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Abstract

Recent advances in deep learning suggest that the dimensionality of neural repre-
sentations shapes generalization. We ask whether neural activity exhibits a sim-
ilar principle during human learning. Using longitudinal fMRI collected from
a real university course, we quantify representational geometry with intrinsic di-
mensionality, persistent homology, and Wasserstein distance. We find that learn-
ing outcomes depend on brain region: in association hubs supporting concep-
tual abstraction (e.g., Angular Gyrus), lower dimensionality predicts better per-
formance, while in regions supporting complex perceptual processing (e.g., Tem-
poral Fusiform Cortex), higher dimensionality predicts better performance. Topo-
logical analysis further shows that high-performing individuals form more stable
structures in association hubs and that their representational topologies diverge
more strongly from one another. Together, these findings suggest that effective
learning in the brain relies on region-specific representational organization, with
stable and individualized structures that support successful performance.

1 Introduction

The geometry of neural representations is closely linked to learning and generalization. In artificial
neural networks (ANNs), a robust observation is that performance improves when information is
encoded in lower-dimensional representations [I-5]. Lower-dimensional representations capture
task-relevant structure while suppressing irrelevant variability, thereby facilitating generalization
across diverse inputs.

The human brain, like ANNS, transforms external information into internal representations that sup-
port a wide range of tasks [6-U]. This parallel motivates a central question: does the dimensional-
ity of neural representations in the brain also predict generalization performance in learning
(Figure MA)? To investigate this, we analyze a longitudinal fMRI dataset acquired while 20 students
attended five weeks of online lectures, followed by a review week and a final exam [I0]. fMRI was
recorded throughout the entire course and exam, and exam scores provide an objective measure of
learning outcomes. This design makes it possible to directly link representational dimensionality of
course-related knowledge to behavioral performance.
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Our approach differs from prior work by focusing not on raw BOLD signals, but on their first-order
temporal differences. This differential fMRI emphasizes dynamic changes in neural activity while
mitigating the effects of slow fluctuations and background noise. The method highlights transient
state transitions that are more directly linked to processes of information and knowledge encoding.

A. Motivation B. Dimension Analysis C. Topological Analysis D. Similarity Analysis of
Topological Structure
‘ Task Performance ‘ ® . R
< oD o o Ov A=
i? av =1 | N
v av o 3 A av o VAYE P
— av O . (=14 ' '
‘ Dimension ‘ X Align Align
High Score Low Dimenisonal Stable High Score | s

Representation Topology

Representation Neural Activity

D g D
.‘.?' ﬁ O E
Al Human Low Score High Dimenisonal Unstable Low Score
Representation Topology

Q1. Does lower dimensionality Q2. Does lower dimensionality
predict better learning outcomes? support more stable topology?

Q3. Do better outcomes align with
more similar topology?

Knowledge

Figure 1: Motivation and study framework. (A) Motivation. Findings in artificial networks link
representational dimensionality to generalization. We ask whether the dimensionality of human
neural representations relates to learning outcomes, using exam scores as an objective index. (B)
Dimension analysis. Q/: Does lower dimensionality predict better learning outcomes across corti-
cal regions? (C) Topological analysis. Q2: In regions where lower dimensionality relates to better
outcomes, do representations show more stable topology, quantified by longer H; lifetimes? (D)
Similarity analysis. Q3: Among students with better outcomes, is representational topology more
similar or more divergent across individuals, assessed by the 1-Wasserstein distance between persis-
tence diagrams?

Using this framework, we analyze the relationship between neural representations and learning out-
comes in three steps: first testing whether dimensionality predicts exam performance across regions
(Figure @B), then examining whether lower-dimensional regions form more stable topological struc-
tures (Figure [MC), and finally asking whether high-performing students converge to similar or di-
verge to more individualized topologies (Figure D).

This three-part analysis allows us to uncover systematic links between dimensionality, topology and
learning outcome. Specifically, we find that the relationship between representational dimensionality
and exam performance depends on brain region. In regions such as the temporal fusiform cortex,
higher dimensionality correlates with better performance. In contrast, in the angular gyrus, lower
dimensionality predicts stronger outcomes. Moreover, in regions showing negative correlations,
representations exhibit stable topological structures, and high-performing students display greater
inter-individual divergence in topology. These findings suggest that successful learners develop
individualized representational geometries rather than converging on a uniform code.

In summary, the contributions of this work are:
¢ Introduction of differential fMRI as a method that enhances sensitivity to learning-related
representational dynamics.

* Identification of region-specific associations between representational dimensionality and ob-
jective learning outcomes.

¢ Demonstration that in regions where lower dimensionality predicts stronger performance,
representational topology becomes both stable and individualized in high-performing learn-
ers.

