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ABSTRACT

Referring image segmentation (RIS) aims to precisely segment a target ob-
ject described by a linguistic expression. Recent RIS methods have introduced
Transformer-based networks that use vision features as query and linguistic ex-
pression features as key-value to find target regions by referring to the given lin-
guistic information. Since the Transformer-based network predicts based on the
guidance information that guides the network on which regions to pay attention,
the capacity of this guidance information has a significant impact on segmentation
results in Transformer-based RIS. However, existing methods rely only on lin-
guistic tokens as the guidance elements, which are limited in providing the visual
understanding of the fine-grained target regions. To address this issue, we present
a novel Multi-Expression guidance framework for Transformer-based Referring
Image Segmentation, METRIS, which allows the network to refer to the visual
expression tokens as the guidance information alongside the linguistic expression
tokens. The introduction of visual expression can complement the capability of
linguistic guidance by effectively providing the target-informative visual contexts.
To generate the visual expression from vision features, we introduce a visual ex-
pression extractor that is designed to endow with the farget-oriented visual guid-
ance ability and to acquire rich contextual information. This module strengthens
the adaptability to the diverse image and language inputs, and improves visual un-
derstanding of the fine-grained target regions. Extensive experiments demonstrate
the effectiveness of our approach across the commonly used RIS settings and the
generalizability evaluation settings. Our method consistently shows strong perfor-
mance on three public RIS benchmarks.

1 INTRODUCTION

Referring image segmentation (RIS) (Hu et al., 2016; Chen et al., 2022) is one of the challenging
vision-language tasks (Yan et al., 2023; Ghosh et al., 2024; Chen et al., 2024b; Hu et al., 2024),
and can be applied in various applications such as human-robot interaction and the object retrieval.
Given an image and a natural language expression describing a target object within the image, one of
the key points in this task is for the network to precisely segment the target object regions from the
image by referring to the given expression. With the great success of Transformer-based networks
(Vaswani, 2017; Dosovitskiy et al., 2020) in single modal segmentation tasks (Qian et al., 2023;
Zhou & Wang, 2024; Liu et al., 2024b), Transformer-based methods have been actively studied on
RIS task. To find specific regions by referring to the given information, RIS models use vision
features as query and the given information as key-value in the Transformer network, as shown in
Figure 1; the set of such information provided to the Transformer network as key-value is called
Guidance Set in this paper. Specifically, the role of the guidance set is to guide the network on
which regions to focus its attention, and the network predicts target regions based on the guidance
information. Motivated by this fact, we focus on that enhancing the capability of the guidance
set has a significant impact on segmentation performance in Transformer-based referring image
segmentation.

Most previous works have approached this task by directly enhancing the language features to im-
prove the comprehension for the language expression. Some of these studies (Ding et al., 2022a; Hu
et al., 2023) obtain the enhanced linguistic features by allowing language features to refer to vision
features via the language-vision cross-attention mechanism (Figure 1 (b)). More recent studies (Lai
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Figure 1: Illustration of different guidance sets. Unlike previous approaches, our approach allows
visual expression, which is equipped with target-informative visual guidance ability, to be used
as guidance elements to enhance the guidance capability for Transformer-based referring image
segmentation.

et al., 2024; Ren et al., 2024) employ large language models (LLMs) (Touvron et al., 2023; Chiang
et al., 2023; Liu et al., 2024a) to improve the understanding of the language expression via LLM’s
immense knowledge, and exploit the generated language token in the segmentation network (Figure
1 (c)). These existing studies successfully have achieved performance improvements by referring to
these enhanced linguistic features as key-values in Transformer-based segmentation networks.

Despite these advancements, all these methods rely on the linguistic-based tokens as elements of
the guidance set, as depicted in Figure 1. Since these tokens are insufficient to capture the visual
contexts, these linguistic-based tokens are limited in providing the target-informative visual under-
standing that helps guide the network to the target areas composed of the fine-grained regions with
different visual characteristics. For example, in Figure 2, the network guided by only linguistic-
based tokens segments only part of the target regions (i.e., 2a.A) or segments even non-target regions
(i.e.,2a.B). To address this issue, we explore the introduction of the visual expression tokens that can
complement the guidance capability of linguistic information by providing the target-informative vi-
sual information.

In this paper, we propose a novel Multi-Expression guidance framework for Transformer-based Re-
ferring Image Segmentation, METRIS, which enables the network to refer to the extended guidance
set composed of the visual expression as well as the linguistic expression. The proposed frame-
work is distinct from previous studies in that we produce the visual expression tokens equipped
with target-informative visual guidance capability to enhance the capacity of the guidance set and
to avoid relying only on the linguistic guidance, as illustrated in Figure 1. The visual expression
tokens address the lack of the guidance capacity of language-based tokens by effectively providing
the visual contexts of the target regions, as shown in Figure 2a. To the best of our knowledge, our
approach is the first to generate the visual expression as a provider of the target guidance informa-
tion, deviating from the previous approach in that only language-based tokens can fulfill the role of
providing the target information to the network.

Furthermore, we design a visual expression extractor from the terms of two points to generate the vi-
sual expression from vision features. To qualify as an ‘expression’ in this task, the following points
are required: (1) It needs to concentrate more on the semantic information relevant to the target
regions from the image context, because the image context contains both target and non-target in-
formation and these distracting non-target information hinders the guidance capability (Chen et al.,
2024a). Thus, our module endows with the target-oriented visual guidance ability by selectively
exploiting the informative visual tokens and adaptively refining the curated visual information. (2)
It needs to capture rich visual contexts of the target regions. For this, our module considers both
comprehensive context and distinct attribute contexts by exploiting the global-local linguistic cues
(i.e., sentence-level and word-level cues), where each of linguistic cues has different contextual in-
formation, and allows to acquire the relationship between each visual token. This design strengthens
the model’s adaptability to diverse language and image inputs for robust segmentation, and improves
the visual understanding of the fine-grained target regions.

