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ABSTRACT

The standard active learning setting assumes a willing labeler, who provides labels
on informative examples to speed up learning. However, if the labeler wishes to be
compensated for as many labels as possible before learning finishes, the labeler
may benefit from actually slowing down learning. This incentive arises for instance
if the labeler is to be replaced by the ML model once it is trained. In this paper, we
initiate the study of learning from a strategic labeler, who may abstain from labeling
to slow down learning. We first prove that strategic abstention can prolong learning,
and propose a novel complexity measure and representation to analyze the query
complexity of the learning game. Next, we develop a near-optimal deterministic
algorithm, prove its robustness to strategic labeling, and contrast it with other active
learning algorithms. We also analyze extensions that encompass more general
learning goals and labeler assumptions. Finally, we characterize the query cost of
multi-task active learning, with and without abstention. Our first exploration of
strategic labeling aims to consolidate our theoretical understanding of the imitative
nature of ML in human-AI interaction.

1 INTRODUCTION

Over the past few years, the rapid growth of Machine Learning (ML) capabilities has raised the
possibility of wide-ranging automation, and consequent worker replacement. Taking a step back from
when these ML models are phased in, we ask a basic question on how they first come about:

Where will the training data for these ML models come from?

In many industries, domain-specific knowledge is required to perform the job. Much of this expertise
is proprietary (e.g. trade secrets), and not made publicly available (e.g. on the internet). Thus, in
these industries, the answer to our question is paradoxically that: the training data can only come
from the workers themselves. At this point, we arrive at a clear conflict of interest.

On the one hand, corporations wish to automate tasks through ML models. On the other hand, the
data needed to train these models can only come from the domain experts — the workers in this case,
who know full well that these models, when trained, will go on to replace them at their jobs. Thus,
this raises the possibility that we may see workers actually aim to slow down learning, in order to
delay replacement and be compensated for as many labels as possible before then.

We note that the idea of AI job displacement is no longer a rarefied topic, entertained only in academia.
The possibility of AI displacement has been written about in recent articles (Benson, 2023), and
even surfaced in labor union negotiations. In May 2023, Hollywood screenwriters went on strike
to negotiate a better deal. One part of their demands is for there to be limits on companies being
able to train ML models on the scripts produced by the writers themselves (WGA, 2023). Indeed,
without this protection, companies can train AI models to emulate and write as well as the writers,
eventually replacing them with the trained models. In sum, we believe it is now high time to develop
our understanding of the replacement aspect of learning, which is what we set out to do in this paper.

Remark: Before moving on, we point out that the conflict of interest described above is fairly general,
and arises whenever the labeler wishes to maximize payment from labeling. Consider more broadly
the interaction between any data provider (e.g. a data labeling company) and learner (e.g. company
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needing ML models). The more informative the data labeled by the provider, the faster the learner
learns, the fewer the examples the learner needs to query the provider and the lower the provider’s
subsequent payment. The AI automation setting we describe is one of many such instances where
the labeler’s objective is at odds with that of the learner: the labelers has the incentive to slow down
learning, to maximize their compensation from labeling before the models are fully trained and render
their labeling expertise redundant.

In this paper, we study the learning game that arises when the labeler and learner’s objective are
at odds. The learner wants to learn quickly, but the labeler wants the learning to progress slowly.
Notably, this requries departing from the standard assumption in learning theory that the labeler
readily labels any example queried (including the informative examples). We term this game the
Human-AI Substitution game, since typically the labeler is human and the more the model is trained,
the less the learner needs the labeler (to label). To study the rate of learning, we turn to theory to
analyze how the labeler can slow down learning.

Our Contributions: In Section 2, we formalize the learning game and game value, developing a
novel representation of the game state — effective version space (henceforth abbreviated as E-VS).
In Section 3, we then develop a natural, efficient learning Algorithm 2, which we prove achieves
near-optimal minimax query complexity. We also show that other AL algorithms may be inefficient.
In Section 4, we examine more general settings involving noisy or non-strategic labelers, showing
that our algorithm can nevertheless achieve good query complexity. Finally, in Section 5, we consider
the multi-task setting and analyze when strategic labeling can further enlarge the learner’s query
complexity beyond the sum of the individual tasks’ query complexities.

