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Abstract
Large, pre-trained models are problematic001
to use in resource constrained applications.002
Fortunately, task-aware structured pruning003
methods offer a solution. These approaches004
reduce model size by dropping structural units005
like layers and attention heads in a manner that006
takes into account the end-task. However, these007
pruning algorithms require more task-specific008
data than is typically available. We propose a009
framework which combines structured pruning010
with transfer learning to reduce the need011
for task-specific data. Our empirical results012
answer questions such as: How should the013
two tasks be coupled? What parameters014
should be transferred? And, when during015
training should transfer learning be introduced?016
Leveraging these insights, we demonstrate that017
our framework results in pruned models with018
improved generalization over strong baselines.019

1 Introduction020

Large pre-trained language models have been021

successfully applied to a wide variety of application022

scenarios (Bommasani et al., 2021; Anil et al.,023

2023). However, not all applications can justify024

the cost of running such large models. E.g. an025

interactive, offline spellchecker for a phone has026

strong memory limits compared to a server-side027

chat model (Dettmers et al., 2022). Even server-028

side, the benefit/cost of large models depends on029

the application. This situation motivates research030

into structured model pruning algorithms.031

Structured pruning algorithms generate smaller,032

faster and yet reasonably accurate sub-models from033

large pre-trained ones by removing components034

(beyond individual parameters) like convolutional035

channels, attention heads and whole layers.036

Several works over the years (Wang et al.,037

2019; Sanh et al., 2020; Xia et al., 2022) have038

been proposed to perform task-specific structured039

pruning. Unfortunately, to the best of our040

knowledge, all existing algorithms have been041
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Figure 1: Accuracy degradation of CoFi (Xia et al.,
2022) vs training data sizes. Sparsity level refers to the
fraction of removed weights (excluding embeddings).
Accuracy at 50% data is stable across sparsity levels
(except for 98% sparsity) while more data-limited
regimes (10%–5%) exhibit stronger sensitivity to the
sparsity level.

developed without consideration for the amount of 042

training data available for the target task. Thus, as 043

Figure 1 shows that, even state-of-the-art methods 044

like CoFi (Xia et al., 2022), do not gracefully 045

handle scenarios with limited training data. We 046

argue that the data-limited structured pruning 047

setting is important since limited compute for 048

inference and data scarcity for training tend to 049

co-occur often in practice (Ahia et al., 2021). A 050

popular remedy to the limited data problem at 051

fixed model size, is to leverage transfer learning 052

(Caruana, 1997; Erhan et al., 2010; Dery et al., 053

2022) by introducing external data or extra tasks. 054

In this work, we investigate transfer learning based 055

remedies for structured pruning under limited data. 056

Structured pruning algorithms need to jointly learn 057

both model weights and structural variables (which 058

layers, attention heads, etc. to prune) for the final 059

size-reduced model (Wang et al., 2019; Xia et al., 060

2022). This added complexity makes deploying 061

transfer learning in the structured pruning setting 062
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non-trivial and raises several questions. Do we only063