Our METRIS’s effectiveness is clearly demonstrated by extensive experiments across multiple RIS
benchmark datasets. Notably, in comparison to the ablation model using only enhanced linguistic
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Figure 2: (a) Visual comparison of an ablation method (gray box) and our method ( ). In

t-SNE results, the VE embedding helps to better cluster target pixel embeddings, whereas the LE
embedding of the ablation method cannot sufficiently cluster target pixel embeddings. In the atten-
tion weights between the pixels and the guidance tokens, our method highlights the target regions,
whereas the ablation method fails to accurately focus on target regions. In segmentation results, the
ablation method guides the network to segment only some part of target regions (i.e., a part of the
boat) or segment even non-target regions (i.e., other elephant’s leg). In contrast, our method shows
robust segmentation by effectively providing target-informative visual guidance. (b) Performance
comparison with existing methods on a broad range of RIS benchmarks.

features as guidance elements, METRIS shows significant improvements by 3.25% oloU on G-Ref,
the most challenging dataset. In addition, our method surpasses the existing transformer-based
methods on three public RIS benchmarks. As displayed in Figure 2b, we further validate the gen-
eralizability of our framework on the generalized RIS settings (Tang et al., 2023; Liu et al., 2023a).
Compared to the existing state-of-the-art methods, METRIS shows stronger generalizability thanks
to the introduction of the target-oriented visual guidance.

In a nutshell, our contributions can be summarized in three-fold:

* We propose METRIS, a novel Multi-Expression guidance framework for Transformer-
based Referring Image Segmentation, which enables the introduction of visual expression
as elements of the guidance set alongside linguistic expression to enhance the robustness
of the guidance set. The visual expression addresses the lack of the guidance capacity of
linguistic information by effectively providing the target-informative visual contexts. Our
approach is the first to explore the potential of the visual expression as a provider of target
guidance information in Transformer-based referring image segmentation.

* To produce semantic visual expression, we present a visual expression extractor designed
to endow with target-oriented visual guidance ability and to capture rich visual contexts of
the fine-grained target regions, thereby enhancing adaptability to diverse scenarios.

* We extensively validate our approach across the commonly used RIS settings and the
generalizability evaluation settings, demonstrating the effectiveness of our framework for
Transformer-based referring image segmentation. Our method consistently shows strong
performance and surpasses the state-of-the-art methods on three public RIS benchmarks.

2 RELATED WORKS

Transformer-based Referring Image Segmentation. Unlike the single modal segmentation (Shim
etal., 2023; Kang et al., 2024) based on fixed categories, the referring image segmentation addresses
the unrestricted language expressions. Recent advanced studies have explored Transformer-based
architectures that refer to the guidance information as key-value pairs, achieving great performance
in this task. These studies exploited various guidance elements to guide the network to the target
regions. LAVT (Yang et al., 2022), CRIS (Wang et al., 2022), VG-LAW (Su et al., 2023) used the
pure linguistic features as the elements of the guidance set. LQMFormer (Shah et al., 2024) utilized
learnable tokens as guidance elements, which is fine-tuned based on the language expression, to
extract diverse linguistic representations. Several methods (Kim et al., 2022; Ding et al., 2022a; Hu
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Figure 3: Overview of METRIS. Our approach improves the robustness of the guidance capacity
via the introduction of visual expression. The visual expression extractor endows with the target-
informative visual guidance capability via the curation of informative tokens, the adaptive refine-
ment, and the visual relationship modeling.

et al., 2023; Tang et al., 2023; Xu et al., 2023; Wang et al., 2024) exploited the visual-attended lin-
guistic features as the guidance elements, which are enhanced by referring to the vision features, to
improve the comprehension of the language expression. More recent studies (Lai et al., 2024; Ren
et al., 2024) employed the large language model (LLM) to further enhance the language understand-
ing. LISA (Lai et al., 2024) was the first model to utilize the special linguistic token (i.e., [ SEG]
token) generated by the multimodal LLM as the guidance element. After the success of LISA, (Ren
et al., 2024; Rasheed et al., 2024; Xia et al., 2024) leveraged multiple special tokens generated by
LLM as guidance elements.

Different from previous approaches, our framework exploits not only the enhanced linguistic ex-
pression tokens but also the visual expression tokens as the elements of the guidance set to avoid
relying on the linguistic guidance for Transformer-based RIS. The target-informative visual guid-
ance complements the capacity of linguistic guidance by effectively providing the visual contexts of
the fine-grained target regions.

3 METHOD

We propose a novel multi-expression guidance framework for Transformer-based referring image
segmentation, METRIS, to avoid relying on linguistic guidance. Figure 3 shows the overall frame-
work. We first describe the vision and language feature extraction (Sec.3.1), and then introduce a
visual expression extractor (Sec.3.2). Finally, we explain a segmentation decoder (Sec.3.3).

3.1 VISION AND LANGUAGE FEATURE EXTRACTION

Given an image Z and a linguistic expression Q that consists of L — 1 words, a vision encoder
extracts the vision features F; € RHiWixCi at each stage i € {1,2,3,4} and a language encoder
extracts the linguistic expression tokens Qz = [q., 4y, -+, 4y, ;] € RE*P. Note that H;, W;, C;
and D denote the height, width, channel dimension of the feature maps at the i** vision stage, and
the channel dimension of linguistic features. The first token q,;, of linguistic expression features
indicates a special [CLS] token, which is the global representation that understands the linguistic
expression at the sentence level. The word token q; indicates the local representation of j th word.

