
Carefully Blending Adversarial Training and
Purification Improves Adversarial Robustness

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work, we propose a novel adversarial defence mechanism for image classi-1

fication – CARSO – blending the paradigms of adversarial training and adversarial2

purification in a synergistic robustness-enhancing way. The method builds upon3

an adversarially-trained classifier, and learns to map its internal representation4

associated with a potentially perturbed input onto a distribution of tentative clean5

reconstructions. Multiple samples from such distribution are classified by the same6

adversarially-trained model, and an aggregation of its outputs finally constitutes the7

robust prediction of interest. Experimental evaluation by a well-established bench-8

mark of strong adaptive attacks, across different image datasets, shows that CARSO9

is able to defend itself against adaptive end-to-end white-box attacks devised for10

stochastic defences. Paying a modest clean accuracy toll, our method improves11

by a significant margin the state-of-the-art for CIFAR-10, CIFAR-100, and12

TINYIMAGENET-200 ℓ∞ robust classification accuracy against AUTOATTACK.13

1 Introduction14

Vulnerability to adversarial attacks [8, 57] – i.e. the presence of inputs, usually crafted on purpose,15

capable of catastrophically altering the behaviour of high-dimensional models [9] – constitutes a major16

hurdle towards ensuring the compliance of deep learning systems with the behaviour expected by17

modellers and users, and their adoption in safety-critical scenarios or tightly-regulated environments.18

This is particularly true for adversarially-perturbed inputs, where a norm-constrained perturbation –19

often hardly detectable by human inspection [48, 5] – is added to an otherwise legitimate input, with20

the intention of eliciting an anomalous response [34].21

Given the widespread nature of the issue [30], and the serious concerns raised about the safety and22

reliability of data-learnt models in the lack of an appropriate mitigation [7], adversarial attacks have23

been extensively studied. Yet, obtaining generally robust machine learning (ML) systems remains a24

longstanding issue, and a major open challenge.25

Research in the field has been driven by two opposing, yet complementary, efforts. On the one26

hand, the study of failure modes in existing models and defences, with the goal of understanding27

their origin and developing stronger attacks with varying degrees of knowledge and control over the28

target system [57, 21, 44, 60]. On the other hand, the construction of increasingly capable defence29

mechanisms. Although alternatives have been explored [15, 59, 11, 68], most of the latter is based on30

adequately leveraging adversarial training [21, 42, 58, 49, 23, 31, 54, 62, 18, 47], i.e. training a ML31

model on a dataset composed of (or enriched with) adversarially-perturbed inputs associated with32

their correct, pre-perturbation labels. In fact, adversarial training has been the only technique capable33

of consistently providing an acceptable level of defence [24], while still incrementally improving up34

to the current state-of-the-art [18, 47].35
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Another defensive approach is that of adversarial purification [53, 66], where a generative model is36

used – similarly to denoising – to recover a perturbation-free version of the input before classification37

is performed. Nonetheless, such attempts have generally fallen short of expectations due to inherent38

limitations of the generative models used in early attempts [45], or due to decreases in robust39

accuracy1 when attacked end-to-end [25] – resulting in subpar robustness if the defensive structure is40

known to the adversary [60]. More recently, the rise of diffusion-based generative models [28] and41

their use for purification have enabled more successful results of this kind [45, 13] – although at the42

cost of much longer training and inference times, and a much brittler robustness evaluation [13, 38].43

In this work, we design a novel adversarial defence for supervised image classification, dubbed44

CARSO (i.e., Counter-Adversarial Recall of Synthetic Observations). The approach relies on an45

adversarially-trained classifier (called hereinafter simply the classifier), endowed with a stochastic46

generative model (called hereinafter the purifier). Upon classification of a potentially-perturbed input,47

the latter learns to generate – from the tensor2 of (pre)activations registered at neuron level in the48

former – samples from a distribution of plausible, perturbation-free reconstructions. At inference49

time, some of these samples are classified by the very same classifier, and the original input is robustly50

labelled by aggregating its many outputs. This method – to the best of our knowledge the first attempt51

to organically merge the adversarial training and purification paradigms – avoids the vulnerability52

pitfalls typical of the mere stacking of a purifier and a classifier [25], while still being able to take53

advantage of independent incremental improvements to adversarial training or generative modelling.54

An empirical assessment3 of the defence in the ℓ∞ white-box setting is provided, using a conditional55

[56, 64] variational autoencoder [32, 50] as the purifier and existing state-of-the-art adversarially56

pre-trained models as classifiers. Such choices are meant to give existing approaches – and the57

adversary attacking our architecture end-to-end as part of the assessment – the strongest advantage58

possible. Yet, in all scenarios considered, CARSO improves significantly the robustness of the59

pre-trained classifier – even against attacks specifically devised to fool stochastic defences like ours.60

Remarkably, with a modest clean accuracy toll, our method improves by a significant margin the61

current state-of-the-art for CIFAR-10 [33], CIFAR-100 [33], and TINYIMAGENET-200 [14] ℓ∞62

robust classification accuracy against AUTOATTACK [17].63

In summary, the paper makes the following contributions:64

• The description of CARSO, a novel adversarial defence method synergistically blending65

adversarial training and adversarial purification;66

• A collection of relevant technical details fundamental to its successful training and use,67

originally developed for the purifier being a conditional variational autoencoder – but68

applicable to more general scenarios as well;69

• Experimental assessment of the method, against standardised benchmark adversarial attacks70

– showing higher robust accuracy w.r.t. to existing state-of-the-art adversarial training and71

purification approaches.72

The rest of the manuscript is structured as follows. In section 2 we provide an overview of selected73

contributions in the fields of adversarial training and purification-based defences – with focus on74

image classification. In section 3, a deeper analysis is given of two integral parts of our experimental75

assessment: PGD adversarial training and conditional variational autoencoders. Section 4 is devoted76

to the intuition behind CARSO, its architectural description, and the relevant technical details that77

allow it to work. Section 5 contains details about the experimental setup, results, comments, and78

limitations. Section 6 concludes the paper and outlines directions of future development.79

2 Related work80

Adversarial training as a defence The idea of training a model on adversarially-generated examples81

as a way to make it more robust can be traced back to the very beginning of research in the area.82

1 The test set accuracy of the frozen-weights trained classifier – computed on a dataset entirely composed of
adversarially-perturbed examples generated against that specific model.

