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ABSTRACT

Spiking neural networks (SNNs) with biologically inspired spatio-temporal dy-
namics show higher energy efficiency on neuromorphic architectures. Error back-
propagation in SNNs is prohibited by the all-or-none nature of spikes. The existing
solution circumvents this problem by a relaxation on the gradient calculation us-
ing a continuous function with a constant relaxation degree, so-called surrogate
gradient learning. Nevertheless, such solution introduces additional smoothness
error on spiking firing which leads to the gradients being estimated inaccurately.
Thus, how to adjust adaptively the relaxation degree and eliminate smoothness
error progressively is crucial. Here, we propose a methodology such that training
a prototype neural network will evolve into training an SNN gradually by fus-
ing the learnable relaxation degree into the network with random spike noise. In
this way, the network learns adaptively the accurate gradients of loss landscape
in SNNs. The theoretical analysis further shows optimization on such a noisy
network could be evolved into optimization on the embedded SNN with shared
weights progressively. Moreover, we conduct extensive experiments on static im-
ages, dynamic event streams, speech, and instrumental sounds. The results show
the proposed method achieves state-of-the-art performance across all the datasets
with remarkable robustness on different relaxation degrees.

1 INTRODUCTION

Spiking Neural Networks (SNNs), composed of biologically plausible spiking neurons, present high
potential for fast inference and low power consumption on neuromorphic architectures (Akopyan
et al., 2015; Davies et al., 2018; Pei et al., 2019). Instead of the expensive multiply-accumulation
(MAC) operations presented in ANNs, SNNs operate with binary spikes asynchronously and offer
sparse accumulation (AC) operations with lower energy costs. Additionally, existing research has
revealed SNNs promise to realize machine intelligence especially on sparse spatio-temporal patterns
(Roy et al., 2019). Nevertheless, such bio-mimicry with the all-or-none firing characteristics of
spikes brings inevitably difficulties to supervised learning in SNNs.

Error backpropagation is the most promising methodology to develop deep neural networks. How-
ever, the nondifferentiable spike firing prohibits the direct application of backpropagation on SNNs.
To address this challenge, two families of gradient-based training methods are developed: (1) sur-
rogate gradient learning (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019) and (2)
Time-based learning (Mostafa, 2017; Zhang & Li, 2020). For surrogate gradient learning, it adopts
a smooth curve to estimate the ill-defined derivative of the Heaviside function in SNNs. The back-
propagation, in this way, could be tractable at both spatial and temporal domains in an iterative
manner. Meanwhile, surrogate gradient learning could substantially benefit from the complete ecol-
ogy of deep learning. It has been widely used to solve complex pattern recognization tasks (Zenke
& Vogels, 2021; Neftci et al., 2019). However, the smooth curve distributes the gradient of a single
spike into a group of analog items in temporal neighbors (Zhang & Li, 2020), which is mismatched
with the inherent dynamics of spiking neurons. So we identify the problem as gradient mismatching
in this paper. As a result, most parameters are updated in a biased manner in surrogate gradient learn-
ing, which limits the performance of SNNs. Besides, different smoothness of surrogate functions
may greatly affect the network performance (Hagenaars et al., 2021; Li et al., 2021c).
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The time-based method is the other appealing approach. By estimating the gradients on the exact
spike times, the time-based method circumvents the gradient mismatching issues in surrogate gradi-
ent learning naturally. However, to obtain the exact expression of spike time, most works (Mostafa,
2017; Zhang & Li, 2020) suppose the firing count of each neuron remains unchanged during train-
ing (Yang et al., 2021) which is difficult to establish in practice. Besides, it is difficult to adapt
the customized backward flows in the time-based method with auto-differential frameworks such as
PyTorch, MXNet, and TensorFlow. Moreover, some special tricks are necessary to avoid the phe-
nomenon of dead neurons (Bohte et al., 2002). Therefore, it is not flexible to obtain deep SNNs with
the time-based method.

To solve the problems, this paper proposes adaptive smoothing gradient learning (ASGL) to train
SNNs directly. In general, we inject spikes as noise in ANN training and force the error surfaces of
ANNs into that of SNNs. With the design of dual-mode forwarding, the smoothness factor could
be incorporated into training without the need for a specific design of hyperparameter search, which
could be computationally expensive. Therefore most parameters could be updated against mis-
matched gradients adaptively. In addition, compared to the time-based method, ASGL backpropa-
gates errors in both spatial and temporal domains without special constraints and restart mechanism.

We analyze the evolution of the noisy network with dual mode from the perspective of iterative
optimization. As a result, the optimization of the noisy network could be converted into minimizing
the loss of the embedded SNN with the penalty of smooth factors. Experiments show the proposed
method achieves state-of-the-art performance on static images, dynamic visual streams, speech, and
instrumental sounds. It is worth noting that the method shows extraordinary robustness for different
hyperparameter selections of smooth factors. Finally, we investigate the evolution of such a hybrid
network by visualizing activation similarities, network perturbation, and updated width.

2 RELATED WORKS

Direct Training. To circumvent the difficulties from non-differential spikes, surrogate gradient
learning approximates spike activities with a pre-defined curve (Wu et al., 2019; Shrestha & Or-
chard, 2018; Gu et al., 2019; Zenke & Vogels, 2021; Fang et al., 2021b). Wu et al. (2018) proposed
to backpropagate errors in both spatial and temporal domains to train SNNs directly with surrogate
gradient. Similarly, Shrestha & Orchard (2018) solved the temporal credit assignment problem in
SNNs with the smoothness of a custom probability density function. To suppress gradient vanish-
ing or explosion in deep SNNs, Zheng et al. (2021) further proposed threshold-dependent batch
normalization (tdBN) and elaborated shortcut connection in standard ResNet architectures.

Gradient Mismatching. The mismatching problem in surrogate gradient learning has attracted
considerable attention. Li et al. (2021c) optimized the shape of the surrogate gradient function with
the finite difference method to compensate for this problem. Nevertheless, their method needs to ini-
tialize an update step for finite difference empirically. Meanwhile, it is limited by the high computa-
tional complexity of the finite difference method. Therefore, only information from the proceeding
layers is adopted in the update of surrogate functions. There are still other works bypassing the dif-
ficulty without using surrogate gradient. Zhang & Li (2020) handled error backpropagation across
inter-neuron and intra-neuron dependencies based on the typical time-based scheme. Furthermore,
the unifying of surrogate gradient and time-based method was suggested by (Kim et al., 2020) to fuse
the gradient from both spike generation and time shift. In general, those methods are constrained by
specified assumptions or coupling tricks during training. Wunderlich & Pehle (2021) first proposed
to compute the exact gradients in an event-driven manner and so avoid smoothing operations by
solving ODEs about adjoint state variables. Nevertheless, the approach is only verified on simple
datasets with shallow networks. Yang et al. (2021) developed a novel method to backpropagate
errors with neighborhood aggregation and update weights in the desired direction. However, the
method based on the finite difference is computationally expensive. Severa et al. (2019) propose to
sharpen the bounded ReLU activation function in ANN into the Heaviside function in SNN progres-
sively. Although yielding a similar effect with ASGL, it utterly depends on hand-craft sharpening
schedulers with difficulties in adaptive update considering whole network evolution. Different from
the previous works, ASGL incorporates directly learnable width factors into the end-to-end training
of a noisy network.
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3 PRELIMINARY

Notation. We follow the conventions representing vectors and matrix with bold italic letters and
bold capital letters respectively, such as s and W . For matrix derivatives, we use a consistent
numerator layout across the paper. For a function f(x) : Rd1 → Rd2 , we use Dkf [x] instead

of ∂f (k)(x)
∂x to represent the k-th derivative of f with respect to the variable x in the absence of

ambiguity. Let < M1,M2 > represent the Frobenius inner production between two matrices. For
two vectors u1 and u2, we use u1⊙u2 to represent the entrywise production. Similarly, the notation
of u⊙2 refers to u⊙ u for simplification. We use f ◦ g to denote the composition of f with g.

