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ABSTRACT

Chain-of-Thought (CoT) reasoning holds great promise for explaining language
model outputs, but recent studies have highlighted significant challenges in its
practical application for interpretability. We propose to address this issue by mak-
ing CoT causally essential to prediction through two key components: factoring
next-token prediction through intermediate CoT text, and training CoT to predict
future tokens independently of other context. This results in “Markovian” lan-
guage models, where CoT serves as a fixed-size state for future token prediction.
Our approach optimizes for “informativeness” – the improvement in next-token
predictions using a trained CoT compared to a baseline. Using Proximal Policy
Optimization (PPO) for arithmetic problems and policy gradient for GSM8K, we
demonstrate effectiveness on both arithmetic problems with Mistral 7B and the
GSM8K benchmark with Llama 3.1 8B, where the model learns to produce CoTs
that are 33.20% more effective at predicting answers than the pre-trained base-
line. The increased sensitivity of model performance to CoT perturbations pro-
vides strong evidence of CoT reliance. Furthermore, we show that CoTs trained
for one model generalize to help other models predict answers, suggesting these
CoTs capture reasoning patterns that transfer across different interpreters. This
work advances the development of more interpretable language models, poten-
tially enabling their extension to arbitrarily long contexts and enhancing AI rea-
soning capabilities across various domains.

1 INTRODUCTION

The rapid advancement of language models (LMs) has revolutionized the field of artificial intel-
ligence, demonstrating remarkable capabilities in tackling complex cognitive tasks (Brown et al.,
2020). However, it can be challenging to understand why an LM gave a particular answer (Burns
et al., 2023; Gurnee & Tegmark, 2024; Lamparth & Reuel, 2023), which can be problematic in
high-stakes scenarios (Rivera et al., 2024; Lamparth et al., 2024; Grabb et al., 2024). Interpretability
techniques analyze the patterns and activations of a neural network in order to extract an explanation
of the network’s behavior (Casper et al., 2023; Meng et al., 2022; Geva et al., 2022; Geiger et al.,
2022; Wang et al., 2022; Nanda et al., 2023; Lamparth & Reuel, 2023). However, since language
models already speak natural language and have been trained to be able to use their own internal
representations, we could in principle simply ask the language model why it gave a particular an-
swer to a question. Asking the language model to explain its reasoning in a “step-by-step” fashion
before answering a question is known as Chain-of-Thought (CoT) (Wei et al., 2022; Nye et al., 2022)
prompting.

However, there are concerns that CoT is an inadequate or unfaithful explanation for LM-generated
text. For example, Turpin et al. (2023) show that biasing the LM to believe a particular answer via a
supposedly irrelevant in-context feature such as multiple choice answer order will cause the CoT to
rationalize that answer without mentioning the background feature. Also some LMs give the same
answers to questions despite changes to the CoT reasoning in their context window (Lanham et al.,
2023). While this has some benefits – the model can still answer correctly despite intermediate
reasoning errors – it is also an indicator that the CoT does not fully capture the LM’s reasoning
process. This raises a critical issue with using CoT as a tool for interpretability.
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Our work introduces a novel perspective on this issue by focusing on informativeness rather than
faithfulness, which would imply that the CoT reflects some underlying causal process in the model.
Our key insight is to make the CoT text itself causally important in the model’s reasoning by training
an LM to generate a minimal-length CoT such that the model can predict the answer given only that
CoT. This approach ensures that the CoT is both complete (i.e., each necessary step is included)
and maximally fragile (i.e., removing or changing the meaning of any step breaks the CoT and thus
leads to a different result) by making the CoT itself a bottleneck in the flow of information that the
language model uses to produce text.

We assume the LM receives a sequence of observations to predict – this could be a question-answer
pair (length two sequence) or many adjacent segments of generic internet text. Our conceptual
arguments rely on the size of each observation being larger than the CoT – otherwise the LM could
put the answer immediately in the CoT. Though for pragmatic reasons we use short observations, the
model does not learn the undesirable behavior of directly answering in the CoT due to the relative
difficulty of predicting the answer without any CoT. The primary contributions of this work are:

1. We introduce a formal definition of informativeness which is used as an optimization target,
providing a principled approach to generating meaningful CoT reasoning.

2. We demonstrate our training algorithm’s effectiveness by:

• Training Mistral 7B V0.2 (Jiang et al., 2023) to solve 15-term addition problems
• Training Llama 3.1 8B (Dubey et al., 2024) to achieve a 33.2% performance gain on

the GSM8K (Cobbe et al., 2021) reasoning dataset

3. We verify the causal importance of generated CoTs through perturbation analysis, showing
that training increases the sensitivity of model performance to CoT modifications.

4. We demonstrate that CoTs trained for one model transfer effectively to other models, sug-
gesting they capture generalizable reasoning patterns rather than model-specific artifacts.