2 Related Work

Dimensionality and generalization in deep learning. Two complementary views link represen-
tation/parameter dimensionality to generalization. (i) Embedding view. Many studies show that



networks that compress internal embeddings generalize better, and that lower intrinsic dimensional-
ity of representations relates to robustness and sample efficiency [[I, B-5]. (ii) Parameter/trajectory
view. Independent lines of work measure the effective dimensionality of the optimization path or
the low-loss subspaces of the objective, showing that gradient descent largely evolves within a tiny,
low-dimensional subspace and that solutions lie in low-dimensional regions of the loss landscape
[[T-T3]. Moreover, the lower the dimensionality of parameter-update trajectories, the stronger the
models generalization ability [[].

Low-dimensional neural representations in the brain. Population activity in biological circuits
often concentrates on low-dimensional manifolds that capture task-relevant latent variables and dy-
namics [[4-6]. Moreover, low-dimensional organization has been linked to specific cognitive func-
tions: prefrontal dynamics implementing context-dependent decision-making on a low-dimensional
manifold [[7], working-memory dynamics supported by low-dimensional attractors [I], and flex-
ible sensorimotor computations via rapid reconfiguration of population trajectories [T9]. However,
to our knowledge, no prior work has directly tested whether the dimensionality of human
neural activity predicts individual learning outcomes.

3 Methods

We analyze the geometry of neural representations during learning along three complementary di-
mensions:

1. Estimating the intrinsic dimensionality of neural activity across cortical regions and testing
its relationship with learning outcomes.

2. Using persistent homology to quantify the stability of representational topology, and assess-
ing whether lower-dimensional regions also exhibit more stable structures.

3. Measuring inter-individual similarity of topological structures with Wasserstein distance to
evaluate whether high-performing learners converge or diverge in representational geometry.

All analyses are performed on differential fMRI signals, obtained by computing first-order temporal
differences of raw BOLD time series. This preprocessing emphasizes rapid, learning-related state
transitions while reducing the influence of slow fluctuations and background noise.

3.1 Intrinsic dimensionality estimation

The first analysis addresses how many degrees of freedom are required to describe neural activity
during learning. The intrinsic dimensionality (ID) of a dataset reflects the effective number of latent
variables that govern its structure. Low ID corresponds to compressed, constrained dynamics, while
high ID indicates richer variability.

We estimate ID from differential fMRI time series { Az} using the maximum likelihood estimator
(MLE) of Levina and Bickel [20]. For a point z, let T (x) denote the Euclidean distance to its j-th
nearest neighbor. The local estimator is
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Averaging over all samples yields the regional ID:
1
me = Zlmk(xi). )

This measure allows us to test whether compressed or expansive neural representations in specific
brain regions are more predictive of learning outcomes.



3.2 Topological stability via persistent homology

Dimensionality captures compression, but not how representations are organized. To assess struc-
tural stability, we use persistent homology (PH), which tracks the appearance and disappearance of
topological features (connected components, loops, voids) across scales.

Given a point cloud of neural states {Ax;}, a filtration is built by gradually increasing a distance
threshold € and adding simplices when all edges are shorter than e. Persistent homology records
when a feature (e.g., a loop in H1) is born and when it dies. The difference d — b defines its lifetime.
Long-lived features reflect stable organization, while short-lived ones are interpreted as noise.

For each brain region, we compute the average lifetime of H; features as a summary of topological
stability. This analysis tests whether lower-dimensional regions (from the previous step) also form
more stable representational structures.

3.3 Inter-individual differences via Wasserstein distance

Finally, we ask whether successful learners converge to similar representations or instead diverge
toward individualized geometries. For each participant, persistent homology produces a persistence
diagram consisting of birth-death pairs (b;, d;). This diagram is treated as an empirical distribution
in R?, capturing both the scale and stability of topological features.

The distance between two participants diagrams P and () is quantified using the 1-Wasserstein
distance:

Wi(P, Q)= inf / u — || dy(u,v), 3
(P = nt vl dy(u) ®

where T'( P, Q) is the set of admissible couplings with marginals P and Q.

Intuitively, this measures the minimal cost of transforming one topological structure into another.
Small distances indicate convergence to similar representational structures, while large distances
reflect divergence and individuality. This allows us to test whether high-performing learners develop
common solutions or distinct representational geometries.

Together, these three analyses provide complementary perspectives on representational geometry
during learning: intrinsic dimensionality characterizes compression, persistent homology reveals
stability, and Wasserstein distance captures individuality.

