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Abstract—The paper focuses on studying an adaptive fuzzy
predefined-time tracking control method for a category of un-
certain high-order nonlinear systems with input quantization.
The considered plants contain unknown nonlinear functions,
input quantization, and external disturbances. To handle the
difficulties introduced by the uncertain nonlinearities within the
original systems, fuzzy logic systems are employed to estimate the
unknown nonlinear functions, while power integrator technology
is utilized to address the challenge posed by high-order terms.
Using the predefined-time Lyapunov stability theory based on the
backstepping recursive technique, the system stability analysis is
presented, and it is demonstrated that all signals in the closed-
loop system remain bounded within the preset time interval.

Index Terms—high-order nonlinear systems, backstepping con-
trol, predefined-time, quantized control

I. INTRODUCTION

The time-optimal control problem has garnered significant
attention recently. To achieve control objective in a constrained
time, finite-time control, fixed-time control, and predefined-
time control have been widely researched [1]–[3]. A notable
limitation of finite-time and fixed-time control strategies is the
inability to establish a direct correlation between settling time
and tuning parameters. In contrast, predefined-time control
shows greater promise because the stability time of system
is determined solely by one design parameter, allowing for
the presetting of stability time through parameter modification.
In [3], a predefined-time output feedback control strategy
is formulated for nonlinear systems with event triggering,
further advancing practical predefined-time theories. These
advantages make the predefined-time control show a extensive
practical application prospect in robotic manipulators [4],
spacecraft tracking control [5] and other fields.

High-order (p-normal) nonlinear systems have generated
significant concern because of their widespread existence
and more general models [6]–[9]. Qian and Lin [6] put
forward a control scheme for a category of nonlinear high-
order systems by devising innovative iterative-type Lyapunov
functions, referred to as adding a power integrator. Since then,
many significant outcomes have been attained through the
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application of this technology, leading to remarkable advance-
ments, including high-order multi-agent systems [7], high-
order interconnection systems [8], and high-order stochastic
systems [9]. It should be noted that the above articles do not
take into account the adaptive fuzzy predefined-time control
problem for uncertain high-order nonlinear systems.

There has been considerable interest in the advancement of
quantized control systems due to its theoretical and practical
significance in the realms of digital control systems and
networked control systems. The authors in [10], [11] studied
the problems of adaptive backstepping control for uncertain
nonlinear systems with quantized input. To achieve the control
objective with sufficient accuracy under low communication
rates, the authors in [12] utilized a logarithmic quantizer in
channels with communication constraints. In [13], hysteresis
quantizers were employed to tackle input quantization problem
for nonlinear interconnected systems with weak interconnec-
tions. It is evident that there is a lack of existing research
on predefined time control for high-order systems, particu-
larly considering input quantization and external disturbances.
Inspired by the preceding statements, we aim to study the
adaptive fuzzy predefined-time quantized control problem for
uncertain high-order nonlinear systems. The primary advan-
tages of this article are outlined as below:
(1) Based on the backstepping recursive technology, this paper
first considers quantized-input-based predefined time control
design problem for uncertain high-order nonlinear systems,
specifically addressing the difficulties that occur when the
predefined-time control approach is unable to smoothly tran-
sition to higher-order systems due to the presence of higher-
order terms.
(2) This article proposes an innovative predefined time control
strategy that addresses the inability of finite time and fixed
time controllers for high-order nonlinear systems [1], [2]
to set system convergence time beforehand. The point in
time when the system attains stability can be preset through
the adjustment of parameters, making the system have good
practical application prospects.
(3) Different from the widely adopted logarithmic quantizer
[12], the hysteretic quantizer in this article can avoid chattering
issue in the process of quantization and optimize communica-
tion bandwidth while maintaining control performance.



II. PRELIMINARIES AND PROBLEM FORMULATIONS

A. System Formulation and Assumption

Consider uncertain high-order nonlinear systems as below:

ẋs = xκs
s+1 + fs (x) + ωs (t)

ẋm = qκm (u(t)) + fm (x) + ωm (t)

y = x1

(1)

where s = 1, 2, ...,m, x̄s = [x1, ..., xs]
T , and x = x̄m is the

state vector; κs ≥ 1 denote the positive odd numbers; fs (x)
are the uncertain smooth functions. u(t) and y present the con-
trol input and system output of the system, respectively. ωs (t)
are the bounded external disturbances and satisfy |ωs (t)| ≤ ω∗

s

with ω∗
s being unknown positive constants.