By making CoT causally important in the model’s reasoning, we aim to improve the interpretability
and reliability of language models. This approach offers a novel perspective on understanding and
steering LM behavior by leveraging the model’s own generated explanations, rather than relying
solely on the analysis of its internal parameters.

o1=Question s1=“Step-by-step...”

s2=CoT

o2=Answer

uθ(s
′|o, s)

π(o|s)

o1 o2 o3

s1 s2 s3

uθ(s
′|o, s) uθ(s

′|o, s)

π(o|s) π(o|s) π(o|s)

Single Observation Observation Sequence

Figure 1: Refined illustration of the training method. Left: Single time-step process from Question
to CoT to Answer. Right: Causal structure showing the generation of states from observations
and previous states using the state update function uθ(s

′|o, s), and the prediction of observations
from states using the policy π(o|s). Observations are generated by the causal data distribution. In
experiments, both uθ and π are Mistral 7B Instruct V0.2 or Llama 3.1 8B Instruct, but only the
weights of uθ are updated during training. The state update uθ also involves concatenating the
observation and state letting Mistral generate the next state’s worth of tokens.
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Figure 2: The log probability lnπ(ans | cot) of the answer ans given a CoT cot, where cot is
sampled from the trained weights cot ∼ uθ(cot | q, cotinit) and cot′ is sampled from the unmod-
ified weights cot′ ∼ u(cot | q, cotinit). We train to produce CoTs which are sufficient to predict
the correct answer even without the original question, enforcing a text bottleneck in the language
model’s information flow, forcing the CoT to be causally load-bearing to production of the answer.
This plot specifically depicts the training of Mistral 7B Instruct V0.2 on 15-term addition problems
and their solutions. Because of high variance, we plot the point-wise maximum for each training
technique across 4 separate training runs.

2 RELATED WORK

Prior work shows that CoT prompting improves language model reasoning capabilities (Wei et al.,
2022; Nye et al., 2022). We train the model to produce a strong CoT, as opposed to prompting
strategies as in Wei et al. (2022). Scratchpad (Nye et al., 2022) also trains the model to produce a
CoT, but they supply correct CoTs during training, whereas our model has to discover useful CoTs
for itself. Zelikman et al. (2024) also use RL to improve CoT reasoning, but they do not restrict the
model’s attention to the previously generated CoT, making the CoT less of a standalone explanation.
State space models also generate state to remember their history (Gu et al., 2021; 2022; Gu & Dao,
2023), but we use natural language instead of activation vectors for interpretability.

Lyu et al. (2023) improved faithfulness of language model reasoning by restricting the output to
a particular formal language so that a deterministic solver could provide the rest of the answer,
whereas we do not restrict to production of a formal language, because our future goal is to target
general language modeling. Ranaldi & Freitas (2024) directly fine-tune a smaller model using CoT
from a more capable model. In contrast, we do not require the existence of a more competent model
to learn useful CoTs. Lanham et al. (2023) use robustness to reasoning perturbations as an indicator
of unfaithfulness, which we adapt by replacing the variation in multiple choice accuracy with the
variation in log probability assigned to the correct observation. Bentham et al. (2024) respond that
robustness might simply be an indicator of accuracy, which we ameliorate by removing history from
the context window. In order to address this concern more thoroughly, we would need to demonstrate
the ability to further compress our CoTs.

3 MARKOVIAN LANGUAGE MODELS AND INFORMATIVENESS OF UPDATE
FUNCTIONS

We would like a mathematical structure which describes the shape of a language model with a CoT
bottleneck, so that we can derive an reinforcement learning algorithm with respect to that formalism.
For this reason, we introduce the concept of Markovian Language Models and define a measure of
informativeness for their update functions.

3.1 MARKOVIAN LANGUAGE MODELS

A regular auto-regressive LM can use its entire context when predicting the next token. In partic-
ular, when the LM takes a question, produces some reasoning and finishes with a final answer, the
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generation of the final answer can still attend back to the question. Thus, there is no guarantee that
the CoT is causally linked to the answer tokens. In contrast, in a Markovian LM, the model is only
given access to limited state to make predictions.

Formally, we define a Markovian Language Model as a tuple M = (V,S, π, u, s1), where:

• V is a finite vocabulary,

• S is a set of states, representing CoT reasoning,

• π : S → ∆(Vk) is a state-conditional distribution over k-token sequences, where ∆(Vk)
is the probability simplex over k-token sequences from V ,

• u : Vk × S → ∆(S) is a stochastic update function,

• s1 ∈ S is the initial state.

The MLM operates sequentially: given a current state st ∈ S and observation xt ∈ Vk, it produces
a probability distribution π(st) over the next k-token sequence, and stochastically updates its state
to st+1 ∼ u(st, xt).

3.2 DATA-GENERATING DISTRIBUTION

Let P be the true data-generating distribution over sequences of length T . We can sample from this
distribution using:

xt ∼ P (xt|x<t) for t = 1 to T (1)

where x<t denotes all observations before time t.

3.3 PARAMETERIZED UPDATE FUNCTION

We consider a parameterized update function uθ, where θ represents the parameters to be optimized.
We compare this to a baseline update function u′, which uses the original set of weights before fine-
tuning. Both uθ and u′ operate in conjunction with the same prediction function π, which also uses
the original set of weights.

3.4 INFORMATIVENESS OF UPDATE FUNCTIONS

We define the informativeness of the update function u relative to a baseline update function u′ as:

I(u, u′, P ) = Eτ∼P,u,u′ [R(τ)] (2)

where τ = (x1, s1, s
′
1, ..., xT , sT , s

′
T ) is a trajectory, with:

• xt ∼ P (xt|x<t)

• st+1 ∼ u(st+1|xt, st)

• s′t+1 ∼ u′(s′t+1|xt, s
′
t)

The reward R(τ) for a trajectory is defined as:

R(τ) =

T∑
t=1

[lnπ(xt|st)− lnπ(xt|s′t)] (3)

Now, let’s consider optimizing this informativeness using policy gradient methods. We parameterize
u by some weights θ, giving us uθ. The objective function is:

J(θ) = I(uθ, u
′, P ) (4)
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The gradient of this objective with respect to θ is:

∇θJ(θ) = Eτ∼P,uθ,u′

[
R(τ)

T−1∑
t=1

∇θ lnuθ(st+1|xt, st)

]
(5)

In practice, we estimate this gradient using Monte Carlo sampling:

∇θJ(θ) ≈
1

N

N∑
i=1

R(τ (i))

T−1∑
t=1

∇θ lnuθ(s
(i)
t+1|x

(i)
t , s

(i)
t ) (6)

where {τ (i) = (x
(i)
1 , s

(i)
1 , s

′(i)
1 , ..., x

(i)
T , s

(i)
T , s

′(i)
T )}Ni=1 are sampled trajectories.