Leaky Integrate-and-Fire (LIF) Model. To capture the explicit relation between input current c
and output spikes s, we adopt the iterative form of the LIF neuron model (Wu et al., 2018) in most
experiments. At each time step t, the spiking neurons at l-th layer will integrate the postsynaptic
current cl[t] and update its membrane potential ul[t]:

ul[t] = γul[t− 1]⊙
(
1− sl[t− 1]

)
+ cl[t] (1)

where γ = 1− 1/τm is the leaky factor that acts as a constant forget gate through time. The term of
(1− sl[t− 1]) indicates the membrane potential will be reset to zero when a spike is emitted at the
last time step. As done in (Wu et al., 2018; Fang et al., 2021b), we use simply the dot production
between weights W l and spikes from the preceding layer sl−1[t] with a shift bl to model the synaptic
function:

cl[t] = W lsl−1[t] + bl (2)
The neurons will emit spikes sl[t] whenever ul[t] crosses the threshold ϑ with enough integration
of postsynaptic currents:

sl[t] = Θ
(
ûl[t]

)
= Θ

(
ul[t]− ϑ

)
(3)

where Θ(x) is the Heaviside function:

Θ(x) =

{
1, if x ≥ 0
0, otherwise (4)

A C-LIF variant is also applied in our experiments to make a fair comparison. And we provide its
iterative equations in the Appendix A.2.

Readout and Loss. For classification tasks, we need to define the readout method matching with
the supervised signal y. As done in the recent work (Li et al., 2021a; Rathi et al., 2020), we fetch
the average postsynaptic current in the last layer cL = 1

N

∑
t c

L[t] where N = T/∆t is the number
of discrete time steps. Then the SNN prediction could be defined as the one with maximum average
postsynaptic current naturally. Furthermore, we could define the cross-entropy loss removing the
temporal randomness:

L(cL,y) = −yT log(softmax(cL)) (5)
For simplication, we denote ŷ = softmax(cL) in the rest part of the paper.

4 METHOD

4.1 SPIKE-BASED BACKPROPAGATION

The nature of all-or-none firing characteristics of spikes blocks the direct utilization of backpropa-
gation which is the key challenge to developing spike-based backpropagation. Formally, we usually
need to backpropagate the credit for the state at a specified time step t∗ of δl[t] = ∂cL[t∗]

∂W in both
spatial domain and temporal domain (Detailed derivatives are provided in Appendix A.1 ) as follows:

δl[t] = δl[t+ 1]
∂ul[t+ 1]

∂ul[t]
+ δl+1[t]

∂ul+1[t]

∂ul[t]

∂ul[t+ 1]

∂ul[t]
= γ diag

(
1− sl[t]− ul[t]⊙Θ′ (ul[t]

))
∂ul+1[t]

∂ul[t]
= W l+1 diag

(
Θ′ (ul[t]

))
(6)
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Figure 1: The forward and backward of the Heaviside function (green solid line) and the surrogate
clipping function (purple dashed line). The red area represents the mismatching between the Heavi-
side function and surrogate function considering only one spike emission.

In the above equations, the partial derivative of the Heaviside function Θ(x) is the Dirac-Deta func-
tion which is equal to zero almost everywhere. Moreover, it goes to infinity when x = 0 shown
with the green line in Figure 1. Such properties prohibit the backward flow in SNNs directly. Thus
most researchers approximate the gradient of the Heaviside function with a predefined differentiable
curve (Neftci et al., 2019; Shrestha & Orchard, 2018). Here, we use the rectangular function (Wu
et al., 2018), one of the most popular approximation functions with low computational complex-
ity, as an example to illustrate the proposed method. The idea could be applied to other alternative
approximation functions. Formally, the rectangular function could be defined as:

Θ
′
(u) ≈ hα(u) =

1

α
sign

(
|u− ϑ| < α

2

)
(7)

where the width α controls the smooth degree of hα(x) and the temperature κ = 1/α determines
the relative steepness.

4.2 DESIGN OF ASGL

In surrogate learning, Θ
′
(x) is estimated by a smooth function such as hα(x) , which predicts the

change rate of loss in a relatively larger neighborhood (Li et al., 2021c). However, such estimation
with constant width will deviate from the correct direction progressively during the network training.
It not only brings difficulties to the network convergence but also affects the generalization ability
with the disturbed underline neuron dynamics. Essentially, this problem comes from the mismatch-
ing ||Θ′

(x)− hα(x)|| shown in the red part of Figure 1. So how to adjust the width α and eliminate
such mismatching adaptively is an important problem for surrogate gradient learning. For ASGL,
we try to solve the problem without defining surrogate gradient. The method is simple but rather
effective. Firstly, we derive the antiderivative function of surrogate function hα(x):

Hα(x) =

∫ x

−∞
hα(u) du = clip(

1

α
x+

1

2
, 0, 1) (8)

Whetstone (Severa et al., 2019) uses Hα(x) for forwarding calculation and hα(x) for backward
propagation. In this way, although there is no mismatching problem, it is difficult to guarantee the
network dynamics evolving into that of SNNs finally. In contrast, surrogate gradient learning uses
Θ(x) and hα(x) for forwarding calculation and backward propagation respectively. It guarantees
fully spike communication but introduces the problem of gradient mismatching. Sequentially, it
makes sense to seek an approach combining advantages from both perspectives and training
deep SNNs with matching gradients.