As stated in [10], a hysteresis quantizer is described as

q (u)=



ussgn (u) ,
us

1+ρ ≤ |u| ≤ us, u̇ < 0,

or us ≤ |u| ≤ us

1−ρ , u̇ > 0

us (1 + ρ) sgn (u) , us ≤ |u| ≤ us

1−ρ , u̇ < 0,

or us

1−ρ ≤ |u| ≤ us(1+ρ)
1−ρ , u̇ > 0

0, 0 ≤ |u| ≤ umin

1+ρ , u̇ < 0,

or umin

1+ρ ≤ |u| ≤ umin, u̇ > 0

q (u (t−)) , u̇ = 0
(2)

where us = δ1−sumin(s = 1, 2, · · · ,m) and ρ = 1−δ
1+δ

with umin > 0 and 0 < δ < 1. q(u) locates into the set
U = {0,±us,±us (1 + ρ) , s = 1, 2, · · · ,m} , umin > 0 is
the size of the dead-zone for q(u), and δ stands for the measure
of quantization density, and q(u) can be divided into two
segments as follows:

qκm (u(t)) = h (u)uκm (t) + τ(t) (3)

where h(u) and τ(t) satisfy

(1− ρ)
κm ≤ h (u) ≤ (1 + ρ)

κm , |τ(t)| ≤ uκm
min. (4)

Assumption 1: [8] Positive odd numbers κs satisfy

κ+ 1

κs
≥ κ− κs+1 + 1 (5)

where s = 1, 2, · · · ,m− 1 and κ satisfies κ = max
s=1,...,m

{κs}.

Control Objective: This article aims to propose an adaptive
predefined-time tracking controller for high-order nonlinear
systems with quantized input signal, such that all the signals
in the closed-loop uncertain high-order nonlinear system are
bounded and the tracking error can converge to a predefined
region near the origin within some predefined time.

B. Fuzzy Logic Systems

In this article, FLSs will be applied to the modeling of the
unknown nonlinear functions. The FLSs can be denoted as

y (τ) =

∑N
ζ=1 ȳζ

∏n
s=1 ςFζ

s
(τs)∑N

ζ=1

[∏n
s=1 ςFζ

s
(τs)

] (6)

where ȳζ = maxy∈R ςGζ (y).

Devise the fuzzy basis functions as below:

φζ (τ) =

∏n
s=1 ςFζ

s
(τs)∑N

ζ=1

[∏n
s=1 ςFζ

s
(τs)

] . (7)

Denote ϑ = [ȳ1, ȳ2, · · · , ȳN ]
T

= [ϑ1, ϑ2, · · · , ϑN ]T and
φT (τ) = [φ1 (τ) , φ2 (τ) , · · · , φN (τ)]T , then the fuzzy logic
system (6) can be reformulated as follows:

y (τ) = ϑTφ (τ) . (8)

Lemma 1: [3] Define a smooth function H (τ) on a compact
set ℧. For ∀ϵ > 0, there exists a vector ϑ∗ guarantee the
inequality

sup
τ∈℧

∣∣∣H (τ)− ϑ∗Tφ (τ)
∣∣∣ ≤ ϵ (9)

where ϑ∗ represents the ideal parameter vector.
Lemma 2: [10] If Π(Ξ) = [x1(Ξ), ..., xl(Ξ)]T is the fuzzy

basis function vector of FLSs and Ξ = [z1, ..., zm]T is the
input vector, then we get the inequality

∥φ (Ξ)∥2 ≤ ∥φ (Ξs)∥2 (10)

where Ξs = [z1, ..., zs]
T , 0 < s ≤ m.

C. Predefined Time Stability Theory
The dynamic equation are considered as below:

τ̇ = Γ (τ) (11)

where the origin is an equilibrium point. Γ : Rn → Rn is a
nonlinear function and τ ∈ Rn is the system state vector.

Definition 1: [3] Given positive constant Td > 0 and
ϵ > 0, when t > Td, the state trajectory τ satisfies ∥τ∥ < ϵ.
Following that, the origin is practically predefined time stable.
Moreover, Td is called the predefined time.

Lemma 3: [3] If there exists a Lyapunov function satisfying

V̇ ≤ − π

rTd
V 1+ r

2 − π

rTd
V 1− r

2 + b (12)

where 0 < r < 1, Td and b are positive constants, V denotes
practical predefined time stable and 2Td is the predefined time.