perform transfer learning for model weights or do064

we include structural variables too? How do we065

learn structural variables for the target task in a way066

that benefits from the presence of a transfer task?067

When is it best to introduce transfer learning so as068

to produce the most accurate pruned target model?069

This work aims to provide answers to the070

questions above. We propose a simple modification071

to existing structured pruning algorithms to allow072

for effective transfer of both structural variables073

and model parameters. Overall, our analyses074

allow us to provide prescriptions to researchers075

about what, how and when to transfer during076

structured pruning. Our effort results in significant077

improvements in generalization performance even078

at compression ratios as high as 50×.079

2 Background080

Unstructured Pruning approaches sparsify081

models by zeroing out individual components082

of weight matrices (Frankle and Carbin, 2018;083

Sanh et al., 2020). The resulting sparse matrices084

reduce the memory overhead of the model but085

run-time gains cannot be realized unless on086

specialized hardware (Liu et al., 2018; Ma et al.,087

2021). Over the years, many criteria for choosing088

which parameters to remove have been explored.089

Some approaches like magnitude pruning (Han090

et al., 2015) and Wanda (Sun et al., 2023) prune091

parameters based on either their magnitudes or the092

magnitude of their product with previous layer093

activations respectively. Other approaches like094

(Frankle and Carbin, 2018; Sanh et al., 2020) use095

information about about much parameters have096

changed since initialization whilst others learn097

unstructured masks based using gradient descent098

(Ramanujan et al., 2020). Ahia et al. (2021)099

introduce the term the low-resource double-bind100

for the challenge of compressing models in data101

limited regimes. Unlike us, they study magnitude102

pruning, which as mentioned, does not ordinarily103

lead to run-time gains. They also do not propose a104

remedy for the limited-data problem, which we do105

in this paper.106

Structured Pruning algorithms remove whole107

components from pre-trained models such as108

attention heads (Michel et al., 2019; Voita109

et al., 2019), whole layers (Fan et al., 2019)110

or intermediate dimensions of fully connected111

layers (Wang et al., 2019) in order to produce112

faster, memory efficient sub-models without 113

overly sacrificing downstream accuracy. Unlike 114

unstructured pruning, there is no need for 115

specialized hardware in order to realize the 116

run-time speedups from compression. These 117

approaches require optimizing over structural 118

variables (to decide which model components to 119

prune) and model weights (to adapt the final model 120

to the disruption that results from removing whole 121

components). Joint optimizations like these mean 122

more variables to learn, resulting in the need for 123

mode end-task data points. To the best of our 124

knowledge, we are the first consider the challenge 125

of structured pruning under limited data. 126

Other model compression approaches 127

Quantization methods (Polino et al., 2018; 128

Dettmers et al., 2022) reduce model size by 129

reducing the number of bits required to represent 130

each weight. These methods are generally 131

complementary to pruning approaches but only 132

achieve maximum size reductions on the order 133

of 2-4× before substantial model performance 134

degradation. We are interested in achieving 135

extreme compressions to the order of 50× 136

reduction without significant loss in performance. 137

Distilling directly to a target task has been shown 138

to be a data-hungry process (Jiao et al., 2019), 139

often requiring a general distillation step (on 140

abundant external data) to be able to achieve 141

competitive performance with approaches modern 142

structured pruning methods like CoFi (Xia et al., 143

2022). 144

Multitask Transfer Learning (Caruana, 1997) 145

is a common recipe for improving a models average 146

performance on a desired end-task. When the end- 147

task is data-limited, auxiliary tasks can be multi- 148

tasked with the end-task (Dery et al., 2021a,b) 149

to serve as proxy data. Previous work at the 150

intersection of pruning and multitasking have only 151

studied how to prune multi-task models (Garg et al., 152

2023; Yang et al., 2023). Unlike these, our starting 153

point is not a multitask model but a generalist pre- 154

trained model like BERT (Devlin et al., 2018). Our 155

work is interested in using multitasking in as much 156

as it improves generalization of the pruned model 157

with respect to the data-starved end-task only. 158

3 Methodology 159

The goal of this paper is to improve the 160

generalization of pruned models when the end- 161
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task is data-limited without sacrificing memory162