This procedure improves the update function uθ to generate more informative CoT reasoning, lead-
ing to better predictions of future observations.

4 METHODS

4.1 MARKOVIAN LANGUAGE MODEL FOR QUESTION-ANSWER PAIRS AND OPTIMIZATION

We define a specialized Markovian Language Model (MLM) for question-answer pairs as a 5-tuple
M = (V,S, π, u, s1), where:

• V is the vocabulary of tokens.
• S = Vℓ is the set of all possible CoT sequences of length ℓ.
• π : S → ∆(Vℓ) is the prediction function.
• u : S × Vℓ → ∆(S) is the update function.
• s1 = cotinit ∈ S is the initial state, where cotinit is a fixed initial prompt.

Let ℓq = ℓa = ℓ be the length of an observation (question or answer). We implement the MLM
specification using a language model L : V∗ → ∆(V), where L(s) gives the probability distribution
over the next token given the sequence s. We denote the i-th tokens of the CoT and answer as coti
and ansi, respectively.

The model operates as follows:

1. Update function u:

lnu(s2 = cot|o1 = q, s1 = cotinit) =

ℓ∑
i=1

lnL(concat(q, cotinit, cot<i))[coti] (7)

We implement lnu by concatenating the question with cotinit and summing the log proba-
bility of each token conditioned on the previous tokens and the prefix.

2. Prediction function π:

lnπ(o2 = ans|s2 = cot) =
ℓ∑

i=1

lnL(concat(cot, ans<i))[ansi] (8)

4.2 THRESHOLD-BASED EXPERT ITERATION, POLICY GRADIENT, AND PROXIMAL POLICY
OPTIMIZATION

We explore three RL techniques to optimize the language model for informative CoT production:
Threshold-based Expert Iteration, Policy Gradient, and Proximal Policy Optimization. All three
implementations use a form of importance sampling to focus updates on more informative CoTs.
All three implementations are concisely contained within a single Python file, which we have made
freely available.
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4.2.1 THRESHOLD-BASED EXPERT ITERATION (TEI)

Threshold-based Expert Iteration consists of the following steps:

1. Sample a CoT from a trained and untrained model (cot and cot’)

2. Estimate informativeness as I(ans, cot, cot′) = π(ans|cot)− π(ans|cot′)
3. If I is at least one standard deviation above the historical average:

• Calculate the gradient of the log probability of having produced that CoT:
∇θ lnuθ(cot|q, cotinit)

• Gradient ascend

Limitation: This technique potentially discards valuable information, as we might prefer to update
more strongly towards CoTs that produce very high rewards.

4.2.2 POLICY GRADIENT (PG)

Policy Gradient (with threshold-based sample selection) consists of the following steps:

1. Sample a CoT from a trained and untrained model (cot and cot’)

2. Estimate informativeness as I(ans, cot, cot′) = π(ans|cot)− π(ans|cot′)
3. If I is at least one standard deviation above the historical average:

• Calculate the gradient of the log probability of having produced that CoT:
∇θ lnuθ(cot|q, cotinit)

• Multiply the gradient by I and then ascend

Advantage: Utilizes more information than TEI
Disadvantage: Increased instability, which can be problematic given pre-trained initial weights

4.2.3 PROXIMAL POLICY OPTIMIZATION (PPO)

For each CoT, PPO performs the following:

1. Calculate the probability ratio: r = uθ(cot|q,cotinit)
u′(cot|q,cotinit)

2. Compute the clipped objective:

obj = min(r · I, clip(r, 1− ϵ, 1 + ϵ) · I)

where:

• I = Informativeness(ans, cot, cot′)

• clip(x, y, z) =


y if x < y

z if x > z

x otherwise
• ϵ = 0.2

3. Back-propagate to increase obj

Key Idea: Remove the incentive to create CoTs for which the trained and untrained state update
functions disagree too much.

Implementation Details:

• We use threshold-based sample selection here as well

• Subtract the historical average informativeness over unfiltered CoTs from the current infor-
mativeness as a baseline

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 MULTI-STEP ADDITION

We generate random addition problems, where each problem consists of 15 terms and each term is
a uniform random natural number less than 100. We fine-tune Mistral 7B Instruct V0.2 to produce
CoT tokens such that a frozen copy of the pre-trained language model can predict the correct answer
given that CoT, for each training technique in Methods. We plot the mean negative log likelihood
over the answer tokens as a function of training batch in Fig. 2. Note that this is both training and
testing loss, since we are always generating fresh arithmetic problems. PPO, our preferred training
method for arithmetic, can mention the correct answer in up to 90% of CoTs and achieve an average
natural log probability of around -0.7.

Since the Mistral tokenizer allocates a separate token for each digit, a natural log probability of
-0.7 corresponds to an actual probability of e−0.7 ≈ 0.4966, or 50% chance of picking the correct
next token on average. A 90% likelihood saying the answer verbatim in the CoT and a 50% of
guessing each digit incorrectly may seem contradictory – however this discrepancy is due to the
predictor model’s uncertainty around prompt formatting, and specifically about what tokens should
come after “Answer:”. So it is distributing probability mass over the entire vocabulary including
non-numerical tokens, since we are only training CoT production uθ(s

′|o, s), as opposed to training
the predictor model π(o|s).