To implement this, the basic idea of ASGL is just to couple the analog activation Hα(x) and binary
activation Θ(x) through a random mask m during forwarding calculation:

Ĥα(x) = (1−m)⊙Hα(x) +m⊙ Φ(Θ(x)) (9)

where m ∼ Bernoulli (p) represents independent random masking. The p controlling the propor-
tion of analogs and spikes is referred to as the noise probability. To avoid the gradient mismatching
from the surrogate function, we use function Φ to detach the gradients from spikes. Mathemati-
cally, Φ standards for the special identical mapping with the derivative ∂Φ(x)

∂x = 0. In this way, the
Heaviside function Θ(x) is taken as the spike noise without error backpropagation. To guarantee
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Figure 2: Comparasion of the computation flow between ASGL and surrogate gradient learning. The
dashed line in purple area represents those operations are detached with the error backpropagation
while the solid line represent the matching forward and backward flow.

the gradient still flows even when p = 1, we recouple both modes and only inject the difference
Θ(x)−Hα(x) as noise:

Ĥα(x) = Hα(x) +m⊙ Φ (Θ(x)−Hα(x)) (10)

The operator pipeline is visualized in Figure 2. Surprisingly, the core idea of ASGL is so simple:
replace Θ(ul[t]−ϑ) with Ĥα(u

l[t]−ϑ) in Equation (3) during training and still adopt Θ(ul[t]− ϑ)
for validation. In practice, minor alterations shown in Algorithm 1 are needed compared to the
surrogate gradient learning. Notably, the hard reset given in Equation (1) transforms into a soft
version at probability when the analog activations Hα(x) are propagated, despite the fact that the
equations describing neuron dynamics remain unchanged. Assume Hα(x) models the function from
expectational membrane potential into spike probability (rate) in a short period (corresponding to
one time step). The neurons have a (1−Hα(u[t])) chance of not emitting a spike and maintaining
the previous potential state. In the sense of expectation, the soft reset should be performed as u[t] =
(1−Hα(u[t]))⊙ u[t] rather than resetting into a fixed value.

Algorithm 1 Core function in ASGL
1: Require: The difference between membrane voltage and threshold ûl[t] = ul[t]− ϑ;

The sign T indicates training or validation
2: Ensure: α is the learnable width parameter
3: if T is true then
4: generate mask m with noise probability p
5: sl[t] = Hα(û

l[t]) +m⊙ Φ
(
Θ(ûl[t])−Hα(û

l[t])
)

{The only line needed to update compared to the surrogate learning}
6: else
7: sl[t] = Θ(ûl[t]).detach()
8: end if
9: return sl[t]

The only remaining problem is to guarantee the noisy network trained with Ĥα(x) could be involved
into an SNN with Θ(x) as activation finally. Fortunately, with the perspective of mixture feedfor-
ward, it could be achieved by simply setting the width α as learnable (see Section 4.3 for detailed
analysis):

∂Hα(x)

∂α
=

{
− 1

α2x, if − 1
2α ≤ x ≤ 1

2α

0, otherwise
(11)

In this way, the gradient mismatching will gradually diminish when adaptive α approaches 0 against
spike noise. Besides, it avoids tricky adjustments for width α which usually has a significant impact
on performance (Wu et al., 2018; Hagenaars et al., 2021). The idea could also bring insights into
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surrogate gradient learning. For example, ASGL will demote to surrogate gradient but still enable
the adaptive width learning if we use fully spike (p = 1) for forwarding computation. Moreover,
ASGL benefits naturally from the pretrained ANNs by increasing gradually p from 0. Therefore,
both ANN-SNN conversion and surrogate gradient learning could be implemented in the framework
of ASGL with different settings of noise probability p.

4.3 THEORETICAL ANALYSIS

In this section, we show network dynamics of noisy networks with learnable α could be evolved
into that of embedded SNNs . Suppose Fnoise represents the noisy network used in training with
Hα(x) across all layers while Fsnn denotes the target SNN embedded in Fnoise with fully spike-
based calculation. The expectation over mask matrix is adopted to estimate the real loss ℓnoise(F, s)
of the hybrid network Fnoise:

ℓnoise(F , s) ≜ Em̂[ℓ(Fnoise(s))] = Em̂[ℓ(Fsnn(s, m̂))] (12)

Here, m̂ = m/p represents the normalized mask gathered from all layers and s denotes the input
spike pattern. With the perturbation analysis in Appendix A.9, we have the following proposition:

Proposition 4.1 Minimizing the loss of noisy network ℓnoise(F, s) can be approximated into min-
imizing the loss of the embedded SNN ℓsnn(F, s) regularized by the layerwise distance between
Θ(ûl) and Hα(û

l).

ℓnoise(F , s) ≈ ℓsnn(F , s) +
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(13)

where Cl = D2
(
ℓ ◦ Em̂[Gl]

)
[sl] is the second derivative of loss function ℓ with respect to the l-th

layer spike activation sl in the constructed network Gl, which could be treated as a constant (Nagel
et al., 2020). Gl denotes the network using mixed activations after l-th layer and full spikes are
adopted in the front l layers. To explain the proposition intuitively, we analyze the non-trivial case
of p ̸= 1 from the perspective of iterative alternate optimization. There are two steps: (1) fix weights
W , optimize width α. (2) fix width α, optimize weights W . For the first case, as ℓsnn(F , s) is con-
stant with fixed weights, the width α tends to minimize the distance between Hα(û

l) and Θ(ûl). So
the penalty term diminishes and ℓnoise(F , s) approaches ℓsnn(F , s) in this step. In the second step,
the noisy network with global task-related loss ℓnoise(F , s) is optimized under a constant smooth
degree. Therefore, by applying the two steps iteratively and alternately, a high-performance SNN
could be obtained through training a noisy network even if we do not increase p explicitly during
training. The theoretical results have also been validated further in Fig 3b of training with fixed
p. Notably, both trainable width and random noise injection with spikes are important to guarantee
the first step holds on. The spike noise could be converted into the penalty on layerwise activations
while the learnable α enables local optimization on it by forcing Hα(x) into Θ(x).

5 EXPERIMENTS

To validate the effectiveness of the proposed method, we conduct extensive experiments on static
images and spatio-temporal patterns such as dynamic event streams, spoken digital speech, and
instrumental music. Specially, we study the evolutions of network dynamics and the effect of noise
rate to explore whether and how injecting noise with spikes obtains the real observation about the
loss landscape of target SNNs. More implementation details and energy estimation could be found
in Appendix A.3 and Appendix A.6 respectively.

5.1 PERFORMANCE ON STATIC IMAGES

In Table 1, we compare our work with state-of-the-art methods on the CIFAR datasets. We use the
widely-used CifarNet (Wu et al., 2019) and a modified ResNet-18 structure (Li et al., 2021c). As
done in (Li et al., 2021c; Deng et al., 2022), AutoAugment (Cubuk et al., 2018) and Cutout (DeVries
& Taylor, 2017) are used for data augmentation. However, we do not adopt a pretrained ANN (Li
et al., 2021c; Rathi et al., 2020; Rathi & Roy, 2020) to initialize weights and Time Inheritance
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Table 1: Classification Performance on Static Image Benchmarks.
Dataset Method Type Architecture Time steps Accuracy(%)

CIFAR-10

Opt. (Deng & Gu, 2021) Conversion

CifarNet

400-600 90.61
STBP NeuNorm (Wu et al., 2019) Surrogate Gradient 12 90.53

TSSL-BP (Zhang & Li, 2020) Time-based Gradient 5 91.41
TL (Wu et al., 2021a) Tandem Learning 8 90.98

PLIF-SNN (Fang et al., 2021b) Surrogate Gradient CifarNet-B 8 93.50

Ours ASGL CifarNet
4 94.74 ± 0.10
2 93.80 ± 0.11
1 92.84 ± 0.21

Hybrid (Rathi et al., 2020) Hybrid ResNet-20 250 92.22

STBP-tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 4 92.92
2 92.34

TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 94.44 ± 0.08
2 94.16 ± 0.03