3.4 Dataset and experimental design

We analyze data from the longitudinal fMRI study of Meshulam et al. [[0], in which undergraduate
students at Princeton University were scanned repeatedly while taking an introductory computer
science course (COS 126). Over a 13-week semester, students underwent six fMRI sessions: five
scans during lecture videos and one final scan with recap videos and an exam. Each lecture scan
presented ~40 minutes of video segments (3-5 per scan, total ~197 minutes across the semester),
while the final exam scan included five 3-minute recap videos followed by 16 open-ended exam
questions.

The original study included 20 undergraduate students. All students had no prior background in
computer science, and all were enrolled in the course for credit. Scanning was conducted on 3T
Siemens MRI systems (Skyra/Prisma) with whole-brain coverage (3 mm isotropic voxels, TR =
2000 ms). In the present work, we focus specifically on the Week 2 scan, corresponding to the early
stage of the semester.

4 Experiments and Results

4.1 Whole-Brain Dimensionality Distribution

We first computed intrinsic dimensionality across the cortex using differential fMRI signals (first-
order temporal difference).

As shown in Figure [, dimensionality varied systematically across cortex. Regions with the highest
dimensionality included Heschl’s Gyrus, Insular Cortex, Central Opercular Cortex and Frontal Oper-
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Figure 2: Whole-brain intrinsic dimensionality. (A) Cortical surface maps of dimensionality
estimated from differential fMRI. (B) Dimensionality varies substantially across regions: highest
in Heschls Gyrus and Insular Cortex, reflecting rich perceptual integration, and lowest in Occipital
Fusiform Gyrus and Temporal Pole, reflecting compact, abstracted representations.

culum. These areas support auditory processing, multisensory integration and speech-motor control,
where rich variability in neural codes may be required to represent continuous inputs.

By contrast, regions with the lowest dimensionality included the Occipital Fusiform Gyrus, Tempo-
ral Pole and Superior Parietal Lobule. These association areas are implicated in higher-level visual
categorization, semantic integration, and spatial attention, functions that are consistent with more
compact and abstracted codes.

4.2 Dimensionality of Differential fMRI Predicts Learning Outcomes

We estimated regional intrinsic dimensionality from differential fMRI and tested its relationship with
exam performance (Fig. B A-B). Clear and region-specific associations emerged, with both positive
and negative directions across cortex.
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Figure 3: Dimensionality-performance associations. (A) Whole-brain maps of correlations be-
tween regional dimensionality and exam scores. (B) Regions showing significant correlations with
exam performance. (C) The strongest effects show a bidirectional pattern: higher dimensionality
benefits perceptual-temporal cortices (e.g., Temporal Fusiform), whereas lower dimensionality ben-
efits association hubs (e.g., Angular Gyrus).

Perceptual and temporal regions, including the Temporal Fusiform Cortex (anterior and posterior di-
visions) and Inferior Temporal Gyrus showed positive correlations: higher dimensionality predicted
better exam performance (Fig. BC). Elevated dimensionality in these regions may provide richer and
more flexible representational spaces that facilitate fine-grained visual categorization and semantic
encoding.



By comparison, several association cortices exhibited negative correlations. The Angular Gyrus
showed the strongest effect (r ~ —0.46), with a similar pattern observed in the Middle Temporal
Gyrus. These areas are known to support semantic abstraction and multimodal integration. In
this context, lower dimensionality may reflect compressed representational codes that emphasize
task-relevant information while suppressing redundancy, thereby supporting efficient retrieval and
generalization.

Together, these results indicate that dimensionality-performance relationships are heterogeneous
across the brain. Perceptual and temporal cortices benefit from elaborated high-dimensional repre-
sentations that capture the richness of sensory input, whereas association hubs benefit from compact
low-dimensional codes that promote abstraction and integration. This raises the question of what
structural property underlies the benefit of reduced dimensionality in association hubs.

4.3 Topological Stability Predicts Learning Outcomes

The dimensionality analyses above showed that in several association hubs, lower-dimensional rep-
resentations predict better learning outcomes. A natural interpretation is that reduced dimension-
ality may reflect the emergence of more structured and organized representations, which in turn
support abstraction and retrieval of knowledge. This raises two key questions: (i) does the de-
gree of structural organization itself predict learning outcomes, and (ii) do high-performing
students converge to similar representational structures or instead form individualized ones?
Dimensionality alone cannot directly address these questions, as it quantifies compression but not
the stability or organization of representational geometry.
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Figure 4: Topological stability predicts performance. (A) Whole-brain correlations between av-
erage H; lifetime and exam performance. (B) Significant regions show positive relations in associ-
ation cortices (e.g., Angular, Supramarginal, Superior Temporal) and negative relations in Fusiform
regions. (C) Correlation coefficients versus significance summarize that regions where more stable
representational topology supports learning are also those where lower dimensionality was linked to
performance.