III. ADAPTIVE FUZZY CONTROL DESIGN AND ITS
STABILITY ANALYSIS

In this section, an adaptive fuzzy predefined-time tracking
controller will be designed based on the coordinate transfor-
mations as below:

z1 =x1 − yr

zs =xs − αs−1

(13)

where s = 2, ...,m; yr is the reference signal and its m-th
derivative are available, continuous and bounded; αs−1 is the
intermediate control signal, which will be designed later.

Step 1 : From (1) and (13), the derivative of z1 can be
indicated as

ż1 = xκ1
2 + f1 (x) + ω1 (t)− ẏr. (14)

Choose the power-based Lyapunov function

V1 =
zκ−κ1+2
1

κ− κ1 + 2
+

1

2
Θ̃2

1
(15)

where Θ̃1 = Θ∗
1 − Θ̂1, Θ̂1 is the estimated value of Θ∗

1.



Following that, calculating the derivative of V1, one gets

V̇1 =zκ−κ1+1
1

(
xκ1
2 + f̄1 (x) + ω1 (t)− ẏr

)
− z

2(κ−κ1+1)
1 − Θ̃1

˙̂
Θ1

(16)

with f̄1 (x) = f1 (x) + zκ−κ1+1
1 .

The uncertain nonlinear function f1 is comprised in f̄1, thus
estimating it with FLS yields

f̄1 (x) = θ∗1
Tφ1 (Ξ1) + ε1 (Ξ1) (17)

where Ξ1 = [x1, x2, ..., xm]T , |ε1 (Ξ1)| ≤ ε∗1, ε∗1 > 0 is a
constant.

By applying Young’s inequality and Lemma 2, it shows that

zκ−κ1+1
1 f̄1 (x) ≤ |z1|κ−κ1+1

(∥θ∗1∥ ∥φ1 (Ξ1)∥+ ε∗1)

≤ 1

2c21
z
2(κ−κ1+1)
1 Θ∗

1φ
T
1 (χ1)φ1 (χ1)

+
c21
2

+
1

2
z
2(κ−κ1+1)
1 +

ε∗1
2

2

(18)

zκ−κ1+1
1 ω1 ≤ 1

2
z
2(κ−κ1+1)
1 +

ω∗
1
2

2
(19)

where χ1 = [x1]
T , Θ∗

1 = ∥θ∗1∥
2, and c1 > 0 is a design

parameter. ω∗
1 is an unknown positive number that satisfies

∥ω1∥ ≤ ω∗
1 .

Plugging (18) and (19) into (16) results in

V̇1 ≤ zκ−κ1+1
1

(
1

2c21
zκ−κ1+1
1 Θ̂1φ

T
1 (χ1)φ1 (χ1)

+ xκ1
2 − ẏr + ακ1

1 − ακ1
1

)
+
ω∗
1
2

2
+
c21
2

+
ε∗1

2

2

+ Θ̃1

(
1

2c21
z
2(κ−κ1+1)
1 φT1 (χ1)φ1 (χ1)− ˙̂

Θ1

)
.

(20)

Devise the intermediate control signal α1, and the adaptive
update law ˙̂

Θ1 as

α1 =−

(
1

2c21
zκ−κ1+1
1 Θ̂1φ

T
1 (χ1)φ1 (χ1) + l1z

κ1
1

+
σ1π

rTd
z
(1+ r

2 )(κ+1)−(κ−κ1+1)

1 − ẏr

) 1
κ1

(21)

˙̂
Θ1 =

1

2c21
z
2(κ−κ1+1)
1 φT1 (χ1)φ1 (χ1)

− 2

(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)
Θ̂1

(22)

where σ1 = (2m)
r
2 / (κ− κ1 + 2)(

1+ r
2 ), l1 =

(σ̄1π) / (rTd) + 1, σ̄1 = 1/ (κ− κ1 + 2)(
1− r

2 ) and
Θ̂1 (0) ≥ 0.

Using Young’s inequality, it follows that

2

(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)
Θ̃sΘ̂s

≤−
(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)(
Θ̃2
s −Θ∗

s
2
)
.

(23)

where s = 1, 2, ...,m.
Combining (20) - (23) yields

V̇1 ≤zκ−κ1+1
1 (xκ1

2 − ακ1
1 )− l1z

κ+1
1

− σ1π

rTd
z
(1+ r

2 )(κ+1)

1 +
ω∗
1
2

2
+
c21
2

+
ε∗1

2

2

−
(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)(
Θ̃2

1 −Θ∗
1
2
)
.