3.2 VISUAL EXPRESSION EXTRACTOR

To improve guidance capability, we produce the visual expression that contains target-oriented visual
contexts. As shown in Figure 3 (b), the visual expression extractor consists of three steps.

Curation of informative tokens. This step leverages the global-local linguistic cues to consider
both comprehensive context and distinct attribute contexts for rich contextual information, as each
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linguistic cue captures the different contextual embedding. In this step, the linguistic expression
tokens are first enhanced by the cross-attention layers using the vision features as key-value pairs to
improve the comprehension for the language contexts. Then, the vision features F,(= F)) € RV*¢
and the enhanced global-local linguistic tokens @ ¢ are embedded into the joint embedding space by
the linear projection ¢, where N is the total number of pixels. This process is formulated as follows:

X=¢"(F), Y =¢"(Qc), (1
After that, the relevance score map S, € RE*¥N between the vision tokens and the linguistic tokens
is computed to curate the informative vision tokens based on linguistic cues as follows:

S.=C(X,Y), E=R(S.r), 2)

l
0 n e Ez 7 3)
-0 n¢FE
where C and R denote the cosine similarity function and the relevance-based curating operation that
curates the r ratio of the total vision tokens based on the higher relevance scores per linguistic cue.
E € REXNr is the set of the curated token index lists per linguistic token, where N, denotes the
number of the curated tokens. M € RL*Y is the dynamic mask that masks the non-curated tokens.
As shown in Figure 3 (b), the set of informative vision tokens and the dynamic mask M are passed
to the adaptive refinement step.

ne{l,2,.,N}, 1e{1,2,.. L}, M = {

To prevent the high relevance scores between the linguistic cues and the incorrect regions, the rele-
vance score map s € R of the global linguistic token is supervised by a pixel contrastive loss:

[ —log(o(sz/T)) ifz€ ZT
La = {—log(l —o(s./T)) ifz€Z’

where Z7 and Z~ denote the set of the relevant pixels and irrelevant pixels for the ground truth
target regions. T is a learnable temperature, and o is a sigmoid function. The pixel contrastive
loss (Wang et al., 2022) encourages that the relevant pixels are embedded closer together for high
relevance score and the irrelevant pixels are embedded far apart for low relevance score.

“4)

Adaptive refinement. Rather than simply aggregating the curated information, adaptively capturing
semantic information from the curated information is more effective in producing semantic visual
expression tokens. In this step, the aggregated visual tokens F,, € RE* P are first obtained as:

N,

1 P
Snorm = Reshape(softmax(S. + M)), F, = A Z (Snorm © Repeat(F,, L)), 5)
P

where @ is the element-wise multiplication, and Repeat(f, ) indicates repeating the f feature x
times to expand the shape. The normalized score map Sy,orm € REXN 1 js obtained by normalizing
the whole relevance score map S. combined with the dynamic mask M. The informative visual
information per linguistic cue is aggregated by the normalized weighted sum to obtain F,.

Then, the refined visual tokens F,. € REY*P are extracted by refining each aggregated visual token
F, via the dynamic masked cross-attention mechanism to adaptively highlight the semantic infor-
mation from the informative visual tokens, as follows:

F = MHCA(F,, F,, M) + F,, F, =MLP(F) + F, (6)
where MHCA(q, kv, m) denotes the multi-head cross-attention using g as queries, kv as key-value
pairs and m as masks. F' is the intermediate features. By using the dynamic mask in the masked

cross-attention, the intermediate visual token F' per linguistic cue can capture semantic visual infor-
mation from the informative visual tokens curated by the corresponding linguistic cue.

Visual relationship modeling. The visual expression tokens Qy = [Veis, V1, ..., vi_1] € REXD
are produced by considering the visual relationship to mutually complement each visual token’s
information and acquire the visual contextual information, improving the visual understanding of
the fine-grained target regions, formulated as:

Q =MHSA(F,) + F, , Qv =MLP(Q) + Q , (7

where MHSA and @ indicate the multi-head self-attention, and the intermediate features, respectively.
In this way, the visual expression is endowed with the target-oriented visual guidance ability, which
complements the linguistic guidance.
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Method Vision Encoder 1 Model RefCOCO (Easy) RefCOCO+ (Medium) G-Ref (Hard)
val test A test B val test A test B valyy testyy valc)

CRIS (Wang et al., 2022) CLIP R101 CLIP 7047 7318 66.10 6227 68.08 53.60 59.87 60.36 -

ETRIS (Xu et al., 2023) CLIP ViT-B CLIP 70.51 7351  66.63 60.10 66.89 50.17 59.82  59.91 57.88
mloU BarLeRIa (Wang et al., 2024) CLIP ViT-B CLIP 724 75.9 68.3 65.0 70.8 56.9 63.4 63.8 61.6

VG-LAW (Su et al., 2023) ViT-B BERT-base 75.05 7736 71.69 66.61 7030 58.14 6536 65.13 -

PVD (Cheng et al., 2024) Swin-B BERT-base 75.07 7729 70.13 6439 69.15 57.19 6322 63.89 61.74

METRIS (Ours) Swin-B BERT-base 76.97 7889 73.63 68.63 7388 6194 67.85 6797 6586

(Lai et al., 2024)
(Ren et al., 2024)

SAMAMLLM-7B (Chen et al., 2025)

ReSTR (Kim et al., 2022) ViT-B Transformer 67.22 6930 6445 5578 6044 4827 5448 -

LAVT (Yang et al., 2022) Swin-B BERT-base 7273 7582 68.79 62.14 6838 55.10 6124  62.09 -
oloU VLT (Ding et al., 2022a) Swin-B BERT-base 7296 7596 69.60 63.53 6843 5692 63.49 66.22 62.80