and run-time gains. We assume that we are given163

a structured pruning algorithm that jointly learns164

structural/masking variables (which we denote165

as {zktarget}) and their corresponding parameters166

{θktarget} for the target end-task. k indexes the167

set of K structural variables being explored. We168

are primarily concerned with how to incorporate169

a transfer task by learning
[
{zktransfer}, {θktransfer}

]
170

such that we enjoy improved generalization with171

the target task’s final model. Since our focus is172

on the limited-data problem, we care less about173

a specific structured pruning algorithm and more174

about how to adapt any appropriate algorithm in the175

data starved setting. We therefore focus on building176

on top of a state-of-the-art structured pruning177

algorithm, CoFi (Xia et al., 2022) which we take178

as a representative algorithm. Whilst we describe179

CoFi below to provide sufficient background, for180

the rest of the paper, we will abstract away the181

details of the pruning algorithm and focus on182

the specifics of adapting transfer learning to this183

setting.184

3.1 CoFi185

CoFi (Coarse- and Fine-grained Pruning) is a186

mixed resolution structured pruning algorithm.187

Previous algorithms to prune transformer188

models (Vaswani et al., 2017) have focused on189

removing high level units like whole layers (Fan190

et al., 2019) or finer grained modules like attention191

heads (Voita et al., 2019) and dimensions of fully192

connected layers (Wang et al., 2019) but not both193

types. CoFi introduces variables that account for194

pruning at multiple levels of granularity.195

Coarse Grain: Each transformer layer consists of196

a multi-headed attention component that feeds into197

a fully connected two-layer non-linear perceptron198

(Vaswani et al., 2017). CoFi introduces variables199

sets {ziMHA}i∈[N ] and {ziFFN}i∈[N ] for each of the200

model N layers. ziMHA denotes the probability201

that the whole attention component of the ith layer202

is removed whilst ziFFN is similarly defined for203

the fully connected component of the specified204

layer. CoFi also removes whole columns of the205

residual stream: zℓ ∈ Rd → ẑℓ ∈ Rd̂ ∀ℓ ∈ [N ].206

For a BERT model, d = 768 is typically reduced207

to d ≈ 750. (Xia et al., 2022) find that though208

relatively few columns are dropped, including209

columns as structural variables is important for210

producnig performant compressed models.211

Fine Grain: Given a particular layer i, CoFi 212

prunes subsets of the attention heads available. The 213

variables {zij,head}[j∈nh] represent the jth attention 214

head in the i layer which has nh total attention 215

heads. A similar set of variables is defined for the 216

fully connected units within a layer : {zij,fc}[j∈nf ] 217

where the ith fully connected layer has nf units. 218

For the jth attention head of the ith layer, 219

the likelihood that this head is left unpruned 220

is proportional to ziMHA · zij,head. This allows 221

the algorithm to make coupled fine and coarse 222

grained decisions that lead to improved results. We 223

collectively represent {z} as the set of all structural 224

variables that are learned by CoFi. For a model 225

with parameters θ, {z} are learned by applying 226

the reparameterisation trick on the hard concrete 227

distribution (Louizos et al., 2018) and minimizing 228

a joint loss wrt {z, θ} that includes 229

1. distance from target size. CoFi follows Wang 230

et al. (2019) and adds a lagrangian term that 231

penalizes deviations from the target sparsity. 232

2. target task loss. Practitioners ultimately want 233

a pruned model that generalizes well on their 234

end-task. CoFi jointly optimizes the target 235

task loss along with the pruning objective in 236

order to produce performant pruned models. 237

3. a distillation objective on the original 238

large model. Following Sanh et al. 239

(2020), CoFi jointly performs distillation and 240

structured pruning by introducing a layer-wise 241

distillation objective. 242

With these high level details in mind, we proceed 243

to present our simple, transfer learning based 244

modification to CoFi that leads to improved results 245

in data-limited settings. 246

3.2 Transfer Learning for Structured Pruning 247

under limited data 248

Given a target task T with limited training data, we 249

want to improve the final model generated by CoFi 250

through leveraging additional training data from an 251

auxiliary task A. Let {zT, θ} be the initial set of 252

all structural variables and model parameters for 253

the target task and {ẑT, θ̂}γ be final output of CoFi 254

at a chosen sparsity level γ. ẑ are binary variables 255

ẑi ∈ {0, 1} which indicate whether component i 256

is dropped/masked out (0) or is retained (1). We 257

would like a procedure that leverages the auxiliary 258

task (with its own set of variables {zA} such 259
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that the generalization performance of the pruned260