(24)

According to [8], it can be inferred that for any real-valued
functions T, L, any positive odd integer κ > 1 and a given
positive constant ζ , one gets

|Tκ − Lκ| ≤ κ |T− L| (Tκ−1 + Lκ−1) (25)

|T+ L|ζ ≤ cζ

(
|T|ζ + |L|ζ

)
(26)

where cζ =
{

1, ζ < 1
2ζ−1, ζ ≥ 1

.

By virtue of (13), (25) and (26), we have

zκ−κ1+1
1 (xκ1

2 − ακ1
1 )

≤κ1(2
κ1−1 + 1) |z1|κ−κ1+1 |z2|ακ1−1

1

+ κ12
κ1−1 |z1|κ−κ1+1 |z2|κ1 .

(27)

According to [7], it can be inferred that Ψ , J, and any
positive constants τ , ℏ and α, one has

|Ψ |τ |J|ℏ ≤ τ

τ + ℏ
α |Ψ |τ+ℏ

+
ℏ

τ + ℏ
α− τ

ℏ |J|τ+ℏ
. (28)

From (28), it can be obtained that

κ12
κ1−1 |z1|κ−κ1+1 |z2|κ1

≤ κ12
κ1−1κ− κ1 + 1

κ+ 1

(
κ+ 1

κ− κ1 + 1

1

κ12κ1

)
zκ+1
1

+ κ12
κ1−1 κ1

κ+ 1

(
κ+ 1

κ− κ1 + 1

1

κ12κ1

)−κ−κ1+1
κ1

zκ+1
2

=
1

2
zκ+1
1 + δ11z

κ+1
2

(29)

κ1(2
κ1−1 + 1) |z1|κ−κ1+1 |z2|ακ1−1

1 ≤ 1

2
zκ+1
1 + δ12z

κ+1
κ1

2

(30)

where δ11 = κ12
κ1−1 κ1

κ+1

(
κ+1

κ−κ1+1
1

κ12κ1

)−κ−κ1+1
κ1 and

δ12 =
κ2
1(2

κ1−1+1)
κ+1

(
κ+1

κ−κ1+1
1

κ1(2κ1+2)

)−κ−κ1+1
κ1

α
(κ1−1)(κ+1)

κ1
1 .

Drawing on (27), (29) and (30), one gets

V̇1 ≤− L1z
κ+1
1 + δ11z

κ+1
2 + δ12z

κ+1
κ1

2

− σ1π

rTd
z
(1+ r

2 )(κ+1)

1 − σ̄1π

rTd
z
(1− r

2 )(κ+1)

1

+
σ̄1π

rTd
z
(1− r

2 )(κ+1)

1 +
ω∗
1
2

2
+
c21
2

+
ε∗1

2

2

−
(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)(
Θ̃2

1 −Θ∗
1
2
)

(31)

where L1 = l1 − 1.



Using the inequality (28) produces

z
(1− r

2 )(κ+1)

1 ≤ rTdL1

σ̄1π
zκ+1
1 +

r

2

(
rTdL1(

1− r
2

)
σ̄1π

)1− 2
r

(32)

−z(1+
r
2 )(κ+1)

1 ≤− z
(1+ r

2 )(κ−κ1+2)

1

+
κ1 − 1

κ+ 1

(
κ+ 1

κ− κ1 + 2

)−κ−κ1+2
κ1−1

(33)

−z(1−
r
2 )(κ+1)

1 ≤− z
(1− r

2 )(κ−κ1+2)

1

+
κ1 − 1

κ+ 1

(
κ+ 1

κ− κ1 + 2

)−κ−κ1+2
κ1−1

.
(34)

By plugging in (32) - (34) into (31), one has

V̇1 ≤− σ1π

rTd
z
(1+ r

2 )(κ−κ1+2)

1 − σ̄1π

rTd
z
(1− r

2 )(κ−κ1+2)

1

−
[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2

1

+ δ11z
κ+1
2 + δ12z

κ+1
κ1

2 + ψ1 (35)

where ψ1 = (σ̄1+σ1)π
rTd

(
κ1−1
κ+1

)(
κ+1

κ−κ1+2

)−κ−κ1+2
κ1−1

+

σ̄1π
2Td

(
rTdL1

(1− r
2 )σ̄1π

)1− 2
r

+
[
(2−r)m

r
2 π

4rTd
+ (2−r)π

22−
r
2 rTd

]
Θ∗

1
2 +

ω∗
1
2

2 +

c21
2 +

ε∗1
2

2 .

