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ABSTRACT

Incorporating robustness in generative modeling has enticed many researchers
of the field. To this end, we introduce a new class of multivariate power-law
distributions—the symmetric Pareto (symPareto) distribution—which can be
viewed as an ℓ1-norm-based counterpart of the multivariate t distribution. The
symPareto distribution possesses many attractive information-geometric proper-
ties with respect to the γ-power divergence that naturally populates power-law
families. Leveraging on the joint minimization view of variational inference, we
propose the ParetoVAE, a probabilistic autoencoder that minimizes the γ-power
divergence between two statistical manifolds. ParetoVAE employs the symPareto
distribution for both prior and encoder, with flexible decoder options including
Student’s t and symPareto distributions. Empirical evidences demonstrate Pare-
toVAE’s effectiveness across multiple domains through varying the types of the
decoder. The t decoder achieves superior performance in sparse, heavy-tailed data
reconstruction and word frequency analysis; the symPareto decoder enables robust
high-dimensional denoising.

1 INTRODUCTION

For more than a decade since its emergence, the Variational Autoencoder (VAE, Kingma & Welling,
2013) has stood the test of time as a fundamental probabilistic generative model for scalable probabilis-
tic inference and representation learning. Conventional VAEs typically employ exponential-family
distributions, most notably the Gaussian, for their probabilistic model due to their mathematical
tractability. However, the exponential tail assumption often falls short when modeling real-world
data that exhibit heavy tails and extreme events.

To address these limitations, we move beyond the exponential family and investigate power-law
distribution families. Characterized by polynomially decaying tails, often called heavy-tailedness,
power-law families provide a natural framework for modeling rare events and heavy-tailed phenom-
ena. In particular, we introduce the multivariate symmetric Pareto distribution (symPareto) and
corresponding heavy-tail VAE framework, named ParetoVAE. ParetoVAE incorporates symPareto
distributions as key components, overcoming the representational limitations of Gaussian VAEs in
extreme-value scenarios, while inducing sparsity in the latent embedding space through the inherent
ℓ1 formulation of the symPareto family.

The use of symPareto distributions in VAEs raises computational challenges, especially for the
evidence lower bound (ELBO) estimation, which often requires intractable numerical integration. We
address this issue by adopting an information-geometric joint minimization framework based on the
γ-power divergence, serving as a tractable alternative to the Kullback-Leibler (KL) divergence. This
reformulation admits closed-form expressions between power-law distributions, thereby enabling
efficient optimization for modeling heavy-tailedness.

This work naturally extends the family of heavy-tailed variants of VAEs from Student’s t distributions
to symPareto. In particular, we generalize the t3VAE (Kim et al., 2024) structure into a symPareto-
based formulation. Table 1 summarizes the resulting variants, organized by the choice of the latent and
decoder distributions, and highlights their corresponding reconstruction loss and latent regularization
structure (either ℓ1 or ℓ22). Notably, incorporating symPareto distributions induces an ℓ1 term in the
objective, featuring sparsity and robustness in heavy-tailed VAE models.
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Table 1: Comparison of heavy-tailed VAE variants. Each tuple denotes (reconstruction loss, latent
regularization), where the components are either ℓ1 or squared ℓ2 (ℓ22).

Latent distribution Decoder distribution

Student’s t SymPareto

Student’s t (ℓ22, ℓ22) (Kim et al., 2024) (ℓ22, ℓ1)
SymPareto (ℓ1, ℓ22) (ℓ1, ℓ1)

Related Work Recognizing the limitations of Gaussian distributions in standard VAEs, many
researchers have proposed approaches that modify the ELBO by changing the prior, encoder, or
decoder. On the prior side, spike and slab (Tonolini et al., 2020), Dirichlet (Joo et al., 2020), and tilted-
Gaussian (Floto et al., 2023) options have been explored. On the encoder/decoder side, Student’s t
decoders improve robustness (Takahashi et al., 2018), inverse-gamma encoders with gamma decoders
target multivariate extremes (Lafon et al., 2023), and spherical-Cauchy encoders with a uniform prior
capture directional structure (Sablica & Hornik, 2025).

Beside modifying the model distributions, other VAE approaches focus on replacing the divergence
measure itself. For example, Rényi’s α-divergence (Li & Turner, 2016), skew-geometric Jensen-
Shannon divergence (Deasy et al., 2021), and β-divergence (Akrami et al., 2022) have been used
in VAEs for specific purposes such as robust estimation. Notably, the t3VAE (Kim et al., 2024)
introduces a joint minimization framework that leverages the γ-power divergence and replaces the
prior, encoder, and decoder distributions with multivariate t distributions, based on information
geometric principles (Amari, 2016; Eguchi, 2021).

Other generative models, especially those based on the generative adversarial network (GAN)
framework, have also been developed to explicitly capture heavy-tailed behaviors by changing the
prior distribution or divergence. Some GAN-based models use power-law priors, such as univariate
t (Feder et al., 2020) and Pareto (Huster et al., 2021) distributions. Others apply some exotic
divergences, such as the Lipschitz-regularized α-divergence (Chen et al., 2024). Furthermore,
normalizing flows (Laszkiewicz et al., 2022; Hickling & Prangle, 2024) and diffusion models (Pandey
et al., 2024; Lian et al., 2025) have garnered attention for their ability to handle rare or extreme data
points by moving beyond the Gaussianity assumption.

2 THEORETICAL BACKGROUND

2.1 VARIATIONAL AUTOENCODER (VAE)

VAE aims to approximate the true data distribution pdata(x) by modeling the marginal likelihood
as pθ(x) =

∫
pθ(x|z)pZ(z) dz, where z represents a latent variable. Due to the intractability of

directly computing the posterior pθ(z|x), VAE employs variational inference to approximate this
distribution. The VAE framework consists of two primary components, encoder (inference model)
qϕ(z|x) ∈ F and decoder (generative model) pθ(x|z) ∈ G, where F and G are spaces of density
functions parameterized by deep neural networks. The encoder approximates the posterior pθ(z|x),
while the decoder generates a sample x conditioned on the latent variable z.

The primary objective is to minimize the KL divergence DKL(· ∥ ·) between the true posterior pθ(z|x)
and its approximation qϕ(z|x) (encoder). This is equivalent to maximizing the evidence lower bound
(ELBO) of the marginal log-likelihood, expressed as

ELBOθ,ϕ(x) = Ez∼qϕ(·|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ pZ(z)).

Here pZ(z) refers to the prior density, which is commonly assumed to be a standard multivariate
Gaussian pZ(z) ∼ Nm(0, I). Typically, both the encoder and decoder are also chosen as multivariate
Gaussian

qϕ(z|x) ∼ Nm(µϕ(x),Σϕ(x)), pθ(x|z) ∼ Nn(µθ(z), σ
2I).

with diagonal encoder variance Σϕ(x) = diag(σ2
ϕ(x)) to simplify computation. As a result of the

Gaussianity assumption, the objective function of the VAE can be written as the sum of the mean
squared error (MSE, Ez∼qϕ(·|x)

[
1

2σ2 ∥x− µθ(z)∥2
]
) and a KL regularization term.
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VAE as a Joint Minimization Problem VAE objective can be reinterpreted as a joint minimization
problem between two statistical manifolds (Han et al., 2020). The model distribution manifold
Mmodel and the data distribution manifold Mdata are defined as

Mmodel = {pθ(x, z) = pθ(x|z)pZ(z) : θ ∈ Θ}, Mdata = {qϕ(x, z) = pdata(x)qϕ(z|x) : ϕ ∈ Φ}.
The KL divergence between these manifolds can be expressed as follows:

DKL(qϕ ∥ pθ) = −Ex∼pdata [ELBOθ,ϕ(x)]−H(pdata),

where H(pdata) is the differential entropy of the data distribution. Therefore, maximizing the ELBO
can be reformulated as the following joint minimization problem:

(pθ∗ , qϕ∗) = argminp∈Mmodel,q∈Mdata
DKL(q ∥ p). (1)

This perspective allows us to interpret VAE as minimizeing the KL divergence between Mmodel and
Mdata, which can be solved by the information-geometric em-algorithm (Csiszár, 1984; Han et al.,
2020). The key point is that, when constructing VAE structures, one can bypass an explicit ELBO
maximization and instead directly solve a joint minimization problem. Moreover, this view naturally
motivates replacing KL divergence with alternative divergences to move beyond Gaussianity.

2.2 DISTRIBUTIONS IN POWER-LAW FAMILIES

A random variable X follows a (univariate) power-law distribution if its probability density or mass
function p(x) is proportional to x−α, α > 0 (Newman, 2005). We introduce some multivariate
extensions of power-law distributions relevant to heavy-tailed VAE models.

Multivariate t distribution The n-variate Student’s t distribution with degrees of freedom ν > 0
has its density function as

tn(x|µ, σ2In, ν) =
Tn,ν

σ̄

(
1 +

1

ν

∥∥∥∥x− µ

σ

∥∥∥∥2
2

)− ν+n
2

, Tn,ν =
Γ(ν+n

2 )

(νπ)
n
2 Γ(ν2 )

. (2)

where σ̄ :=
∏n

i=1 σi. Here µ ∈ Rn and σ ∈ Rn
+ denote the location and scale parameters,

respectively, and the division (x − µ)/σ is to be understood element-wise, with a slight abuse of
notation. It is widely regarded as a heavy-tailed generalization of the multivariate Gaussian, since it
converges to Nn(µ, σ

2In) as ν → ∞.

Multivariate Symmetric Pareto distribution Although several formulations of the multivariate
Pareto distribution have been proposed (Arnold et al., 1993; Hanagal, 1996; Rootzén et al., 2017),
most lack explicit density representations suitable for the computation of divergence and are restricted
to positive supports. Motivated by Mardia’s multivariate Pareto of the first kind (Mardia, 1962), we
introduce the multivariate symmetric Pareto distribution (symPareto). Its density is defined as

Pn(x | µ, σ, ν) = Cn,ν,ν

σ̄

(
1 +

1

ν

∥∥∥∥x− µ

σ

∥∥∥∥
1

)−(ν+n)

, Cn,ν1,ν2 =
Γ(ν1 + n)

(2ν2)nΓ(ν1)
. (3)

This distribution can be regarded as a heavy-tailed analogue of the product of univariate Laplace
distributions, or as an ℓ1-norm–based counterpart of the multivariate t distribution. Further properties
of the symPareto distribution are provided in Appendix A.

Figure 1 illustrates characteristic behaviors of the proposed symPareto distribution. Figure 1a displays
scatter plots of 5,000 samples drawn from the symPareto, Student’s t, and Gaussian distributions in
two dimensions. Most Gaussian samples concentrate within radius r ≤ 3 due to the exponentiall
decaying tail, whereas Student’s t produces noticeably more samples beyond this range. The
symPareto distribution exhibits even heavier tails, with many extreme samples lying outside radius
5 or 10. Moreover, the samples of symPareto tend to align the coordinates, producing a cross-like
shape. This reflects the ℓ1-norm structure in its density.

Figure 1b shows the complementary cumulative distribution functions (CCDFs) of the symPareto
distribution on a log scale for various values of ν. For small ν, the CCDF exhibits polynomial decay,
indicating heavy tails. As ν increases, the tail becomes lighter, and in the limit ν → ∞ the symPareto
converges to the Laplace distribution, which decays exponentially.
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(a)
(b)

Figure 1: (a) 2D scatter plots of SymPareto (left), Student’s t (middle), and Gaussian (right). (b)
Log-scale CCDF comparison of SymPareto with varying ν.

2.3 INFORMATION GEOMETRY AND γ-POWER DIVERGENCE

In this section, we briefly introduce the γ-power divergence as an alternative to the KL divergence
from an information-geometric perspective. More formal and detailed exposition of these concepts
can be found in Amari (2016).