ReLA (Liu et al., 2023a) Swin-B BERT-base 73.82 7648 70.18 66.04 71.02 57.65 65.00 6597 62.70

SADLR (Yang et al., 2023) Swin-B BERT-base 7424 7625 70.06 6428 69.09 55.19 63.60 6356 61.16

DMMI (Hu et al., 2023) Swin-B BERT-base 74.13 7713 70.16 6398 69.73 57.03  63.46 64.19 61.98

LQMFormer (Shah et al., 2024) Swin-B BERT-base 74.16 7682 71.04 6591 7184 5759 64.73 66.04 6297

CGFormer (Tang et al., 2023) Swin-B BERT-base 7475 7730 70.64 6454 71.00 57.14 64.68 65.09 6251

MagNet (Chng et al., 2024) Swin-B BERT-base 7524 7824 71.05 66.16 7132 5814 6536  66.03 63.13

METRIS (Ours) Swin-B BERT-base 7535 7797 7194 66.70 7208 59.85 6578 66.93 63.49

Table 1: Performance comparison with the state-of-the-art methods on three public referring image
segmentation datasets. (U): UMD split. (G): Google split. LLM-based models are marked in

3.3 SEGMENTATION DECODER

To segment the target region, the decoder leverages the guidance set G = {Q ., Qv } composed of
the enhanced linguistic expression tokens and the visual expression tokens. The decoder can focus
its attention on more precise target regions thanks to the target-informative visual guidance. At each
decoder stage, the cross-attention layer, which uses the vision features as the query and the guidance
tokens as the key-value, is employed to highlight the target regions. The vision decoder features
are then upsampled and concatenated with the corresponding vision encoder features to feed into
the next decoder stage. The final segmentation map is projected to a binary class mask by a linear
projection layer. The binary cross-entropy loss is used for the network training.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experimental settings. The vision encoder is Swin-B (Liu et al., 2021) initialized with the pre-
trained weight on ImageNet-22K (Krizhevsky et al., 2012), and the language encoder is BERT-base
(Devlin et al., 2018) initialized with the official pre-trained weight of the uncased version. The
decoder was randomly initialized. We trained models for 40 epochs with 16 batch size on 24G
RTX3090 GPUs. More details for settings are in Appendix A.

Datasets. RefCOCO (Yu et al., 2016) and RefCOCO+ (Yu et al., 2016) are widely utilized datasets
for referring image segmentation. RefCOCO contains 19,994 images with 142,209 language ex-
pressions for 50,000 objects, and RefCOCO+ contains 19,992 images with 141,564 expressions
for 49,856 objects. The expressions in RefCOCO+ do not include words about absolute locations,
which makes it more challenging than RefCOCO. For RefCOCO and RefCOCO+, the target object
category of the testA subset is mostly a person, and the target object of the testB subset consists
of all other object categories. G-Ref (Mao et al., 2016; Nagaraja et al., 2016) is also a commonly
used dataset, which contains 26,711 images with 104,560 language expressions for 54,822 objects.
G-Ref, which is the most challenging dataset, has more complex and longer expressions than Ref-
COCO and RefCOCO+.

Evaluation metrics. Following previous works, we adopted the overall intersection-over-union
(oloU), mean intersection-over-union (mloU), and precision at 0.5, 0.7 and 0.9 thresholds.

4.2 COMPARISON WITH STATE-OF-THE-ART TRANSFORMER-BASED RIS METHODS
In Table 1, we evaluated our approach with Transformer-based RIS methods on three pub-

lic benchmarks.  Our method consistently showed strong performance on all evaluation
splits of all datasets, whereas previous methods usually overfit to some evaluation splits.

6
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Method val() test () val() Method val testA testh
seen unseen seen unseen seen unseen mloU oloU mloU oloU mloU oloU

CRIS 5864 4263 5968 3888 4236 3284 B A G G& an o e

LAVT 60.16 4233 60.37 4138 5733 4043 el 3023) G604 1003 692 6102 3oss

CGFormer  65.60  46.11 6567 4231 6285 4505 GSVALTB (Xin ot al, 2024)

METRIS 6652 4674 6693  43.06 6361 4601 METRIS 6937 6588 7281 7174 6429 6330

Table 3: Comparison for generalization setting Table 4: Comparison with previous methods on

on G-Ref using mloU. gRefCOCO. is a LLM-based model.
performance compared to the recent state-of-the-art G-Ref val 0
methods such as DMMI, LQMFormer and CGFormer, ~ Method MACs U ol

which leverage the enhanced linguistic tokens as the

guidance elements. Furthermore, as shown in Table 2, nggmer gggg g%‘g giég
METRIS showed higher mloU and oloU performance METRIS 432G 67.85 65.78
with comparable computations to DMMI and with 45.5% )

less computations than CGFormer on the most challeng- Table 2: Computational cost (MACs)
ing dataset. These results demonstrate the effectiveness 2nd performance comparison.
of our approach.

In addition, we validated the generalizability of our framework compared to other methods. In
this task, the ability to understand the visual context within the image is particularly important
for improving generalizability. In Table 3, we experimented with the generalization setting (Tang
et al., 2023), where only the language descriptions for the seen target object classes are given dur-
ing training and the model is not trained with the ground truth masks for the unseen target object
classes. METRIS surpassed the existing methods and consistently showed performance improve-
ments on both seen and unseen sets. In Table 4, we experimented on the generalized RIS benchmark
(gRefCOCO) (Liu et al., 2023a) that includes more comprehensive scenarios such as multi-target
and no-target samples. Compared to ReLA, METRIS showed remarkable improvements by 3.46%,
1.71% and 3.42% oloU on each split, respectively. These results suggest that our method has a
better generalization ability than previous RIS methods in this task by learning a wider variety of
the visual contexts via the visual expression.