Step s (2 ≤ s < m) : Consider the following equation

żs = xκs
s+1 + fs (x) + ωs (t)− α̇s−1. (36)

Choose the power-based Lyapunov function

Vs = Vs−1 +
zκ−κs+2
s

κ− κs + 2
+

1

2
Θ̃2
s (37)

where Θ̃s = Θ∗
s − Θ̂s, Θ̂s is the estimated value of Θ∗

s .
Following that, calculating the derivative of Vs, one has

V̇s =V̇s−1 + zκ−κs+1
s

(
xκs
s+1 + f̄s (x) + ωs (t)

)
− z2(κ−κs+1)

s − Θ̃s
˙̂
Θs

(38)

with f̄s (x) = fs (x)+z
κ−κs+1
s −α̇s−1. Then, FLS θ∗s

Tφs (Ξs)
is applied to model f̄s (x)

f̄s (x) = θ∗s
Tφs (Ξs) + εs (Ξs) (39)

where Ξs = [x1, x2, ..., xm, Θ̂1, · · · , Θ̂s−1]
T , |εs (Ξs)| ≤ ε∗s ,

and ε∗s is a positive constant.
By applying Young’s inequality and Lemma 2, it shows that

zκ−κs+1
s f̄s (x) ≤

1

2c2s
z2(κ−κs+1)
s Θ∗

sφ
T
s (χs)φs (χs)

+
1

2
z2(κ−κs+1)
s +

c2s
2

+
ε∗s

2

2

(40)

zκ−κs+1
s ωs ≤

1

2
z2(κ−κs+1)
s +

ω∗
s
2

2
(41)

where Xs = [x1, x2, · · · , xs]T , Θ∗
s = ∥θ∗s∥

2, and cs > 0
is design parameter. ω∗

s is an unknown positive number that
satisfies ∥ωs∥ ≤ ω∗

s .
In step s− 1, one gets

V̇s−1 ≤−
s−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
s−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
s−1∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+ δ(s−1)1z
κ+1
s + δ(s−1)2z

κ+1
κs−1
s + ψs−1.

(42)
Then, combining (38) - (42) yields

V̇s ≤−
s−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
s−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
s−1∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+ Θ̃s

[
1

2c2s
z2(κ−κs+1)
s φTs (χs)φs (χs)− ˙̂

Θs

]
+ zκ−κs+1

s

(
1

2c2s
zκ−κs+1
s Θ̂sφ

T
s (χs)φs (χs)

+ δ(s−1)1z
κs
s + δ(s−1)2z

κ̄s
s + xκs

s+1 − ακs
s + ακs

s

)

+
ω∗
s
2

2
+
c2s
2

+
ε∗s

2

2
+ ψs−1 (43)

where κ̄s = κ+1
κs−1

− (κ − κs + 1) and κ̄s is a nonnegative
constant based on Assumption 1.

Devise the intermediate control signal αs, and the adaptive
update law ˙̂

Θs as

αs =−

(
1

2c2s
zκ−κs+1
s Θ̂sφ

T
s (χs)φs (χs)

+ lsz
κs
s + δ(s−1)1z

κs
s + δ(s−1)2z

κ̄s
s

+
σsπ

rTd
z
(1+ r

2 )(κ+1)−(κ−κs+1)
s

) 1
κs

(44)

˙̂
Θs =

1

2c2s
z2(κ−κs+1)
s φTs (χs)φs (χs)

− 2

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̂s

(45)

where σs = (2m)
r
2 / (κ− κs + 2)(

1+ r
2 ), ls =

(σ̄sπ) / (rTd)+1, σ̄s = 1/ (κ− κs + 2)(
1− r

2 ) and Θ̂s (0) ≥ 0.



Combining (23) and (43) - (45), it can be inferred that

V̇s ≤−
s−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h − σsπ

rTd
z
(1+ r

2 )(κ+1)
s

−
s−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h + zκ−κs+1
s

(
xκs
s+1 − ακs

s

)
−

s∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ∗
s
2 − lsz

κ+1
s

+
ω∗
s
2

2
+
c2s
2

+
ε∗s

2

2
+ ψs−1.