5.2 GSM8K

To test our method on more complex reasoning tasks, we train Llama-3.1-8B-Instruct to produce
CoT over the GSM8K dataset. Unlike our arithmetic experiments which use PPO, here we use policy
gradient with expert iteration (threshold 2.2 standard deviations), along with 150 CoT tokens and a
KL penalty of 0.1. Figure 3 shows the results across three training runs. The left plot demonstrates
substantial improvements in the log probability that an untrained Llama assigns to the correct answer
given the trained CoT. The right plot shows the proportion of CoTs that contain the answer verbatim,
indicating the model learns to consistently encode the correct answer in its reasoning.

Most significantly, we observe a dramatic increase in exact-match accuracy on the test set. Starting
from a baseline of 35.94% at batch 0, our best performing run achieves 69.14% accuracy (n=1),
representing a 33.2% absolute improvement. The other two runs achieve 58.23% and 62.85% re-
spectively, demonstrating the consistency of our method’s effectiveness on complex mathematical
reasoning tasks.

Figure 3: GSM8K performance metrics over three separate training runs of Llama-3.1-8B-Instruct.
The left plot shows the log probability that an untrained Llama assigns to the correct answer given
the trained CoT — lnπ(ans|cot), and the right plot shows the proportion of CoTs in a batch which
contain the answer verbatim. We used a smoothing window of size 100, explaining the multiplicity
of possible y-values for “Contains Answer”.

5.3 WIKIPEDIA

We also explored the application of our approach to more general language modeling using
Wikipedia text. For each Wikipedia article, we condition on the first 200 tokens, produce 50 to-
kens of CoT, which is then used to predict the following 100 tokens of the article.

7
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Our prompt template is:

“You will need to predict the next 100 tokens which follow the provided passage.
You can write 50 thinking tokens which will be your sole context for prediction.
Feel free to be creative in your thinking strategy!\n\nOpening text:”

Figure 4: Four independent training runs, showing the difference in log probabilities of the an-
swer ans given a trained CoT cot and the default cot′ that a pre-trained model would produce —
lnπ(ans | cot) − lnπ(ans | cot′). The model is Llama 8B and the task is to produce text which
helps predict the next 100 tokens in a Wikipedia article (Foundation, 2024).

Results showed modest improvements in next-token prediction accuracy from 8.2% to 10.5% (Fig-
ure 4). However, this should be contextualized against pre-trained Llama’s typical 16.9% accuracy
(estimated over 10,000 articles) on the 200th to 300th tokens of Wikipedia articles without any
context. The lower baseline performance (8.2%) appears to be an artifact of our prompting setup.

Despite these limitations in absolute performance, we found that our key mechanistic findings about
CoT reliability held up in this more general setting. In Wikipedia Perturbations and Cross-Model
Generalization, Figure 7 demonstrates that perturbations to the CoT meaningfully impact perfor-
mance, with the trained model showing greater sensitivity to perturbations than the baseline model.
This suggests the model is genuinely using the generated reasoning rather than bypassing it.

5.4 MEASURING FRAGILITY OF COT

Expanding upon Lanham et al. (2023), we measure the fragility of the CoT reasoning by applying
three perturbations to the model-generated reasoning and evaluate how this affects the next-token-
prediction loss of the correct answer to the original question. Due to our focus on evaluating arith-
metic tasks, we use these three perturbations:

• Truncating a fraction of the CoT reasoning from the end
• Flipping any number (digit) with a probability in the CoT reasoning and replacing it with

another random number between 0 and 9
• Swapping a fraction of characters with random characters in the CoT reasoning. The se-

lection is limited to numbers from 0 to 9, letters from the English alphabet, and simple
arithmetic symbols (e.g., “+” and “-”)

We test how much the model relies on its generated CoT reasoning during Markovian training runs
in Fig. 5. The y-axes depicts the log probability of the answer given CoT, normalized so that y = 0
corresponds to the log probability of the answer given the unperturbed CoT. The x-axis denotes
training steps, and there is a separate line for each kind and amount of CoT perturbation. At the
start of training, when the language model is essentially completely surprised by the answer, the
various perturbations are actually mildly helpful. But over the course of training the same amount of
perturbation causes more surprise as compared to the trained CoT, showing that training increases
sensitivity to perturbations. Notice that a truncation of just 10% from the end becomes impactful
relatively early in training, which suggests that the predictor is paying special attention to the final
CoT tokens, which are more likely to contain answer or immediate precursors to the answer.

8
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Figure 5: Comparison of different perturbation effects on CoT reasoning, using the arithmetic
dataset and Mistral 7B. The plot shows the difference in negated log probabilities between per-
turbed and original CoT for various perturbation types, averaged over 4 separate PPO training runs.
Higher values indicate worse performance compared to the original. Three types of perturbations
are shown: digit changes (replacing random digits), random character deletions, and right-sided
truncation at 30%, 30%, and 10%, respectively. The data is smoothed using a Savitzky-Golay filter
with a window size of 40 samples, and only the central part of the smoothed data (unaffected by
edge effects) is displayed. This visualization demonstrates an increasing sensitivity to perturbation
in the CoT reasoning as a function of training.