SEW-ResNet (Fang et al., 2021a)* Surrogate Gradient SEW-ResNet-18 4 94.39 ± 0.18
2 91.22 ± 0.14

Dspike (Li et al., 2021c) Surrogate Gradient ResNet-18 4 93.66 ± 0.05
2 93.13 ± 0.07

Ours ASGL ResNet-18
4 95.35 ± 0.25
2 95.27 ± 0.06
1 94.20 ± 0.01

CIFAR-100

Hybrid (Rathi et al., 2020) Hybrid VGG-11 125 67.87
BinarySNN (Lu & Sengupta, 2020) Conversion VGG-15 62 63.20

Hybrid (Rathi & Roy, 2020) Hybrid ResNet-20 5 64.07

TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 74.47 ± 0.15
2 72.87 ± 0.10

Dspike (Li et al., 2021c) Surrogate Gradient ResNet-18 4 73.35 ± 0.14
2 71.68 ± 0.12

Ours ASGL
CifarNet

4 74.59 ± 0.07
2 74.31 ± 0.15
1 72.81 ± 0.35

ResNet-18
4 74.48 ± 0.06
2 73.19 ± 0.04
1 70.73 ± 0.07

* The results are reproduced through the publicly available code.

Training (TIT) (Li et al., 2021c; Deng et al., 2022) to improve performance under low time steps.
Even though, ASGL outperforms the state-of-the-art surrogate gradient and conversion methods with
the same or fewer time steps on both datasets. Remarkably, we also compare two special training
methods TSSL (Zhang & Li, 2020) and TL (Wu et al., 2021a) without the definition of surrogate
gradient functions. Our method also achieves a significant remarkable on the tradeoff between
accuracy and latency which indicates the effectiveness of adaptive learning employed in ASGL.

5.2 PERFORMANCE ON SPATIO-TEMPORAL PATTERNS.

Table 2: Comparasion on DVS-CIFAR10 dataset.
Method Type Architecture Time steps Accuracy

Streaming Rollout (Kugele et al., 2020) Conversion DenseNet 10 66.8
STBP-tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 10 67.8

Conv3D (Wu et al., 2021b) Surrogate Gradient LIAF-Net 10 71.70
LIAF (Wu et al., 2021b) Surrogate Gradient LIAF-Net 10 70.40

SEW ResNet (Fang et al., 2021a) Surrogate Gradient Wide-7B-Net 16 74.40
PLIF-SNN (Fang et al., 2021b) Surrogate Gradient CifarNet-C 20 74.80

Dspike (Li et al., 2021c) Surrogate Gradient ResNet-18 10 75.45
TET (Deng et al., 2022) Surrogate Gradient VGGSNN 10 77.40

ours ASGL VGGSNN 10 78.90

To validate that our method handles spatio-temporal error backpropagation properly, we conduct ex-
periments on different datasets of spatio-temporal patterns such as DVS-CIFAR10 (Li et al., 2017),
and Spiking Heidelberg Dataset (SHD) (Cramer et al., 2020). More results of MedlyDB (Bittner
et al., 2014) and DVS128 Gesture (Amir et al., 2017) could be found in Appendix A.4.

Performance on DVS-CIFAR10. DVS-CIFAR10 (Li et al., 2017) is a challenging benchmark neu-
romorphic dataset, where each sample is a record of an image of CIFAR10 scanning with repeated
closed-loop motion in front of a DVS. DVS-CIFAR10 has the same number of categories (10) and
samples (1k/class) as CIFAR10, but its recording process generates more noise, thus making classi-
fication more difficult. To alleviate the overfitting problem caused by data size and noise, we adopt
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Table 3: Classification Performance on SHD
Method Type #Param. Acc.(%)

RSNN with Adaption (Yin et al., 2020) Surrogate Gradient 14.13w 84.4
RSNN with Data Augmentation (Cramer et al., 2020) Surrogate Gradient 178.59w 83.2 ± 1.3

Heterogeneous RSNN (Perez-Nieves et al., 2021) Surrogate Gradient 10.85w 82.7 ± 0.8
RSNN (Zenke & Vogels, 2021) Surrogate Gradient 24.99w 82.0 ± 2.0

Fully-connected SNN (Perez-Nieves & Goodman, 2021) Sparse Gradient 28.80w 77.5
Ours ASGL 23.04w 86.9± 1.0

Table 4: Comparison on Image Classifi-
cation.

Width (α) SG ASGL
0.5 93.19 94.11
1.0 93.78 94.30
2.5 90.68 94.09
5.0 62.34 93.61

10.0 30.85 93.53

Table 5: Comparison on Image Reconstruction.

Width (α) PSNR SSIM
SG ASGL SG ASGL

0.1 11.91 17.36 0.21 0.78
0.5 17.75 17.75 0.80 0.80
1.0 16.55 16.79 0.73 0.74
2.5 15.27 16.09 0.65 0.70
5.0 14.66 15.79 0.59 0.68

the VGGSNN architecture and data augmentation method in (Deng et al., 2022). As shown in Ta-
ble 2, our method achieves state-of-the-art performance (78.90%) without a larger network (e.g.,
ResNet-19, DenseNet), which outperforms existing surrogate-gradient based approaches.

Performance on Sound Datasets. The SHD dataset is a spiking dataset containing 10k spoken
digits generated through an encoding model simulating auditory bushy cells in the cochlear nucleus.
For training and evaluation, the dataset is split into a training set (8156 samples) and a test set (2264
samples). In this experiment, we train a three-layer SNN (800-240-20) with recurrent synaptic
connections to identify the keywords in utterances (More details about recurrent connections could
be found in Appendix A.5). As shown in Table 3, the proposed method achieves 2.5% accuracy
improvement at least without any data augmentation introduced in (Cramer et al., 2020) compared
to the latest results. Remarkably, we use standard LIF neurons shown in Equations (1) to (3) while
the adaptive LIF model (Yin et al., 2020) and the heterogenous LIF model (Perez-Nieves et al.,
2021) are adopted to enhance the dynamics of neurons respectively.

5.3 ABLATION STUDY

In Table 4, we compare ASGL with Surrogate Gradient (SG) on CIFAR-10 with ResNet-19 archi-
tecture (Zheng et al., 2021) under N = 3 for the ablation study. The rectangular function is adopted
with the same optimizer setting, seed, and weight initialization for a fair comparison. Specially,
we train 100 epochs with SGD optimizer and the weight decay of 5e-4. The results show ASGL
outperforms SG across a large range of width initialization. It is catastrophic damage for SG when
width α is selected inappropriately (α ≥5). In contrast, ASGL exhibits surprising robustness for dif-
ferent width α. Furthermore, image reconstruction, a challenging regression task for SNNs, is also
conducted to verify the effectiveness of ASGL. Here, we use hα(x) =

1
2 tanh(αx)+ 1

2 as a surrogate
to show ASGL could be also applied to other functions. The fully-connected autoencoder is adopted
for evaluation with the architecture of 784-128-64-32-64-128-784. Table 5 reports the peak signal-
to-noise ratio (PSNR) and Structural Similarity (SSIM) of reconstructed MNIST images under 8
time steps. We could find the adaptive mechanism in ASGL reduces sensitivity for width in SG and
so shows higher performance.