“Police on horse with turned head” “The person a white shirt and white hat”

“Guy in sweater”

ﬁ',&ﬁ =

Ground Truth LISA METRIS (Ours) Ground Truth LISA METRIS (Ours)

Figure 4: Qualitative comparison with the LLM-based RIS model (Lai et al., 2024) on RefCOCO+.

4.3 COMPARISON WITH LLM-BASED RIS METHODS

Despite the unfair comparison, we conducted comparison with the LLM-based RIS models in Table
1 for further analysis. Our model showed competitive performance without the LLM’s ability on
three benchmarks. Furthermore, we compared segmentation results in Figure 4. Our model showed
accurate segmentation, whereas LISA segmented only some part of a target object or segment even
non-target regions. These results indicate that our model has a stronger ability to understand the vi-
sual contexts of the target regions compared to the LLM-based model, which relies on the generated
linguistic token.

4.4 ABLATION STUDIES

All ablation models are based on our network. For a fair comparison, we added the cross-attention
layers into the ablation models to maintain the model size similar to our default model.
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Guidance Element RefCOCO val (Easy) RefCOCO+ val (Medium) G-Ref val(y;) (Hard)
Linguistic Visual P@0.5 P@0.7 P@09 mloU oloU P@0.5 P@0.7 P@09 mloU oloU P@0.5 P@0.7 P@09 mloU oloU
Pure LE X 84.73 75.49 3487 7461 7285 7354 64.59 2835 63.72 6215 7277 59.90 22.86 6252 61.59
Enhanced LE X 8546 7622  36.04 7510 73.56 7490  66.12 29.83 6546 6397 7402 6128 2455 6435 63.68
X VE 86.38 77.82 3690 7584 7452 7629 67.60 3136 67.33 6559 74.89 63.03 2633 6631 6545

Enhanced LE ~ All pixels ~ 86.17 7740  36.73 75.65 7436 7581 67.28  30.89 6697 6524 7485  62.77 2591  66.02 65.27
Enhanced LE VE 86.71 78.30 3724 7697 7535 7713  69.05 3294 68.63 6670 7613 64.60 2787 67.85 66.93

Table 5: Main ablation for the effectiveness of our multi-expression guidance. LE: Linguistic Ex-
pression tokens. VE: Visual Expression tokens (Ours).  are models with target-informative lin-
guistic guidance only. is a model with target-informative visual guidance only. is a model
using all visual information as visual guidance.  is our full model.

Components RefCOCO val RefCOCO+ val G-Ref val (1)
o Step1 Step2 Step3 mloU oloU mloU oloU mloU oloU
e X x X 7510(-1.87) 7356(-1.79) 6546 (-3.17) 6397 (-2.73) 64.35(-3.50) 63.68 (-3.25)
7 @ x v Vo 76.09(-0.88) 7450 (-0.85) 66.77(-1.86) 64.71(-1.99) 66.01 (-1.84) 65.13 (-1.80)
Sos v X Vo 7598(-099) 7444 (-091) 66.68(-1.95) 64.69(-2.01) 6579 (-2.06) 64.77 (-2.16)
Bos v v X 7613(-0.84) 7463 (-072) 6698 (-1.65) 64.88(-1.82) 66.26 (-1.59) 6525 (-1.68)
& 04 - PurelE v v v 76.97 75.35 68.63 66.70 67.85 66.93
===- Enhanced LE
0.3 Enhanced LE + All pixels Global  Local mloU oloU mloU oloU mloU oloU
02 — VE o] v x 7620 (0.77) 7443 (-0.92) 6652 (-2.11) 6434 (-2.36) 65.83(-2.02) 64.71(-2.22)
M — inieCil e v (e il i) x v 76.26 (-0.71)  74.55(-0.80) 66.65 (-1.98) 64.67(-2.03) 66.12(-1.73)  64.99 (-1.94)
00 01 02 03 04 05 06 07 08 05 10 v v 76.97 75.35 68.63 66.70 67.85 66.93

Recall

Figure 5: Precision-Recall Table 6: Ablation studies for the design of our visual expression
curves of ablation models on extractor on three public benchmarks. Our default design is marked
RefCOCO+. in . Drops are relative to our default design.

Effectiveness of Target-oriented Visual Guidance. In Table 5, we conducted experiments to vali-
date the effectiveness of exploiting the visual expression tokens as the elements of the guidance set
alongside the linguistic expression tokens. Compared to ‘Pure LE’ method that uses only the pure
language encoder features Q. as guidance elements, ‘Enhanced LE’ method (our baseline), which

uses only the enhanced linguistic tokens @), as guidance elements, showed better performance on
each dataset. This suggests that the enhancement of the language features by referring to the visual
information helps to improve the comprehension for the meaning of the language expression con-
text. Compared to these two methods, our full method showed remarkable improvements by 5.34%
and 3.25% oloU on G-Ref, the most challenging dataset. These results indicate that linguistic guid-
ance capacity is insufficient to provide the visual understanding of the fine-grained target regions,
and the introduction of visual expression tokens as guidance elements can effectively complement
the linguistic guidance capacity.