model when using using data from A and T jointly261

improves upon using only data from T.262

There are several design questions that arise in263

this setting when thinking about how to effectively264

utilize A. In the following sections, we discuss265

some of these pertinent questions and propose266

some reasonable choices which we will later267

experimentally validate.268

3.2.1 What criteria do we use to select the269

auxiliary task A ?270

The choice of auxiliary task, A, is an important271

design decision that must be considered carefully.272

A poor choice could result in poor generalization273

performance (with respect to T ) of the pruned274

model instead of being helpful. To this end,275

inspired by existing literature, we propose two276

criteria for evaluating what auxiliary task to277

leverage:278

(1) resourcedness: Previous work on transfer279

learning for learning model parameters has280

demonstrated the benefits of leveraging large pools281

of data (which may possibly be unrelated to the282

eventual end-task) for pre-traing (Anil et al., 2023)283

or multi-tasking (Dery et al., 2021b). We therefore284

have a strong prior that using data-rich auxiliary285

tasks might be helpful for also learning structural286

parameters even if they are unrelated to the end-287

task.288

(2) task-similarity Both theoretical (Baxter,289

2000; Maurer et al., 2016; Dery et al., 2022) and290

empirical works (Gururangan et al., 2020; Dery291

et al., 2022) have shown that transfer learning292

works best when the auxiliary task is similar or293

related to the end-task. As a proxy for similarity,294

we consider auxiliary tasks that are from the same295

domain as the end-task.296

3.2.2 When should we introduce A?297

Structured pruning approaches like CoFi usually298

perform a two stage process. In the first stage, they299

generate a pruned model at the desired sparsity300

level; this involves learning both {ẑ, θ̂}γT. In the301

second stage, pruned model is then fine-tuned on302

the end-task by updating only θ̂γT keeping ẑγT fixed.303

The auxiliary task can be introduced in either or304

both of these stages. We explore following choices:305

Prune(A) → FT(T ): We do structural pruning306

to learn both the weights and structure for a small307

model using only the transfer task, A: {ẑ, θ̂}γA. We 308

then fine-tune (FT) the pruned model on the target 309

task (T) only to obtain θ̂γT. Here, the target task is 310

used only in the final fine-tuning stage and is not 311

involved in learning the pruned model structure. 312

Prune(T ) → FT(A, T ): We learn both the 313

weights and structure for a small model using the 314

target task: {ẑ, θ̂}γT. We share the pruned model 315

parameters θ̂γ and fine-tune on both (T) and (A). 316

Here, the auxiliary task is used only in the final 317

fine-tuning stage and is not involved in learning the 318

pruned model structure. 319

Prune(A, T ) → FT(T ): We learn both the 320

weights and structure for a small model using both 321

the transfer and end-task: {ẑT, ẑA, θ̂}γ are learned 322

jointly (we will explore how in Section 3.2.3). We 323

then fine-tune (FT) the pruned model weights on 324

the target task (T) only. 325

Prune(A, T ) → FT(T,A): We learn both the 326

weights and structure for a small model using both 327

the transfer and end-task: {ẑT, ẑA, θ̂}γ are learned 328

jointly (we will explore how in Section 3.2.3). We 329

then fine-tune (FT) the pruned model weights on 330

both the target and auxiliary tasks. 331

3.2.3 How do we incorporate A when 332

optimizing for {ẑT, θ̂}γ 333

When using the auxiliary task directly during 334

pruning, there is the question of what the best 335

way to jointly optimize {ẑT, ẑA, θ̂}γ such that 336

we achieve improved generalization for the final 337

pruned model with respect to T. Note that we 338

are assuming that the model parameter weights 339

θ are shared between the two tasks but the 340

structural variables are separate. This is because 341

there are many more model parameters than 342

structural variables ∥θ∥0 ≫ ∥zT∥0 + ∥zA∥0. And 343

so introducing separate model weights for the 344

auxiliary task presents a much more significant 345

modelling overhead than introducing new structural 346

variables. 347

We can explore different strategies for sharing 348

variables across the two tasks such that the T 349

benefits from A. 350

Single mask multi-task learns a single set of 351

structural {z} and model {θ} parameters that are 352

shared between both tasks. This choice tightly 353

couples the two tasks. Whilst this allows maximal 354

sharing of information between the target and 355
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transfer task, poor choices of transfer tasks could356