5.4 EFFECT OF NOISE PROBABILITY

In this section, we aim to analyze how noise probability affects the performance of SNN. Firstly,
we increase noise probability p from 0 to 0.8 by 0.1 with every 30 epochs during the training of
ResNet-19 on the CIFAR-10 dataset. As shown in Figure 3a, the training accuracy of the noisy
network is extremely stable while the validation accuracy of the target SNN grows erratically in
the first 30 epochs. It is reasonable as the noise probability is zero in the first 30 epochs and the
network is purely analog without spike injections. With the noise injection of 10% spikes, the
validation accuracy of SNN increases rapidly around 30-th epoch at the expense of the training
accuracy drop of the noisy network. That means the noisy network begins to transform into target
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Figure 3: (a) explores the evolution procedure by observing accuracy change with increasing spike
noise. (b) and (c) examine the accuracy for different fixed p selections during the test and training,
respectively. (d) and (e) shows the similarities between the noisy network and embedded SNN when
training with fixed p. (f) manifests the width change in the image reconstruction task.

SNNs. Interestingly, for the noise injection at the 60-th and 90-th epoch, the training accuracy is
improved actually which indicates the small account of spikes in the first injection is enough for the
dynamics of SNNs and the analog activations may become the obstacle for fast convergence instead.
Then we explores the effect of different choices of fixed p in Figure 3b and Figure 3c. Generally,
low p will block the evolution into SNNs through high analog activations while excessive p could
not achieve the best generalization performance.

5.5 NETWORK EVOLUTION

To reveal the evolution of the noisy network, we visualize accuracy changes of the noisy network
and the embedded SNN with shared weights during training under p = 0.8 and p = 0.5. As shown
in Figure 3d, the accuracy curves of SNNs and the noisy network are extremely close in both cases.
It shows that the noisy network exhibits consistency in network prediction with the embedded SNN.
Furthermore, we record layer-wise activations of the noisy network and the embedded SNN for each
sample, and calculate the average cosine similarities S over all layers after each training epoch with
ASGL. Panel (e) reports the mean and standard deviation of S across all samples in the training set
of CIFAR-10. According to the results, even with shared weights, the hybrid network initially has
relatively low overall similarities, but after training with ASGL, the hybrid network shifts toward
SNN, and the similarities increase to about 0.8. The decremental standard deviation also verifies
the effectiveness of ASGL. We also evaluate the evolution of such a noisy network by observing the
change of learnable width α (Figure 3f) in image reconstruction task. The width α declines steadily
and converges to respective values across all layers.

6 CONCLUSION

In this paper, we propose a novel training method called ASGL to develop deep SNNs. Different from
the typical surrogate gradient learning, our method circumvents the gradient mismatching problem
naturally and updates weights adaptively with the random noise injection in spikes. Specifically, we
train a special hybrid network with a mixture of spike and analog signals where only the analog part
is involved in the calculation of gradients. In this way, the hybrid network will learn the optimal
shapes of the activation functions against the spike noise and evolve into SNN. To validate the
effectiveness and generalization of the proposed method, we analyze theoretically the evolution
from hybrid networks to SNNs. Besides, we conduct extensive experiments on various benchmark
datasets. Experimental result shows our method achieves state-of-the-art performance across all the
tested datasets. Meanwhile, it exhibits surprising robustness for different width selections.
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sic audio signals with convolutional neural networks. In 2017 25th European Signal Processing
Conference (EUSIPCO), pp. 2744–2748. IEEE, 2017.

Nitin Rathi and Kaushik Roy. DIET-SNN: direct input encoding with leakage and threshold opti-
mization in deep spiking neural networks. CoRR, abs/2008.03658, 2020.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
ICLR 2020,. OpenReview.net, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Arash Samadi, Timothy P Lillicrap, and Douglas B Tweed. Deep learning with dynamic spiking
neurons and fixed feedback weights. Neural computation, 29(3):578–602, 2017.

William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B Aimone. Training
deep neural networks for binary communication with the whetstone method. Nature Machine
Intelligence, 1(2):86–94, 2019.

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. arXiv
preprint arXiv:1810.08646, 2018.

Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event clouds for gesture recog-
nition: From rgb cameras to event cameras. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1826–1835. IEEE, 2019.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of
dropout. In International Conference on Machine Learning, pp. 10181–10192. ICML, 2020.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transac-
tions on Neural Networks and Learning Systems, pp. 1–15, 2021a. doi: 10.1109/TNNLS.2021.
3095724.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311–1318, 2019.

Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky inte-
grate and analog fire network for lightweight and efficient spatiotemporal information processing.
IEEE Transactions on Neural Networks and Learning Systems, 2021b.

Timo C Wunderlich and Christian Pehle. Event-based backpropagation can compute exact gradients
for spiking neural networks. Scientific Reports, 11(1):1–17, 2021.

Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking
neural networks with local tandem learning. NeurIPS, 2022.

Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for accurate
training of spiking neural networks. In ICML, pp. 11852–11862, 2021.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi
Li. Temporal-wise attention spiking neural networks for event streams classification. In ICCV,
pp. 10221–10230, 2021.

12



Bojian Yin, Federico Corradi, and Sander M Bohté. Effective and efficient computation with
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A APPENDIX

A.1 SPIKE-BASED BACKPROPAGATION

Firstly, we decompose the gradient of aggregate loss over the whole time window into different
target time steps t∗:

∇W l =
∂L(cL,y)

∂cL
∂cL

∂W l
= − (yT − ŷT )

N

N∑
t∗=1

∂cL[t∗]

∂W l
(14)

To obtain the expression of ∂cL[t∗]
∂W , we assign the credits for cL[t∗] into the membrane potential

ul[t] at all time steps satisfying t ≤ t∗:

∂cL[t∗]

∂W
=

t∗∑
k=0

∂cL[t∗]

∂ul[t]

∂ul[t]

∂cl[t]

∂cl[t]

∂W l

=

t∗∑
t=0

∂cL[t∗]

∂ul[t]

∂cl[t]

∂W l

(15)

where ∂cl[t]
∂W is a three-dimensional tensor about the afferent spikes sl−1[t]. For simplification, we

denote ∂cL[t∗]
∂ul[t]

as δl[t]. When t < t∗ and l < L− 1, δl[t] could be calculated as follows:

δl[t] = δl[t+ 1]
∂ul[t+ 1]

∂ul[t]
+ δl+1[t]

∂ul+1[k]

∂ul[k]

∂ul[t+ 1]

∂ul[t]
= γ diag

(
1− sl[t]− ul[t]⊙Θ

′
(ul[t])

)
∂ul+1[t]

∂ul[t]
= W l+1diag

(
Θ

′
(ul[t])

) (16)

where Θ
′
(x) = [Θ

′
(x1),Θ

′
(x2), ...,Θ

′
(xn)]