Divergence in information geometry In information geometry, a family of probability distributions
is regarded as a statistical manifold S, and a specific distribution in the family is a point on S. To
quantify the discrepancy between two points on S, one typically employs a differentiable function
D : S × S → [0,∞), called a divergence. A divergence not only measures separation of points but
also induces geometric structures on S, including an affine connection ∇ that governs how tangent
vectors are transported between nearby points. The connection ∇ in turn defines ∇-geodesics, i.e.,
one-dimensional submanifolds that generalize the notion of straight lines on the statistical manifold.

Formally, each ∇-geodesic can be expressed linearly with respect to affine coordinate systems
associated with ∇. In this sense, the manifold S is said to be ∇-flat. This property enables powerful
tools of geometric analysis, such as joint minimization algorithms (Csiszár, 1984; Han et al., 2020).

KL divergence A well-known example of a divergence is the KL divergence. One of the corre-
sponding geodesics is the e-geodesic (e for exponential), defined by

le(x) ∝ exp((1− t) log p(x) + t log q(x)), t ∈ [0, 1].

In particular, e-geodesics characterize distributions in the exponential families, implying that these
families form e-flat submanifolds. Thus, the KL divergence naturally induces geometric structure
with respect to exponential families. However, not all statistical manifolds exhibit such family. For
instance, for distributions in the power-law family, such as the t and generalized Pareto distributions,
the KL divergence does not induce a dually flat geometric structure.

γ-power divergence A divergence suitable for the power-law families is the γ-power divergence
(Kim et al., 2024), a generalization of the notion due to Eguchi (2021). It is defined as

Dγ(q ∥ p) := γ−1Cγ(q, p)− γ−1Hγ(q), γ ∈ (−1,∞) \ {0}

Hγ(p) := −∥p∥1+γ = −
(∫

p(x)1+γdx

) 1
1+γ

, Cγ(q, p) := −
∫

q(x)

(
p(x)

∥p∥1+γ

)γ

dx.

where Hγ(·) and Cγ(·, ·) are called the γ-power entropy and γ-power cross-entropy, respectively.
This divergence parallels the e-geodesic for the KL divergence by introducing the γ-power geodesic,
which induces γ-flat submanifolds as

Sγ =
{
pθ(x) ∝ (1 + γθ⊤s(x))

1
γ : θ ∈ Θ

}
, (4)

where s(x) is the sufficient statistic of the given distribution. When the symPareto has µ = 0,
s(x) = |x| ∈ Rn is a valid sufficient statistic. In this case, the symPareto density can be expressed in
the γ-flat form (4) with γ = − 1

ν+n .

4
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Figure 2: Illustration of two symPareto manifolds with different µ and their translation to the γ-flat
manifold Sγ for analyzing the γ-power divergence.

Upper bound of γ-power divergence for flatness However, when µ ̸= 0, the symPareto distri-
bution no longer admits an sufficient statistic s(x) of the required form even though the γ-power
divergence between two symPareto distributions with different µ can be written in closed form.
Consequently, γ-flatness is not preserved in the noncentral symPareto distributions.

To handle this case, we consider a translation of the distributions. By shifting the location parameters
µ1, µ2 to the origin, the corresponding zero-centered distributions p0 = Pn(0, σ1, ν) and q0 =
Pn(0, σ2, ν) lie on the γ-flat manifold Sγ with γ = − 1

ν+n . Figure 2 illustrates two manifolds of the
symPareto distribution with different µ, and their translation to the γ-flat manifold Sγ . We then obtain
an upper bound of Dγ(p ∥ q) by γ-power divergence between p0 and q0 together with an additional
term reflecting the translation cost in terms of the ℓ1-distance between µ1 and µ2 relative to the scale.
Theorem 2.1 (Upper bound for γ-power divergence between two noncentral symPareto distributions).
Let n ≥ 1, ν > 1, and γ = − 1

ν+n . For p0 = Pn(0, σ1, ν) and q0 = Pn(0, σ2, ν), the γ-power
divergence between p0 and q0 is finite when ν > 1 and can be expressed in closed-form

Dγ(p0 ∥ q0) = C ′
[
σ̄
− γ

1+γ

2

(
1 +

1

ν
+

1

ν − 1

∥∥∥∥σ1

σ2

∥∥∥∥
1

)
− σ̄

− γ
1+γ

1

(
ν + n− 1

ν − 1

)]
, (5)

where C ′ := C ′(n, ν, γ) = (ν + n)C
γ

1+γ

n,ν−1,ν . Furthermore, for two noncentral symPareto distribu-
tions p = Pn(µ1, σ1, ν) and q = Pn(µ2, σ2, ν), the divergence Dγ(p ∥ q) has an upper bound

Dγ(p ∥ q) ≤ Dγ(p0 ∥ q0) + β

∥∥∥∥µ1 − µ2

σ2

∥∥∥∥
1

, (6)

with β =
(
1 + n

ν

)
C

γ
1+γ

n,ν−1,ν . In (6), equality holds when µ1 = µ2.

3 THE PARETO VARIATIONAL AUTOENCODER

3.1 THE PARETOVAE STRUCTURE

In this section, we introduce the ParetoVAE framework and compute the corresponding γ-loss
objective via the γ-power divergence. All detailed derivations and proofs are in Appendix B.

Prior, decoder, and encoder Motivated by (1), we set a minimization problem for VAE as mini-
mizing the γ-power divergence between two joint manifolds:

(qϕ∗ , pθ∗) = argminθ∈Θ, ϕ∈ΦDγ(qϕ ∥ pθ), (7)

where qϕ(x, z) = qϕ(z|x)pdata(x) and pθ(x, z) = pθ(x|z)p(z). Under this problem setup, the
construction of ParetoVAE starts from the heavy-tailed joint decoder model:

pθ(x, z) ∝

[
1 +

1

ν

(
∥z∥1 +

∥x− µθ(z)∥22
σ2

)]− 2(ν+m)+n
2

. (8)

From (8), we deduce the prior p(z) and decoder pθ(x | z):

p(z) = Pm(z | 0,1m, ν), pθ(x | z) = tn

(
x | µθ(z),

ν + ∥z∥11
2(ν +m)

σ2In, ν +m

)

5
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For the encoder, we also adopt a symPareto distribution consistent with the prior, while increasing
the degree of freedom by n to reflect the contribution of the data dimension:

qϕ(z|x) = Pm(z | µϕ(x), σϕ(x), ν + n/2).

Reparameterization Trick for symPareto To enable gradient-based learning, the VAE framework
employs the reparameterization trick (Kingma & Welling, 2013). Exactly as Student’s t-distribution
can be represented in terms of Gaussian and chi-squared variables, symPareto admits a representation
of a Laplace-Gamma mixture, allowing easy reparameterization.
Proposition 3.1. Let Z ∼ Ln(0, In) and W ∼ Gamma(ν, 1) be independent, where Ln(0, In) has
i.i.d. univariate Laplace L1(0, 1) components. Then T := (ν/W )Z satisfies T ∼ Pn(0,1n, ν).

3.2 DERIVATION OF THE γ-LOSS

The computation of Dγ(qϕ ∥ pθ) with γ = − 2
2ν+2m+n results in a closed-form expression. By

simplifying the constants and utilizing the alternative prior expression (cf. Kim et al. (2024)), we
obtain the γ-loss function for the ParetoVAE under the mild condition (m+ 1)γ + 1 ̸= 0:

Lalt
γ (θ, ϕ) = Ex∼pdata

[
1

2σ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22 + αDγ(qϕ ∥ palt)

]
, (9)

where palt = Pm(0, k1m, ν + n/2), k = ν
ν+2n

(
σ−nπ−n

2 Cn/2,ν−1,ν

) 1
ν+n/2−1 , and α = − γν

2C2
with

C2 =

{
Cm,ν,νTn,2ν+2mσ−n

(
2 +

2m

ν

)n
2
(

ν − 1

ν +m+ n/2− 1

)} γ
1+γ

.

In other words, the γ-loss can be understood as a sum of the mean squared error (MSE) and the
γ-power divergence regularizer between the encoder and the alternative prior, palt.

Moreover, to incorporate γ-flatness into the optimization process, we apply the result of Theorem 2.1
to the regularizer:

Lalt
γ (θ, ϕ) ≤ Ex∼pdata

[
1

2σ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22+αDγ(qϕ,0 ∥ palt)+αβ ∥µϕ(x)∥1

]
=: Lγ(θ, ϕ),

(10)
where β is the value in Theorem 2.1 and qϕ,0 = Pm(z | 0, σϕ(x), ν + n/2). Our practical objective
Lγ(θ, ϕ) thus consists of three parts: the ℓ22-reconstruction loss, the γ-power divergence under
γ-flatness, and an ℓ1 penalty term on µϕ(x).

Limiting behavior We theoretically analyze the limiting behavior of α, k, and β in (9) as ν → ∞.
Proposition 3.2 (Limiting behavior of the γ-loss). For fixed n, m and x, and γ = − 2

2ν+2m+n ,

lim
ν→∞

α =
1

2
, lim

ν→∞
k = lim

ν→∞
β = 1, lim

ν→∞
Dγ(qϕ ∥ palt) = DKL(qϕ,∞ ∥ palt,∞),

where qϕ,∞ = Lm(µϕ(x), σϕ(x)) and palt,∞ = Lm(0,1m) are limiting distributions of qϕ and palt.

Proposition 3.2 shows that as ν → ∞, the γ-loss converges to the LaplaceVAE (LVAE) objective with
the regularizer weight 1

2 ; LVAE is a VAE with Laplace prior and encoder distributions together with a
Gaussian decoder (Geadah et al., 2024). In this sense, ParetoVAE can be regarded as a heavy-tailed
extension of the LVAE.

Moreover, in practice, the weight α and corresponding β (coupled with α) in (10) can be fine-tuned
in the same spirit as the β-VAE (Higgins et al., 2017b). Under such tuning, the modified γ-loss
smoothly converges to the that of β-LVAE in the ν → ∞ limit.

3.3 DECODER SELECTION: SYMPARETO DECODER WITH ℓ1 RECONSTRUCTION ERROR

We may also modify the joint decoder distribution by replacing the ℓ22 reconstruction error term
∥x− µθ(z)∥22 in (8) with an ℓ1-norm-based variant:

pθ(x, z) ∝
[
1 +

1

ν

(
∥z∥1 +

∥x− µθ(z)∥1
σ

)]−(ν+m+n)

. (11)

6
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This leads to the γ-loss function in which the MSE is replaced by the mean absolute error (MAE)
when γ = − 1

ν+m+n :

Lγ(θ, ϕ) = Ex∼pdata

[
1

σ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 + 2αDγ(qϕ,0 ∥ palt) + 2αβ ∥µϕ(x)∥1

]
, (12)

where qϕ,0 = Pm(0, σϕ(x), ν + n), palt = Pm(0, k1m, ν + n), and

k =
ν

ν + n

(
Cn,ν−1,νσ

−n
) 1

ν+n−1 , α = − γν

2C2
, C2 =

(
Cn+m,ν,ν

ν − 1

ν + n+m− 1
σ−n

) γ
1+γ

.

Thanks to the MAE in the loss function, the model promotes robustness to extreme values. In the
same way, we can apply a symPareto decoder to t3VAE, thereby obtaining an MAE-based t3VAE
variant; see Appendix B.5.2.

4 EXPERIMENTS

In this section, we evaluate ParetoVAE on both low and high-dimensional datasets under different
decoder choices. We provide a comprehensive comparison against VAEs with different distributions:
Gaussian VAE (VAE), LaplaceVAE (LVAE), and t3VAE. Experiments details are given in Appendix C.
Throughout, the hyperparameter ν is held fixed for t3VAE and ParetoVAE (without tuning); see
Appendix D for related discussion.