cause this to perform worse than no transfer at all.357

Multi-mask multi-task learns distinct structural358

parameters {z}T and {z}A for each task but359

a single set of model parameters {θ} is shared360

between both tasks. There is no transfer of361

structural information and only the shared model362

parameters provide a coupling of the two tasks.363

Our δ-Formulation aims to leverage strength364

from both alternatives. We propose this method365

where both tasks share a base set of structural366

variables {z}base but also have task specific367

addends such that: {z}T = {zbase + δT} and368

{z}A = {zbase + δA}. We regularize δ∗ to369

encourage sharing between tasks via zbase whilst370

maintaining flexibility for task-specific modelling.371

4 Experimental Setup372

Our experimental framework is introduced to373

investigate the questions posed in the previous374

section.375

Datasets We consider 3 pairs of tasks. One376

pair of classification tasks are from the computer377

science domain tasks – SCIIE (Luan et al., 2018)378

and ACL-ARC (Jurgens et al., 2018) with 3.2k and379

3.7k training samples respectively. The second380

pair of tasks are biomedical domain tasks - RCT381

(Dernoncourt and Lee, 2017) (we artificially create382

a low-resource version of this task with 10k training383

samples) and CHEMPROT (Kringelum et al., 2016)384

which has 4.2k training samples. We use GLUE385

(Wang et al., 2018) tasks for our last pair: STSB386

and MRPC are sentence similarity and paraphrase387

detection tasks with 7k and 3.7k train examples388

respectively. For the GLUE tasks, we follow389

previous work (Jiao et al., 2019; Wang et al., 2019;390

Xia et al., 2022) and report results on the validation391

set. For Non-GLUE tasks, we report test set results.392

Please see Appendix A for more details about the393

tasks we investigate.394

Model Details Since we use CoFi (Xia et al.,395

2022) as our representative structured pruning396

algorithm, we use the same model configuration.397

We use the BERTbase (Devlin et al., 2018) which398

has ∼ 110M parameters. We explore pruned model399

sparsities in the set {40%, 70%, 90%, 95%, 98%}.400

γ% sparsity means that the model has been reduced401

to (100−γ)%×110M parameters. Similar to (Sanh402

et al., 2020) we also freeze the model embedding403

weights. See Appendix B for details about training404

Pearson Correlation
0.85 0.86 0.87 0.88 0.89 0.9

STSB  
[95% Sparsity - MRPC+STSB]
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Model

No 
Transfer

Single-Mask 
MultiTask

Multi-Mask 
MultiTask

Ours

Naive Transfer

Accuracy
79 81 83 85

MRPC 
[95% Sparsity - MRPC+STSB]

Naive Transfer

Figure 2: STSB and MRPC performance at 95%
sparsity. Our proposed δ-Formulation outperforms all
other methods on both tasks.

as well as hyper-parameter values. 405

Training details We mostly follow the training 406

recipe from CoFi with a few minor changes. CoFi 407

assumes that one starts pruning after finetuning 408

the full parent model on the target task and so 409

introduces a distillation loss as part of the pruning 410

objective. In our case, we start directly from the 411

pre-trained model without first fine-tuning on the 412

target task. This is because of the risk of over- 413

fitting due to the smaller target task size. Due 414

to this, we find that the distillation based losses 415

from the original CoFi paper are unnecessary and 416

we did not see significant performance differences 417

with or without them. When multitasking, we 418

explore a small set of weighting hyper-parameters 419

{(1.0, 1.0) , (1.0, 2.0) , (2.0, 1.0)} for any 420

losses relating to the target and auxiliary tasks 421

respectively. Table 5 has details of the hyper- 422

parameters we cross validate against for all our 423

experiments. 424

5 Empirical Recommendations for 425

practitioners 426

In Section 3.2, we posed different design questions 427

around how to perform transfer learning for 428

structured pruning under limited data and presented 429

different options for resolving said questions. In 430

this section, we proceed to perform a sequence 431

of experiments to validate which choices lead 432

to superior end-task generalization after pruning, 433

so we can make principled recommendations to 434

practitioners. 435

5.1 How should you transfer? 436

In Section 3.2.3, we introduced various approaches 437

for coupling the auxiliary task with the target task 438
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Accuracy
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ACL-ARC 
[95% Sparsity - ACL+SCIIE]
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No 
Transfer