1.1 ACTIVE LEARNING WITH A SIMPLE TWIST

We begin our investigation by adopting the standard active learning setup (Hanneke et al., 2014),
with the only twist that the labeler aims to maximize the learner’s query cost. We focus on perhaps
the most fundamental setting: exact learning through membership queries (Angluin, 1988; Hegedűs,
1995). As we will see, this setup is fairly general, and one may use standard reductions to reduce the
PAC and noisy setting to this setting.

Setup of the Learning Game:

• The learner is interested in learning a hypothesis h∗ in hypothesis class H ⊂ (X →
{+1,−1}) over a finite pool of unlabeled data X , collected by the learner.

• The labeler knows h∗ and responds using labeling strategy T with response T (x) ∈{
h∗(x),⊥

}
, where ⊥ denotes abstention. 1

• The learner repeatedly interacts with the labeler adaptively, and makes label queries on
unqueried example x, and incurs cost 1(T (x) ̸=⊥) for each such query.2

In this paper, we model the labeler as being able to strategically abstain on queried data, to slow down
learning. Being the domain expert with specialized expertise, the labeler is assumed to be able to use
this leverage to selectively decide which data points to label. As noted in Section 1, some data points
are particularly informative, and naturally the labeler would wish to decline labeling these so that
more data would need to be labeled. We also add that this strategy of slowing down the transfer of
expertise is not a novel conception. It has been well-documented that in apprenticeships, for instance,
teachers (master) strategically slow down the training of their apprentices (Garicano & Rayo, 2017).

The interaction finishes when the termination condition is met, or the learner’s querying strategy
halts. Based on the learner’s desired learning outcome, the termination condition is defined as when
h∗ ∈ H is identified, which we formalize in the following section. If the termination condition is
met, the labeler gets a payoff of 1 for every labeled data provided. If the termination condition is not
met, the labeler gets a payoff of 0. In this game, the learner aims to minimize the total payoff needed
to learn h∗, while the labeler aims for the opposite and to maximize the total payoff.

1In Section 2.2 and Appendix B we also study a variant of the game (Protocol 4) where the labeler can
choose to reveal binary labels or abstain adaptively.

2Note that we define the cost for all non-abstention label feedback to be 1 for all x. However, as we show in
Appendix C, our algorithm can generalize to handle varying data prices (price for non-abstention label feedback
c(x) can be dependent on feature x).
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Protocol 1 Human-AI Substitution game inter-
action protocol

Require: Instance domain X , hypothesis class
H, queried examples SX , queried dataset S

1: V ← H, SX ← ∅, S ← ∅
2: Nature chooses some h∗ ∈ H given to the

labeler ▷ Throughout, labeler maintains
that h∗ is identifiable: h∗ ∈ E(V, SX).

3: while |E(V, SX)| ≥ 2 do
4: Learner adaptively queries example x ∈

X \ SX using learning algorithm A
5: Labeler adaptively gives label feedback

y ∈
{
h∗(x),⊥

}
using labeling oracle T

6: Learner updates the VS: V ← V [(x, y)]
▷ Recall Definition 2.1

7: SX ← SX ∪ {x}, S ← S ∪
{
(x, y)

}
8: if |E(V, SX)| = 1 then
9: Learner makes total payment to the la-

beler:
∑

(xi,yi)∈S 1 {yi ̸=⊥}

H
X

x1 x2 x3

h1 +1 −1 +1
h2 −1 −1 +1
h3 +1 +1 −1
h4 −1 +1 −1
h5 +1 +1 +1

Table 1: Consider an example hypothesis class
H = {h1, h2, h3, h4, h5} and instance space
X = {x1, x2, x3}. The interaction history is
S =

{
(x1,⊥)

}
, and therefore SX = {x1}.

