
 984 predictor \mathcal{F} ’s prediction error. In general, the results show that more training samples allow
 985 our predictor to be more accurate. However, fitting the predictor with more training samples
 986 is more computationally expensive since using more training samples reduces the number of
 987 BO function evaluations. From our experiments, using 30 training samples is sufficient to
 988 yield good LLM performance.
- 989 3. Third, we ran additional experiments in Table 13 to showcase the effectiveness of JoBS on
 990 LoRA fine-tuning of larger models (averaged over 5 trials).
- 991 4. Fourth, we ran additional experiments to investigate how different number of training
 992 samples influence JoBS’s performance downstream in Table 14 (averaged over 5 trials).
- 993 5. Fifth, we ran additional experiments to investigate JoBS’s performance for full-parameter
 994 fine-tuning in Table 15. The model configuration we optimize is a one-dimensional variable
 995 indicating the number of layers in which we apply the full-parameter fine-tuning to (averaged
 996 over 5 trials).

997 G.1 ABLATION STUDY ON PREDICTION ERROR OF NEURAL NETWORK PREDICTOR \mathcal{F}



1009 Figure 5: Predictor error (on validation set) across varying model sizes. Predictor learnt from
 1010 performance observations of larger models. This hints that performance of larger models is easier to
 1011 extrapolate, possibly due to more stable training dynamics.



1024 Figure 6: Predictor error (on validation set) for varying number of training samples, with Llama-3-
 1025 8B-Instruct.

1026 Table 13: JoBS applied to LoRA for PEFT of larger models.
1027

↓ Model Method →	LESS + AutoLoRA	DoReMi + DARTS	JoBS
Llama-3-8B-Instruct	0.80	0.79	0.84
Qwen3-14B	0.82	0.80	0.86
Qwen3-32B	0.83	0.84	0.90

1032 Table 14: Performance of JoBS w.r.t. different number of samples used to train \mathcal{F} (Sec. 4.2)
1033

↓ Task Training samples →	30	100
CommonsenseQA	0.84	0.88

1034 Table 15: JoBS applied to full-parameter fine-tuning of larger models.
1035

↓ Model Method →	LESS + AutoLoRA	DoReMi + DARTS	JoBS
Llama-3-8B-Instruct	0.73	0.76	0.81
Qwen3-14B	0.76	0.81	0.83
Qwen3-32B	0.86	0.82	0.88

1044 G.2 RELATED WORK ON SCALING LAW PREDICTORS & BO JOINT-OPTIMIZATION

1045 **Scaling Law Predictors** Understanding how LLM performance scales with training resources is
1046 crucial for efficient optimization. Foundational works have established power laws relating loss to
1047 model size, dataset size, and compute budget (Kaplan et al., 2020; Hoffmann et al., 2022; Zhang et al.,
1048 2024a; Shukor et al., 2025). More recent studies have extended these laws to predict downstream
1049 performance on specific metrics (Wu & Tang, 2024; Chen et al., 2025b) and optimize data mixtures
1050 (Chen et al., 2025c; Xie et al., 2023a; Ye et al., 2024). However, these approaches typically derive
1051 static formulas by assuming fixed model architectures or training recipes. Unlike these rigid scaling
1052 laws, JoBS employs a flexible neural predictor capable of estimating performance across a diverse,
1053 dynamic search space of joint data and model configurations, enabling the evaluation of "interaction
1054 improvements" without exhaustive full-scale training.

1055 **Bayesian Optimization (BO)** BO has been widely adopted for optimizing black-box functions where
1056 evaluations are costly (Srinivas et al., 2010). In the context of deep learning, BO has been successfully
1057 applied to Neural Architecture Search (NAS) (White et al., 2020) and hyperparameter tuning (Brochu
1058 et al., 2010; Snoek et al., 2012). To handle the complexity of modern training setups, recent works
1059 have explored methods such as introducing constrained BO for resource management (Eriksson
1060 & Poloczek, 2021) and mixed-variable optimization for combinations of discrete and continuous
1061 parameters (Daulton et al., 2022). Frameworks like AutoAI (Chen et al., 2024) have also attempted to
1062 optimize general machine learning pipelines, they do not specifically address the "chicken-and-egg"
1063 interdependency between data mixtures and PEFT configurations in LLMs. JoBS leverages these
1064 advanced BO techniques—specifically deep kernel learning (Wilson et al., 2016)—to navigate this
1065 complex, high-dimensional landscape efficiently.

1066 G.3 ADDITIONAL EXPERIMENTAL RESULTS ON MULTI-TASK FINE-TUNING

1067 We also ran JoBS on a multi-task scenario, where one trains the predictor and applies JoBS such
1068 that the LLM will perform well across multiple tasks at once. In the multi-task scenario, we average
1069 the LLM performance over 5 different evaluation tasks: TruthfulQA, TriviaQA, CommonsenseQA,
1070 GSM8K, and MMLU, and treat this average performance as our optimization objective.

1071 Table 16: Comparison of different data mixing methods across model sizes for the multi-task scenario.
1072

Model	LESS + AutoLoRA	DoReMi + DARTS	JoBS with multi-task predictor
Llama-3-8B-Instruct	0.63	0.66	0.70
Qwen3-14B	0.71	0.66	0.73
Qwen3-32B	0.74	0.72	0.79