2 Which we call internal representation.
3 Implementation of the method and code for the experiments (based on PyTorch [46], AdverTorch [19], and
ebtorch [4]) can be found in the supplementary materials of the paper.
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The seminal [57] proposes to perform training on a mixed collection of clean and adversarial data,83

generated beforehand.84

The introduction of FGSM [21] enables the efficient generation of adversarial examples along the85

training, with a single normalised gradient step. Its iterative counterpart PGD [42] – discussed86

in section 3 and Appendix A – significantly improves the effectiveness of adversarial examples87

produced, making it still the de facto standard for the synthesis of adversarial training inputs [24].88

Further incremental improvements have also been developed, some focused specifically on robustness89

assessment (e.g. adaptive-stepsize variants, as in [17]).90

The most recent adversarial training protocols further rely on synthetic data to increase the numerosity91

of training datapoints [23, 49, 62, 18, 47], and adopt adjusted loss functions to balance robustness and92

accuracy [67] or generally foster the learning process [18]. The entire model architecture may also be93

tuned specifically for the sake of robustness enhancement [47]. At least some of such ingredients are94

often required to reach the current state-of-the-art in robust accuracy via adversarial training.95

Purification as a defence Amongst the first attempts of purification-based adversarial defence,96

[25] investigates the use of denoising autoencoders [61] to recover examples free from adversarial97

perturbations. Despite its effectiveness in the denoising task, the method may indeed increase98

the vulnerability of the system when attacks are generated against it end-to-end. The contextually99

proposed improvement adds a smoothness penalty to the reconstruction loss, partially mitigating such100

downside [25]. Similar in spirit, [39] tackles the issue by computing the reconstruction loss between101

the last-layers representations of the frozen-weights attacked classifier, respectively receiving, as102

input, the clean and the tentatively denoised example.103

In [52], Generative Adversarial Networks (GANs) [22] learnt on clean data are used at inference time104

to find a plausible synthetic example – close to the perturbed input – belonging to the unperturbed105

data manifold. Despite encouraging results, the delicate training process of GANs and the existence106

of known failure modes [70] limit the applicability of the method. More recently, a similar approach107

[27] employing energy-based models [37] suffered from poor sample quality [45].108

Purification approaches based on (conditional) variational autoencoders include [29] and [53]. Very109

recently, a technique combining variational manifold learning with a test-time iterative purification110

procedure has also been proposed [65].111

Finally, already-mentioned techniques relying on score- [66] and diffusion- based [45, 13] models112

have also been developed, with generally favourable results – often balanced in practice by longer113

training and inference times, and a much more fragile robustness assessment [13, 38].114

3 Preliminaries115

PGD adversarial training The task of finding model parameters robust to adversarial perturbations116

is framed by [42] as a min-max optimisation problem seeking to minimise adversarial risk. The117

inner optimisation (i.e., the generation of worst-case adversarial examples) is solved by an iterative118

algorithm – Projected Gradient Descent – interleaving gradient ascent steps in input space with119

the eventual projection on the shell of an ϵ-ball centred around an input datapoint, thus imposing a120

perturbation strength constraint.121

In this manuscript, we will use the shorthand notation ϵp to denote ℓp norm-bound perturbations of122

maximum magnitude ϵ.123

The formal details of such method are provided in Appendix A.124

(Conditional) variational autoencoders Variational autoencoders (VAEs) [32, 50] allow the learn-125

ing from data of approximate generative latent-variable models of the form p(x, z) = p(x | z)p(z),126

whose likelihood and posterior are approximately parameterised by deep artificial neural networks127

(ANNs). The problem is cast as the maximisation of a variational lower bound.128

In practice, optimisation is performed iteratively – on a loss function given by the linear mixture of129

data-reconstruction loss and empirical KL divergence w.r.t. a chosen prior, computed on mini-batches130

of data.131
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Conditional Variational Autoencoders [56, 64] extend VAEs by attaching a conditioning tensor c –132

expressing specific characteristics of each example – to both x and z during training. This allows the133

learning of a decoder model capable of conditional data generation.134

Further details on the functioning of such models are given in Appendix B.135

4 Structure of CARSO136

The core ideas informing the design of our method are driven more by first principles rather than137

arising from specific contingent requirements. This section discusses such ideas, the architectural138

details of CARSO, and a group of technical aspects fundamental to its training and inference processes.139

4.1 Architectural overview and principle of operation140

From an architectural point of view, CARSO is essentially composed of two ANN models – a classifier141

and a purifier – operating in close synergy. The former is trained on a given classification task,142

whose inputs might be adversarially corrupted at inference time. The latter learns to generate samples143

from a distribution of potential input reconstructions, tentatively free from adversarial perturbations.144

Crucially, the purifier has only access to the internal representation of the classifier – and not even145

directly to the perturbed input – to perform its task.146

During inference, for each input, the internal representation of the classifier is used by the purifier to147

synthesise a collection of tentatively unperturbed input reconstructions. Those are classified by the148

same classifier, and the resulting outputs are aggregated into a final robust prediction.149

There are no specific requirements for the classifier, whose training is completely independent of150

the use of the model as part of CARSO. However, training it adversarially improves significantly151

the clean accuracy of the overall system, allowing it to benefit from established adversarial training152

techniques.153

The purifier is also independent of specific architectural choices, provided it is capable of stochastic154

conditional data generation at inference time, with the internal representation of the classifier used as155

the conditioning set.156

In the rest of the paper, we employ a state-of-the-art adversarially pre-trained WIDERESNET model157

as the classifier, and a purpose-built conditional variational autoencoder as the purifier, the latter158

operating decoder-only during inference. Such choice was driven by the deliberate intention to assess159

the adversarial robustness of our method in its worst-case scenario against a white-box attacker, and160

with the least advantage compared to existing approaches based solely on adversarial training.161

In fact, the decoder of a conditional VAE allows for exact algorithmic differentiability [6] w.r.t. its162

conditioning set, thus averting the need for backward-pass approximation [2] in generating end-to-end163

adversarial attacks against the entire system, and preventing (un)intentional robustness by gradient164

obfuscation [2]. The same cannot be said [13] for more capable and modern purification models,165

such as those based e.g. on diffusive processes, whose robustness assessment is still in the process of166

being understood [38].167

A downside of such choice is represented by the reduced effectiveness of the decoder in the synthesis168

of complex data, due to well-known model limitations. In fact, we experimentally observe a modest169

increase in reconstruction cost for non-perturbed inputs, which in turn may limit the clean accuracy of170

the entire system. Nevertheless, we defend the need for a fair and transparent robustness evaluation,171

such as the one provided by the use of a VAE-based purifier, in the evaluation of any novel architecture-172

agnostic adversarial defence technique.173

A diagram of the whole architecture is shown in Figure 1, and its detailed principles of operation are174

recapped below.175

Training At training time, adversarially-perturbed examples are generated against the classifier,176

and fed to it. The tensors containing the classifier (pre)activations across the network are then177

extracted. Finally, the conditional VAE serving as the purifier is trained on perturbation-free input178

reconstruction, conditional on the corresponding previously extracted internal representations, and179

using pre-perturbation examples as targets.180
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Figure 1: Schematic representation of the CARSO architecture used in the experimental phase of this
work. The subnetwork bordered by the red dashed line is used only during the training of the purifier.
The subnetwork bordered by the blue dashed line is re-evaluated on different random samples zi and
the resulting individual ŷi are aggregated into ŷrob. The classifier f(·;θ) is always kept frozen; the
remaining network is trained on LVAE(x, x̂). More precise details on the functioning of the networks
are provided in subsection 4.1.