5.5 INTERPRETABILITY OF COT GENERATIONS

Figure 6: Comparison of the log probabilities between the Llama 8B model and several other lan-
guage models, averaged across 3 separate training runs on the GSM8K dataset. The log probabilities
are smoothed using a Savitzky-Golay filter with a window size of 40 to reduce noise and highlight
the overall trends. The plot shows that improvements in CoT from Llama’s perspective also corre-
spond to improvements in CoT from the perspective of Mistral, GPT2 (Radford et al., 2019), and
Phi 3.5 Mini Instruct (Abdin et al., 2024), which vary greatly in performance and characteristics,
lending evidence that humans may also understand Mistral’s trained CoT.

To probe how well the reasoning generalizes, we plot the log probabilities that various models
ascribe to the answer given trained Llama’s CoT in Fig. 6. In both plots the log probabilities increase
simultaneously, demonstrating that Llama is learning to produce generic CoTs which do not over-fit
to the peculiarities of a Llama answer-predictor.
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This cross-model transferability connects to fundamental questions about interpretability. When
we say a CoT is ”interpretable”, we must ask ”interpretable to whom?” — just as induction heads
are interpretable to ML researchers but not to most humans, different CoTs might be naturally in-
terpretable to different readers or models. Our experimental design engages with this relativity in
two ways: First, we include GPT2, a significantly smaller model, as one of our evaluators. Sec-
ond, we test across three distinct model families (Llama, Mistral, and GPT2), preventing the trained
model from exploiting architecture-specific patterns. The fact that the trained CoTs transfer effec-
tively across this diverse set of evaluators, including a much smaller model, suggests they capture
reasoning patterns that are interpretable across a broad range of computational architectures.

6 DISCUSSION AND LIMITATIONS

Our experiments show that it is possible to learn informative and interpretable CoT reasoning via
RL on an LM using Markovian training. However, we find that training is unstable, and we present
various techniques to prevent the LM from losing its strong language modeling prior.

A weakness in our interpretability argument is that for GSM8K and addition we use more CoT to-
kens than answer tokens, so in principle the LM could learn to put the answer in the CoT directly.
However, this did not affect our particular experiments because Mistral struggles to learn to add
fifteen terms without intermediate reasoning, and similarly for Llama with GSM8K answers. Addi-
tionally, our intepretability technique is currently only verified in myopic question-answer datasets,
as opposed to multi-turn trajectories where trained CoTs might provide a lens into longer term fu-
ture behavior. Lastly, we only train Mistral to produce CoT that it can interpret (use to predict
observations), but in principle future work could optimize CoT for human interpretability directly.

Markovian training is essentially language modeling – predicting future tokens from previous tokens
– but with an intermediate “action” to produce the LM’s own memory. In this sense, this training
paradigm blurs the line between RL and unsupervised learning. But since it comes at the cost of
adding expensive serial token generation steps in an otherwise highly parallelizable unsupervised
training regime, it would need to have a high payoff in terms of interpretability or perplexity in
order to be feasible. But as it stands, we have only tested the technique on question-answer pairs,
and are preliminary results are limited in the context of more general language modeling. In future
work, we hope to stably optimize this objective in more general contexts.

7 ETHICS STATEMENT

Reinforcement learning techniques improve a policy with respect to an arbitrary reward function.
But it can be difficult to mathematically specify nuanced human preferences about the policy. Both
reinforcement learning from human feedback and Constitutional AI help people specify and opti-
mize the properties they would like the AI to have. This increase in controllability makes the AI
more of an extension of human intention, for better or for worse. The approach of this paper is much
more targeted – we use RL to specifically increase an agent foresight – its ability to predict its future
observations.

On its face, this seems like it might be just as dependent on human intentions as RLHF and Con-
stitutional AI – if people are more knowledgeable, maybe they could use that extra knowledge to
deceive others, for instance. However, better foresight may also give rise to better values, where
values are opinions about how to act such that the collective system can attain better foresight.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive supplementary materials including all source
code, training and evaluation scripts, and detailed instructions in the README. The main training
loop (src/train.py) supports (i) EI, PG, and PPO methods and (ii) GSM8K, arithmetic, and
Wikipedia datasets. We measure fragility of CoT via src/perturbation analysis.py and
we estimate interpretability of CoT generations via src/evaluate cross model.py. The
results/Official directory contains plots, full training logs, and perturbation evaluation logs
from our experiments.
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We use the public GSM8K and HuggingFace Wikipedia datasets, and we use the public Llama 3.1
8B Instruct, Mistral 7B Inst V0.2, Phi 3.5 Mini-Instruct, and GPT2 models. All hyperparameters
are specified in the scripts defaults and in the paper, and environment setup instructions are in the
README.

With these materials, researchers should be able to reproduce our work, including the performance
boost on GSM8K and the perturbation analysis results demonstrating CoT reliance.
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Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-

12

https://arxiv.org/abs/2110.14168


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Wikimedia Foundation. Wikipedia, 2024. URL https://dumps.wikimedia.org.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal structure for interpretable neural networks. In Inter-
national Conference on Machine Learning (ICML), pp. 7324–7338. PMLR, 2022.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward lay-
ers build predictions by promoting concepts in the vocabulary space. Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 30–45, 2022.

Declan Grabb, Max Lamparth, and Nina Vasan. Risks from language models for automated men-
tal healthcare: Ethics and structure for implementation. medRxiv, 2024. doi: 10.1101/2024.
04.07.24305462. URL https://www.medrxiv.org/content/early/2024/04/08/
2024.04.07.24305462.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher
Re. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=yWd42CWN3c.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

13

https://arxiv.org/abs/2407.21783
https://dumps.wikimedia.org
https://www.medrxiv.org/content/early/2024/04/08/2024.04.07.24305462
https://www.medrxiv.org/content/early/2024/04/08/2024.04.07.24305462
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=jE8xbmvFin.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825. Version 1.