Furthermore, ‘VE only’ method (row3) showed a significant increase of 1.77% oloU than ‘Enhanced
LE’ method on G-Ref. These interesting results demonstrated the effectiveness of the visual expres-
sion itself. In addition, we compared our full method with the ‘all-pixel” method (row4) that uses all
visual pixels as visual guidance elements. Even though the ‘all-pixel’ method can provide the unique
visual information to the network, our method showed 1.66% higher oloU on G-Ref. This indicates
that distracting non-target visual information hinders the guidance capability. Thus, our visual ex-
pression’s target-oriented visual guidance is more effective at improving the ability to understand
the visual contexts of the target regions than using all of pixels.

In Figure 5, we also displayed the precision-recall curves. The area under curve (AUC-PR) sum-
marizes the overall performance of the model across different threshold values. As shown in Figure
5, ‘VE only’ method maintained its advantage in precision over the ‘Pure LE’ and ‘Enhanced LE’
methods. Our full model had the highest AUC-PR.

Analysis on Components of Visual Expression Extractor. In Table 6, we conducted the abla-
tion on the design of our visual expression extractor. To keep the parameter size similar for a fair
comparison, we added more attention layers into the ablation models. As displayed in Table 6 (a),
the removal of Step 1 resulted in 0.85%, 1.99%, and 1.80% drops in oloU on each dataset. These
results indicate that it is effective to concentrating more on the informative tokens from the image
context that contains both the target-relevant information and the distracting non-target information.
The removal of Step 2 decreased oloU performance by 2.16% on G-Ref. This result highlights that
adaptively capturing the semantic information from the curated information is more effective than
simply aggregating the curated information for producing more semantic visual expression. The
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Figure 6: Ablation study on the number of the curated tokens.

(a) Visualization comparison of our method and the ablated method on various target object categories

“wet hair” “BOWL NEXT TO WINE GLASS”

“second left”

Ground Truth w/o VE w/ VE ) Ground Truth ) w/o VE ) w/ VE Ground Truth wi/o VE w/ VE

: -.
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(b) Visual analysis of the attention maps in our full model

“Guy in grey shirt standing” “center sofa
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with VE with LE with VE with LE

Ground Truth

Figure 7: (a) Visualization of our method and the ablated method on various target objects. (b)
Visual analysis of the attention maps in our full model. More results are provided in Appendix.

removal of Step 3 resulted in a 1.82% drop in oloU on RefCOCO+. This indicates that each token
of the visual expression acquires the visual context information for target regions by considering
the relationship between each visual token. These ablation studies demonstrate that each of the pro-
posed components is necessary to endow the visual expression tokens with the target-oriented visual
guidance capability.

As shown in Table 6 (b), removing the use of the local linguistic cues showed a 2.36% drop in oloU
compared to our full model on RefCOCO+. In addition, removing the use of the global linguistic cue
showed a 2.03% drop in oloU on RefCOCO+. These results demonstrated that using both global and
local linguistic cues allows the visual expression tokens to consider both the comprehensive context
and the distinct attribute context in order to the enriched visual contexts of the fine-grained target
regions, as each of linguistic cues has different contextual information.

Number of Curated Tokens. We analysed the value of r, which is the ratio for the number of
the curated tokens. Compared to the r values of 10 and 80, the r of 30 showed higher oloU in
Figure 6 (a). In addition, as shown in Figure 6 (b), the r of 30 segmented more clearly, while the r
of 10 missed some part of the target regions and the r of 80 even segmented other object regions.
The smaller number of & resulted in a lack of information, where the semantic visual information
cannot be sufficiently exploited. In contrast, the larger number of r resulted in including the noise
information and degrades the guidance capability. Therefore, the optimal r can selectively exploit
the semantic visual information and filter out noise components to improve the robustness of the
guidance capacity.

4.5 QUALITATIVE RESULTS

In addition to the visual comparisons (i.e., t-SNE and attention maps) in Figure 2, we compared the
segmentation results on various target object categories in Figure 7 (a). Our method consistently pre-
dicted the accurate regions by leveraging the visual expression, while the ablation method included
the wide non-target regions or missed the target regions.

Furthermore, in Figure 7 (b), we displayed additional visual analysis of the attention map between
the vision features and the visual expression and the attention map between the vision features and
the enhanced language expression in our full model. The results showed that our visual expression
complements the target information even though the enhanced language expression misses the target
regions or includes even non-target regions, addressing the lack of guidance caused by the visual-
aware linguistic token’s limitation.
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(a) Cases for complicated visual relationships

“bottle in the back third from the left”
NV-"RG N

“black shape upper left half of page”

“bottom right front head”

Ground Truth VLT CGFormer  METRIS (Ours) Ground Truth VLT CGFormer  METRIS (Ours)

(b) Cases for long and difficult language expressions

“A leafy green that has an orange rubberband around it “A dark brown horse with a white forehead and stripe down
and is lying down on the table and not propped up with its nose between another dark brown horse and a light

the other leafy greens.” brown horse.”

“The orange that is touching 2 other oranges and “The rye sandwich half that doesn't have a bite taken out of it.”
also touching the black bowl.”

-

Image Ground Truth METRIS (Ours) Image Ground Truth METRIS (Ours)

Figure 8: Visualizations for the different types of the images and language expressions on Ref-
COCO+ and G-Ref.

In Figure 8 (a), we compared with previous Transformer-based RIS methods, which use only the
enhanced linguistic tokens as the guidance set, on diverse types of inputs. Our method segmented
more clearly for the complicated images and the ambiguous language expressions, whereas other
methods incorrectly predicted and uncertainly segmented the regions. These results indicate that
our approach is more effective in improving visual understanding of the target regions. In Figure
8 (b), we visualized the results on longer and more complex language expressions. These results
indicate that METRIS effectively enhances the robustness of the network for the complex scenarios.