Upon completion of the training process, the encoder network may be discarded as it will not be used181

for inference.182

Inference The example requiring classification is fed to the classifier. Its corresponding internal183

representation is extracted and used to condition the generative process described by the decoder184

of the VAE. Stochastic latent variables are repeatedly sampled from the original priors, which are185

given by an i.i.d. multivariate Standard Normal distribution. Each element in the resulting set of186

reconstructed inputs is classified by the same classifier, and the individually predicted class logits are187

aggregated. The result of such aggregation constitutes the robust prediction of the input class.188

Remarkably, the only link between the initial potentially-perturbed input and the resulting purified189

reconstructions (and thus the predicted class) is through the internal representation of the classifier,190

which serves as a featurisation of the original input. The whole process is exactly differentiable end-191

to-end, and the only potential hurdle to the generation of adversarial attacks against the entire system192

is the stochastic nature of the decoding – which is easily tackled by Expectation over Transformation193

[3].194

4.2 A first-principles justification195

If we consider a trained ANN classifier, subject to a successful adversarial attack by means of a196

slightly perturbed example, we observe that – both in terms of ℓp magnitude and human perception197

– a small variation on the input side of the network is amplified to a significant amount on the198

output side, thanks to the layerwise processing by the model. Given the deterministic nature of such199

processing at inference time, we speculate that the trace obtained by sequentially collecting the200

(pre)activation values within the network, along the forward pass, constitutes a richer characterisation201

of such an amplification process compared to the knowledge of the input alone. Indeed, as we do, it202

is possible to learn a direct mapping from such featurisation of the input, to a distribution of possible203

perturbation-free input reconstructions – taking advantage of such characterisation.204

4.3 Hierarchical input and internal representation encoding205

Training a conditional VAE requires [56] that the conditioning set c is concatenated to the input x206

before encoding occurs, and to the sample of latent variables z right before decoding. The same is207

5



also true, with the suitable adjustments, for any conditional generative approach where the target and208

the conditioning set must be processed jointly.209

In order to ensure the usability and scalability of CARSO across the widest range of input data and210

classifier models, we propose to perform such processing in a hierarchical and partially disjoint211

fashion between the input and the conditioning set. In principle, the encoding of x and c can be212

performed by two different and independent subnetworks, until some form of joint processing must213

occur. This allows to retain the overall architectural structure of the purifier, while having finer-grained214

control over the inductive biases [43] deemed the most suitable for the respective variables.215

In the experimental phase of our work, we encode the two variables independently. The input216

is compressed by a multilayer convolutional neural network (CNN). The internal representation –217

which in our case is composed of differently sized multi-channel images – is processed layer by218

layer by independent multilayer CNNs (responsible for encoding local information), whose flattened219

outputs are finally concatenated and compressed by a fully-connected layer (modelling inter-layer220

correlations in the representation). The resulting compressed input and conditioning set are then221

further concatenated and jointly encoded by a fully-connected network (FCN).222

In order to use the VAE decoder at inference time, the entire compression machinery for the condi-223

tioning set must be preserved after training, and used to encode the internal representations extracted.224

The equivalent input encoder may be discarded instead.225

4.4 Adversarially-balanced batches226

Training the purifier in representation-conditional input reconstruction requires having access to227

adversarially-perturbed examples generated against the classifier, and to the corresponding clean data.228

Specifically, we use as input a mixture of clean and adversarially perturbed examples, and the clean229

input as the target.230

Within each epoch, the training set of interest is shuffled [51, 10], and only a fixed fraction of each231

resulting batch is adversarially perturbed. Calling ϵ the maximum ℓp perturbation norm bound for232

the threat model against which the classifier was adversarially pre-trained, the portion of perturbed233

examples is generated by an even split of FGSMϵ/2, PGDϵ/2, FGSMϵ, and PGDϵ attacks.234

Any smaller subset of attack types and strengths, or a detailedly unbalanced batch composition,235

always experimentally results in a worse performing purification model. More details justifying such236

choice are provided in Appendix C.237

4.5 Robust aggregation strategy238

At inference time, many different input reconstructions are classified by the classifier, and the239

respective outputs concur to the settlement of a robust prediction.240

Calling lαi the output logit associated with class i ∈ {1, . . . , C} in the prediction by the classifier on241

sample α ∈ {1, . . . , N}, we adopt the following aggregation strategy:242

Pi :=
1

Z

N∏
α=1

ee
lαi

with Pi being the aggregated probability of membership in class i, Z a normalisation constant such243

that
∑C

i=1 Pi = 1, and e Euler’s number.244

Such choice produces a robust prediction much harder to take over in the event that an adversary245

selectively targets a specific input reconstruction. A heuristic justification for this property is given in246

Appendix D.247

5 Experimental assessment248

Experimental evaluation of our method is carried out in terms of robust and clean image classification249

accuracy within three different scenarios (a, b and c), determined by the specific classification task.250
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The white-box threat model with a fixed ℓ∞ norm bound is assumed throughout, as it generally251

constitutes the most demanding setup for adversarial defences.252

5.1 Setup253

Data The CIFAR-10 [33] dataset is used in scenario (a), the CIFAR-100 [33] dataset is used in254

scenario (b), whereas the TINYIMAGENET-200 [14] dataset is used in scenario (c).255

Architectures A WIDERESNET-28-10 model is used as the classifier, adversarially pre-trained on256

the respective dataset – the only difference between scenarios being the number of output logits: 10257

in scenario (a), 100 in scenario (b), and 200 in scenario (c).258

The purifier is composed of a conditional VAE, processing inputs and internal representations in a259

partially disjoint fashion, as explained in subsection 4.3. The input is compressed by a two-layer260

CNN; the internal representation is instead processed layerwise by independent CNNs (three-layered261

in scenarios (a) and (b), four-layered in scenario (c)) whose outputs are then concatenated and262

compressed by a fully-connected layer. A final two-layer FCN jointly encodes the compressed input263

and conditioning set, after the concatenation of the two. A six-layer deconvolutional network is used264

as the decoder.265

More precise details on all architectures are given in Appendix E.266

Outer minimisation In scenarios (a) and (b), the classifier is trained according to [18]; in scenario267

(c), according to [62]. Classifiers were always acquired as pre-trained models, using publicly available268

weights provided by the respective authors.269

The purifier is trained on the VAE loss, using summed pixel-wise channel-wise binary cross-entropy270

as the reconstruction cost. Optimisation is performed by RADAM+LOOKAHEAD [41, 69] with a271

learning rate schedule that presents a linear warm-up, a plateau phase, and a linear annealing [55].272

To promote the learning of meaningful reconstructions during the initial phases of training, the KL273

divergence term in the VAE loss is suppressed for an initial number of epochs. Afterwards, it is274

linearly modulated up to its actual value, during a fixed number of epochs (β increase) [26]. The275

initial and final epochs of such modulation are reported in Table 14.276

Additional scenario-specific details are provided in Appendix E.277

Inner minimisation ϵ∞ = 8/255 is set as the perturbation norm bound.278

Adversarial examples against the purifier are obtained, as explained in subsection 4.4, by FGSMϵ/2,279

PGDϵ/2, FGSMϵ, and PGDϵ, in a class-untargeted fashion on the cross-entropy loss. In the case of280