Nitish Joshi, Javier Rando, Abulhair Saparov, Najoung Kim, and He He. Personas as a way
to model truthfulness in language models, 2024. URL https://doi.org/10.48550/
arXiv.2310.18168. arXiv:2310.18168v5 [cs.CL].

Max Lamparth and Anka Reuel. Analyzing and editing inner mechanisms of backdoored language
models, 2023. URL https://arxiv.org/abs/2302.12461.

Max Lamparth, Anthony Corso, Jacob Ganz, Oriana Skylar Mastro, Jacquelyn Schneider, and
Harold Trinkunas. Human vs. machine: Language models and wargames, 2024. URL https:
//arxiv.org/abs/2403.03407.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Karina
Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson,
Sam McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Tim-
othy Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan
Brauner, Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought rea-
soning, 2023. URL https://arxiv.org/abs/2307.13702.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, 2022. URL https://arxiv.org/abs/2109.07958. ACL 2022 (main con-
ference).

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL https://arxiv.
org/abs/2301.13379.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2022. URL https://openreview.net/forum?id=iedYJm92o0a.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Leonardo Ranaldi and Andre Freitas. Aligning large and small language models via chain-of-
thought reasoning. In Yvette Graham and Matthew Purver (eds.), Proceedings of the 18th Con-
ference of the European Chapter of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1812–1827, St. Julian’s, Malta, March 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.eacl-long.109.

14

https://openreview.net/forum?id=jE8xbmvFin
https://openreview.net/forum?id=jE8xbmvFin
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2310.18168
https://doi.org/10.48550/arXiv.2310.18168
https://arxiv.org/abs/2302.12461
https://arxiv.org/abs/2403.03407
https://arxiv.org/abs/2403.03407
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=iedYJm92o0a
https://aclanthology.org/2024.eacl-long.109


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Juan-Pablo Rivera, Gabriel Mukobi, Anka Reuel, Max Lamparth, Chandler Smith, and Jacquelyn
Schneider. Escalation risks from language models in military and diplomatic decision-making,
2024. URL https://arxiv.org/abs/2401.03408.

D. Silver, A. Huang, C. Maddison, et al. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm, 2017. URL https://doi.org/10.48550/arXiv.1712.
01815. arXiv:1712.01815 [cs.AI].

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea Finn. Fine-tuning
language models for factuality, 2023. URL https://doi.org/10.48550/arXiv.2311.
08401. arXiv:2311.08401 [cs.CL].

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=bzs4uPLXvi.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh
International Conference on Learning Representations, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. Reference-aware language models. In
Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 1850–1859, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1197. URL
https://aclanthology.org/D17-1197.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

A STABILITY-ENHANCING TRAINING TECHNIQUES

Fine-tuning a pre-trained language model with a strong linguistic prior requires careful considera-
tion to avoid irrecoverable weight updates that could push the model out of the language modeling
loss basin. In addition to the PPO-clip objective mentioned in Sec. 4.2.3, we implemented several
techniques to enhance training stability across different objective functions:

1. Low-Rank Adaptation (LoRA):
• Freeze all weights except for a set of LoRA weights (Hu et al., 2022)
• Use rank 8 with α = 16

2. Gradient Clipping:
• If the L2 norm of the gradient update vector exceeds 1, normalize the vector

3. Gradient Accumulation: (Only for arithmetic)
• Set batch size to 6 to optimize H100 GPU memory usage
• Perform 8 gradient accumulation steps between weight updates

4. Average Reward Baseline:
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• For PPO: Subtract the previous average of rewards from the current reward
• Found to be as beneficial as a value head, with less hyper-parameter tuning required

5. Selection of cotinit:
• Choose cotinit to bias CoT search in a productive direction
• For arithmetic we used “You will be given an arithmetic problem, which you have [cot

length] tokens to work through step-by-step. Question:”
• For GSM8K we used “You will be given a reasoning problem, which you have [cot

length] tokens to work through step-by-step. Question:”

B WIKIPEDIA PERTURBATIONS AND CROSS-MODEL GENERALIZATION

Figure 7: Impact of various perturbations on Wikipedia CoT effectiveness over the course of train-
ing. Each subplot shows a different perturbation type: character deletion, front truncation, back
truncation, and random character replacement, with perturbation rates from 0% to 100%. For a
perturbation function pert, letting π(ans|cot) denote the log probability of the answer given a
CoT, we plot [π(ans|cot) − π(ans|pert(cot))] − [π(ans|cot′) − π(ans|pert(cot′))], where cot′

is the default CoT from the pre-trained model. Higher values indicate the trained model relies
more heavily on precise CoT content than the baseline model. When pert is a 100% perturbation
rate (effectively a constant function k), this reduces to [π(ans|cot) − k] − [π(ans|cot′) − k] =
π(ans|cot) − π(ans|cot′) = I(ans, cot, cot′), explaining why these curves align with the normal-
ized reward from Figure 4. Smoothing window: 60.

For the Wikipedia experiments, we made several modifications to our training approach. We intro-
duced a KL penalty of 0.1 and replaced the PPO objective with policy gradient using a threshold
of 2.2 standard deviations above the historical mean performance, and we increased the sampling
temperature to 2.0. As with the other tasks, we replaced the immediate reward with an advantage
function, where the estimated a value function is an exponentially decaying average of previous
rewards and a decay factor of 0.9.