(46)
The following inequality denoted as (47) bears resemblance

to (27)–(30) in the step 1, then:

zκ−κs+1
s

(
xκs
s+1 − ακs

s

)
≤ zκ+1

s + δs1z
κ+1
s+1 + δs2z

κ+1
κs
s+1

(47)

where δs1 = κs2
κs−1 κs

κ+1

(
κ+1

κ−κs+1
1

κs2κs

)−κ−κs+1
κs , and

δs2 =
κ2
s(2

κs−1+1)
κ+1

(
κ+1

κ−κs+1
1

κs(2κs+2)

)−κ−κs+1
κs

α
(κs−1)(κ+1)

κs
2 .

Similar to (32) - (34), the following result holds:

z
(1− r

2 )(κ+1)
s ≤ rTdLs

σ̄sπ
zκ+1
s +

r

2

(
rTdLs(

1− r
2

)
σ̄sπ

)1− 2
r

(48)

−z(1+
r
2 )(κ+1)

s ≤− z
(1+ r

2 )(κ−κs+2)
s

+
κs − 1

κ+ 1

(
κ+ 1

κ− κs + 2

)−κ−κs+2
κs−1 (49)

−z(1−
r
2 )(κ+1)

s ≤− z
(1− r

2 )(κ−κs+2)
s

+
κs − 1

κ+ 1

(
κ+ 1

κ− κs + 2

)−κ−κs+2
κs−1

.
(50)

By plugging in (47) - (50) into (46), one gets

V̇s ≤−
s∑

h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
s∑

h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
s∑

h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+ ψs + δs1z
κ+1
s+1 + δs2z

κ+1
κs
s+1

(51)

where ψs = (σ̄s+σs)π
rTd

(
κs−1
κ+1

)(
κ+1

κ−κs+2

)−κ−κs+2
κs−1

+

σ̄sπ
2Td

(
rTdLs

(1− r
2 )σ̄sπ

)1− 2
r

+
[
(2−r)m

r
2 π

4rTd
+ (2−r)π

22−
r
2 rTd

]
Θ∗
s
2 +

ω∗
s
2

2 +

c2s
2 +

ε∗s
2

2 + ψs−1 and Ls = ls − 1.

Step m : In this step, an actual control law u is formulated.
From (1) , (3) and (13), the time derivative of zm is

żm = h (u)uκm (t) + τ(t) + fm (x) + ωm (t)− α̇m−1.
(52)

Choose the power-based Lyapunov function

Vm = Vm−1 +
zκ−κm+2
m

κ− κm + 2
+

(1− ρ)
κm

2
Θ̃2
m (53)

where Θ̃m = Θ∗
m − Θ̂m, Θ̂m is the estimated value of Θ∗

m.

Following that, calculating the derivative of Vm, one gets

V̇m ≤−
m−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
m−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
m−1∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h −

3

2
z2(κ−κm+1)
m

+ zκ−κm+1
m

(
h (u)uκm (t) + τ (t)

+ ωm (t) + f̄m (x)
)
− (1− ρ)

κm Θ̃m
˙̂
Θm + ψm−1

(54)
where f̄m (x) = fm (x) + 3

2z
κ−κm+1
m + δ(m−1)1z

κm
m +

δ(m−1)2z
κ̄m
m − α̇m−1, κ̄m = κ+1

κm−1
− (κ − κm + 1), κ̄m is

a nonnegative constant based on Assumption 1,

δ(m−1)1 =
κ2m−12

κm−1−1

κ+ 1

×
[

κ+ 1

κm−12κm−1 (κ− κm−1 + 1)

]−κ−κm−1+1

κm−1

(55)

δ(m−1)2 =
κ2m−1

(
2κm−1−1 + 1

)
κ+ 1

α

(κm−1−1)(κ+1)

κm−1

m−1

×
[

κ+ 1

κm−1 (κ− κm−1 + 1) (2κm−1 + 2)

]−κ−κm−1+1

κm−1

.

(56)
The nonlinear uncertain function fm is comprised in f̄m,

thus estimating it with FLS yields

f̄m (x) = θ∗m
Tφm (Ξm) + εm (Ξm) (57)

where Ξm = [x1, x2, ..., xm, Θ̂1, · · · , Θ̂m−1]
T ,

|εm (Ξm)| ≤ ε∗m, and ε∗m is a positive constant.