Under S, we have that the VS (Definition 2.1),
V = H[S] = {h1, h2, h3, h4, h5}.
We observe that h1 and h2 make identical pre-
dictions on X \ SX = {x2, x3}. Likewise, h3

and h4 make identical predictions on X \ SX .
Therefore, effective version space is actually
E(V, SX) = {h5}. If the game reaches this
stage, the learner can already identify that the
target h∗ must be h5.

Guaranteeing Learning Outcome: Before proceeding, we note that the labeler can always satisfy
the learner’s objective — by using the non-strategic labeling strategy T (x) = h∗(x) as in the
standard active learning setup. Since the labeler can realize the learning outcome, we assume that the
learner has this guarantee (of the learning outcome) written into the contract; no payment is awarded
otherwise. Indeed, if the labeler cannot guarantee the learning outcome, it seems unlikely that the
learner would have chosen to contract the labeler in the first place.

Prolonging Learning through Abstention: The key tension in this interaction is that the labeler
has to label in order to be paid, but any labeling results in less data that subsequently need to be
labeled. With the labeler only allowed to abstain besides labeling, it is natural to ask: can abstention
significantly enlarge the query complexity? Our investigation is motivated by the affirmative answer
below, where we find that abstention can exponentially enlarge query complexity in some settings.
Proposition 1.1 (Abstention induces exponentially higher query complexity). There exists a hypothe-
sis classH, instance domain X such that: the query complexity is O(log |X |) if the labeler is unable
to abstain, and Ω(|X |) for any learning algorithm if the labeler is allowed to abstain.

2 THE MINIMAX LEARNING GAME

2.1 REPRESENTATION OF THE LEARNING GAME STATE

To study this learning game, we first develop a useful, succinct representation of the game state,
which is a key contribution of our paper and allows us to formalize the termination condition and the
protocol. We start by defining the canonical state representation used in conventional AL without
abstention, the version space (VS) (Mitchell, 1982).
Definition 2.1. Given a queried dataset S and a set of hypotheses V , define version space V [S] ={
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of hypotheses in V consistent with S.

In our setting of learning with strategic abstention, some queried examples in S will not have their
binary labels available to the learner, due to the labeler’s abstention. And so, we observe that certain
hypotheses may be consistent, but indistinguishable from other hypotheses, even if all the remaining
unqueried data is labeled. This motivates defining a new notion of identifiability of a hypothesis
under queried dataset S. Let the set of all queried examples be SX =

{
x : (x, y) ∈ S

}
.

Definition 2.2. Given the set of queried examples and their label responses S, and the queried
examples SX , hypothesis h ∈ H is said to be identifiable with respect to S if:
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• h is consistent with S, h ∈ H[S].
• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for

brevity we denote h1(U) = h2(U) ⇐⇒ ∀x ∈ U � h1(x) = h2(x).

In other words, h is identifiable with respect to S if over the remaining examples X \ SX , some
labeling strategy (specifically, one that reveals h(x) on every x ∈ X \SX ) allows h to be distinguished
from all other hypotheses in H[S]. With this, we may develop a new representation of the state of
the game, effective version space (E-VS). The E-VS is a refinement of VS, and comprises of only
identifiable hypotheses given the examples queried. Please see Table 1 for an illustration.

Remark: The key insight here is that abstention can in fact reveal information. This is despite that
abstention is used by the labeler to prevent releasing information about h∗. The reason why one can
glean information from labeler’s abstention is that hypotheses could be rendered unidentifiable by
abstention on a data point, and thus be ruled out without needing further queries. We operationalize
this insight to develop the effective version space representation, which we formalize below.
Definition 2.3. Given a set of classifiers V and a set of examples SX , define

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
as the effective version space with respect to V and SX .
Definition 2.4. h∗ ∈ H is identified by queried dataset S if the E-VS, E(H[S], SX) = {h∗}.

With the identification criterion defined, we now formalize the interaction in Protocol 1. Here, the
termination states are defined as either |E(V, SX)| = 1 (a hypothesis is identified and the learning
outcome is met), or E(V, SX) = ∅ (no hypothesis can be identified).