To move beyond dimensionality, we turned to persistent homology, which captures the stability
of representational topology by tracking the lifetime of loop-like (H;) features across scales. We
first tested whether topological stability predicts learning outcomes. Whole-brain analyses revealed
widespread correlations between average H; lifetime and exam performance (Figure BA-B). Asso-
ciation cortices including the Angular Gyrus, Supramarginal Gyrus, and Superior Temporal Gyrus



showed strong positive effects, indicating that successful learning in these hubs is supported by the
formation of stable representational structures. In contrast, the Temporal Fusiform Cortex exhib-
ited a significant negative correlation, consistent with its role in perceptual and semantic integration,
where flexible but less stable structures may be advantageous.

Taken together, these results demonstrate that association hubs benefit from stable representational
geometries that scaffold conceptual learning, whereas perceptual-temporal regions rely on richer
but more variable structures. We next asked whether such stable structures converge across students
or instead remain individualized.

4.4 Topological Divergence Across High-performing Students

To test whether stable structures converge or diverge across individuals, particularly among students
with better learning outcomes, we compared persistence diagrams across participants using the 1-
Wasserstein distance W7, which quantifies the minimal cost of aligning two birth—death distributions
of topological features. We then correlated pairwise W, values with the sum of exam scores of
the corresponding student pair, such that higher values indicate that both students achieved better
learning outcomes.
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Figure 5: Divergence of representational topology across individuals. (A) Whole-brain correla-
tions between pairwise 1-Wasserstein distance of persistence diagrams and the sum of exam scores.
(B) Significant regions show that higher-performing pairs display larger divergence, reflecting more
individualized representational organization. (C) Correlation coefficients versus significance demon-
strate that effective learning produces neural codes that are both stable within individuals and het-
erogeneous across individuals.

As shown in Figure BA-C, pairwise W, was positively correlated with sum of exam scores in most
cortical regions. In other words, pairs of high-performing students exhibited more divergent topo-
logical structures than pairs of lower-performing students.

Taken together, stability within individuals and divergence across individuals emerge as complemen-
tary principles of efficient brain organization during learning.

5 Discussion and Conclusion

Our results show that the relationship between representational geometry and learning is systemati-
cally organized across cortex. Perceptual and temporal regions benefited from higher dimensionality,
consistent with the need to encode rich and fine-grained variability in sensory streams. In contrast,



association hubs, most prominently the Angular Gyrus, benefited from lower dimensionality and
exhibited more stable topological structure, suggesting compressed and reliable representations of
conceptual knowledge. These effects were observed across complementary analyses of intrinsic
dimensionality, persistent homology, and inter-individual topology, with the Angular Gyrus consis-
tently emerging as one of the strongest loci.

The repeated involvement of the Angular Gyrus is unlikely to be incidental. This region has been
identified as a multimodal integration hub within the default mode and semantic networks, support-
ing the binding of distributed features into coherent concepts and contributing to episodic recollec-
tion and attention to memory [ZI-73]. These established roles help explain why our three empirical
findings converge on this region. First, lower dimensionality in the Angular Gyrus predicted better
performance, consistent with its function as a convergence zone that compresses diverse inputs into
abstract and behaviorally useful codes [24]. Second, greater topological stability in the Angular
Gyrus was associated with more successful learning, suggesting that effective learners form persis-
tent representational structures that provide a scaffold for retrieval and generalization [?5]. Third,
high-performing students exhibited within-individual stability but across-individual divergence in
representational organization, a pattern that is consistent with the Angular Gyrus supporting individ-
ualized conceptual schemas that are stable for each learner yet need not align across people [26, 277].

These observations refine comparisons between biological and artificial systems. Artificial neural
networks often achieve better generalization through compressed embeddings. In the brain, however,
expansion is advantageous in sensory regions where preserving input richness is essential, while
compression is advantageous in association hubs such as the Angular Gyrus where abstraction and
integration are required. Successful learning therefore reflects a flexible balance between expansion
and compression across cortical regions.

Several limitations should be acknowledged. Our analyses are correlational, were conducted within
a single course context, and involved a modest sample size. Future work should examine longitu-
dinal changes across the full timescale of learning, test whether subdivisions of the Angular Gyrus
contribute differentially, and investigate causal mechanisms using perturbation or stimulation ap-
proaches. Extending the framework to broader populations and diverse tasks will further clarify the
generality of the principles identified here.

In conclusion, we provide convergent evidence that representational dimensionality and topologi-
cal stability jointly predict human learning outcomes. Effective learning involves region-specific
optimization, with the Angular Gyrus emerging as a keystone for integrating and compressing con-
ceptual knowledge. High-performing learners form neural representations that are topologically
stable within individuals yet divergent across individuals, linking individualized learning strategies
with stable representational scaffolds. These findings bridge biological and artificial systems and
highlight representational geometry as a foundation for general learning.
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