4.6 CONCLUSION

We propose a novel Multi-Expression guidance framework for Transformer-based Referring Image
Segmentation, METRIS, which enables the introduction of the visual expression as elements of the
guidance set alongside the linguistic expression to enhance the robustness of the guidance capabil-
ity. Our approach explores the potential of the visual expression as a provider of target guidance
information, beyond the previous approach in that only language-based tokens can fulfill the role of
providing target-informative guidance information. The visual expression complements the capabil-
ity of linguistic guidance by effectively providing the target-oriented visual guidance. To produce
semantic visual expression, we present a visual expression extractor that is designed to endow with
the target-informative visual guidance ability and to acquire the rich contextual information of target
regions. This enhances the adaptability to diverse image and language inputs, and improves visual
understanding of the fine-grained target regions. Extensive comparisons and ablations demonstrated
the effectiveness of our approach for Transformer-based referring image segmentation.

Limitation and Future Work. Despite METRIS’s stronger ability to understand the visual con-
texts of the target regions than LLM-based models, our model showed lower performance on the
most challenging dataset (G-Ref), which consists of the difficult language samples. This means
that our model lacks the reasoning ability for the implicit and detailed descriptions in comparison
to the LLM-based models. This finding suggests that our performance bottleneck may still lie in
understanding the language expressions on this task, while our model has better performance than
the existing state-of-the-art Transformer-based RIS models in Table 1. Therefore, future work could
have a broader impact on this task via the exploration of combining our approach’s strength with the
LLM’s strength, beyond relying on the LLM’s capability.
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Large-scale - RefCOCO RefCOCO+ G-Ref
Method Vision Encoder
Training Datasets val  testA testB  val  testA testB valyy testyy valc)
X-Decoder (B) (Zou et al., 2023) v/ DaViT-B (Ding et al., 2022b) - - - - - - 64.5
SEEM (B) (Zou et al., 2024) v DaViT-B (Ding et al., 2022b) - - - - 65.0 -
PolyFormer (Liu et al., 2023b) v Swin-B (Liu et al., 2021) 7482 76.64 7106 67.64 72.89 5933 6776 69.05 -
METRIS (Ours) X Swin-B 7535 7797 7194 6670 72.08 5985 6578 6693  63.49

Table 7: oloU performance comparison with other RIS models, which use the additional large scale
vision-language datasets at training, on three public referring image segmentation benchmarks. (U):
UMD split. (G): Google split. The best score is in bold.

Method mloU oloU Method mloU oloU
X 67.54 (-1.09) 65.43 (-1.27) w/o Dynamic mask 66.91 (-1.72) 64.95 (-1.75)
v 68.63 66.70 w/ Dynamic mask 68.63 66.70
(a) Supervised by the contrastive loss (b) Normalization with the dynamic mask

Table 8: Additional ablation on the detailed design choice of METRIS.

APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

Experimental Settings. Our method was implemented in PyTorch (Paszke et al., 2019). We used
the AdamW (Loshchilov & Hutter, 2017) optimizer with initial learning rate of 3e-5 and adopted
the polynomial learning rate decay scheduler. The input image resolution was 480x480. For gRef-
COCO that contains no-target samples, we used a no-target classifier (Liu et al., 2023a).

Evaluation Metrics. Following previous works, we adopted the overall intersection-over-union
(oloU), mean intersection-over-union (mloU), and precision at 0.5, 0.7 and 0.9 thresholds. The oloU
is the ratio between the total intersection regions and the total union regions of all test samples. The
mloU is the average of IoUs between the predicted mask and the ground truth of all test samples.
The precision is the percentage of test samples that have an IoU score higher than a threshold.

B ADDITIONAL DETAILS FOR GENERALIZATION SETTING

To further validate the generalization ability of our model, we experimented on the generalization
setting introduced by (Tang et al., 2023). These setting splits the RIS datasets into the seen and
unseen categories on MSCOCO (Lin et al., 2014) of the open-vocabulary detection (Zareian et al.,
2021). The training set contains GT masks for only seen categories, and the test set consists of the
seen subset and the unseen subset. Following the previous work (Tang et al., 2023), we adopted the
text encoder of CLIP (Radford et al., 2021) as the language encoder for a fair comparison in this
experiment, and trained our model for 50 epochs.

C ADDITIONAL DETAILS FOR DATASETS

RefCOCO & RefCOCO+. These two datasets are distributed under the Apache-2.0 license, and
are collected from the two-player game (Yu et al., 2016). The evaluation sets of RefCOCO and
RefCOCO+ are splitted into the validation subset, the test A subset and the test B subset. The
images of the testA subset contain the multiple people, and the images of the testB subset contain
the multiple instances of all other objects. RefCOCO+, which forbids the words about the absolute
locations in the language expressions, is more challenging than RefCOCO.

G-Ref. This dataset is distributed under the CC-BY 4.0 license, and is collected on Amazon Me-
chanical Turk. We use both UMD (Nagaraja et al., 2016) and Google (Mao et al., 2016) partitions
for the evaluation. The UMD partition splits the evaluation set into the validation subset and the
test subset. The Google partition consists of only the validation set. The average length of the
language expressions is 8.4 words. This means that the G-Ref dataset contains longer and more
complex language expressions than the RefCOCO and RefCOCO+ datasets. Thus, G-Ref is the
most challenging dataset.
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RefCOCO val RefCOCO+ val G-Ref val v,
Method mloU oloU mloU oloU mloU oloU
w/o articles 76.59 (-0.38)  74.93 (-0.42) 68.23 (-0.40) 66.12 (-0.58) 67.34 (-0.51)  66.39 (-0.54)
All words 76.97 75.35 68.63 66.70 67.85 66.93

Table 9: Ablation study on the use of the article tokens at the process of collecting informative visual
regions.