Single-Mask 
MultiTask

Multi-Mask 
MultiTask

Ours

Naive Transfer

Accuracy
79 82 85 88

SCIIE 
[95% Sparsity - ACL+SCIIE]

Naive Transfer

Figure 3: SCIIE and ACL_ARC performance at 95%
sparsity. Our δ-Formulation produces the best average
performance across the two tasks when either is used as
the auxiliary task for the other.

during structured pruning. Figures 2, 3 and 4 , show439

experimental results after implementing various440

options with different pairs of datasets. Across all441

dataset pairs, our δ-Formulation produces the best442

performance when averaged across the task pair.443

For the SCIIE task, tightly coupling its structural444

variable with those of ACL_ARC (as an auxiliary445

task) under the single-mask multi-task approach446

can negatively impact performance compared to447

not doing transfer learning at all (Figure 3). Our448

δ-Formulation ensures that SCIIE actually benefits449

introducing transfer learning by outperforming450

the multi-mask multi-task approach that fully451

decouples the structural variables. For the452

ACL_ARC task, our formulation recovers close453

to the best performance (single mask multi-task).454

Note that in principle, our formulation can mimic455

the single-mask multitask setting by using a high456

enough regularization on the δ offsets but we used457

a default l2-regularization strength of 1e−2 for all458

experiments to exhibit robustness of our method. It459

is interesting to note that for the ACL_ARC task,460

all transfer learning approaches at 95% sparsity461

outperform training the full model on task data only.462

Note from Table 4 that ACL_ARC is our smallest463

dataset. We posit that training the full, large model464

on this task leads to overfitting, resulting in poor465

generalization compared to leveraging transfer-466

learning at a reduced model size.467

Figure 4 presents an interesting scenario where468

Chemprot benefits from transfer but RCT does not.469

Whilst this could be due to the fact that we perform470

limited hyper-parameter tuning (mainly to exhibit471

the robustness of our method and to reflect compute472

constrained settings), it is encouraging to see that473

Accuracy
77 78 79 80 81 82

CHEMPROT  
[95% Sparsity - CHEMPRT+RCT]

Full  
Model

No 
Transfer

Single-Mask 
MultiTask

Multi-Mask 
MultiTask

Ours

Naive Transfer

Accuracy
78 80 82 84 86

RCT 
[95% Sparsity - CHEMPRT+RCT]

Naive Transfer

Figure 4: RCT and Chemprot performance at 95%
sparsity. We see negative transfer from Chemprot
to RCT across all transfer methods. Our proposed
approach suffers least from performance degradation.

the δ-Formulation for coupling structural masks 474

significantly helped dampen the impact of negative 475

transfer in the case of RCT as the target task. 476

5.2 What should you transfer? 477

So far, we have discussed using the auxiliary task 478

when learning both the structural variables and 479

parameters of the pruned model. In this section, 480

we investigate if transferring both is needed. We 481

perform the following ablation at 95% sparsity to 482

determine what is most important to transfer. For 483

this, we assume that the the target task is not used 484

during pruning but is only introduced during the 485

final fine-tuning of the smaller, pruned model. 486

Weights Only: We learn model weights and 487

structural mask for the auxiliary task only. We 488

then generate a random structural mask at the 489

appropriate sparsity level (95%) and extract the 490

model weights corresponding to this mask from 491

the model trained on the transfer task. We then 492

fine-tune this smaller, pruned model on the target 493

task. 494

Masks Only: We learn model weights and 495

structural mask for the auxiliary/transfer task only. 496

We then reset the model weights to the pre-trained 497

(not-yet-finetuned) state. Given the learned mask 498

from the transfer task, and the untuned model 499

weights, we then fine-tune this pruned model on 500

the target task. 501

Masks and Weights: We use the transfer task to 502

learn both the model weights and structural mask. 503

We take weights and masks of this small model and 504

fine-tune it on the target task. 505

Table 1 shows the results of this ablation. For 506

both STSB → MRPC and MRPC → STSB, we see 507
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that if we are only introducing the target task in the508