T represents the element-wise partial on the colum
vector x. As for the boundary condition of the layer L − 1 and time step t∗, we could obtain the
expression of δl[t]:

δl[t] =


δL[t+ 1]∂u

L[t+1]
∂uL[t]

if l = L− 1 and t < t∗

δl+1[t∗]∂u
l+1[t∗]

∂ul[t∗]
if t = t∗and l < L− 1

WLdiag
(
Θ

′
(ul[t])

)
if t = t∗and l = L− 1

(17)

Then the full backward flow through time of SNNs with the LIF model could be obtained with
Equations (14) to (17).
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A.2 C-LIF MODEL

For the instrumental recognization, we adopt the current-base LIF model (C-LIF) (Gütig, 2016) as
the basic computational unit for a fair comparison. The iterative form of C-LIF could be presented
as:

sl[t] = Θ
(
ul[t]− ϑ

)
cl[t] = u0 ⊙W lsl−1[t]

ul[t] = ml[t]− vl[t]− el[t]

vl[t] = βvv
l[t− 1] + cl[t]

ml[t] = βmml[t− 1] + cl[t]

el[t] = βmml[t− 1] + ϑsl[t− 1]

Θ(x) =

{
1, x ≥ ϑ
0, x < ϑ

(18)

where u0 is the normalization factor. ml[t] − vl[t] models the current integration of the synapse
with the double exponential function. el[t] simulates the refractory period in spiking neurons. The
other symbols keep consistent with the standard LIF model.

A.3 EXPERIMENTAL DETAILS

Table 6: Different hyperparameters related with p.
Dataset p ζ Milestones (Epochs)

CIFAR-10 / DVS-CIFAR10 / DVS128 Gesture 0.8 1 NA (300)

Tiny-ImageNet 0.9 1 NA (300)

CIFAR-100 0.6 0.8 90-th, 210-th, 270-th, 285-th (300)

SHD 0.8 0.9 30-th, 70-th, 90-th, 95-th (100)

MedlyDB 0.5 0.9 30-th, 70-th, 90-th, 95-th (100)

We use ADAM with the initial learning rate λ = 0.1 for CIFAR100 and SGD with the initial
learning rate of λ = 0.1 for CIFAR10 dataset. As done in (Li et al., 2021c), we use AutoAugment
(Cubuk et al., 2018) and Cutout (DeVries & Taylor, 2017) for data augmentation in both static
image datasets. Meanwhile, a cyclic cosine annealing learning rate scheduler is adopted. For the
SHD dataset, we discretize the time into 250 time steps and decrease noise probability starting from
0.2. The corresponding network architecture is 700−240−20 while the neurons in the middle layer
are connected with recurrent synapses. For the MedlyDB dataset, we increase the noise probability
at 30-th, 70-th, 90-th, 95-th epoch with the discretization of 500 time steps. In particular, we update
p as 1− (1− p) · ζ at each milestone and make the ratio of analog activations attenuation at the rate
of ζ. All the p and ζ we use for each dataset are shown in Table 6 unless otherwise specified. For
the results of Table 5, we provide detailed statistics and configurations in Table 11.

A.4 EXPERIMENTS ON MEDLYDB, DVS128 GESTURE, AND TINY IMAGENET

Performance on Tiny-ImageNet. Tiny-ImageNet contains 200 categories and 100,000 64×64
colored images for training, which is a more challenging static image dataset than CIFAR datasets.
Here, we use hα(x) = 1

2 tanh(αx) + 1
2 as the surrogate forwarding function. The initial width α

and decay γ is set as 2.5 and 0.5 respectively. As shown in Table 8, ASGL still achieve competitive
results compared to other methods using only 4 time steps which further verify the effectiveness of
ASGL.

Performance on MedlyDB. In this experiment, we explore the instruments recognization task
with various music pieces in different melodies and styles. Specifically, as done in (Gu et al., 2019),
we subtract the subset of MedlyDB which contains the monophonic stems of 10 instruments. To test
our algorithm in sparse spike patterns, we adopt the efficient coding scheme based on the sparse rep-
resentation theory (Lewicki, 2002). Moreover, we use the same metric, the same network structure
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Table 4. Classification Performance on Music Instrument Dataset
Method Type Encoding Method #Param. Recall(%) Precision(%) F1 score(%)

CNN (Pons et al., 2017) Direct BP Spectrogram 76.9w 99.21 95.94 97.51
LSTM Direct BP Spectrogram 27.6w 93.31 96.08 94.62

FA (Samadi et al., 2017) DSNN (Feedback Alignment) Spikegram 27.6w 86.56 75.62 80.73
STCA (Gu et al., 2019) DSNN (Surrogate Gradient) Spikegram 27.6w 97.29 97.23 97.25

Ours DSNN (Noisy Spike) Spikegram 27.6w 98.58 98.52 98.59

Figure 4. The changed accuracies with the decreased noisy proba-
bility.

rapidly around 30-th epoch at the expense of the training
accuracy drop of the noisy network. That means the noisy
network begins to transform into target SNNs. Interestingly,
for the following noise injection at the 60-th and 90-th epoch,
the training accuracy is improved actually which indicates
the small account of spikes in the first injection are enough
to obtain the dynamics of SNNs for the static image dataset.
And the analog activations may become the obstacle for fast
convergence instead. In practice, we could develop similar
schedulers like those well-known learning rate schedulers
to adjust the noisy probability adaptively.

5.5. Sparsity and Energy Efficiency

In this section, we visualize the average spike rate of each
layer of spiking ResNet-18 shown in Figure 5 and provide
the estimated energy by counting synaptic operations (SOP)
compared to the ANN counterpart. Especially, the SOP
with MAC presented in ANNs is constant given a specified
structure. However, the SOP in SNN is executed by AC with
lower power consumption and varies with the spike sparsity
(More details could be found in Appendix F). Here, we
select 1024 samples randomly and estimate the average SOP
for SNNs. Meanwhile, we measure 32-bit floating-point AC
by 0.9 pJ per operation and 32-bit floating-point MAC by 4.6
pJ per operation (Han et al., 2015). The experimental result
shows the SNN achieves 94.11% classification accuracy
under two time steps on CIFAR-100 with only 8.96% energy
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Figure 5. The average spike rate of each layer.

consumption compared to the ANN in the same architecture.

6. Conclusion
In this paper, we propose a novel training method called
Noisy Spike to develop deep SNNs. Different from the typ-
ical surrogate gradient learning, our method circumvents
the gradient mismatching problem naturally and updates
weights adaptively with the random noise injection in spikes.
Specifically, we train a special hybrid network with a mix-
ture of spikes and analogs where only the analogs are in-
volved in the calculation of gradient. In this way, the analog
part of the hybrid network will learn the optimal shapes
of the activation functions against the spikes. As a result,
the dynamics of the hybrid network will evolve into that of
target SNNs evaluated in network validation. To validate the
effectiveness and generalization of the proposed method, we
analyze theoretically the evolution from hybrid networks to
SNNs. Besides, we conduct extensive experiments on static
images, dynamic event streams, speech, and instrumental
sounds in practice. Experimental result shows our method
achieve SOTA across all the datasets. Generally, our method
explores the potential power of hybrid architectures by cou-
pling dual modes of spikes and analog during training. We
believe the idea brings solid insights for the training of deep
SNNs.