4.1 SPARSE HEAVY-TAILED DATA ANALYSIS WITH t-DECODER

We evaluated ParetoVAE with a t-decoder on two representative tasks: low-dimensional graph degree
distributions and high-dimensional word token vectors. As a point of comparison for tail modeling,
we also includde a deterministic autoencoder (AE) baseline. We employed the two-sample MMD test
(13; Gretton et al., 2012) to test the hypothesis

H0 : pdata = precon vs. H1 : pdata ̸= precon (13)

and report the resulting p-values, where precon is the distribution of the reconstructed samples.

Graph degree reconstruction We constructed a joint in- and out-degree count distribution of a
directed graph using the SNAP Epinions social network (Richardson et al., 2003). In addition to the
MMD test, we also measured the sliced 1-Wasserstein distance (SWD; Bonneel et al., 2014) in both
head and tail regions, defined as the top 10% of samples according to their ℓ2 norm.

Figure 3a shows a hexagonal binned scatterplot (hexbin) of the joint degree counts, revealing a
sparse, power–law shape. Figure 3b presents SWD convergence curves during training. We observe
that the models with ℓ1-regularization (ParetoVAE, LVAE) converge more rapidly than those with
ℓ22-regularization (VAE, t3VAE), indicating enhanced robustness to extreme values. Figure 3c
summarizes SWD metrics and tail MMD p-values. In all metrics, ParetoVAE achieved the lowest
SWDs in both parts, showing its ability to capture tails and sparse extremes. By contrast, VAE and
AE often rejected H0, indicating poor tail fit.

Word frequency analysis Based on the WikiText-2 dataset (Merity et al., 2017), we constructed
19,962-dimensional bag-of-words representations from all tokens occurring at least 5 times. For
head-tail analysis, the head was defined as the set of the 2,241 most frequent words, and the tail as
the set of the 2,241 least frequent words among those with frequency ≥ 5. For each part, we report
the overlap ratio between the sets induced by reconstructions and the ground truth and the Jaccard
similarity (Jaccard, 1901) between the two sets.

As summarized in Table 2, ParetoVAE achieved the highest overlap and Jaccard scores for both head
and tail. It also attains non-negligible MMD p-values on both parts, whereas baselines typically
rejected H0 in at least one part, indicating that ParetoVAE better captures the power-law structure. In
contrast, AE captured neither tail nor head, and the others were only good at reconstructing head.
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(a) 2d hexbin of joint in/out-degree counts

(b) SWD convergence curve on tail (log-scale)

Model SWD (Overall) SWD (Tail) p-value (Tail)

ParetoVAE 0.044± 0.005 0.170± 0.029 0.221± 0.144 ✓
LVAE 0.055± 0.009 0.301± 0.084 0.119± 0.090 ✓
t3VAE 0.055± 0.005 0.389± 0.040 0.181± 0.110 ✓
VAE 0.061± 0.018 0.402± 0.025 0.042± 0.030 ✗
AE 0.074± 0.030 0.621± 0.304 0.028± 0.027 ✗

(c) Overall SWD, tail SWD, and tail MMD p-values
(mean ± standard deviation over 10 runs). Overall
p-values are omitted since all models fail to reject.

Figure 3: Consolidated results for graph-degree reconstruction on the Epinions network.

Table 2: Metrics for word frequency reconstruction on Wikitext-2. Reported values are the mean
± standard deviation over three runs. ✓ denotes cases where the p-value does not reject the null
hypothesis at conventional significance levels (0.05 or 0.01), whereas ✗ indicates rejection.

Model Head Tail

Overlap (↑) Jaccard (↑) p-value Overlap (%) Jaccard (↑) p-value

ParetoVAE 0.981± 0.001 0.964± 0.001 0.417± 0.237 ✓ 0.717± 0.035 0.560± 0.043 0.178± 0.161 ✓

LVAE 0.772± 0.008 0.629± 0.010 0.233± 0.148 ✓ 0.230± 0.003 0.130± 0.002 0.001± 0.000 ✗

t3VAE 0.739± 0.002 0.586± 0.002 0.665± 0.116 ✓ 0.226± 0.001 0.127± 0.001 0.001± 0.000 ✗

VAE 0.775± 0.017 0.633± 0.022 0.229± 0.200 ✓ 0.224± 0.009 0.126± 0.006 0.001± 0.001 ✗

AE 0.642± 0.007 0.473± 0.008 0.001± 0.000 ✗ 0.197± 0.004 0.109± 0.003 0.001± 0.000 ✗

4.2 IMAGE DENOISING APPLICATION WITH SYMPARETO DECODER

We conducted a denoising task using ParetoVAE with a symPareto decoder on benchmark datasets
encompassing MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Omniglot (Lake et al., 2015), and
CelebA (Liu et al., 2015). Evaluation metrics comprise PSNR and SSIM for assessing the quality of
images reconstructed from corruption. For class-related metrics, we report: (1) accuracy, obtained by
applying linear probing directly to the latent variables sampled from the corrupted images. (2) (class)
consistency, quantified as the agreement between the class predictions of a clean and reconstructed
image using an pretrained external classifier exclusively on clean images.

Similar to Vincent et al. (2008), we corrupted the original data x to obtain noisy inputs x′, which are
passed through the VAE models to reconstruct x̂. The main objective includes an MAE loss between
x and x̂. This procedure has been shown to yield a theoretically valid objective for VAEs (Im et al.,
2016), and we extend this argument to ParetoVAE in Appendix C.4.

The results are summarized in Table 3. Across all datasets, ParetoVAE consistently outperformed
baseline models. We attribute this advantage to the MAE term in the γ-loss, which improves
robustness to outliers and enhances recovery of fine-grained structures. The t3VAE was competitive
on MNIST but its performance degraded on complex datasets like Omniglot, highlighting the
advantage of ParetoVAE in high-dimensional denoising.

Figure 4 compares denoised images from datasets corrupted with salt-and-pepper noise, applied either
in RGB or grayscale. On CelebA (Figure 4a), t3VAE yielded visually sharp reconstructions than VAE,
but often generated samples not too close to the input. LVAE better preserved input-specific features,
though with lower fidelity. ParetoVAE appears to combine both strengths, retaining distinctive
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Table 3: Quantitative results for denoising task with a noise probability of 0.5 on various datasets.
Mean ± standard deviation reported for 5 runs (class-related metrics are not reported for CelebA).

Dataset Model PSNR (↑) SSIM (↑) Accuracy(↑) Consistency (↑)

MNIST

ParetoVAE 24.185± 0.074 0.950± 0.001 0.909± 0.005 0.983± 0.001
LVAE 20.246± 0.154 0.891± 0.025 0.828± 0.011 0.954± 0.005
t3VAE 22.985± 0.389 0.935± 0.005 0.799± 0.019 0.979± 0.001
VAE 18.516± 0.138 0.840± 0.002 0.741± 0.004 0.913± 0.002

SVHN

ParetoVAE 25.980± 0.630 0.878± 0.010 0.215± 0.005 0.782± 0.021
LVAE 23.276± 0.374 0.786± 0.018 0.204± 0.009 0.528± 0.057
t3VAE 23.488± 1.864 0.797± 0.076 0.198± 0.003 0.570± 0.208
VAE 21.028± 0.309 0.690± 0.013 0.197± 0.002 0.276± 0.020

CIFAR10

ParetoVAE 20.552± 0.119 0.723± 0.002 0.368± 0.002 0.341± 0.006
LVAE 16.622± 0.105 0.498± 0.003 0.285± 0.008 0.181± 0.005
t3VAE 19.584± 0.064 0.664± 0.004 0.316± 0.001 0.259± 0.014
VAE 15.726± 0.068 0.457± 0.006 0.234± 0.016 0.165± 0.005

Omniglot

ParetoVAE 20.783± 0.389 0.903± 0.007 0.257± 0.003 0.564± 0.038
LVAE 11.953± 0.031 0.716± 0.001 0.222± 0.026 0.000± 0.000
t3VAE 11.918± 0.034 0.712± 0.001 0.032± 0.005 0.000± 0.000
VAE 11.917± 0.035 0.712± 0.001 0.033± 0.002 0.000± 0.000

CelebA

ParetoVAE 25.125± 0.065 0.818± 0.002 - -
LVAE 21.487± 0.027 0.708± 0.003 - -
t3VAE 22.406± 0.452 0.741± 0.012 - -
VAE 18.554± 0.017 0.598± 0.000 - -

(a) CelebA

(b) Original (c) Noisy

(d) ParetoVAE (e) The others

Figure 4: Denoising results on the benchmark datasets (with noise probability of 0.5). (a) displays
the results on CelebA. For Omniglot, (b) shows the original images, (c) the noisy images, and the
denoised images from ParetoVAE and other VAEs are shown in (d), and (e), respectively.

features while achieving superior reconstruction quality, illustrating the benefit of the symPareto
distribution.

Interestingly, on Omniglot, all models except ParetoVAE failed to reconstruct the original images
from noisy inputs, even after fine-tuning hyperparameters (Figure 4d and Figure 4e). This outcome
may stem from the fact that Omniglot is highly sparse in terms of classes, making it difficult for
light-tailed or ℓ22-based regularization schemes to capture its underlying structure.

5 CONCLUSION

We have introduced the multivariate symmetric Pareto distribution (symPareto) and proposed Pareto-
VAE, which employs symPareto prior and encoder with flexible decoders (Student’s t or symPareto).
By leveraging the information-geometric γ-power divergence and the joint minimization viewpoint to
variatinal inference, ParetoVAE produces a tractable γ-loss as an alternative to the ELBO-based one.
Empirical results show that ParetoVAE captures the power-law behavior of the data and enhances
robustness to outliers. Further discussion is provided in Appendix D.
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A SOME PROPERTIES OF THE MULTIVARIATE SYMMETRIC PARETO
DISTRIBUTIONS

In this section, we provide some properties of the multivariate symmetric Pareto distributions.

A.1 FROM MARDIA’S ONE-SIDED PARETO TO THE SYMMETRIC PARETO VIA
REPARAMETERIZATION

We start from Mardia’s n-variate Pareto distribution of the first kind (Mardia, 1962), whose joint
density is given by

pn(x1, . . . , xn | σ, ν) = Γ(ν + n)

Γ(ν)

1

σ̄

(
n∑

i=1

xi

σi
− n+ 1

)−(ν+n)

, xi > σi > 0, ν > 0,

where σ̄ =
∏n

i=1 σi. This form has a lower-bounded support anchored at the vector σ.

To shift the support to the positive orthant with a unit offset, we reparameterize by yi = xi − σi. The
density becomes

pn(y1, . . . , yn | σ, ν) = Γ(ν + n)

Γ(ν)

1

σ̄

(
1 +

n∑
i=1

yi
σi

)−(ν+n)

, yi > 0.

Next, to align this form with the γ-flat family in (4), we rescale the coordinate-wise scales by
σi 7→ νσi. This yields the one-sided (positive-orthant) Pareto density

P+
n (y1, . . . , yn | σ, ν) = Γ(ν + n)

νnΓ(ν)

1

σ̄

(
1 +

1

ν

n∑
i=1

yi
σi

)−(ν+n)

, yi > 0.

Finally, we obtain a symmetric distribution on the whole space by extending the support from the
positive orthant to Rn. Concretely, replace yi by |xi − µi| (introducing a location parameter µ) and
adjust the normalizing constant by a factor 2−n since the support is extended to all 2n orthants. This
gives the multivariate symmetric Pareto (symPareto) density

Pn(x | µ, σ, ν) = Cn,ν,ν

σ̄

(
1 +

1

ν

∥∥∥∥x− µ

σ

∥∥∥∥
1

)−(ν+n)

,

which coincides with (3). Here Cn,ν1,ν2
=

Γ(ν1 + n)

(2ν2)nΓ(ν1)
and the division (x− µ)/σ is understood

element-wise. In this way, the construction proceeds seamlessly from Mardia’s one-sided form,
through a reparameterization and νσ-scaling that reveals the γ-flat structure, to the desired symmetric
extension on Rn.