PGD, gradient ascent with a step size of α = 0.01 is used.281

The complete details and hyperparameters of the attacks are described in Appendix E.282

Evaluation In each scenario, we report the clean and robust test-set accuracy – the latter by means283

of AUTOATTACK [17] – of the classifier and the corresponding CARSO architecture.284

For the classifier alone, the standard version of AUTOATTACK (AA) is used: i.e., the worst-case285

accuracy on a mixture of AUTOPGD on the cross-entropy loss [17] with 100 steps, AUTOPGD on286

the difference of logits ratio loss [17] with 100 steps, FAB [16] with 100 steps, and the black-box287

SQUARE attack [1] with 5000 queries.288

In the evaluation of the CARSO architecture, the number of reconstructed samples per input is set to 8,289

the logits are aggregated as explained in subsection 4.5, and the output class is finally selected as the290

argmax of the aggregation. Due to the stochastic nature of the purifier, robust accuracy is assessed291

by a version of AUTOATTACK suitable for stochastic defences (randAA) – composed of AUTOPGD292

on the cross-entropy and difference of logits ratio losses, across 20 Expectation over Transformation293

(EOT) [3] iterations with 100 gradient ascent steps each.294

Computational infrastructure All experiments were performed on an NVIDIA DGX A100 system.295

Training in scenarios (a) and (c) was run on 8 NVIDIA A100 GPUs with 40 GB of dedicated memory296

each; in scenario (b) 4 of such devices were used. Elapsed real training time for the purifier in all297

scenarios is reported in Table 1.298
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Table 1: Elapsed real running time for training the purifier in the different scenarios considered.

Scenario (a) (b) (c)

Elapsed real training time 159min 138min 213min

5.2 Results and discussion299

An analysis of the experimental results is provided in the subsection that follows, whereas their300

systematic exposition is given in Table 2.301

Table 2: Clean (results in italic) and adversarial (results in upright) accuracy for the different models and
datasets used in the respective scenarios. The following abbreviations are used: Scen: scenario considered;
AT/Cl: clean accuracy for the adversarially-pretrained model used as the classifier, when considered alone;
C/Cl: clean accuracy for the CARSO architecture; AT/AA: robust accuracy (by the means of AUTOATTACK) for
the adversarially-pretrained model used as the classifier, when considered alone; C/randAA: robust accuracy for
the CARSO architecture, when attacked end-to-end by AUTOATTACK for randomised defences; Best AT/AA:
best robust accuracy result for the respective dataset (by the means of AUTOATTACK), obtained by adversarial
training alone (any model); Best P/AA: best robust accuracy result for the respective dataset (by the means
of AUTOATTACK), obtained by adversarial purification (any model). Robust accuracies in round brackets are
obtained using the PGD+EOT [38] pipeline, developed for diffusion-based purifiers. The best clean and robust
accuracies per dataset are shown in bold. The clean accuracies for the models referred to in the Best columns
are shown in Table 15 (in Appendix F).

Scen. Dataset AT/Cl C/Cl AT/AA C/rand-AA
(PGD+EOT) Best AT/AA Best P/AA

(PGD+EOT)

(a) CIFAR-10 0.9216 0.8686 0.6773 0.7613
(0.7689) 0.7107 0.7812

(0.6641)

(b) CIFAR-100 0.7385 0.6806 0.3918 0.6665 0.4267 0.4609

(c) TINYIMAGENET-200 0.6519 0.5632 0.3130 0.5356 0.3130

Scenario (a) Comparing the robust accuracy of the classifier model used in scenario (a) [18]302

with that resulting from the inclusion of the same model in the CARSO architecture, we observe303

a +8.4% increase. This is counterbalanced by a −5.6% clean accuracy toll. The same version of304

CARSO further provides a +5.03 robustness increase w.r.t. the current best AT-trained model [47]305

that employs a ∼ 3× larger RAWIDERESNET-70-16 model.306

In addition, our method provides a remarkable +9.72% increase in robust accuracy w.r.t. to the best307

adversarial purification approach [40], a diffusion-based purifier. However, the comparison is not as308

straightforward. In fact, the paper [40] reports a robust accuracy of 78.12% using AUTOATTACK on309

the gradients obtained via the adjoint method [45]. As noted in [38], such evaluation (which uses the310

version of AUTOATTACK that is unsuitable for stochastic defences) leads to a large overestimation of311

the robustness of diffusive purifiers. As suggested in [38], the authors of [40] re-evaluate the robust312

accuracy according to a more suitable pipeline (PGD+EOT, whose hyperparameters are shown in313

Table 12), obtaining a much lower robust accuracy of 66.41%. Consequently, we repeat the same314

evaluation for CARSO and compare the worst-case robustness amongst the two. In line with typical315

AT methods, and unlike diffusive purification, the robustness of CARSO assessed by means of randAA316

is still lower w.r.t. than achieved by PGD+EOT.317

Scenario (b) Moving to scenario (b), CARSO achieves a robust accuracy increase of +27.47% w.r.t.318

the classifier alone [18], balanced by a 5.79% decrease in clean accuracy. Our approach also improves319

upon the robust accuracy of the best AT-trained model [62] (WIDERESNET-70-16) by 23.98%. In320

the absence of a reliable robustness evaluation by means of PGD+EOT for the best purification-based321

method [40], we still obtain a +20.25% increase in robust accuracy upon its (largely overestimated)322

AA result.323

Scenario (c) In scenario (c), CARSO improves upon the classifier alone [62] (which is also the324

best AT-based approach for TINYIMAGENET-200) by +22.26%. A significant clean accuracy toll is325
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imposed by the relative complexity of the dataset, i.e. −8.87%. In this setting, we lack any additional326

purification-based methods.327

Assessing the impact of gradient obfuscation Although the architecture of CARSO is algorith-328

mically differentiable end-to-end – and the integrated diagnostics of the randAA routines raised no329

warnings during the assessment – we additionally guard against the eventual gradient obfuscation [2]330

induced by our method by repeating the evaluation at ϵ∞ = 0.95, verifying that the resulting robust331

accuracy stays below random chance [12]. Results are shown in Table 3.332

Table 3: Robust classification accuracy against AUTOATTACK, for ϵ∞ = 0.95, as a way to assess the (lack of)
impact of gradient obfuscation on robust accuracy evaluation.