Figure 8 shows that improvements in Llama’s CoT quality correspond to improvements in several
other models’ abilities to use that CoT, indicating genuine generalization of the reasoning pattern
rather than model-specific artifacts.

C TRUTHFULNESS AND ELICITING LATENT KNOWLEDGE

Existing methods seek to elicit truthfulness by having an LM cite external authorities (Yang et al.,
2017), produce queries for an external solver such as Python (Lyu et al., 2023), or simulate a truthful
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Figure 8: Cross-model evaluation showing Llama-3.1-8B-Instruct’s evaluation of Mistral’s CoT
quality throughout training on Wikipedia text prediction. The correlation between improvements
in both models’ evaluations suggests the learned reasoning patterns generalize across architectures
rather than being model-specific artifacts. Each plot is averaged across 6 independent training runs.
Smoothing window: 100.

persona (Joshi et al., 2024). Other methods include looking into model activations to discern a truth
concept (Burns et al., 2023) or fine-tuning the LM for factuality (Tian et al., 2023).

One straightforward approach to measuring the truthfulness of an LM is to evaluate on datasets such
as TruthfulQA (Lin et al., 2022) which focuses on popular human misconceptions. However, this
technique will only continue to work so far as humans can tell which human beliefs are, indeed,
misconceptions. We would like to continue training a model for informativeness on questions that
challenge human evaluators.

Reinforcement learning success stories such as AlphaGo (Silver et al., 2016) and AlphaZero (Silver
et al., 2017) show that a top-ranking Go AI can continue to learn if we have an efficient way to
compute the success criteria (such as a winning board state). However, many important success
criteria are abstractions, and only exist within a person’s ontology. This problem is discussed at
length in Christiano et al. (2021), and we will use their example to illustrate the situation.

Suppose we were building a security system AI to watch over a vault containing a diamond. Suppose
further that we have a camera pointed at the diamond, and that our security guard AI can competently
predict future camera frames from past frames. How can we train it to classify camera sequences
according to the ambiguous human concept of whether the diamond is still in the room, even in
difficult scenarios when a person would not be able to provide a ground truth label (e.g., subtle
camera tampering)? If we train the classifier based on scenarios when a person can provide ground
truth labels, then the AI’s video classifier has two valid generalization behaviors: (1) to say whether
it thinks the diamond is still in the room and (2) to say whether the dataset-labeller would think the
diamond is still in the room.

Our approach favors the second generalization behaviour by using RL to train the AI to produce
messages such that the person can themselves predict future camera frames. This idea is based on
the following three insights:

• Whereas truthfulness of an LM requires some internal information, informativeness can be
measured using only input-output behavior.

• We can decompose the definition of informativeness into informativeness of a sender to a
receiver, which can be an AI and a person, respectively.

• We can use reinforcement learning to push past the imitation learning regime, by continuing
to train for this relative informativeness objective even when the AI is already the expert
next-frame predictor.
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D QUALITATIVE ANALYSIS OF GENERATED COTS

Here is a (non-cherry picked) example of the CoT text generated by Mistral-7B-Instruct-V2, after
and before Markovian training, respectively.

D.1 AFTER TRAINING

Batch Index 989

Previous Observation 6 + 89 + 38 + 36 + 42 + 98 + 85 + 95 + 49 + 24 + 47 + 95 + 60 + 20 + 40

Action Perform the given expression.

Next, calculate 6 + 89: 6 + 89 = 95

Next, calculate 95 + 38: 95 + 38 = 133

Next, calculate 133 + 36: 133 + 36 = 169

Next, calculate 169 + 42: 169 + 42 = 211

Next, calculate 211 + 98: 211 + 98 = 309

Next, calculate 309 + 85: 309 + 85 = 394

Next, calculate 394 + 95: 394 + 95 = 489

Next, calculate 489 + 49: 489 + 49 = 538

Next, calculate 538 + 24: 538 + 24 = 562

Next, calculate 562 + 47: 562 + 47 = 609

Next, calculate 609 + 95: 609 + 95 = 694

Next, calculate 694 + 60: 694 + 60 = 754

Next, calculate 754 + 20: 754 + 20 = 774

Next, calculate 774 + 40: 774 + 40 = 814

Hence, the result of

Observation 824

D.2 BEFORE TRAINING

Batch Index 35

Previous Observation 76 + 90 + 92 + 20 + 99 + 66 + 26 + 11 + 71 + 79 + 71 + 82 + 79 + 94 + 64

Action To add all the given numbers, you only need to follow the standard addition rule:
Sum = First Number + Second Number + ... + Last Number
Given numbers are 76, 90, 92, 20, 99, 66, 26, 11, 71, 79, 71, 82, 79, 94, 64
Addition process:
Sum = 76 + 90 + 92 + 20 + 99 + 66 + 26 + 11 + 71 + 79 + 71 + 82 + 79 + 94 + 64
Sum = 2314
So, the sum of all given numbers is 2314. Answer: 2314 .
Note: We use boxed numbers to represent answers and to distinguish them from the text.
We capitalize question numbers to help locate them easily.
Final answer: The sum is 2314.
## Used and loved by 4 million people
### Learn from a vibrant community of students and enthusiasts, just like you.
Your list looks good! Here’s a clean version and a few suggestions.
1. Make sure each step in the calculation is clearly displayed. This can help make your cal-
culations (and your reasoning) more intuitive and easier to follow for others. For example:
Addition process:
Sum = 76 + 90 + 92 + 20 + 99 + 66 + 26 + 11 + 71 + 79 + 71 + 82 + 79 + 94

Observation 1020
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E ON BASELINES FOR FAITHFUL COT

The question of appropriate baselines for our method requires careful consideration, as there are
three distinct interpretations of what could constitute a baseline in this context:

E.1 BASELINES FOR OPTIMIZING INFORMATIVENESS

For our specific informativeness objective, we compare against expert iteration with thresholding
and policy gradient approaches in Figure 2. While PPO shows superior performance on arithmetic,
the preferred optimization technique depends on the particular dataset.