Marginal distribution of the symPareto distribution For the n-variate standard symPareto distri-
bution, the marginal distribution of each component Xi is itself a univariate symPareto distribution.
Its density can be computed as

p1(x1) =

∫
R
· · ·
∫
R
Cn,ν,ν

(
1 + 1

ν ∥x∥1
)−(ν+n)

dx2 · · · dxn

=
Γ(ν + n)

2Γ(ν)νn
· ν n−1

(ν + n− 1) · · · (ν + 1)

(
1 + 1

ν |x1|
)−(ν+1)

=
1

2

(
1 +

1

ν
|x1|
)−(ν+1)

.

Thus each marginal has the same symmetric Pareto form in one dimension. By restricting to the
positive half-line (x > 0) and writing ν = 1/ξ, this reduces to

p(x) = (1 + ξx)−(1/ξ+1), x > 0,

which coincides with the generalized Pareto distribution (Pickands, 1975).
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A.2 STATISTICS OF THE SYMPARETO DISTRIBUTION

Mean and variance Let X ∼ P1(0, 1, ν). The expectation exists for ν > 1, and by symmetry of
the density we have E[X] = 0. When ν > 2, the variance is finite and can be computed as

V ar(X) = E[X2]

=

∫ ∞

−∞

x2

2

(
1 +

1

ν
|x|
)−(ν+1)

dx

=

∫ 0

−∞

x2

2

(
1− 1

ν
x

)−(ν+1)

dx+

∫ ∞

0

x2

2

(
1 +

1

ν
x

)−(ν+1)

dx

=
ν3

2

(∫ ∞

1

(1− y)2y−(ν+1) dy +

∫ ∞

1

(z − 1)2z−(ν+1) dz

) (
y = 1− 1

ν
x, z = 1 +

1

ν
x

)
= ν3

(
1

ν − 2
− 2

ν − 1
+

1

ν

)
=

2ν2

(ν − 1)(ν − 2)
.

For the multivariate case X ∼ Pn(0, σ, ν), the covariance between distinct components also vanishes
by symmetry, although this does not imply independence.

The first central/non-central absolute moment Let X ∼ P1(0, 1, ν). For ν > 1, the first central
absolute moment of X is

E[|X|] =
∫ ∞

0

x

(
1 +

1

ν
x

)−(ν+1)

dx

= ν2 ·
∫ ∞

0

t (1 + t)
−(ν+1)

dt =
ν

ν − 1
.

The first non-central absolute moment about t ∈ R is given by

E[|X + t|] = |t|+ ν

ν − 1

(
1 +

|t|
ν

)−ν+1

. (14)

To compute this, we split the integral into two cases depending on the sign of t:

E[|X + t|] =
∫ ∞

−∞

|x+ t|
2

(
1 +

1

ν
|x|
)−(ν+1)

dx

=

∫ −t

−∞
− (x+ t)

2

(
1 +

1

ν
|x|
)−(ν+1)

dx︸ ︷︷ ︸
I1

+

∫ ∞

−t

x+ t

2

(
1 +

1

ν
|x|
)−(ν+1)

dx︸ ︷︷ ︸
I2

1) t ≥ 0

I1 = −1

2

∫ −t

−∞
(x+ t)

(
1− 1

ν
x

)−(ν+1)

dx

= −1

2

∫ ∞

1+t/ν

(ν(1− y) + t)y−(ν+1) νdy

= −ν + t

2

(
1 +

t

ν

)−ν

+
ν2

2(ν − 1)

(
1 +

t

ν

)−ν+1

=
ν

2(ν − 1)

(
1 +

t

ν

)−ν+1

.
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I2 =
1

2

∫ 0

−t

(x+ t)

(
1− 1

ν
x

)−(ν+1)

dx+
1

2

∫ ∞

0

(x+ t)

(
1 +

1

ν
x

)−(ν+1)

dx

=
1

2

∫ 1+t/ν

1

(ν(1− y) + t)y−(ν+1) νdy +
1

2

∫ ∞

1

(ν(z − 1) + t)z−(ν+1)νdz

=
ν + t

2

{
1−

(
1 +

t

ν

)−ν
}

− ν2

2(ν − 1)

{
1−

(
1 +

t

ν

)−ν+1
}

+
ν2

2(ν − 1)
+

t− ν

2

= t+
ν

2(ν − 1)

(
1 +

t

ν

)−ν+1

∴ E[|X + t|] = I1 + I2 = t+
ν

ν − 1

(
1 +

t

ν

)−ν+1

, t ≥ 0.

2) t < 0

I1 = −1

2

∫ 0

−∞
(x+ t)

(
1− 1

ν
x

)−(ν+1)

dx− 1

2

∫ −t

0

(x+ t)

(
1 +

1

ν
x

)−(ν+1)

dx

= −1

2

∫ ∞

1

(ν(1− y) + t)y−(ν+1) νdy − 1

2

∫ 1−t/ν

1

(ν(z − 1) + t)z−(ν+1)νdz

= − (ν + t)

2
+

ν2

2(ν − 1)
− t− ν

2

{
1−

(
1− t

ν

)−ν
}

− ν2

2(ν − 1)

{
1−

(
1− t

ν

)−ν+1
}

= −t+
ν

2(ν − 1)

(
1− t

ν

)−ν+1

I2 =
1

2

∫ ∞

−t

(x+ t)

(
1 +

1

ν
x

)−(ν+1)

dx

=
1

2

∫ ∞

1−t/ν

(ν(z − 1) + t)z−(ν+1) νdz

=
t− ν

2

(
1− t

ν

)−ν

+
ν2

2(ν − 1)

(
1− t

ν

)−ν+1

=
ν

2(ν − 1)

(
1− t

ν

)−ν+1

.

∴ E[|X + t|] = I1 + I2 = −t+
ν

ν − 1

(
1− t

ν

)−ν+1

, t < 0.

Combining both cases leads to the unified expression in equation 14.

A.3 CONVERGENCE IN DISTRIBUTION OF THE SYMPARETO

We now investigate convergence in distribution of the symPareto with respect to the parameter ν.
Notice that according to Scheffé’s theorem, it’s enough to check the convergence of the probability
density functions as assuming regular condition for the measure space.

Theorem A.1 (Convergence in distribution of the symPareto under ν goes infinity). For n ≥ 1, fix
µ, x ∈ Rn, and σ ∈ Rn

+. Then, the limiting distribution of Pn(x | µ, σ, ν) is given by:

Pn(x | µ, σ, ν) d−→ Ln(x | µ, σ), (15)

where Ln(x | µ, σ) has i.i.d. univariate Laplace L1(µi, σi) components, which is then given by

Ln(x | µ, σ) = 1

2nσ̄
exp

(
−
∥∥∥∥x− µ

σ

∥∥∥∥
1

)
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. We analyze the limit of the normalizing constant Cn,ν,ν as ν → ∞. Using the Stirling’s
approximation,

Γ(x+ 1) ∼
√
2πx

(x
e

)x
, x > 0,

we obtain

lim
ν→∞

Cn,ν,ν =
1

2n
lim
ν→∞

Γ(ν + 1)

νnΓ(ν)

=
1

2n
lim
ν→∞

√
ν + n− 1

ν − 1

(
1 + n

ν−1

)ν−1 (
ν+n−1

e

)n
νn

=
1

2n
. (16)

For the unnormalized part (kernel) of the density, we observe that

lim
ν→∞

1

σ̄

(
1 +

1

ν

∥∥∥∥x− µ

σ

∥∥∥∥
1

)−(ν+n)

=
1

σ̄
exp

(
−
∥∥∥∥x− µ

σ

∥∥∥∥
1

)
=

n∏
i=1

1

σi
exp

(
−
∣∣∣∣xi − µi

σi

∣∣∣∣) ,

which shows that the symPareto converges pointwisely to the product of univariate Laplace.

A.4 PROOF OF THEOREM 2.1

Proof. Consider two n-variate Pareto distributions p = Pn(µ1, σ1, ν) and q = Pn(µ2, σ2, ν). To
analyze these distributions within a γ-flat manifold, we set γ = − 1

ν+n . We then compute the
integration for γ-power entropy and γ-power cross-entropy terms as follows:∫

p(x)1+γdx = C1+γ
n,ν,ν σ̄

−γ
1 · σ̄−1

1

∫ (
1 +

1

ν

∥∥∥∥x− µ1

σ1

∥∥∥∥
1

)−(ν−1+n)

dx

= σ̄−γ
1

C1+γ
n,ν,ν

Cn,ν−1,ν

= σ̄−γ
1 Cγ

n,ν,ν

(
ν + n− 1

ν − 1

)
.∫

q(x)1+γdx = σ̄−γ
2 Cγ

n,ν,ν

(
ν + n− 1

ν − 1

)
,

since
Cn,ν,ν

Cn,ν−1,ν
=

Γ(ν+n)
Γ(ν)(2ν)n

Γ(ν+n−1)
Γ(ν−1)(2ν)n

=
ν + n− 1

ν − 1
. (17)

Also,∫
p(x)q(x)γdx = Cγ

n,ν,ν σ̄
−γ
2 Ex∼p

[(
1 +

1

ν

∥∥∥∥x− µ2

σ2

∥∥∥∥
1

)]
= Cγ

n,ν,ν σ̄
−γ
2

(
1 +

1

ν

n∑
i=1

Ex∼p

[∣∣∣∣xi − µ2,i

σ2,i

∣∣∣∣]
)

= Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

n∑
i=1

σ1,i

σ2,i
Ez∼P(0,1n,ν)

[∣∣∣∣z + µ∆,i

σ1,i

∣∣∣∣]
)
, (µ∆,i := µ1,i − µ2,i)

= Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

n∑
i=1

|µ∆,i|
σ2,i

+
ν

ν − 1

σ1,i

σ2,i

(
1 +

1

ν

|µ∆,i|
σ1,i

)−ν+1
)

(∵ Equation (14))

= Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

∥∥∥∥µ∆

σ2

∥∥∥∥
1

+
1

ν − 1

∥∥∥∥∥σ1

σ2

(
1 +

1

ν

|µ∆|
σ1

)−ν+1
∥∥∥∥∥
1

)
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Hence, the γ-power entropy and cross-entropy are:

Hγ(p) = −
(∫

p(x)1+γ

) 1
1+γ

= −σ̄
− γ

1+γ

1 C
γ

1+γ
n,ν,ν

(
ν + n− 1

ν − 1

) 1
1+γ

,

Cγ(p, q) = −
(∫

p(x)q(x)γ
)(∫

q(x)1+γ

)− γ
1+γ

= −C
γ

1+γ

n,ν−1,ν σ̄
− γ

1+γ

2

(
1 +

1

ν

∥∥∥∥µ∆

σ2

∥∥∥∥
1

+
1

ν − 1

∥∥∥∥∥σ1

σ2

(
1 +

1

ν

|µ∆|
σ1

)−ν+1
∥∥∥∥∥
1

)
.

Combining the two terms, the γ-power divergence between p and q yields a closed-form expression:

Dγ(p ∥ q) =
1

γ
Cγ(p, q)−

1

γ
Hγ(p)

= C ′

[
σ̄
− γ

1+γ

2

(
1 +

1

ν

∥∥∥∥µ∆

σ2

∥∥∥∥
1

+
1

ν − 1

∥∥∥∥∥σ1

σ2

(
1 +

1

ν

|µ∆|
σ1

)−ν+1
∥∥∥∥∥
1

)
− σ̄

− γ
1+γ

1

(
ν + n− 1

ν − 1

)]
,

(18)

where C ′ := C ′(n, ν, γ) = (ν + n)C
γ

1+γ

n,ν−1,ν and (17) is used in the last equation.