D COMPARISON TO RIS MODELS TRAINED WITH ADDITIONAL
LARGE-SCALE DATASETS

To further analysis of our method, we compared our model with other RIS models (Zou et al.,
2023; 2024; Liu et al., 2023b) that use the additional large scale vision-language grounding datasets
(Plummer et al., 2015; Krishna et al., 2017; Chen et al., 2015) at training. Since training with
multiple datasets brings the significant performance improvement on referring segmentation, Poly-
Former (Liu et al., 2023b) showed higher performance on four splits (i.e., RefCOCO+ val.& ftest
A, and G-Ref valyy & test(1)). However, even though a direct comparison between our model
and PolyFormer is unfair, our model outperformed PolyFormer on the other 5 splits. These results
demonstrate the great adaptability of our approach.

E ADDITIONAL ABLATION ON DESIGN CHOICE

Supervision by the contrastive loss. In Table 8 (a), we experimented on supervising the relevance
score map by the pixel contrastive loss (Eq.4). This result indicates that the contrastive loss helps
to monitor the curation of the informative tokens associated with the correct target region and to
prevent the high relevance scores between the linguistic features and incorrect regions.

Normalization with dynamic mask. We ablated on applying a softmax normalization with the
dynamic mask to the relevance scores (Eq.5). In Table 8 (b), normalizing without the dynamic
mask showed a significant performance drop. This indicates that using the curated visual tokens is
beneficial for robust segmentation than using all visual tokens including the distracting tokens.

The use of the meaningless words. we experimented the ablation on the use of the article tokens
such as “the”, “a” and “an”, which are meaningless words in the input sentence, in the process of
collecting informative visual regions. As shown in Table 9, compared to using all word tokens, ‘w/o
article’ resulted in 0.42%, 0.58% and 0.54% drops in oloU on each dataset, respectively. These
results indicate that the article tokens do not carry the noise information, and using all word tokens
as linguistic cues are more effective at collecting the informative visual tokens. Since the relations of
each word are considered during encoding the language input to capture the contextual information
for the target object description, each language token is encoded with semantic representations to

guide to the target object.

F ADDITIONAL QUALITATIVE RESULTS

As illustrated in Figure 9, we visualized additional results of our full model and the ablation model
for two or three different language expressions describing the same object. Our method showed
robust segmentation for various language expressions, whereas the ablation model segmented the
non-target regions or did not highlight the target regions. In addition, we displayed additional qual-
itative results on various scenarios in Figure 10 and Figures 11 to 14. Furthermore, we showed
additional visual analysis of the attention map between the vision features and the visual expression
in comparison to the attention map between the vision features and the enhanced language expres-
sion in our full model. As shown in Figure 15, the visual expression addressed the regions where
the enhanced language expression includes despite of the non-target regions or fails to highlight.
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(a) Three different language expressions

Image Ground Truth

“second guy from right ”

“yellow shirt by the ballerina ”

w/o visual expression METRIS (Ours)

“man with scarf ”

w/o visual expression METRIS (Ours)

“guy with scarf ”

w/o visual expression METRIS (Ours)

(b) Two different language expressions

Image Ground Truth

“left smiling man ”

w/o visual expression METRIS (Ours)

“standing man on left ”

w/o visual expression  METRIS (Ours)

Figure 9: Additional qualitative comparison of the proposed method and the ablated model on dif-

ferent language expressions describing the same object in the image.

Case for absolute location

Case for relative location

Case for distinct attributes

“apple in front at left ”

“first umbrella not the one in upper right ”

-

S

Ground Truth METRIS (Ours)

“donut in the upper right corner of the box”

“vase to the very right of white one ”

“banana closest to apples ”

METRIS (Ours)

Ground Truth

“person in foreground with backpack ”

METRIS (Ours)

Ground Truth

Figure 10: Additional qualitative results on more diverse language expressions and images.
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“gray horse” “vellow shirt”

w/ VE (Qurs)

Ground Truth w/o VE w/ VE (Ours) Grouhd Truth

wo VE

Figure 11: Visualization comparison of our method and the ablated method on the target regions
of the person, where the ablation model without the visual expression segments even non-target
regions.
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“front banana”

“slice of white at right”
- :

37 Sy S -
: { R F 0

“bottom second from right” “donut with chocolate and green icing ”

\

Ground Truth w/o VE w/ VE (Ours) Ground Truth w/o VE w/ VE (Ours)

Figure 12: Visualization comparison of our method and the ablated method on various target object
categories, where the ablation model without the visual expression segments even non-target regions.
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“person on left yellow boots” “man with scarf”

“woman second from left”
B 3 AN
hg}- f L e v

7 “right guy”
' Eﬁww‘m " }fww‘w’ [l

“HAIRDRESSER”

3 PN > . - ’ o -
w/ VE (Ours) Ground Truth w/o VE

Ground Truth w/o VE w/ VE (Ours)

Figure 13: Visualization comparison of our method and the ablated method on the target regions of
the person, where the ablation model without the visual expression fails to capture the target regions.
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“second from front on the right “lamb in front that sort of blends in with the big one”

, " I\ 4\

Ground Truth w/o VE w/ VE (Ours) Ground Truth w/o VE w/ VE (Ours)

-

Figure 14: Visualization comparison of our method and the ablated method on various target object
categories, where the ablation model without the visual expression fails to capture the target regions.

“Guy in grey shirt standing” “on the left”

Ground Truth Prediction Attentionmap  Attention map Ground Truth Prediction Attentionmap  Attention map
with VE with LE with VE with LE

Figure 15: Visual analysis of the attention map between the vision features and the visual expres-
sion and the attention map between the vision features and the enhanced language expression. The
prediction results are predicted by our full model.
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