Figure 4: The average spike counts of each layer.

Table 7: Classification Performance on DVS128 Gesture
Method Type Architecture Acc.(%)

SLAYER (Shrestha & Orchard, 2018)

Surrogate Gradient

SNN(8 layers) 93.64
STBP in DVS (He et al., 2020) SNN(8 layers) 93.40

STBP-tdBN (Zheng et al., 2021) SNN(ResNet17) 96.87
Temporal-wise Attention (Yao et al., 2021) SNN(8 layers) 95.49

PLIF-SNN (Fang et al., 2021b) SNN(8 layers) 97.57
DECOLLE (Kaiser et al., 2020) Online Local Learning SNN(4 layers) 95.54

Streaming rollouts (Kugele et al., 2020) Conversion SNN (DenseNet) 95.56

PointNet-like ANN (Wang et al., 2019) Gradient training DNN 95.32
RG-CNN (Bi et al., 2020) DNN 97.20

Ours ASGL SNN(8 layers) 97.90

(384-700-10), and the same C-LIF neuron with the previous work for a fair comparison. The results
show our method outperforms the others on most metrics except the Recall rate of the specialized
CNN (Pons et al., 2017). which designs special convolutional kernels.

Performance on DVS128 Gesture. DVS128 Gesture is a challenging neuromorphic dataset that
records 11 gestures performed by 29 different participants under three lighting conditions. The
dataset comprises 1,342 samples with an average duration of 6.5 ± 1.7 s and all samples are split
into a training set (1208 samples) and test set (134 samples). Considering the long sample duration
and the limited sample size, we follow the RCS approach (Yao et al., 2021) that randomly selects the
starting point of the sample to maximize the use of the dataset. The time step N is set to be 60 and the
network receives only one slice at each step, where the temporal resolution of each slice is adjusted
to 25ms according to the tuning method in (He et al., 2020). In Table 7, our method has achieved

Table 8: Comparasion on Tiny-ImageNet dataset.
Method Type Architecture Time steps Top-1 Acc.

Spike-thrift (Kundu et al., 2021) Hybrid VGG-16 150 51.92
DCT (Garg et al., 2020) Hybrid VGG-13 125 56.90

SNN Calibration (Li et al., 2021b)† Conversion VGG-16 32 53.96
QCFS (Bu et al., 2021)† Conversion VGG-16 32 53.54

Online LTL (Yang et al., 2022) Tandem Learning VGG-13 16 54.82
Offline LTL (Yang et al., 2022) Tandem Learning VGG-13 16 55.37

Ours ASGL VGG-13 4 56.57
† Those results are reproduced by (Yang et al., 2022) through publicly available codes.
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the state-of-the-art performance (97.90 %) without a larger network (e.g., ResNet17, DenseNet),
outperforming the directly-trained approaches based on surrogate gradient. Even compared with the
specially-designed DNN approaches for neuromorphic data, our model also performs better.

A.5 RECCURENT CONNECTIONS

To enhance the memory capacity in SNNs at the temporal domain, synatic recurrence is adopted
widely distinguish from the internal dynamics with decay mechanism in spiking neurons. The basic
equation for such an external recurrence could be given by:

dcl

dt
= − cl(t)

τsyn︸ ︷︷ ︸
exp. decay

+W lsl−1(t)︸ ︷︷ ︸
feedforward

+V lsl(t)︸ ︷︷ ︸
recurrent

, (19)

where the terms of decay τsyn and τm in Equation (1) both contribute to the internal recurrence. And
the synaptic recurrence with weight V l enhance the temporal memory.

A.6 ENERGY ESTIMATION

In this section, we visualize the spike counts of each layer in spiking ResNet-18 shown in Figure 4
and provide the estimated energy by counting synaptic operations (SOP) compared to the ANN
counterpart. Especially, the SOP with MAC presented in ANNs is constant given a specified struc-
ture. However, the SOP in SNN is executed by AC with lower power consumption and varies with
the spike sparsity. For SNNs, the total synaptic operation with accumulation NAC is defined as:

NAC =

T∑
t=1

L−1∑
l=1

N l∑
i=1

f l
is

l
i[t] (20)

where fan-out f l
i is the number of outgoing connections to the subsequent layer. N l

i is the neuron
number of the l-th layer. ANNs, similar synaptic operation NMAC with more exexpensive multiply-
accumulate is defined as:

NMAC =

L−1∑
l=1

N l∑
i=1

f l
i (21)

Specially, we use MAC to estimate the energy cost of the first layer as the direct current input without
explicit encoding is adopted in our experiments on static images. For Here, we select 1024 samples
randomly and estimate the average SOP for SNNs. Meanwhile, we measure 32-bit floating-point AC
by 0.9 pJ per operation and 32-bit floating-point MAC by 4.6 pJ per operation as done in (Han et al.,
2015). The experimental result shows the SNN achieves 94.11% classification accuracy under two
time steps on CIFAR-10 with only 8.96% energy consumption compared to the ANN with the same
architecture. We follow the convention of the neuromorphic computing community by counting the
total synaptic operations to estimate the computation overhead of SNN models compared to their
ANN counterparts (Merolla et al., 2014).

A.7 ABLATION STUDY ON RESNET-19

Table 9: Classification Performance on Music Instrument Dataset
Method Type Encoding Method #Param. Recall(%) Precision(%) F1 score(%)

CNN (Pons et al., 2017) Direct BP Spectrogram 76.9w 99.21 95.94 97.51
LSTM Direct BP Spectrogram 27.6w 93.31 96.08 94.62

FA (Samadi et al., 2017) DSNN (Feedback Alignment) Spikegram 27.6w 86.56 75.62 80.73
STCA (Gu et al., 2019) DSNN (Surrogate Gradient) Spikegram 27.6w 97.29 97.23 97.25

Ours DSNN (ASGL) Spikegram 27.6w 98.58 98.52 98.59

We have added the results of ResNet-19 (Zheng et al., 2021) under time-steps N = 3 in Table 11
(rectangular function) and Table 12 (Dspike function (Li et al., 2021c)). Specifically, we test the
effect of different width initializations. For fairness, we use the same optimizer settings and weight
initialization. All the experimental details are provided in the Appendix. Notably, ResNet-19 has
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Table 10: Comparsion with Surrogate Gradient Learning.
Method SG (α = 0.5) SG (α = 1) SG (α = 2.5) SG (α = 5) SG (α = 7.5) SG (α = 10)

Acc. 10.00 ± 0.00 10.00 ± 0.00 87.64 ± 0.28 81.89 ± 0.57 66.00 ± 1.82 53.65 ± 1.12

Method ASGL+SG (p = 0.5, α=1) ASGL+SG (p = 0.5, α=2.5) ASGL+SG(p = 0.5, α=5) ASGL(ζ=0.2) ASGL(ζ=0.5) ASGL(ζ=0.8)

Acc. 10.00 ± 0.00 85.72 ± 0.35 53.41 ± 2.13 89.62 ± 0.20 89.69 ± 0.17 88.83 ± 0.09

approximate 10× operations than ResNet-18 (Li et al., 2021c). Therefore we train 100 epochs for
each case considering time cost. As shown in both tables, ASGL shows robustness surprisingly
on different width initializations compared to surrogate gradient with rectangular function
and Dspike function. This is the main advantage of ASGL which could save the cost of hyperpa-
rameter selection in practice. From Table 12, we could find that the Dspike function shows certain
robustness with respect to the rectangular function considering the result of α = 2.5 from two tables.
However, it could be improved further by ASGL when α ≤ 0.5 shown in Table 12.