Next, let p0 = Pn(0, σ1, ν) and q0 = Pn(0, σ2, ν). To obtain an upper bound of Dγ(p ∥ q) in terms
of Dγ(p0 ∥ q0), we apply the triangle inequality to |xi − µ2,i| ≤ |xi − µ1,i| + |µ1,i − µ2,i|. As a
result, the cross-entropy term admits the following bound:∫

p(x)q(x)γ = Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

n∑
i=1

Ex∼p

[∣∣∣∣xi − µ2,i

σ2,i

∣∣∣∣]
)

≤ Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

n∑
i=1

Ex∼p

[
σ1,i

σ2,i

∣∣∣∣xi − µ1,i

σ1,i

∣∣∣∣+ ∣∣∣∣µ1,i − µ2,i

σ2,i

∣∣∣∣]
)

= Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν

n∑
i=1

σ1,i

σ2,i

(
ν

ν − 1

)
+ Ex∼p

[∣∣∣∣µ1,i − µ2,i

σ2,i

∣∣∣∣]
)

= Cγ
n,ν,ν σ̄

−γ
2

(
1 +

1

ν − 1

∥∥∥∥σ1

σ2

∥∥∥∥
1

+
1

ν

∥∥∥∥µ1 − µ2

σ2

∥∥∥∥
1

)
Using this result, we have an upper bound:

Dγ(p ∥ q) ≤ C ′
[
σ̄
− γ

1+γ

2

(
1 +

1

ν − 1

∥∥∥∥σ1

σ2

∥∥∥∥
1

+
1

ν

∥∥∥∥µ1 − µ2

σ2

∥∥∥∥
1

)
− σ̄

− γ
1+γ

1

(
ν + n− 1

ν − 1

)]
,

and equality holds when µ1 = µ2.

B COMPUTATION FOR PARETOVAE

This section presents details of computation involved with the ParetoVAE models. Appendix B.1
provides the proof of Proposition 3.1. The subsequent subsections describe the construction process
for heavy-tailed VAE variants, including ParetoVAE with t-decoder, ParetoVAE with symPareto
decoder, and t3VAE with symPareto decoder.

B.1 PROOF OF PROPOSITION 3.1

Proof. Let Z ∈ Rn and W ∈ R be independent random variables such that:

Z = (Z1, · · · , Zn), Zi
i.i.d.∼ L1(0, 1), W ∼ Gamma(ν, 1),

18
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and denote their probability density function as fZ(z) and fW (w):

fW (w) =
1

Γ(ν)
wν−1e−w, w > 0, fZ(z) =

1

2n
exp (−∥z∥1) , z ∈ Rn

Let S = Z
W . Then the p.d.f. of S is given by:

fS(s) =

∫ ∞

0

fS,W (s, w)dw

=

∫ ∞

0

fZ,W (sw,w) · wn dw

=

∫ ∞

0

fZ(sw)fW (w) · wn dw (∵ Z ⊥ W )

=

∫ ∞

0

wn ·
(
1

2
exp (−∥sw∥1)

)
·
(

1

Γ(ν)
wν−1 exp(−w)

)
dw

=
1

2nΓ(ν)

∫ ∞

0

wν+n−1 · exp(−w(∥s∥1 + 1))dw

=
Γ(ν + n)

2nΓ(ν)
(∥s∥1 + 1)−(ν+n).

Therefore, the probability density function of T = νS is

fT (t) =
Γ(ν + n)

(2ν)nΓ(ν)

(
1 +

∥t∥1
ν

)−(ν+n)

= Pn(t | 0,1n, ν).

Sampling algorithm From Proposition 3.1, we summarize the sampling algorithm for symPareto
distribution from Laplace and Gamma distribution as Algorithm 1:

Algorithm 1 Sampling algorithm for the symmetric multivariate Pareto distribution

Require: N : # of samples, m : Latent dimension, ν : Hyperparameter for the Pareto prior
Ensure: m-variate symPareto sample z ∈ Rm

Sample xi
i.i.d.∼ Laplace(0, 1), for i = 1, · · · ,m.

Assign x = (x1, . . . , xn).
Sample w ∼ Gamma(ν, 1).
Assign z = x · (ν/w).

B.2 GENERAL DECODER CONSTRUCTION: STUDENT’S t AND SYMPARETO

Following Table 1, we provide an explicit construction of the joint decoder distributions followed by
heavy-tailed VAE variants.

pθ(x, z) ∝
[
1 +

1

ν

(
∥z∥pp +

1

σq
∥x− µθ(z)∥qq

)]−( ν+m
p +n

q )
, p, q ∈ {1, 2}.

The prior can be generalized by

p(z) ∝
(
1 +

1

ν
∥z∥pp

)− ν+m
p

, p ∈ {1, 2}.
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which implies the Pareto prior (p = 1) or t-prior (p = 2). From this prior, the conditional decoder
distribution can be derived as follows:

pθ(x | z) ∝

[
1 + 1

ν

(
∥z∥pp +

1
σq ∥x− µθ(z)∥qq

)]−( ν+m
p +n

q )

(
1 + 1

ν ∥z∥pp
)− ν+m

p

∝

[
1 +

1

q/p(ν +m)
· q/p(ν +m)

ν + ∥z∥pp
1

σq
∥x− µθ(z)∥qq

]−( ν+m
p +n

q )

.

By simplifying the ratio of the joint and the prior kernels, we obtain the following four cases
depending on the choice of pθ(x | z):

pθ(x | z) ∝



Pn

(
x
∣∣∣µθ(z),

ν+∥z∥1

ν+m σ1n, ν +m
)
, (p, q) = (1, 1)

tn

(
x
∣∣∣µθ(z),

ν+∥z∥1

2ν+2m σ2In, 2ν + 2m
)
, (p, q) = (1, 2)

Pn

(
x
∣∣∣µθ(z),

2(ν+∥z∥2
2)

ν+m σ1n,
ν+m
2

)
, (p, q) = (2, 1)

tn

(
x
∣∣∣µθ(z),

ν+∥z∥2
2

ν+m σ2In, ν +m
)
, (p, q) = (2, 2)

which implies Pareto decoder (q = 1) and t-decoder (q = 2). Note that Pareto decoders employ
element-wise scale parameters (σ1n), whereas t-decoders use covariance scaling (σ2In).

B.3 DERIVATION OF THE γ-LOSS FOR PARETOVAE WITH t-DECODER

B.3.1 DERIVATION OF THE RAW γ-LOSS

The ParetoVAE starts from the heavy-tailed joint decoder model:

pθ(x, z) ∝

[
1 +

1

ν

(
∥z∥1 +

∥x− µθ(z)∥22
σ2

)]−(ν+m+n
2 )

, σ ∈ R+, ν > 1.

We first compute the normalizing constant C by separating the integration over x and z:∫
Rm

∫
Rn

pθ(x, z) dxdz

=

∫
Rm

(
1 +

1

ν
∥z∥1

)−(ν+m+n
2 ) ∫

Rn

[
1 +

1

2(ν +m)

2(ν +m)

ν + ∥z∥1
1

σ2
∥x− µθ(z)∥22

]− 2ν+2m+n
2

dxdz

= T−1
n,2ν+2mσn

(
2 +

2m

ν

)−n
2
∫
Rm

(
1 +

1

ν
∥z∥1

)−(ν+m)

dz

= T−1
n,2ν+2mσn

(
2 +

2m

ν

)−n
2

C−1
m,ν,ν

Thus the normalizing constant C is

C = Cm,ν,νTn,2ν+2mσ−n

(
2 +

2m

ν

)n
2

.

Remark that Tn,2ν+2m is the normalizing constant of tn(0, In2ν+2m). This decomposition naturally
yields the prior and conditional decoder distributions:

p(z) = Pm(z | 0,1m, ν)

pθ(x | z) = tn(x | µθ(z),
ν + ∥z∥1
2ν + 2m

σ2In, 2ν + 2m)
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We also define the encoder as a symPareto distribution with ν + n/2 to align the tail order with the
joint exponent (ν +m+ n/2):

qϕ(z|x) = Pm(z | µϕ(x), σϕ(x), ν + n/2).

Next, we compute the γ-power divergence between two joint distributions qϕ and pθ. Setting
γ = − 2

2ν+2m+n , the γ-entropy and γ-cross entropy corresponding to the joint distributions pθ and
qϕ can be expressed as follows:∫∫

pθ(x, z)
1+γdxdz = Ez∼pZ

Ex∼pθ(·|z) [pθ(x, z)
γ ]

= CγEz∼pZ
Ex∼pθ(·|z)

[
1 +

1

ν

(
∥z∥1 +

1

σ2
∥x− µθ(z)∥22

)]
= CγEz∼pZ

[
1 +

1

ν
∥z∥1 +

1

νσ2
Tr
(

2ν + 2m

2ν + 2m− 2
·
ν + ∥z∥1
2ν + 2m

σ2In

)]
= CγEz∼pZ

[(
1 +

n

2ν + 2m− 2

)(
1 +

1

ν
∥z∥1

)]
= Cγ

(
1 +

n/2

ν +m− 1

)(
1 +

m

ν − 1

)
= Cγ

(
ν +m+ n/2− 1

ν − 1

)
, ν > 1

and∫∫
qϕ(x, z)pθ(x, z)

γdxdz = Ex∼pdataEz∼qϕ(·|x) [pθ(x, z)
γ ]

= CγEx∼pdataEz∼qϕ(·|x)

[
1 +

1

ν

(
∥z∥1 +

1

σ2
∥x− µθ(z)∥22

)]
= CγEx∼pdata

[
1 +

1

ν
∥µϕ(x)∥1 +

ν + n/2

ν(ν + n/2− 1)
∥rϕ(x)∥1 +

1

νσ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22

]
,

where

rϕ(x) = σϕ(x)

(
1 +

|µϕ(x)|
(ν + n/2)σϕ(x)

)−(ν+n/2−1)

.

Thus, the γ-power entropy becomes

Hγ(qϕ) = −
(∫∫

qϕ(x, z)
1+γdxdz

) 1
1+γ

= −
(∫ (∫

qϕ(z|x)1+γdz

)
pdata(x)

1+γdx

) 1
1+γ

= −C
γ

1+γ

m,ν+n,ν+n

(
ν +m+ n/2− 1

ν + n/2− 1

) 1
1+γ

︸ ︷︷ ︸
=:C1

(∫
σ̄ϕ(x)

−γpdata(x)
1+γdx

) 1
1+γ

︸ ︷︷ ︸
P.I.

, (19)

and the γ-power cross-entropy is

Cγ(qϕ, pθ) = −
(∫∫

qϕ(x, z)pθ(x, z)
γdxdz

)(∫∫
pθ(x, z)

1+γdxdz

)− γ
1+γ

= −C
γ

1+γ

(
ν +m+ n/2− 1

ν − 1

)− γ
1+γ

︸ ︷︷ ︸
=:C2

× Ex∼pdata

[
1 +

1

ν
∥µϕ(x)∥1 +

ν + n/2

ν(ν + n/2− 1)
∥rϕ(x)∥1 +

1

νσ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥2

]
.
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To approximate the power-form integral P.I. in (19), we adopt the following proposition from
t3VAE (Kim et al., 2024), which provides a first-order approximation of integrals involving pdata with
an O(γ2) error rate.

Proposition B.1. Let σ be any positive continuous function, γ ∈ (−1, 0), and suppose the values

Hj,k := Hj,k(pdata) :=

∫
pdata(x)

1+jγ |log pdata(x)|k dx

are finite for each j ∈ {0, 1}, k ∈ {1, 2}. Then for any compact set Ω ⊆ supp pdata,

(∫
Ω

σ(x)−γpdata(x)
1+γdx

) 1
1+γ

−
∫
Ω

σ(x)−
γ

1+γ pdata(x)dx

= γ

∫
Ω

pdata(x) log pdata(x)dx+O(γ2).

Proof. See Proposition 5 in Kim et al. (2024).