Scenario (a) (b) (c)

ϵ∞ = 0.95 acc. <0.047 <0.010 ≈0.0

5.3 Limitations and open problems333

In line with recent research aiming at the development of robust defences against multiple perturb-334

ations [20, 35], our method determines a decrease in clean accuracy w.r.t. the original model on335

which it is built upon – especially in scenario (c) as the complexity of the dataset increases. This336

phenomenon is partly dependent on the choice of a VAE as the generative purification model, a337

requirement for the fairest evaluation possible in terms of robustness.338

Yet, the issue remains open: is it possible to devise a CARSO-like architecture capable of the same339

– if not better – robust behaviour, which is also competitively accurate on clean inputs? Potential340

avenues for future research may involve the development of CARSO-like architectures in which341

representation-conditional data generation is obtained by means of diffusion or score-based models.342

Alternatively, incremental developments aimed at improving the cross-talk between the purifier and343

the final classifier may be pursued.344

Lastly, the scalability of CARSO could be strongly improved by determining whether the internal345

representation used in conditional data generation may be restricted to a smaller subset of layers,346

while still maintaining the general robustness of the method.347

6 Conclusion348

In this work, we presented a novel adversarial defence mechanism tightly integrating input purification,349

and classification by an adversarially-trained model – in the form of representation-conditional data350

purification. Our method is able to improve upon the current state-of-the-art in CIFAR-10, CIFAR-351

100, and TINYIMAGENET ℓ∞ robust classification, w.r.t. both adversarial training and purification352

approaches alone.353

Such results suggest a new synergistic strategy to achieve adversarial robustness in visual tasks and354

motivate future research on the application of the same design principles to different models and355

types of data.356
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A On Projected Gradient Descent adversarial training500

The task of determining model parameters θ⋆ that are robust to adversarial perturbations is cast in501

[42] as a min-max optimisation problem seeking to minimise adversarial risk, i.e.:502

θ⋆ ≈ θ̂⋆ := argmin
θ

E(x,y)∼D

[
max
δ∈S
L (f (x+ δ;θ) , y)

]
where D is the distribution on the examples x and the corresponding labels y, f(·;θ) is a model503

with learnable parameters θ, L is a suitable loss function, and S is the set of allowed constrained504

perturbations. In the case of ℓp norm-bound perturbations of maximum magnitude ϵ, we can further505

specify S := {δ | ∥δ∥p ≤ ϵ}.506

The inner optimisation problem is solved, in [42], by Projected Gradient Descent (PGD), an iterative507

algorithm whose goal is the synthesis of an adversarial perturbation δ̂ = δ(K) after K gradient ascent508

and projection steps defined as:509

δ(k+1) ← PS

(
δ(k) + α sign

(
∇δ(k)Lce(f(x+ δ(k);θ), y)

))
where δ(0) is randomly sampled within S, α is a hyperparameter (step size), Lce is the cross-entropy510

function, and PA is the Euclidean projection operator onto set A, i.e.:511

PA(a) := argmin
a′∈A

||a− a′||2 .

The outer optimisation is carried out by simply training f(·;θ) on the examples found by PGD against512

the current model parameters – and their original pre-perturbation labels. The overall procedure just513

described constitutes PGD adversarial training.514

B On the functioning of (conditional) Variational Autoencoders515

Variational autoencoders (VAEs) [32, 50] learn from data a generative distribution of the form516

p(x, z) = p(x | z)p(z), where the probability density p(z) represents a prior over latent variable z,517

and p(x | z) is the likelihood function, which can be used to sample data of interest x, given z.518

Training is carried out by maximising a variational lower bound, −LVAE(x), on the log-likelihood519

log p(x) – which is a proxy for the Evidence Lower Bound (ELBO) – i.e.:520

−LVAE(x) := Eq(z |x)[log p(x | z)]−KL(q(z |x)∥p(z))

where q(z |x) ≈ p(z |x) is an approximate posterior and KL(·∥·) is the Kullback-Leibler divergence.521

By parameterising the likelihood with a decoder ANN pθD(x | z;θD) ≈ p(x | z), and a possible522

variational posterior with an encoder ANN qθE(z |x;θE) ≈ q(z |x), the parameters θ⋆
D of the523

generative model that best reproduces the data can be learnt – jointly with θ⋆
E – as:524

θ⋆
E,θ

⋆
D :=

argmin
(θE,θD)

LVAE(x) =

argmin
(θE,θD)

Ex∼D

[
−Ez∼qθE (z |x;θE) [log pθD(x | z;θD)] + KL(qθE(z |x;θE)∥p(z))

]
where D is the distribution over the (training) examples x.525

From a practical point of view, optimisation is based on the empirical evaluation of LVAE(x;θ) on526

mini-batches of data, with the term−Ez∼qθE (z |x;θE) [log pθD(x | z;θD)] replaced by a reconstruction527

cost528
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LReco(x,x
′) ≥ 0 | LReco(x,x

′) = 0 ⇐⇒ x = x′ .

The generation of new data according to the fitted model is achieved by sampling from529

pθ⋆
D
(x | z;θ⋆

D)

∣∣∣∣
z∼p(z)

i.e. decoding samples from p(z).530

The setting is analogous in the case of conditional Variational Autoencoders [56, 64] (see section 3),531

where conditional sampling is achieved by532

xcj
∼ pθ⋆

D
(x | z, c;θ⋆

D)

∣∣∣∣
z∼p(z); c=cj

.

C Justification of Adversarially-balanced batches533

During the incipient phases of experimentation, preliminary tests were performed with the MNIST534

[36] and Fashion-MNIST [63] datasets – using a conditional VAE as the purifier, and small FCNs or535

convolutional ANNs as the classifiers. Adversarial examples were generated against the adversarially536

pre-trained classifier, and tentatively denoised by the purifier with one sample only. The resulting537

recovered inputs were classified by the classifier and the overall accuracy was recorded.538

Importantly, such tests were not meant to assess the end-to-end adversarial robustness of the whole539

architecture, but only to tune the training protocol of the purifier.540

Generating adversarial training examples by means of PGD is considered the gold standard [24]541

and was first attempted as a natural choice to train the purifier. However, in this case, the following542

phenomena were observed:543

• Unsatisfactory clean accuracy was reached upon convergence, speculatively a consequence544

of the VAE having never been trained on clean-to-clean example reconstruction;545

• Persistent vulnerability to same norm-bound FGSM perturbations was noticed;546

• Persistent vulnerability to smaller norm-bound FGSM and PGD perturbations was noticed.547

In an attempt to mitigate such issues, the composition of adversarial examples was adjusted to548

specifically counteract each of the issues uncovered. The adoption of any smaller subset of attack549

types or strength, compared to that described in subsection 4.4, resulted in unsatisfactory mitigation.550

At that point, another problem emerged: if such an adversarial training protocol was carried out in551

homogeneous batches, each containing the same type and strength of attack (or none at all), the552

resulting robust accuracy was still partially compromised due to the homogeneous ordering of attack553

types and strengths across batches.554

Such observations lead to the final formulation of the training protocol, detailed in subsection 4.4,555

which mitigates to the best the issues described so far.556

D Heuristic justification of the robust aggregation strategy557

The rationale leading to the choice of the specific robust aggregation strategy described in subsec-558

tion 4.5 was an attempt to answer the following question: ‘How is it possible to aggregate the results559

of an ensemble of classifiers in a way such that it is hard to tilt the balance of the ensemble by560

attacking only a few of its members?’. The same reasoning can be extended to the reciprocal problem561

we are trying to solve here, where different input reconstructions obtained from the same potentially562

perturbed input are classified by the same model (the classifier).563

Far from providing a satisfactory answer, we can analyse the behaviour of our aggregation strategy564

as the logit associated with a given model and class varies across its domain, under the effect of565
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adversarial intervention. Comparison with existing (and more popular) probability averaging and566

logit averaging aggregation strategies should provide a heuristic justification of our choice.567

We recall our aggregation strategy:568

Pi :=
1

Z

N∏
α=1

ee
lαi .