Experimental Setting: We train each model in ablation study for 100 epochs with initial learning
rate of 0.1. We use SGD with the momentum of 0.9 across all experiments. The weight decay is
set as 5e-4. As done in (Li et al., 2021c), we use AutoAugment (Cubuk et al., 2018) and Cutout
(DeVries & Taylor, 2017) for data augmentation. Meanwhile, a cyclic cosine annealing learning
rate scheduler is adopted. Besides, we use 128 as batch size during training. Both threshold and
decay are set to 0.5. Specially, we decrease the noise rate at 20-th, 40-th, 60-th, 80-th and 95-th
epoch with different ζ listed in both tables.

Table 11: Comparsion between ASGL and Surrogate Gradient with rectangular functions under
different width initializations.

Width Surrogate Gradient ASGL

ξ = 0.2 ξ = 0.5 ξ = 0.8

α = 0.5 93.19 93.89 93.93 94.11
α = 1.0 93.78 93.83 94.30 94.15
α = 2.5 90.68 93.71 94.09 93.89
α = 5.0 62.34 93.61 93.53 93.08
α = 10.0 30.85 92.48 93.53 93.00

Table 12: Comparsion between ASGL and Surrogate Gradient with Dspike functions under different
width initializations.

Width Surrogate Gradient ASGL

ξ = 0.2 ξ = 0.5 ξ = 0.8

α = 0.10 82.48 90.81 91.23 89.24
α = 0.12 89.42 90.83 92.65 91.34
α = 0.14 91.41 93.20 94.03 93.36
α = 0.5 93.93 94.02 94.34 94.28
α = 1.0 93.85 93.83 94.30 93.15
α = 2.5 93.61 93.60 93.98 93.98

A.8 WIDTH UPDATE

We evaluate the evolution of such a noisy network by observing the change of learnable width α.
For the image reconstruction (Figure 5a), the width α declines steadily across all layers. It indicates
the injection of spike noise will force the noisy network to evolve into the target SNN and then
optimize the target SNN in a coupled manner. Furthermore, Figure 5b shows the change of α in
CIFAR-10 classification. Interestingly, the width α of the last layer in CIFARNet increases while
others descend consistently. It may result from the coupling training with both goals of reducing the
loss of SNN and minimizing the distance between the noisy network and SNN. Besides, it indicates
that the width update should change dynamically according to different layers of the network and
different training epochs.
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Figure 5: Fig. (a) and (b) visualize the width update in image reconstruction and image recogniza-
tion, respectively.

A.9 THEORY ANALYSIS

Table 13: The symbols and corresponding definitions (explanations).
Symbol Defination

ℓ loss function
s or s0 input spike pattern
f l the l-th spiking layer with Θ(ûl)
F l f1 ◦ f2 ◦ ... ◦ f l

sl the output of F l with fully spike propagation
gl the l-th noise spiking layer with random mask m̂l

Gl gL ◦ gL−1 ◦ ... ◦ gl+1

p noise probability controlling the percent of spike mode

Proposition A.1 Minimizing the loss of noisy network ℓnoise(F, s) can be approximated into min-
imizing the loss of the embedded SNN ℓsnn(F, s) regularized by the layerwise distance between
Θ(ûl) and Hα(û

l).

ℓnoise(F , s) ≈ ℓsnn(F , s) +
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(22)

Derivation. Suppose Gl ◦ F l as the hybrid network using spike activations Θ(x) in the preceding
l layers and hybrid activations Hα(x) after l-th layer. Morever, sl is the output spikes at l-th layer
across all time steps and neurons. The detailed symbol definations and descriptions are provided in
Table 13. Then we can have:

ℓnoise(F , s) = ℓ(Fsnn(s)) + Em̂[ℓ(Fsnn(s, m̂))− ℓ(Fsnn(s))]

= ℓ(Fsnn(s)) + Em̂[ℓ(G0(s0, m̂))− ℓ(GL(sL))]

= ℓ(Fsnn(s)) + Em̂

[
L∑

l=1

(
ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))

)]

= ℓ(Fsnn(s)) +

L∑
l=1

Em̂[ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))]

= ℓ(Fsnn(s)) +

L∑
l=1

R(Gl, sl)

(23)

Then we adopt Taylor expansion on sl inspired from (Wei et al., 2020) to analyze the effect of the
perturbation of m̂ at l-th layer. From Equation (10) and Equation (3), we could obtain:

Gl−1
(
sl−1, m̂

)
= Gl

(
(1− m̂l)⊙Hα(û

l) + m̂l
b ⊙Θ(ûl), m̂

)
= Gl

(
(1− m̂l)⊙ (Hα(û

l)−Θ(ûl)) + sl, m̂
) (24)
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Here, we denote ∆ = (1−m̂l)⊙(Hα(û
l)−Θ(ûl)) for simplication. As the expection of ∆ is zero

and |∆| is bounded in [0,max( 1−p
2p , 1

2 )], we adopt Taylor expansion around ∆ = 0 and approximate
R(Gl, sl) here:

R(Gl, sl) = Em̂[ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))]

= Em̂[ℓ(Gl(sl +∆, m̂))− ℓ(Gl(sl, m̂))]

≈ Em̂

[
D(ℓ ◦Gl)[sl]∆ +

1

2
∆T

(
D2(ℓ ◦Gl)[s]

)
∆

] (25)

As ∆ is a zero-mean vector, we discard the first-order term for expectation calculation here:

R(Gl, sl) ≈ Em̂

[
1

2
∆T

(
D2(ℓ ◦Gl)[s]

)
∆

]
(26)

Then we could take the expectation over ∆:

R
(
Gl, sl

)
≈ 1

2

〈
D2

(
ℓ ◦ Em̂[Gl]

)
[s] ,E∆

[
∆∆T

]〉
=

1− p

2p

〈
D2

(
ℓ ◦ Em̂[Gl]

)
[s] , diag

((
Hα(û

l)−Θ(ûl)
)⊙2

)〉 (27)

Here, only the diagonal elements in the covariance matrix E∆

[
∆∆T

]
are non-zero because of the

independent sampling strategy presented in m̂. For the second order term, we could just take it as a
constant like (Nagel et al., 2020). Therefore, by substiting Equation (27) into Equation (23), we get:

ℓnoise(F , s) ≈ ℓ(Fsnn(s)) +
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(28)
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