Using this result, the γ-entropy of the joint variational distribution qϕ(x, z) becomes:

Hγ(qϕ) = −C1

∫
σ̄ϕ(x)

− γ
1+γ pdata(x)dx+ C1H(pdata) +O(γ2),

where H(pdata) denotes the Shannon entropy.

Therefore, the γ-power divergence Dγ(qϕ ∥ pθ) is:

Dγ(qϕ ∥ pθ) =
1

γ
Cγ(qϕ, pθ)−

1

γ
Hγ(qϕ)

∝ Ex∼pdata

[
C2

(
1

ν
∥µϕ(x)∥1 +

ν + n/2

ν(ν + n/2− 1)
∥rϕ(x)∥1 +

1

νσ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22

)
−C1σ̄ϕ(x)

− γ
1+γ + C1H(pdata)

]
+O(γ2).

To make the result simpler, let us define Creg as the ratio of C1 to C2. By discarding additive constants
and the order γ2 error, and applying an appropriate rescaling to the γ-power divergence, we obtain
the raw γ-loss:

Lraw
γ (θ, ϕ) = Ex∼pdata

[
1

σ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22

+ ∥µϕ(x)∥1 +
ν + n/2

(ν + n/2− 1)
∥rϕ(x)∥1 − νCregσ̄ϕ(x)

− γ
1+γ︸ ︷︷ ︸

=:Rϕ(regularizer term)

]
. (20)

This loss can be decomposed into an ℓ22 reconstruction term and a regularization term Rϕ, although
the latter is less interpretable.

B.3.2 ALTERNATIVE REPRESENTATION OF THE γ-LOSS

We now present an alternative form of the γ-loss, expressed as the sum of a reconstruction term and a γ-
power divergence regularizer. Consider the γ-power divergence between two symPareto distributions
palt = Pm(0, k1m, ν + n/2) and qϕ = Pm(µϕ(x), σϕ(x), ν + n/2) with γ = − 2

2ν+2m+n . Denote

22
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νn = ν + n/2. Under the mild condition 1 + (m+ 1)γ ̸= 0, the divergence can be written as:

Dγ(qϕ ∥ palt) =
1

γ
Cγ(q, palt)−

1

γ
Hγ(palt)

= C ′′

[
k−

mγ
1+γ

(
1 +

1

νn

∥∥∥∥µϕ(x)

k

∥∥∥∥
1

+
1

νn − 1

∥∥∥∥∥σϕ(x)

k

(
1 +

1

νn

|µϕ(x)|
σϕ(x)

)−νn+1
∥∥∥∥∥
1

)
(21)

−σ̄ϕ(x)
− γ

1+γ

(
νn +m− 1

νn − 1

)]
= C ′′k−

mγ
1+γ −1 1

νn

[
∥µϕ(x)∥1 +

νn
νn − 1

∥∥∥∥∥σϕ(x)

(
1 +

1

νn

|µϕ(x)|
σϕ(x)

)−νn+1
∥∥∥∥∥
1

−σ̄ϕ(x)
− γ

1+γ (νn)

(
νn +m− 1

νn − 1

)
k

mγ
1+γ +1

]
+ const,

where C ′′ = (νn +m)C
γ

1+γ

m,νn−1,νn
. To align Rϕ with the above γ-power divergence, we determine k

such that

νCreg = (ν + n/2)

(
ν + n/2 +m− 1

ν + n/2− 1

)
k

mγ
1+γ +1.

Thus, the γ-loss can be rewritten as the sum of the ℓ2 reconstruction term and the γ-power divergence
between encoder and alternative prior. Finally, multiplying by a factor of 2 ensures consistency with
the Gaussian MSE scaling, yielding the alternative γ-loss:

Lalt
γ (θ, ϕ) = Ex∼pdata

[
1

2σ2
Ez∼qϕ(·|x) ∥x− µθ(z)∥22 + αDγ(qϕ || palt)

]
. (22)

The simplified forms of k and α are given as follows, with derivations provided below.

k =
2

2 + n/ν

(
σ−nπ−n/2Cn/2,ν−1,ν

)1/(ν+n/2−1)

, α = − γν

2C2
> 0.

Derivation of k and α (ParetoVAE with t decoder) First, we rewrite the ratio

Cm,ν+n/2,ν+n/2

C
=

Cm,ν+n/2,ν+n/2

Cm,ν,νTn,2ν+2mσ−n
(
2 + 2m

ν

)n
2

= σn(πν)
n
2

Γ(ν)

Γ(ν + n
2 )

(
ν

ν + n
2

)m

= σnπ
n
2 C−1

n/2,ν,ν

(
ν

ν + n
2

)m

.

Using this identity, k
mγ
1+γ +1 reduces to(

ν

ν + n/2

)(
ν + n/2− 1

ν + n/2 +m− 1

)
Creg

=

(
ν

ν + n/2

)
C

γ
1+γ

m,ν+n/2,ν+n/2

C
γ

1+γ

(
ν + n/2 +m− 1

ν + n/2− 1

) γ
1+γ

(
ν +m+ n/2− 1

ν − 1

) γ
1+γ

=

(
ν

ν + n/2

)(
ν + n/2− 1

ν − 1

) γ
1+γ C

γ
1+γ

m,ν+n/2,ν+n/2

C
γ

1+γ

=

(
ν

ν + n/2

)1+ mγ
1+γ

{(
ν + n/2− 1

ν − 1

)
σnπ

n
2 C−1

n/2,ν,ν

} γ
(1+γ)

=

(
ν

ν + n/2

)1+ mγ
1+γ {

σnπ
n
2 C−1

n/2,ν−1,ν

} γ
(1+γ)

.
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Since
γ

1 + γ
= − 2

2ν + 2m+ n− 2
,

mγ

1 + γ
+ 1 =

−2m

2ν + 2m+ n− 2
+ 1 =

2ν + n− 2

2ν + 2m+ n− 2
,

we simplify the constant k as follows:

k =

[(
ν

ν + n/2

)(
ν + n/2− 1

ν + n/2 +m− 1

)
Creg

] 1+γ
1+(m+1)γ

=
2

2 + ν−1n

(
σ−nπ−n

2 Cn/2,ν−1,ν

) 1
ν+n/2−1

Finally, we simplify the constant α by using the above result:

α =
1

2
C ′′−1k

mγ
1+γ +1(ν + n/2)

=
1

2
(ν + n/2 +m)−1C

− γ
1+γ

m,ν+n/2−1,ν+n/2

ν(ν + n/2− 1)

ν + n/2 +m− 1

C1

C2

=
ν

2ν + 2m+ n

1

C2

= − γν

2C2
.

B.4 PROOF OF PROPOSITION 3.2

Proof. We begin by deriving the limits of the normalizing constants Cn,ν,ν and Tn,ν as ν → ∞. In
(16). we already show that

lim
ν→∞

Cn,ν,ν =
1

2n

by using the Stirling’s approximation. Using the same approximation, we obtain

lim
ν→∞

Tn,ν = π−n
2 lim

ν→∞

Γ(ν+n
2 )

ν
n
2 Γ(ν2 )

= π−n
2 lim

ν→∞

√
ν + n− 2

ν − 2

(
1 + n

ν−2

) ν−2
2 (

ν+n−2
2e

)n
2

ν
n
2

= (2π)−
n
2 .

Since γ
1+γ → 0 as ν → ∞ and the base inside the exponent remains bounded away from zero and

infinity, it follows that

lim
ν→∞

C2 = lim
ν→∞

{
Cm,ν,νTn,2ν+2mσ−n

(
2 +

2m

ν

)n
2
(

ν − 1

ν +m+ n/2− 1

)} γ
1+γ

= 1

and thus

lim
ν→∞

α = lim
ν→∞

2ν

2ν + 2m+ n
· 1

2C2
=

1

2
. (23)

Next, we derive the limit of k and β, which follows directly from the expression.

lim
ν→∞

k = lim
ν→∞

2

2 + ν−1n

(
σ−nπ−n

2 Cn/2,ν−1,ν

) 1
ν+n/2−1 = 1.

lim
ν→∞

β = lim
ν→∞

(
1 +

n

ν

)
C

γ
1+γ

n,ν−1,ν

= 1.
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Next, we compute the limit of Dγ(qϕ ∥ palt) in (23). As ν → ∞, each term converges to:

lim
ν→∞

C ′′
[
k−

mγ
1+γ − σ̄ϕ(x)

− mγ
1+γ

(
ν + n/2 +m− 1

ν + n/2− 1

)]
= m log σ̄ϕ(x)−m

lim
ν→∞

C ′′

ν + n
2

∥∥∥∥µϕ(x)

k

∥∥∥∥
1

= ∥µϕ(x)∥1

lim
ν→∞

C ′′

ν + n/2− 1

∥∥∥∥∥σϕ(x)

k

(
1 +

1

ν + n/2

|µϕ(x)|
σϕ(x)

)−(ν+n/2)+1
∥∥∥∥∥
1

=

∥∥∥∥σϕ(x) exp

(
−|µϕ(x)|

σϕ(x)

)∥∥∥∥
1

.

Combining these limits, we obtain

lim
ν→∞

Dγ(qϕ ∥ palt) =

m∑
i=1

[
σϕ,i(x) exp

(
−|µϕ,i(x)|

σϕ,i(x)

)
+ |µϕ,i(x)|+ log σϕ,i(x)− 1

]
.

To verify that this limiting form coincides with the KL divergence between two product form of
univariate Laplace, consider q(z) =

∏m
i=1 qi(zi) and p(z) =

∏m
i=1 pi(zi), where qi = L1(zi |

µ1,i, b1,i) and pi = L1(zi | µ2,i, b2,i).

The KL divergence between p(z) and q(z) can be factorized as

DKL(q ∥ p) =
m∑
i=1

DKL(qi ∥ pi)

=

m∑
i=1

b1,i exp
(
− |µ1,i−µ2,i|

b1,i

)
+ |µ1,i − µ2,i|

b2,i
+ log

(
b2,i
b1,i

)
− 1.

By setting µ1,i = µϕ,i(x), µ2,i = 0, and b1,i = σϕ,i(x), the distributions p(z) and q(z) correspond
to the limiting forms of qϕ and palt(z) in Theorem A.1. We therefore conclude that

lim
ν→∞

Dγ(qϕ ∥ palt) = DKL(qϕ,∞ ∥ palt,∞).

B.5 DERIVATION OF THE HEAVY-TAILED VAES WITH SYMPARETO DECODER

B.5.1 PARETOVAE WITH SYMPARETO DECODER

To match the exponent in (11), we set γ = − 1
ν+m+n . Since the joint decoder follows a symPareto

structure, its normalizing constant is C = Cn+m,ν,ν σ
−n. We then compute the γ-entropy and

γ-cross entropy for the joint distributions pθ and qϕ.

The only difference from Appendix B.3 lies in the terms involving pθ(x|z). Repeating the same steps
as Appendix B.3, we obtain∫∫

pθ(x, z)
1+γdxdz = Ez∼pZ

Ex∼pθ(·|z) [pθ(x, z)
γ ]

= CγEz∼pZ
Ex∼pθ(·|z)

[
1 +

1

ν

(
∥z∥1 +

1

σ
∥x− µθ(z)∥1

)]
= CγEz∼pZ

[
1 +

1

ν
∥z∥1 +

n

ν

ν +m

ν +m− 1
·
(ν + ∥z∥1)
ν +m

]
= CγEz∼pZ

[(
1 +

n

ν +m− 1

)(
1 +

1

ν
∥z∥1

)]
= Cγ

(
1 +

n

ν +m− 1

)(
1 +

m

ν − 1

)
= Cγ

(
ν + n+m− 1

ν − 1

)
,
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∫∫
qϕ(x, z)

1+γdxdz =

∫ (∫
qϕ(z|x)1+γdz

)
pdata(z)

1+γdx

= C1+γ
m,ν+n,ν+nC

−1
m,ν+n−1,ν+n

∫
|σϕ(x)|−γpdata(x)

1+γdx,∫∫
qϕ(x, z)pθ(x, z)

γdxdz = Ex∼pdataEz∼qϕ(·|x) [pθ(x, z)
γ ]

= CγEx∼pdataEz∼qϕ(·|x)

[
1 +

1

ν

(
∥z∥1 +

1

σ
∥x− µθ(z)∥1

)]
= CγEx∼pdata

[
1 +

1

ν
∥µϕ(x)∥1 +

ν + n

ν(ν + n− 1)
∥r̃ϕ(x)∥1 +

1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1

]
,

where

r̃ϕ(x) := σϕ(x)

(
1 +

|µϕ(x)|
(ν + n)σϕ(x)

)−(ν+n−1)

.