fine-tuning stage, it is beneficial to transfer both509

the weights and structure that are learned from the510

auxiliary task.511

5.3 When should you transfer?512

Table 2 shows results for the different choices513

presented in Section 3.2.2 relating to when to514

introduce the transfer task. These experiments are515

also conducted at a target sparsity of 95%.516

We obtain the best performance with the517

Prune(A, T ) → FT(T ) and Prune(A, T ) →518

FT(A, T ) approaches. This matches intuition519

because we expect an appropriately chosen520

auxiliary task to be helpful in terms of learning521

both structure and parameters of the final pruned522

model. Thus, introducing it in the first (pruning)523

stage mitigates the challenge that is exacerbated by524

learning a larger set of variables from limited data.525

526

5.4 How should we choose the transfer task?527

Table 3 contains experimental results highlighting528

our investigation of different variables that can529

impact the quality of a transfer task.530

We get the best improvements when we use a531

high resource auxiliary task from the same domain532

as the target task. As mentioned in Section 3.2.1,533

we use domain as a proxy for task relatedness. We534

see that even using a high resource task that is535

out-of-domain with respect to the end-task (RCT)536

can improve generalization over not introducing a537

transfer task at all (85.29 versus 79.2 for MRPC)538

and (0.873 versus 0.863 for STSB).539

5.5 Does the learned structured sparsity540

translate to hardware speedups?541

So far, we have only discussed the impact of542

transfer learning on generalization with respect to543

the end-task. However, when generating pruned544

models, we not only care about their generalization545

but also the degree of speedup that is achieved at546

the target sparsity.547

Taking SCIIE as our primary task and ACL-548

ARC as the transfer task, we explore the accuracy-549

speedup tradeoff that is induced by leveraging550

transfer learning for structured pruning. We vary551

the degree of compression from 40% sparsity to552

98%. To benchmark speed, we use the wall-553

clock time required to perform inference on the554

full SCIIE dataset through the model using at a555

batch-size of 128. All experiments were conducted556
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Figure 5: Accuracy vs speed tradeoff on SCIIE. Our δ-
formulation, gives accuracy boosts on SCIIE at varying
levels of compression.

on NVIDIA V100 GPUs. Figure 5 summarises 557

our findings. For SCIIE+ACL, we fix the task 558

weighting to the best performing configuration 559

from our 95% sparsity experiments, the rest of the 560

hyper-parameters are cross-validated from values 561

in Table 5. At 50× compression (95%) sparsity, we 562

are able to obtain a ∼ 5% boost in accuracy over 563

not using a transfer task, whilst achieving a ∼ 10× 564

speedup in inference. Transfer leraning enables 565

a more graceful degradation in accuracy (dashed 566

blue line) whilst still finding pruned models with 567

comparable speed-ups. 568

Another view of Figure 5 is to consider the 569

model size required for a threshold level of 570

accuracy for deployment. At a threshold of 571

84% accuracy, whilst naive pruning results would 572

produce a model at 80% sparsity, we are able to 573

produce one at 95% sparsity! This is a ∼ 1.2× 574

memory saving and ∼ 2.8× inference speedup. 575

5.6 What are the structural differences 576

between a pruned model using transfer 577

learning and without? 578

Figure 6: Structural visualization at 98% sparsity.
Qualitatively, using a transfer task changes the pruned
model structure significantly. The ACL transfer task in
this case induces the learned SCIIE structure to be more
diffuse across the layers of the model.

7



Table 1: Transferring structure, weights or both on STSB and MRPC? It is most beneficial to transfer both the
learned weights and structural variables (masks)

Metric No Transfer Weights Only Structure Only Both

STSB → MRPC Accuracy % 79.2 68.4 (↓) 76.96 (↓) 79.7 (↑)

MRPC → STSB Pearson C. 0.868 0.23 (↓) 0.8527 (↓) 0.871 (↑)

Table 2: When to introduce each task on MRPC and STSB? We find that it is optimal to prune with both the auxiliary
and target task jointly.