Additionally, we recall logit averaging aggregation569

Pi :=
1

Z
e

1
N

∑N
α=1 lαi =

1

Z

N∏
α=1

e
1
N lαi =

1

Z

(
N∏

α=1

el
α
i

) 1
N

and probability averaging aggregation570

Pi :=
1

Z

N∑
α=1

el
α
i∑C

j=1 e
lαj

=

N∑
α=1

el
α
i

1

Qα

where Qα =
∑C

j=1 e
lαj .571

Finally, since lαi ∈ R,∀lαi , limx→−∞ ex = 0 and e0 = 1, we can observe that el
α
i > 0 and572

ee
lαi > 1,∀lαi .573

Now, we consider a given class i⋆ and the classifier prediction on a given input reconstruction α⋆, and574

study the potential effect of an adversary acting on lα
⋆

i⋆ . This adversarial intervention can be framed575

in two complementary scenarios: either the class i⋆ is correct and the adversary aims to decrease its576

membership probability, or the class i⋆ is incorrect and the adversary aims to increase its membership577

probability. In any case, the adversary should comply with the ϵ∞-boundedness of its perturbation on578

the input.579

Logit averaging In the former scenario, the product of el
α
i terms can be arbitrarily deflated (up to580

zero) by lowering the lα
⋆

i⋆ logit only. In the latter scenario, the logit can be arbitrarily inflated, and581

such effect is only partially suppressed by normalisation by Z (a sum of 1/N-exponentiated terms).582

Probability averaging In the former scenario, although the effect of the deflation of a single logit583

is bounded by el
α⋆

i⋆ > 0, two attack strategies are possible: either decreasing the value of lα
⋆

i⋆ or584

increasing the value of Qα⋆

, giving rise to complex combined effects. In the latter scenario, the585

reciprocal is possible, i.e. either inflating lα
⋆

i⋆ or deflating Qα⋆

. Normalisation has no effect in both586

cases.587

Ours In the former scenario, the effect of logit deflation on a single product term is bounded by588

ee
lα

⋆

i⋆ > 1, thus exerting only a minimal collateral effect on the product, through a decrease of Z.589

This effectively prevents aggregation takeover by logit deflation. Similarly to logit averaging, in the590

latter scenario, the logit can be arbitrarily inflated. However, in this case, the effect of normalisation591

by Z is much stronger, given its increased magnitude.592

From such a comparison, our aggregation strategy is the only one that strongly prevents adversarial593

takeover by logit deflation, while still defending well against perturbations targeting logit inflation.594

E Architectural details and hyperparameters595

In the following section, we provide more precise details about the architectures (subsection E.1) and596

hyperparameters (subsection E.2) used in the experimental phase of our work.597
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E.1 Architectures598

In the following subsection, we describe the specific structure of the individual parts composing the599

purifier – in the three scenarios considered. As far as the classifier architectures are concerned, we600

redirect the reader to the original articles introducing those models (i.e.: [18] for scenarios (a) and601

(b), [62] for scenario (c)).602

During training, before being processed by the purifier encoder, input examples are standardised603

according to the statistics of the respective training dataset.604

Afterwards, they are fed to the disjoint input encoder (see subsection 4.3), whose architecture is605

shown in Table 4. The same architecture is used in all scenarios considered.606

Table 4: Architecture for the disjoint input encoder of the purifier. The same architecture is used in all scenarios
considered. The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The
following abbreviations are used: Conv2D: 2-dimensional convolutional layer; ch_in: number of input channels;
ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b: presence of a learnable bias
term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence of learnable affine transform
coefficients; slope: slope for the activation function in the negative semi-domain.

Disjoint Input Encoder (all scenarios)

Conv2D(ch_in=3, ch_out=6, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=6, ch_out=12, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

The original input is also fed to the classifier. The corresponding internal representation is extracted,607

preserving its layered structure. In order to improve the scalability of the method, only a subset of608

classifier layers is used instead of the whole internal representation. Specifically, for each block of609

the WIDERESNET architecture, only the first layers have been considered; two shortcut layers have610

also been added for good measure. The exact list of those layers is reported in Table 5.611

Each extracted layerwise (pre)activation tensor has the shape of a multi-channel image, which is612

processed – independently for each layer – by a different CNN whose individual architecture is shown613

in Table 6 (scenarios (a) and (b)) and Table 7 (scenario (c)).614

The resulting tensors (still having the shape of multi-channel images) are then jointly processed by a615

fully-connected subnetwork whose architecture is shown in Table 8. The value of fcrepr for the616

different scenarios considered is shown in Table 13.617

The compressed input and compressed internal representation so obtained are finally jointly encoded618

by an additional fully-connected subnetwork whose architecture is shown in Table 9. The output is a619

tuple of means and standard deviations to be used to sample the stochastic latent code z.620

The sampler used for the generation of such latent variables z, during the training of the purifier,621

is a reparameterised [32] Normal sampler z ∼ N (µ, σ). During inference, z is sampled by re-622

parameterisation from the i.i.d Standard Normal distribution z ∼ N (0, 1) (i.e. from its original623

prior).624

The architectures for the decoder of the purifier are shown in Table 10 (scenarios (a) and (b)) and625

Table 11 (scenario (c)).626

E.2 Hyperparameters627

In the following section, we provide the hyperparameters used for adversarial example generation and628

optimisation during the training of the purifier, and those related to the purifier model architectures.629

We also provide the hyperparameters for the PGD+EOT attack, which is used as a complementary630

tool for the evaluation of adversarial robustness.631
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Table 5: Classifier model (WIDERESNET-28-10) layer names used as (a subset of) the internal represent-
ation fed to the layerwise convolutional encoder of the purifier. The names reflect those used in the model
implementation.

All scenarios

layer.0.block.0.conv_0
layer.0.block.0.conv_1
layer.0.block.1.conv_0
layer.0.block.1.conv_1
layer.0.block.2.conv_0
layer.0.block.2.conv_1
layer.0.block.3.conv_0
layer.0.block.3.conv_1
layer.1.block.0.conv_0
layer.1.block.0.conv_1
layer.1.block.0.shortcut
layer.1.block.1.conv_0
layer.1.block.1.conv_1
layer.1.block.2.conv_0
layer.1.block.2.conv_1
layer.1.block.3.conv_0
layer.1.block.3.conv_1
layer.2.block.0.conv_0
layer.2.block.0.conv_1
layer.2.block.0.shortcut
layer.2.block.1.conv_0
layer.2.block.1.conv_1
layer.2.block.2.conv_0
layer.2.block.2.conv_1
layer.2.block.3.conv_0
layer.2.block.3.conv_1

Table 6: Architecture for the layerwise internal representation encoder of the purifier. The architecture shown
in this table is used in scenarios (a) and (b). The architecture is represented layer by layer, from input to output,
in a PyTorch-like syntax. The following abbreviations are used: Conv2D: 2-dimensional convolutional layer;
ch_in: number of input channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b:
presence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence
of learnable affine transform coefficients; slope: slope for the activation function in the negative semi-domain.
The abbreviation [ci] indicates the number of input channels for the (pre)activation tensor of each extracted
layer. The abbreviation ceil indicates the ceiling integer rounding function.