Hence, the γ-cross entropy is given by:

Cγ(qϕ, pθ) = −
(∫∫

qϕ(x, z)pθ(x, z)
γdxdz

)(∫∫
pθ(x, z)

1+γdxdz

)− γ
1+γ

= −C
γ

1+γ

(
ν + n+m− 1

ν − 1

)− γ
1+γ

︸ ︷︷ ︸
=:C2

× Ex∼pdata

[
1 +

1

ν
∥µϕ(x)∥1 +

ν + n

ν(ν + n− 1)
∥r̃ϕ(x)∥1 +

1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1

]
,

and the γ-power divergence Dγ(qϕ ∥ pθ) becomes:

Dγ(qϕ ∥ pθ) =
1

γ
Cγ(qϕ, pθ)−

1

γ
Hγ(qϕ)

∝ Ex∼pdata

[
C2

(
1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 +

1

ν
∥µϕ(x)∥1 +

ν + n

ν(ν + n− 1)
∥r̃ϕ(x)∥1

)
−C1σ̄ϕ(x)

− γ
1+γ + C1H(pdata)

]
+O(γ2)

where C1 is as defined in (19), and the error term O(γ2) follows from the application of Proposi-
tion B.1.

Discarding additive constants and up to anirrelevant positive scaling factor (cf. Appendix B.3) and
use Creg := C1/C2 again, the raw γ-loss can be written as

Lγ(θ, ϕ) = Ex∼pdata

[
1

σ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 (24)

+ ∥µϕ(x)∥1 +
ν + n

(ν + n− 1)
∥r̃ϕ(x)∥1 − νCregσ̄ϕ(x)

− γ
1+γ︸ ︷︷ ︸

=:Rϕ(regularizer)

]
. (25)

Compared with (20), the only difference lies in the reconstruction term, changing square of ℓ2 norm
to ℓ1 one.

We further represent alternative form, by solving the equation with respect to k:

νCreg = (ν + n)

(
ν + n+m− 1

ν + n− 1

)
k

mγ
1+γ +1,

Then, the alternative form of the γ-loss becomes

Lalt
γ (θ, ϕ) = Ex∼pdata

[
1

σ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 + αDγ(qϕ || palt)

]
,

where palt = Pm(0, k1m, ν + n) and k =
(

ν
ν+n

)
(Cn,ν−1,νσ

−n)
1

ν+n−1 , α = − γν
C2

.
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Derivation of k and α (ParetoVAE with symPareto decoder) We first simplify Creg to obtain
expressions for k and α: Since

Cm,ν+n,ν+n

Cn+m,ν,ν
=

Γ(ν + n+m)

2m(ν + n)mΓ(ν + n)

2m+nνm+nΓ(ν)

Γ(ν + n+m)

=
2nνnΓ(ν)

Γ(ν + n)

(
ν

ν + n

)m

= C−1
n,ν,ν

(
ν

ν + n

)m

,

it follows that

Creg :=
C1

C2
=

(
ν+n+m−1
ν+n−1

) 1
1+γ

C
γ

1+γ

m,ν+n,ν+n

C
γ

1+γ

(
ν+n+m−1

ν−1

)− γ
1+γ

=
ν + n+m− 1

(ν − 1)
γ

1+γ (ν + n− 1)
1

1+γ

(
Cm,ν+n,ν+n

Cn+m,ν,νσ−n

) γ
1+γ

=
ν + n+m− 1

(ν − 1)
γ

1+γ (ν + n− 1)
1

1+γ

C
− γ

1+γ
n,ν,ν

(
ν

ν +m

) mγ
1+γ

σ
nγ
1+γ .

This yields that

k =

(
ν

ν + n
· ν + n− 1

ν + n+m− 1
Creg

) 1+γ
1+(m+1)γ

=

{(
ν

ν + n

) mγ
1+γ +1(

ν + n− 1

ν − 1

) γ
1+γ

C
− γ

1+γ
n,ν,ν σ

nγ
1+γ

} 1+γ
1+(m+1)γ

=

(
ν

ν + n

){(
ν + n− 1

ν − 1

)
C−1

n,ν−1,νσ
n

} γ
1+(m+1)γ

=

(
ν

ν + n

)(
Cn,ν−1,νσ

−n
) 1

ν+n−1 .

Finally, α is given by

α =
ν + n

ν + n+m
C

− γ
1+γ

m,ν+n−1,ν+nk
mγ
1+γ +1

=
ν + n

ν + n+m
C

− γ
1+γ

m,ν+n−1,ν+n · ν

ν + n
· ν + n− 1

ν + n+m− 1

C1

C2

=
ν

ν + n+m
C−1

m,ν+n−1,ν+nCm,ν+n,ν+n · ν + n− 1

ν + n+m− 1

1

C2

= −γν

C2
.

B.5.2 t3VAE WITH SYMPARETO DECODER

From Appendix B.2, the joint decoder distribution is

pθ(x, z) ∝
[
1 +

1

ν

(
∥z∥22 +

1

σ
∥x− µθ(z)∥1

)]−( ν+m
2 +n)

.

The corresponding prior and decoder are

p(z) = tm(z | 0, Im, ν), pθ(x | z) = Pn(x | µθ(z),
2(ν + ∥z∥22)

ν +m
σ1n,

ν +m

2
).
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We also use the encoder distribution

qϕ(z | x) = tm
(
z
∣∣µϕ(x), σϕ(x)

2Im, ν + 2n
)
, σϕ(x) ∈ Rm

+ ,

which differs slightly from Kim et al. (2024) (diagonal covariance, no (1 + ν−1n)−1 scaling). This
simplification is harmless, since σϕ(x) is learnable and typically assumed diagonal in practice.

We first derive the normalizing constant of the joint decoder:

C = Tm,νCn, ν+m
2 , ν+m

2
σ−n

(
ν +m

2ν

)n
2

.

Set γ = − 2
ν+m+2n to match the exponent in the joint decoder distribution. We then derive the

γ-entropy and γ-cross entropy for the joint distributions pθ and qϕ. From Kim et al. (2024), the
γ-entropy is

Hγ(qϕ) = −T
γ

1+γ

m,ν+2n

(
ν +m+ 2n− 2

ν + 2n− 2

) 1
1+γ

︸ ︷︷ ︸
=:C1

(∫
σ̄ϕ(x)

−γpdata(x)
1+γdx

) 1
1+γ

.

For the joint distribution pθ, we compute∫∫
pθ(x, z)

1+γdxdz = Ez∼pZ
Ex∼pθ(·|z) [pθ(x, z)

γ ]

= CγEz∼pZ
Ex∼pθ(·|z)

[
1 +

1

ν

(
∥z∥22 +

1

σ
∥x− µθ(z)∥1

)]
= CγEz∼pZ

[
1 +

1

ν
∥z∥22 +

n

ν

ν +m

ν +m− 2
·
2(ν + ∥z∥22)

ν +m

]

= CγEz∼pZ

[(
1 +

2n

ν +m− 2

)(
1 +

1

ν
∥z∥22

)]
= Cγ

(
1 +

2n

ν +m− 2

)(
1 +

m

ν − 2

)
= Cγ

(
ν + 2n+m− 2

ν − 2

)
.

∫∫
qϕ(x, z)pθ(x, z)

γdxdz = Ex∼pdataEz∼qϕ(·|x) [pθ(x, z)
γ ]

= CγEx∼pdataEz∼qϕ(·|x)

[
1 +

1

ν

(
∥z∥22 +

1

σ
∥x− µθ(z)∥1

)]
= CγEx∼pdata

[
1 +

1

ν
∥µϕ(x)∥22 +

ν + 2n

ν(ν + 2n− 2)
∥σϕ(x)∥1 +

1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1

]
.

Thus,

Cγ(qϕ, pθ) = −
(∫∫

qϕ(x, z)pθ(x, z)
γdxdz

)(∫∫
pθ(x, z)

1+γdxdz

)− γ
1+γ

= −C
γ

1+γ

(
ν + 2n+m− 2

ν − 2

)− γ
1+γ

︸ ︷︷ ︸
=:C2

× Ex∼pdata

[
1 +

1

ν
∥µϕ(x)∥22 +

ν + 2n

ν(ν + 2n− 2)
∥σϕ(x)∥1 +

1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1

]
.
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and with Proposition B.1, the γ-power divergence Dγ(qϕ ∥ pθ) becomes:

Dγ(qϕ ∥ pθ) =
1

γ
Cγ(qϕ, pθ)−

1

γ
Hγ(qϕ)

∝ Ex∼pdata

[
C2

(
1

νσ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 +

1

ν
∥µϕ(x)∥22 +

ν + 2n

ν(ν + 2n− 2)
∥σϕ(x)∥1

)
−C1σ̄ϕ(x)

− γ
1+γ + C1H(pdata)

]
+O(γ2).

Following the same steps as before, the raw γ-loss is

Lraw
γ (θ, ϕ) = Ex∼pdata

[
1

σ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1

+ ∥µϕ(x)∥22 +
ν + 2n

(ν + 2n− 2)
∥σϕ(x)∥1 − νCregσ̄ϕ(x)

− γ
1+γ︸ ︷︷ ︸

=:Rϕ(regularizer)

]
.

Compared with the previous alternative γ-loss of ParetoVAE models (22 and 24) , it is notable that the
ℓ1 regularization term of µϕ(x) is changed to the ℓ22 term and ∥rϕ(x)∥1 (or ∥r̃ϕ(x)∥1) is simplified
to ∥σϕ(x)∥1.

We finally obtain an alternative representation of the raw loss by solving the equation with respect to
k:

νCreg = (ν + 2n)

(
ν + 2n+m− 2

ν + 2n− 2

)
k

mγ
1+γ +2,

Accordingly, the γ-loss can be rewritten as

Lalt
γ (θ, ϕ) = Ex∼pdata

[
1

σ
Ez∼qϕ(·|x) ∥x− µθ(z)∥1 + αDγ(qϕ || palt)

]
,

where palt = tm(0, k2Im, ν + 2n), α = − γν
2C2

, and

k =

(
ν

ν + 2n

) 1
2

[
(2σ2)−

n
2 Cn, ν2 ,

ν
2

(
ν

ν +m

)n
2

] 2
ν+2n−1

.

Derivation of k and α (t3VAE with Pareto decoder) We first compute Creg as:

Creg :=
C1

C2
=

T
γ

1+γ

m,ν+2n

(
ν+m+2n−2
ν+2n−2

) 1
1+γ

(
Tm,νCn, ν+m

2 , ν+m
2

σ−n
(
1
2 + m

2ν

)n
2 ν−2

ν+2n+m−2

) γ
1+γ

=

(
ν +m+ 2n− 2

ν + 2n− 2

)(
ν−

n
2 T−1

m,ν+2nTm,νCn, ν+m
2 , ν+m

2
σ−n

(
ν +m

2

)n
2

)− γ
1+γ

=

(
ν +m+ 2n− 2

ν + 2n− 2

)(
Cn, ν2 ,

ν
2

(
1 +

2n

ν

)m
2
(

ν

ν +m

)n
2

(2σ2)−
n
2

)− γ
1+γ

This yields a simpler form of k as

k =

(
ν

ν + 2n
· ν + 2n− 2

ν + n+ 2m− 2
Creg

) 1+γ
2+(m+1)γ

=

(
ν

ν + 2n

) 1
2

[
(2σ2)−

n
2 Cn, ν2 ,

ν
2

(
ν

ν +m

)n
2

] 2
ν+2n−1

.
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Finally, α is given by

α =
ν + 2n

C ′′ k
mγ
1+γ +2

= −γ(ν + 2n)

(
ν + 2n− 2

ν + 2n+m− 2

)− γ
1+γ

T
− γ

1+γ

m,ν+2n

ν

ν + 2n

ν + 2n− 2

ν + 2n+m− 2

C1

C2

= −γν

C2
.