E.2 BASELINES FOR FAITHFUL LANGUAGE MODEL REASONING

A more fundamental challenge lies in establishing baselines for the broader goal of generating CoTs
that reflect a language model’s underlying reasoning process. This requires first formalizing what
we mean by “faithful” reasoning. Our approach takes the stance that a faithful CoT should have
the property that perturbing it meaningfully impacts the model’s predictive accuracy. We define this
formally through our informativeness objective:

I(u, u′, P ) = Eτ∼P,u,u′ [R(τ)] (9)

where R(τ) measures how much more accurately the model predicts using the CoT compared to
without it.

To our knowledge, there are no other formal definitions of faithfulness for language models that are
sufficiently well-specified to serve as training objectives. If such alternatives existed, they would
provide natural baselines for comparison.

E.3 BASELINES FOR COT FRAGILITY

We can consider several potential approaches for generating CoTs that are fragile to perturbation:

1. Formal Language CoTs: One could generate CoTs in a precise language like Python,
where the answer could be computed by executing the code. While such CoTs would be
highly fragile to perturbation (due to syntax errors), this approach would not generalize to
general language modeling tasks like Wikipedia text prediction where the “answer” cannot
be computed deterministically.

2. Question-CoT Pairs: We could maintain the standard approach of keeping both question
and CoT in context when predicting answers, measuring how perturbations to the CoT af-
fect predictions. However, this makes it impossible to isolate whether the observed fragility
stems from the CoT itself or from the interaction between question and CoT.

3. Minimal Prompted CoTs: We could prompt the model to produce minimal CoTs and
measure their fragility to perturbation. This baseline is effectively represented at training
step 0 in Figure 7, where we see minimal difference in log probability between perturbed
and unperturbed CoTs from the pre-trained model.

Each of these potential baselines has significant limitations that prevent direct comparison with our
approach. The formal language approach sacrifices generality, the question-CoT approach intro-
duces confounding variables, and the minimal prompted approach is already captured as the starting
point of our training process.

This analysis suggests that establishing meaningful baselines for faithful reasoning remains an open
challenge in language model interpretability. Our approach provides one concrete formalization
and optimization target, but we acknowledge there may be other valuable perspectives on what
constitutes faithful reasoning that could lead to different baseline approaches in future work.
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F CASE STUDY OF WIKIPEDIA PREDICTION

To better understand Llama-3.1-8B-Instruct’s behavior after Markovian training to predict
Wikipedia text, let’s examine a its behavior on the (randomly selected near the end of training)
batch number 12500. The model was given the following Wikipedia article excerpt:

Boones Mill is a town in Franklin County, Virginia, United States. The population
was 239 in 2018, down from 285 at the 2000 census. It is part of the Roanoke
Metropolitan Statistical Area.
History
Boones Mill was incorporated in 1927. It was previously known as ”Boone Mill”
and ”Boon Mill”. The town is named after Jacob Boon who operated a mill in the
town.
The Boones Mill Norfolk & Western Railway Depot is listed on the National Reg-
ister of Historic Places. https://www.townofboonesmill.org/history
Geography
Boones Mill is located in northern Franklin County at (37.115462, -79.953966),
along U.S. Route 220 at the southern base of the Blue Ridge Mountains. US 220
leads north to Roanoke and south to Rocky Mount, the Franklin County seat.
According to the United States Census Bureau, the town has

Given this context ending with ”According to the United States Census Bureau, the town has”, we
can compare the CoT generated by our trained versus an untrained model:

F.1 COT AFTER TRAINING:

“The town of Boones Mill is located in Franklin County, Virginia, United States.
US 220 leads north to Roanoke and south to Rocky Mount, the Franklin County
seat. According to the United States Census Bureau, the town has”

F.2 COT BEFORE TRAINING:

“The town of Boones Mill is a small, rural community with a rich history and natu-
ral beauty. The town is surrounded by the Blue Ridge Mountains, offering scenic
views and outdoor recreational opportunities. The town’s economy is primarily
based on agriculture and small”

F.3 ACTUAL CONTINUATION:

“a total area of , all of it land. The town is in the valley of Maggodee Creek,
a southeast-flowing tributary of the Blackwater River, part of the Roanoke River
watershed. Murray Knob, elevation , rises to the north on the crest of the Blue
Ridge, and the eastern end of Cahas Mountain, at , is 2 miles to the west.”

The trained CoT shows notably different characteristics from the untrained one. The trained CoT
essentially copied the first and last two sentences from the context, making sure to line up the number
of allotted tokens with the end of the last sentence. The untrained model seems to give fairly generic
properties that the actual Boones Mill Wikipedia article does not mention, such as Boones Mill
having an economy primarily based on agriculture. Also, the untrained CoT is not taking the token
limit into account and is setting the evaluator model to be surprised when it glues the CoT to the
answer and has to predict “agriculture and small a total area of , all of it land”.

This example achieved a normalized reward of 0.3438 (in log probability), suggesting that the trained
CoT strategy was indeed helpful for predicting the technical geographic description that followed.
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