Layerwise Internal Representation Encoder (scenarios (a) and (b))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
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Table 7: Architecture for the layerwise internal representation encoder of the purifier. The architecture shown
in this table is used in scenario (c). The architecture is represented layer by layer, from input to output, in
a PyTorch-like syntax. The following abbreviations are used: Conv2D: 2-dimensional convolutional layer;
ch_in: number of input channels; ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b:
presence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation layer; affine: presence
of learnable affine transform coefficients; slope: slope for the activation function in the negative semi-domain.
The abbreviation [ci] indicates the number of input channels for the (pre)activation tensor of each extracted
layer. The abbreviation ceil indicates the ceiling integer rounding function.

Layerwise Internal Representation Encoder (scenario (c))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/8), ch_out=ceil([ci]/16), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

Table 8: Architecture for the fully-connected representation encoder of the purifier. The architecture shown
in this table is used in all scenarios considered. The architecture is represented layer by layer, from input to
output, in a PyTorch-like syntax. The following abbreviations are used: Concatenate: layer concatenating
its input features; flatten_features: whether the input features are to be flattened before concatenation;
feats_in, feats_out: number of input and output features of a linear layer; b: presence of a learnable bias
term; BatchNorm1D: 1-dimensional batch normalisation layer; affine: presence of learnable affine transform
coefficients; slope: slope for the activation function in the negative semi-domain. The abbreviation [computed]
indicates that the number of features is computed according to the shape of the concatenated input tensors. The
value of fcrepr for the different scenarios considered is shown in Table 13.

Fully-Connected Representation Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fcrepr, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)

Table 9: Architecture for the fully-connected joint encoder of the purifier. The architecture shown in this
table is used in all scenarios considered. The architecture is represented layer by layer, from input to output,
in a PyTorch-like syntax. The following abbreviations are used: Concatenate: layer concatenating its input
features; flatten_features: whether the input features are to be flattened before concatenation; feats_in,
feats_out: number of input and output features of a linear layer; b: presence of a learnable bias term;
BatchNorm1D: 1-dimensional batch normalisation layer; affine: presence of learnable affine transform
coefficients; slope: slope for the activation function in the negative semi-domain. The abbreviation [computed]
indicates that the number of features is computed according to the shape of the concatenated input tensors. The
value of fjoint for the different scenarios considered is shown in Table 13. The last layer of the network
returns a tuple of 2 tensors, each independently processed – from the output of the previous layer – by the two
comma-separated sub-layers.

Fully-Connected Joint Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fjoint, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)
( Linear(feats_in=fjoint, feats_out=fjoint, b=True),

Linear(feats_in=fjoint, feats_out=fjoint, b=True) )

18



Table 10: Architecture for the decoder of the purifier. The architecture shown in this table is used in scenarios
(a) and (b). The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The
following abbreviations are used: Concatenate: layer concatenating its input features; flatten_features:
whether the input features are to be flattened before concatenation; feats_in, feats_out: number of input
and output features of a linear layer; b: presence of a learnable bias term; ConvTranspose2D: 2-dimensional
transposed convolutional layer; ch_in: number of input channels; ch_out: number of output channels; ks:
kernel size; s: stride; p: padding; op: PyTorch parameter ‘output padding’, used to disambiguate the number
of spatial dimensions of the resulting output; b: presence of a learnable bias term; BatchNorm2D: 2-dimensional
batch normalisation layer; affine: presence of learnable affine transform coefficients; slope: slope for the
activation function in the negative semi-domain. The values of fjoint and fcrepr for the different scenarios
considered are shown in Table 13.

Decoder (scenarios (a) and (b))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=2304, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 3, 3)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=2, s=1, p=1, op=0, b=True)
Sigmoid()

Table 11: Architecture for the decoder of the purifier. The architecture shown in this table is used in scenario
(c). The architecture is represented layer by layer, from input to output, in a PyTorch-like syntax. The following
abbreviations are used: Concatenate: layer concatenating its input features; flatten_features: whether
the input features are to be flattened before concatenation; feats_in, feats_out: number of input and output
features of a linear layer; b: presence of a learnable bias term; ConvTranspose2D: 2-dimensional transposed
convolutional layer; ch_in: number of input channels; ch_out: number of output channels; ks: kernel size;
s: stride; p: padding; op: PyTorch parameter ‘output padding’, used to disambiguate the number of spatial
dimensions of the resulting output; b: presence of a learnable bias term; BatchNorm2D: 2-dimensional batch
normalisation layer; affine: presence of learnable affine transform coefficients; slope: slope for the activation
function in the negative semi-domain. The values of fjoint and fcrepr for the different scenarios considered
are shown in Table 13.

Decoder (scenario (c))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=4096, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 4, 4)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=3, s=1, p=1, op=0, b=True)
Sigmoid()
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Attacks The hyperparameters used for the adversarial attacks described in subsection 4.4 are shown632

in Table 12. The value of ϵ∞ is fixed to ϵ∞ = 8/255. With the only exception of ϵ∞, AUTOATTACK633

is to be considered a hyperparameter-free adversarial example generator.634

Table 12: Hyperparameters for the attacks used for training and testing the purifier The FGSM and PDG attacks
refer to the training phase (see subsection 4.4), whereas the PGD+EOT attack [38] refers to the robustness
assessment pipeline. The entry CCE denotes the Categorical CrossEntropy loss function. The ℓ∞ threat model is
assumed, and all inputs are linearly rescaled within [0.0, 1.0] before the attack.

FGSM PGD PGD+EOT

Input clipping [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
# of steps 1 40 200
Step size ϵ∞ 0.01 0.007
Loss function CCE CCE CCE
# of EoT iterations 1 1 20
Optimiser SGD SGD

Architectures Table 13 contains the hyperparameters that define the model architectures used as635

part of the purifier, in the different scenarios considered.636

Table 13: Scenario-specific architectural hyperparameters for the purifier, as referred to in Table 8, Table 9,
Table 10, and Table 11.

Scenario (a) Scenario (b) Scenario (c)

fcrepr 512 512 768
fjoint 128 128 192

Training Table 14 collects the hyperparameters governing the training of the purifier in the different637

scenarios considered.638

Table 14: Hyperparameters used for training the purifier, grouped by scenario. The entry CCE denotes the
Categorical CrossEntropy loss function. The LR scheduler is stepped after each epoch.