Utilizing Young’s inequality, (3), (4) and (28), one has

zκ−κm+1
m τ(t) ≤ 1

2
z2(κ−κm+1)
m +

1

2
u2κm
min (58)

zκ−κm+1
m f̄m (x) ≤ (1− ρ)

κm

2c2m
z2(κ−κm+1)
m

×Θ∗
mφ

T
m (χm)φm (χm)

+
1

2
z2(κ−κm+1)
m +

c2m
2

+
ε∗m

2

2

(59)

zκ−κm+1
m ωm ≤ 1

2
z2(κ−κm+1)
m +

ω∗
m

2

2
(60)

where Θ∗
m = ∥θ∗m∥2 / (1− ρ)

κm , Xm = [x1, x2, · · · , xm]T ,
cm > 0 is design parameter and ω∗

m is an unknown positive
number that satisfies ∥ωm∥ ≤ ω∗

m.



Substituting (58) - (60) into (54) gives

V̇m ≤−
m−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
m−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
m−1∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+ zκ−κm+1
m

(
h (u)uκm (t) +

(1− ρ)
κm

2c2m

× zκ−κm+1
m Θ̂mφ

T
m (χm)φm (χm)

)
+ (1− ρ)

κm Θ̃m

(
− ˙̂
Θm +

1

2c2m

× z2(κ−κm+1)
m φTm (χm)φm (χm)

)
+
ω∗
m

2

2
+
c2m
2

+
ε∗m

2

2
+

1

2
u2κm
min + ψm−1.

(61)
Utilizing the property of quantization (4), design the actual

control function u, and the adaptive update law ˙̂
Θm as below

u =−

(
1

2c2m
zκ−κm+1
m Θ̂mφ

T
m (χm)φm (χm)

+ lmz
κm
m +

σmπ

rTd
z
(1+ r

2 )(κ+1)−(κ−κm+1)
m

) 1
κm

(62)

˙̂
Θm =

1

2c2m
z2(κ−κm+1)
m φTm (χm)φm (χm)

− 2

(
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

)
Θ̂m

(63)

where σm = (2m)
r
2 / (κ− κm + 2)(

1+ r
2 ) , lm =

(σ̄mπ) / ((1− ρ)
κm rTd), and σ̄m = 1/ (κ− κm + 2)(

1− r
2 ).

Combining (4), (23) and (61) - (63), it can be inferred that

V̇m ≤−
m−1∑
h=1

σhπ

rTd
z
(1+ r

2 )(κ−κh+2)

h −
m−1∑
h=1

σ̄hπ

rTd
z
(1− r

2 )(κ−κh+2)

h

−
m∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h

+

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ∗
m

2

− (1− ρ)
κm σmπ

rTd
z
(1+ r

2 )(κ+1)
m − (1− ρ)

κm lmz
κ+1
m

− σ̄mπ

rTd
z
(1− r

2 )(κ+1)
m +

σ̄mπ

rTd
z
(1− r

2 )(κ+1)
m

+
ω∗
m

2

2
+
c2m
2

+
ε∗m

2

2
+

1

2
u2κm
min + ψm−1.

(64)
Similar to (32) - (34), the following result holds:

z
(1− r

2 )(κ+1)
m

≤rTd (1− ρ)
κm lm

σ̄mπ
zκ+1
m

+
r

2

(
rTd (1− ρ)

κm lm(
1− r

2

)
σ̄mπ

)1− 2
r

(65)

− (1− ρ)
κm z

(1+ r
2 )(κ+1)

m

≤− z
(1+ r

2 )(κ−κm+2)
m

+
κm − 1

κ+ 1

[
(κ+ 1) (1− ρ)

κm

κ− κm + 2

]−κ−κm+2
κm−1

(66)

− z
(1− r

2 )(κ+1)
m

≤− z
(1− r

2 )(κ−κm+2)
m

+
κm − 1

κ+ 1

(
κ+ 1

κ− κm + 2

)−κ−κm+2
κm−1

.