Metric No Transfer Prune(A) Prune(T ) Prune(T,A) Prune(T,A)
→FT(T ) →FT(A, T ) →FT(T ) →FT(A, T )

STSB → MRPC Accuracy % 79.2 79.7 (↑) 83.09 (↑) 83.82 (↑) 84.56 (↑)

MRPC → STSB Pearson C. 0.868 0.871 (↑) 0.861 (↓) 0.8751 (↑) 0.872 (↑)

Table 3: Selecting the auxiliary task. A high-resource, in-domain task leads to the best result. For all experiments,
best results from hyper-parameter search are reported. All models (except Full BERT) are pruned to 95% sparsity.

Target Full BERT No Transfer Domain Resourced-ness Transfer Task Performance

In-Domain High (364k) QQP 85.78
MRPC 83.48 79.2 In-Domain Low (7k) STSB 83.82

Out-of-Domain High (180k) RCT 85.29

In-Domain High (364k) QQP 0.877
STSB 0.901 0.868 In-Domain Low (3.7k) MRPC 0.875

Out-of-Domain High (180k) RCT 0.873

At extreme sparsity levels, the differences in579

speedup from learning a pruned model with and580

without transfer learning (Figure 5) suggest that the581

models discovered have different structures.582

Figures 6 and 7 show the fraction of583

attention heads and MLP intermediate dimensions584

respectively, that are preserved across each layer585

with respect to the original BERTbase model.586

Pruning with the target task alone results most587

of the preserved parameters coming from earlier588

in the network. With an auxiliary task however,589

the pattern of preserved modules is more diffuse590

across layers. We posit that this results from the the591

two tasks being multi-tasked preferring different592

layers thus resulting in a more diffuse distribution593

of preserved modules as a compromise in order to594

perform reasonably well on both tasks.595

6 Conclusion596

As coined in Ahia et al. (2021), the low-resource597

double bind describes the challenge of producing598

compressed models to serve compute-starved599

(memory and latency limits) tasks under a setting600

where these tasks also have limited data for pruning.601

In this work, we have explored adapting transfer602

Figure 7: Structural visualization at 98% sparsity.
Qualitatively, using a transfer task changes the pruned
model structure significantly. The ACL transfer task in
this case induces the learned SCIIE structure to be more
diffuse across the layers of the model.

learning, which has traditionally been leveraged 603

only for learning model weights, to robustly prune 604

models when the target task is data-limited. 605

We have provided practitioners with 606

recommendations on how to choose a transfer 607

task, when and how to incorporate it into the 608

pruning optimization procedure and what elements 609

to transfer from the auxiliary task to the target. 610

Equipped with this knowledge, we plan to explore 611

the problem of structured pruning under limited 612

target data for larger scale models. 613
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Table 4: Specifications of datasets used to evaluate our methods.

Domain Task Task-Type Train Size Metric

BIOMED CHEMPROT (Kringelum et al., 2016) Classification 4169 Accuracy
RCT (Dernoncourt and Lee, 2017) Classification 10K∗ Accuracy

CS SCIIE (Luan et al., 2018) Classification 3219 Accuracy
ACL-ARC (Jurgens et al., 2018) Classification 1688 Accuracy

GLUE STSB (Wang et al., 2018) Sentence Similarity 7K Pearson’s Correlation
MRPC (Wang et al., 2018) Paraphrase Detection 3.7K Accuracy

Table 5: Hyper-parameter choices

Hyper-parameter Values Description

Task pair weightings (1, 1), (1, 2), (2, 1) Weightings applied to transfer task vs target task during training.
Model LR - Pruning 1e-4, 2e-5 Learning rate used for model parameters during pruning.
Model LR - Finetuning 1e-4, 2e-5 Learning rate used for finetuning pruned model.
Structure LR 0.1, 0.01 Learning rate used for learning structural parameters.
δ-l2 Reg Weight 1e-2 Regularization weight used in δ-formulation.
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