All scenarios Sc. (a) Sc. (b) Sc. (c)

Optimiser RADAM+LOOKAHEAD
RADAM β1 0.9
RADAM β2 0.999
RADAM ϵ 10−8

RADAM Weight Decay None
LOOKAHEAD averaging decay 0.8
LOOKAHEAD steps 6
Initial LR 5× 10−9

Loss function CCE
Sampled reconstructions per input 8

Epochs 200 200 250
LR warm-up epochs 25 25 31
LR plateau epochs 25 25 31
LR annealing epochs 150 250 188
Plateau LR 0.064 0.064 0.0128
Final LR 4.346× 10−4 4.346× 10−4 1.378× 10−4

β increase initial epoch 25 25 32
β increase final epoch 34 34 43
Batch size 5120 2560 1024
Adversarial batch fraction 0.5 0.15 0.01

F Additional tables639

The following section contains additional tabular data that may be of interest to the reader.640
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Table 15 reports the respective clean accuracies for the best models available in terms of AUTOAT-641

TACK robust accuracy, in scenarios (a) and (b). Models are further divided in AT-based and642

purification-based, so as to match the corresponding columns for robust accuracy shown in Table 2.643

The best AT-based model for CIFAR-10 is taken from [18], whereas that for CIFAR-100 from [62].644

Both best purification-based models are taken from [40].645

The clean and robust accuracies for the best AT-based model on TINYIMAGENET-200 (scenario (c))646

are already part of Table 2 and we redirect the reader there for such information. We are not aware of647

any published state-of-the-art adversarial purification-based model for TINYIMAGENET-200.648

Table 15: Clean accuracy for the best models (by robust accuracy) on the datasets considered in scenarios
(a) and (b), mentioned in Table 2. The following abbreviations are used: Scen: scenario considered; Best
AT/Cl: clean accuracy for the most robust model (by the means of AUTOATTACK) on the respective dataset,
obtained by adversarial training alone; Best P/Cl: clean accuracy for the most robust model (by the means of
AUTOATTACK) on the respective dataset, obtained by adversarial purification alone.

Scen. Dataset Best AT/Cl Best P/Cl

(a) CIFAR-10 0.9323 0.9082

(b) CIFAR-100 0.7522 0.6973
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NeurIPS Paper Checklist649

1. Claims650

Question: Do the main claims made in the abstract and introduction accurately reflect the651

paper’s contributions and scope?652

Answer: [Yes]653

Justification: Claims made in the abstract and introduction of the paper accurately reflect654

its contributions, and those are directly corroborated by experimental analysis. Results and655

their discussion is available in subsection 5.2 and subsection 5.3.656

2. Limitations657

Question: Does the paper discuss the limitations of the work performed by the authors?658

Answer: [Yes]659

Justification: subsection 5.2 and subsection 5.3 also contain the discussion of potential660

limitations of the method, and open problems it introduces.661

3. Theory Assumptions and Proofs662

Question: For each theoretical result, does the paper provide the full set of assumptions and663

a complete (and correct) proof?664

Answer: [NA]665

Justification: The paper does not contribute novel theoretical results. Assumptions anyway666

related to the contribution are clearly stated throughout the paper.667

4. Experimental Result Reproducibility668

Question: Does the paper fully disclose all the information needed to reproduce the main ex-669

perimental results of the paper to the extent that it affects the main claims and/or conclusions670

of the paper (regardless of whether the code and data are provided or not)?671

Answer: [Yes]672

Justification: Training and evaluation details required to reproduce the experimental results673

of the paper are reported in section 5 and Appendix E. Code and data for the reproduction674

of all experiments are additionally released as part of Supplementary Material.675

5. Open access to data and code676

Question: Does the paper provide open access to the data and code, with sufficient instruc-677

tions to faithfully reproduce the main experimental results, as described in supplemental678

material?679

Answer: [Yes]680

Justification: Code and data for the reproduction of all experiments are released to reviewers681

as part of Supplementary Material. The public version of the paper will include instructions682

to obtain the same material from a dedicated publicly accessible source.683

6. Experimental Setting/Details684

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-685

parameters, how they were chosen, type of optimiser, etc.) necessary to understand the686

results?687

Answer: [Yes]688

Justification: Training and evaluation details, including hyperparameters, required to re-689

produce the experimental results of the paper are reported in section 5 and Appendix E.690

Code and data for the reproduction of all experiments are additionally released as part of691

Supplementary Material.692

7. Experiment Statistical Significance693

Question: Does the paper report error bars suitably and correctly defined or other appropriate694

information about the statistical significance of the experiments?695

Answer: [No]696
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Justification: As doing adversarial training with 40-steps PGD is roughly 40 times more697

computationally demanding than nominal training, unfortunately, we are unable to show698

error bars or otherwise quantify statistical errors. In any case, the improvement induced699

by our method w.r.t. their state-of-the-art counterparts is well clear of the threshold for700

statistical significance.701

8. Experiments Compute Resources702

Question: For each experiment, does the paper provide sufficient information on the com-703

puter resources (type of compute workers, memory, time of execution) needed to reproduce704

the experiments?705

Answer: [Yes]706

Justification: Information about computational resources and required time is contained in707

subsection 5.1 as well as in the supplementary materials.708

9. Code Of Ethics709

Question: Does the research conducted in the paper conform, in every respect, with the710

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?711

Answer: [Yes]712

Justification: The research conducted in the paper does conform, in every respect, with the713

NeurIPS Code of Ethics.714

10. Broader Impacts715

Question: Does the paper discuss both potential positive societal impacts and negative716

societal impacts of the work performed?717

Answer: [Yes]718

Justification: The paper proposes a novel technique to mitigate the problem of adversarial719

vulnerability of high-dimensional classifiers. Such vulnerability may pose potential societal720

impacts, as discussed in section 1.721

11. Safeguards722

Question: Does the paper describe safeguards that have been put in place for responsible723

release of data or models that have a high risk for misuse (e.g., pretrained language models,724

image generators, or scraped datasets)?725

Answer: [NA]726

Justification: We do not plan to release models or data with a high risk for misuse. Models727

to be released do not reasonably carry risk for misuse.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: The creators and/or owners of assets used in the paper are either credited by734

reference to their original research work, or directly with a link to the preferred landing page735

for such assets. The use of licensed material is compliant with the respective licenses.736

13. New Assets737

Question: Are new assets introduced in the paper well documented and is the documentation738

provided alongside the assets?739

Answer: [Yes]740

Justification: Trained model weights are provided alongside the paper, and their details are741

provided as part of supplementary materials. In case of release to the public, such details742

will be provided contextually to the models.743

14. Crowdsourcing and Research with Human Subjects744

Question: For crowdsourcing experiments and research with human subjects, does the paper745

include the full text of instructions given to participants and screenshots, if applicable, as746

well as details about compensation (if any)?747
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Answer: [NA]748

Justification: No crowdsourcing or research with human subjects has been performed as part749

of the work of, or leading to, this paper.750

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human751

Subjects752

Question: Does the paper describe potential risks incurred by study participants, whether753

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)754

approvals (or an equivalent approval/review based on the requirements of your country or755

institution) were obtained?756

Answer: [NA]757

Justification: No crowdsourcing or research with human subjects has been performed as part758

of the work of or leading to this paper - including that potentially requiring IRB approval or759

equivalent authorisation.760
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