(67)

By plugging in (65) - (67) into (64), we get

V̇m ≤−
m∑
h=1

(2m)
r
2 π

(κ− κh + 2)(
1+ r

2 ) rTd
z
(1+ r

2 )(κ−κh+2)

h

−
m∑
h=1

π

(κ− κh + 2)(
1− r

2 ) rTd
z
(1− r

2 )(κ−κh+2)

h

−
m∑
h=1

[
(2− r)m

r
2 π

4rTd
+

(2− r)π

22−
r
2 rTd

]
Θ̃2
h + ψm

(68)

where ψm = σmπ
rTd

(
κm−1
κ+1

) [
(κ+1)(1−ρ)κm

κ−κm+2

]−κ−κm+2
κm−1

+

σ̄mπ
rTd

(
κm−1
κ+1

)(
κ+1

κ−κm+2

)−κ−κm+2
κm−1

+

σ̄mπ
2Td

(
rTd(1−ρ)κm lm

(1− r
2 )σ̄mπ

)1− 2
r

+
[
(2−r)m

r
2 π

4rTd
+ (2−r)π

22−
r
2 rTd

]
Θ∗
m

2 +

ω∗
m

2

2 +
c2m
2 +

ε∗m
2

2 + 1
2u

2κm
min + ψm−1.

Based on [11], one can infer that there is a constant ε∗

such that |Ψ| ≤ ε∗. Applying (28), and let α = J = 1, τ =
2−η, ℏ = η and α = 1, J = Ψ2, τ = 2−η, ℏ = η, respectively.
Following that, the subsequent inequality holds:

−2− η

2
Ψ2 ≤ −

(
Ψ2
)1− η

2 + ΓΨ (69)

−2− η

2
Ψ2 ≤ −

(
Ψ2
)1+ η

2 +ΠΨ (70)

where ΓΨ = η
2 , ΠΨ = η

2ε
∗4.

From (68), it can be deduced that Θ̃2
h(h = 1, 2, ...,m) are

bounded. Thus, there exist positive constants Θ̄h such that∣∣∣Θ̃h∣∣∣ ≤ Θ̄h. Following that, applying (69) and (70), one gets

− (2− r) Θ̃2
h ≤ −

(
Θ̃2
h

)1− r
2 −

(
Θ̃2
h

)1+ r
2

+
r

2
+
r

2
ε∗4.

(71)



From the following inequalities proposed in [3], we have

−
n∑

ℏ=1

|χℏ|l ≤ −

(
n∑

ℏ=1

|χℏ|

)l
, 0 < l ≤ 1

−
n∑

ℏ=1

|χℏ|β ≤ −n1−β
(

n∑
ℏ=1

|χℏ|

)β
, 1 < β ≤ ∞

(72)

where χℏ(ℏ = 1, 2, ..., n) are real variables.
Combining (68) and (71), and applying (72), one has

V̇m ≤− π

rTd

[
m∑
h=1

zκ−κh+2
h

κ− κh + 2
+

m∑
h=1

(
1

2
Θ̃2
h

)]1+ r
2

− π

rTd

[
m∑
h=1

zκ−κh+2
h

κ− κh + 2
+

m∑
h=1

(
1

2
Θ̃2
h

)]1− r
2

+ ψ∗

≤− π

rTd
V

1+ r
2

m − π

rTd
V

1− r
2

m + ψ∗

(73)

where ψ∗ = m1+ r
2 πr

22−
r
2 rTd

+ mπrε∗4

22+
r
2 rTd

+ ψm.

Currently, the adaptive fuzzy predefined-time tracking con-
troller approach is finished, and the major result of this study
is described in the next theorem.

Theorem 1: For high-order nonlinear system (1) under
Assumption 1, adaptive update laws (22), (45), (63), controller
(62), and intermediate control signal (21), (44), all signals of
the closed-loop system are bounded and tracking errors reach
a predefined neighborhood of zero in predefined time.

Proof: It is evident from (73) that the derivative of Vm
satisfies the form of (12) in Lemma 3. Thus, our proposed
control strategy can guarantee that the tracking errors of the
high-order nonlinear system (1) to be predefined time stable
and for ∀t > 2Td, V < rTdψ

∗

π .

IV. CONCLUSION

This paper addresses the problem of an adaptive fuzzy
predefined-time tracking control for a class of uncertain high-
order nonlinear systems with quantized input signal, unknown
nonlinear functions, and external disturbances. The FLSs are
employed to approximate these unknown nonlinear func-
tions. The proposed approach integrates adaptive backstepping
control with power integrator design technology to develop
a fuzzy adaptive predefined-time control scheme. Addition-
ally, the system stability analysis is presented by using the
predefined-time Lyapunov stability theory, demonstrating that
the proposed adaptive fuzzy control scheme can ensure that
all signals in the closed-loop system are bounded within a
predetermined time interval. In this paper, the predefined-time
control problem for the system (1) was only considered state
feedback. Future work will focus on developing an output-
feedback predefined-time control scheme for larger-scale high-
order nonlinear systems.
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