C EXPERIMENTAL DETAILS

Common Environment All experiments are conducted using Python 3.12 and PyTorch 2.8 on
a Linux Ubuntu 24.04 LTS system equipped with Intel® Xeon® Platinum 8568Y+ @ 2.3GHz (48
cores) processors and an NVIDIA RTX 6000 Ada GPU (48GB), with CUDA 13.0 and cuDNN 8.9.7.
Additional details for each experimental setting are provided below.

C.1 DETAILS ON GRAPH DEGREE RECONSTRUCTION

The SNAP Epinions social network (Richardson et al., 2003) consists of 508,837 directed edges and
75,879 nodes. From this dataset, we compute the in-degree (the number of incoming edges) and
out-degree (the number of outgoing edges) for each node. This results in a two-dimensional dataset
with 75,879 (in-degree, out-degree) pairs, which exhibit a power-law distribution.

The encoder and decoder are implemented as 2-layer MLPs with 256 units per layer. The latent
dimension is set to 4, with a batch size of 512. We use the LeakyReLU activation function (negative
slope 1e-4), followed by batch normalization. The model is trained with the Adam optimizer (Kingma
& Ba, 2017), using a learning rate of 0.0001. The dataset are randomly split into train/validation/test
sets with proportions of (0.6, 0.2, 0.2).

C.2 DETAILS ON WORD FREQUENCY ANALYSIS

We utilize the WikiText-2-raw dataset (Merity et al., 2017). All non-English characters are also
filtered out. Although the full vocabulary contains 65,653 tokens, we choose to exclude words with a
frequency of 4 or less. This is because these rare words, totaling 44,791, constitute approximately 70%
of the full vocabulary and serve as a significant impediment to stable model training. The remaining
vocabulary of 19,962 tokens retains a sufficiently heavy-tailed distribution, which is characteristic of
natural language.

For the analysis, the vocabulary are represented as 19,962-dimensional bag-of-words vectors. The
head-and-tail split is defined as the 2,241 most frequent words (head) and the 2,241 least frequent
words (tail), corresponding to words appearing exactly five times.

The encoder and decoder are symmetrically structured, each consisting of a 3-layer MLP with 256
units per layer. The latent dimension is set to 64, and the batch size was 512. The ReLU activation
function is used for all layers, and batch normalization is applied without the use of dropout. All
models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with a fixed learning
rate of 0.0005, without learning rate scheduling. The regularization weight was linearly scheduled.

C.3 DETAILS ON IMAGE DENOISING APPLICATION

Salt-and-pepper noise was applied to the datasets, with a noise probability defined as the likelihood
of each pixel being corrupted. For corrupted pixels, a salt ratio of 0.5 was used, indicating an equal
probability of a pixel being set to its maximum (salt) or minimum (pepper) intensity value.

The MNIST, SVHN, and CIFAR10 datasets are resized to 32× 32 pixels, while the Omniglot and
CelebA datasets are resized to 64×64 pixels. The latent dimensions are set to 16 for MNIST, 32 for
SVHN, 64 for both CIFAR10 and Omniglot, and 128 for CelebA. A batch size of 512 is used for all
datasets.
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The encoder and decoder are constructed symmetrically in all experiments, with the number of
stacked residual blocks being the architectural difference between datasets. Specifically, the networks
for MNIST, SVHN, and CIFAR10 consist of 6 residual blocks, while the larger networks for Omniglot
and CelebA utilized 8 residual blocks.

The models were trained using the AdamW optimizer with a fixed learning rate of 0.0005. No learning
rate scheduler is utilized. The regularization weight is selected from three schedules—constant, linear,
and logistic—tuned specifically for each model and dataset. We observe that the logistic schedule
is more effective for 1-channel images, while the linear schedule yields better results for 3-channel
images.

The external classifiers are trained for each of the MNIST, SVHN, CIFAR10, and Omniglot. Their
classification accuracies are 0.9976, 0.9611, 0.8452, and 0.8497, respectively. Specifically for
Omniglot, the 1,623 character classes are re-categorized to 50 language classes.

C.4 THEORETICAL JUSTIFICATION OF DENOISING WITH PARETOVAE

In this section, we formalize the denoising task in Section 4.2 and show that its γ-loss can be
expressed as a sum of an ℓ1 reconstruction loss and a γ-power regularizer.

Problem setup We first describe our problem for denoising task. This setting is comparable to the
denoising criterion in Im et al. (2016), which established an amenable loss formulation for Gaussian
VAEs in the denoising task.

Let x ∼ pdata denote data samples, and let x′ ∼ r(x′ | x) denote corrupted samples, where r(x′ | x)
is the corruption distribution (e.g. x′ = x + ϵ with ϵ ∼ pnoise, x ⊥ ϵ). The corrupted input x′ is
fed into the VAE, consisting of a conditional encoder qϕ(z | x′) and decoder pθ(x | z), yielding a
reconstruction output x̂.

Our goal is to recover x from x′, thereby achieving a denoising effect. For theoretical consistency, we
further introduce an auxiliary corruption process x̂ → x̂′ so that both sides define compatible joint
distributions. This auxiliary process is only a theoretical device and does not need to be implemented
in practice. We assume that the γ-power entropy H(r) is finite. Moreover, we impose a Markovian
assumption, under which the following conditional independencies hold:

x ⊥ z | x′, z ⊥ x̂′ | x̂.

x x′ z x̂ x̂′
r(x′|x) qϕ(z|x′) pθ(x|z) r(x′|x)

Figure 5: Graphical model of the denoising task

Analogous to equation 7, we consider two joint manifolds involving the corrupted data x′:

Mmodel = {pθ(x, x′, z) = r(x′|x) pθ(x|z) p(z) : θ ∈ Θ},
Mdata = {qϕ(x, x′, z) = pdata(x) r(x

′|x) qϕ(z|x) : ϕ ∈ Φ}.

We then formulate the joint minimization problem for the γ-loss, with the goal of deriving its explicit
form:

argmin
ϕ∈Φ,θ∈Θ

Dγ(qϕ(x, x
′, z) ∥ pθ(x, x′, z)) .

Derivation of the γ-loss for denoising task To derive the denoising γ-loss, we first state a useful
lemma.

Lemma C.1 (γ-power divergence for product-form densities). Let p =
∏n

i=1 pi(xi) and q =∏n
i=1 qi(xi). Then the γ-power divergence from q to p is

Dγ(p ∥ q) =
1

γ

(
n∏

i=1

Cγ(pi, qi)−
n∏

i=1

Hγ(pi)

)
.
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Proof.

Dγ(p ∥ q) =
1

γ
Cγ(p, q)−

1

γ
Hγ(p)

= − 1

γ

∫ n∏
j=1

pj(xj)

( ∏n
i=1 qi(xi)

∥
∏n

i=1 qi∥1+γ

)γ

dx+
1

γ

(∫ n∏
i=1

pj(xj)
1+γdx

) 1
1+γ

= − 1

γ

∫ n∏
j=1

pj(xj)

n∏
i=1

(
qi(xi)

∥qi∥1+γ

)γ

dx+
1

γ

n∏
j=1

(∫
pj(xj)

1+γdxj

) 1
1+γ

= − 1

γ

n∏
i=1

∫
pi(xi)

(
qi(xi)

∥qi∥1+γ

)γ

dxi +
1

γ

n∏
j=1

(∫
pj(xj)

1+γdxj

) 1
1+γ

=
1

γ

(
n∏

i=1

Cγ(pi, qi)−
n∏

i=1

Hγ(pi)

)
.

Applying Lemma C.1, the γ-power divergence between the joint distributions factorizes as

1

γ
Cγ(pdata(x)qϕ(z|x′) , p(x)pθ(x|z))×Cγ(r(x′|x), r(x′|x))− 1

γ
Hγ(pdata(x)qϕ(z|x′))×Hγ(r(x

′|x)).

Since Cγ(r, r) = Hγ(r), this simplifies to

Dγ(pθ ∥ qϕ) = Hγ(r(x
′ | x))

[
1

γ
Cγ(pdata(x)qϕ(z | x′), p(z) pθ(x | z))− 1

γ
Hγ(pdata(x)qϕ(z | x′))

]
∝ Dγ(pdata(x)qϕ(z | x′) ∥ p(z)pθ(x | z)) .

The resulting divergence reduces to the same form as in (7), which implies that the denoising γ-loss
takes the form

Lγ(θ, ϕ) = Ex∼pdataEx′∼r(·|x)

[
1

σ
Ez∼qϕ,ν(·|x) ∥x− µθ(z)∥1 +2αDγ(qϕ,0 ∥ palt) + 2αβ ∥µϕ(x)∥1

]
,

The only modification compared to the standard γ-loss (12) is the additional expectation over the
corrupted input x′ ∼ r(· | x).

D DISCUSSION

Computation cost for training In contrast to models that involve numerical integration or iterative
estimation of tail parameters, ParetoVAE leverages the closed-form expression of the γ-loss and the
simple Laplace–Gamma mixture reparametrization of the symPareto distribution. This construction
avoids computational bottlenecks and ensures stable training dynamics. Although the reparameteri-
zation involves one additional sampling step compared to light-tailed VAEs (e.g., Gaussian VAE or
Laplace VAE), the runtime of ParetoVAE remains virtually identical to these models.

Tuning hyperparameter ν Recent VAE models based on Student’s t distributions (Kim et al., 2024;
Bouayed et al., 2025) highlight the challenge of tuning the hyperparameter ν. ParetoVAE encounters
a similar issue. Previous works have shown empirically that selecting ν from a suitable range (e.g.,
ν ∈ [2.5, 20] in (Bouayed et al., 2025)) is sufficient for stable performance in high-dimensional
settings, although this criterion lacks theoretical guarantees. Abiri & Ohlsson (2020) introduces a
learnable ν in the latent space, but this approach is problematic because ν cannot be directly updated
via backpropagation. We also consider with additional structures to learn ν, but they did not lead to
meaningful improvements in performance.

In practice, we find that ParetoVAE performs reliably when ν is chosen from the narrower range
[1.5, 10], which is smaller than the interval suggested in (Bouayed et al., 2025). We conjecture that
this is due to the heavier-tailed nature of the symPareto distribution compared to the Student’s t under
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the same ν. Moreover, the presence of the ℓ1 norm may help stabilize performance deviations, high-
lighting a distinctive advantage of ParetoVAE over t3VAE. Nevertheless, there is still no theoretical
foundation for optimal ν selection, and we regard this as an important open problem in the study of
heavy-tailed generative models.

Training strategies for regularizer Balancing the individual terms of a combined loss function
(reconstruction + regularizer) is a key challenge in training VAE-style models, as exemplified by
methods such as (Higgins et al., 2017a) and (Fu et al., 2019). Similarly, it is important for ParetoVAE
to achieve an appropriate balance between the reconstruction and regularization terms. To this end,
we explore various scheduling methods and empirically found that adjusting the regularization weight
with a logistic or linear function is more effective than using cyclic or cosine annealing. This effect
is particularly evident when combining loss terms with disparate properties, such as an ℓ1-based
reconstruction term with an ℓ22-based regularization term, or vice versa.
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