2.2 THE MINIMAX LEARNING GAME

In this paper, we analyze the minimax query complexity — that of the worst-case h∗ ∈ H to learn
under Protocol 1. Towards this, we formulate a related minimax learning game (see Protocol 4 in
Appendix B), where both the learner queries and the labeler labels adaptively, depending on the
interaction in previous rounds, with the game’s optimal value function defined as follows:

Cost(V, SX) =


−∞ E(V, SX) = ∅
0 |E(V, SX)| = 1

minx∈X\SX
maxy∈Y

(
1(y ̸=⊥) + Cost(V [(x, y)], SX ∪ {x})

)
|E(V, SX)| ≥ 2

(1)

Compared to the original Protocol 1, Protocol 4 can be viewed as giving the labeler more freedom:
the labeler does not need to commit to provide binary labels using a given h∗; it just needs to maintain
the invariant that there is some h∗ identifiable and consistent with all examples seen. As we will see
shortly, the optimal value function Cost of Protocol 4 serves as a useful tool in analyzing the optimal
query complexity of Protocol 1.

In the case of non-identifiability, we use a base-case payoff of −∞ to encode that the labeler must
ensure identification. As noted in Section 1, any optimal labeler will never end up in such a state,
because a positive payoff can always be achieved – the strategy T = h∗ results in a positive payoff.
We now turn to formalizing what an identifiable strategy is.
Definition 2.5. Given h ∈ H, define the set of labeling oracles consistent with h, as:

Th = {T : X → {+1,−1,⊥} |∀x ∈ X s.t T (x) ̸=⊥, T (x) = h(x)}.

For subset SX ⊆ X , let T (SX) =
{
(x, T (x)) : x ∈ SX

}
be the labeled (binary or abstention)

examples provided by labeling oracle T on the examples SX .
Definition 2.6. A labeling strategy T ∈ Th is an identifiable oracle if the VS,H[T (X )] = {h}.

In the learning game, the labeler’s strategy is some labeling oracle, while the learner’s strategy
corresponds to some deterministic querying algorithm: A : (X×Y)∗ → X , where Y = {+1,−1,⊥}.
Define CostA,T (V, SX) to be value of the learning game under querying strategy A and labeling
strategy T . The key result of this subsection is that the game value Cost(H, ∅) can serve as a useful
measure of minimax query complexity. Cost(H, ∅) lower bounds the worst-case query complexity
of any deterministic learning algorithm in Protocol 1.
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Proposition 2.7. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ Cost(H, ∅)

This means that for every exact learning algorithm A, there is some worst-case labeling oracle Th

that induces at least Cost(H, ∅) cost. Please see Appendix B for all proofs in this section.

3 E-VS BISECTION ALGORITHM ANALYSIS

In this section, we design a natural and efficient algorithm based on E-VS bisection, Algorithm 2,
which we prove achieves query complexity O(Cost(H, ∅) ln |H|). Proving this guarantee allows us to
use the lower bound result, Proposition 2.7, from the previous section to conclude that Algorithm 2’s
minimax query complexity is optimal up to log factors. Towards analyzing the algorithm performance
(and inspired by a related measure in Hanneke (2006) for the conventional non-abstention setting),
we first introduce a new complexity measure named global identification cost (GIC), that will allow
us to bridge Algorithm 2’s performance to Cost.
Definition 3.1. GivenH,X , define the global identification cost of V ⊂ H, instance set SX as:

GIC(V, SX) = min{t ∈ N : ∀T : X \ SX → {+1,−1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

1(T (x) ̸=⊥) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Intuitively, GIC represents the worst-case sample complexity of a clairovyant querying algorithm
that knows ahead of time the labeling oracle that is used by the labeler.

The key lemma behind the analysis of Algorithm 2 is that there always exists a point that significantly
bisects the current E-VS, resulting a size reduction of at least a constant

(
1− 1

GIC(V,SX)

)
factor.

This justifies greedily querying the point that maximally bisects the E-VS.
Lemma 3.2. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:

max
y∈{−1,+1}

(
|E(V [(x, y)], SX ∪ {x}))| − 1

)
≤ (|E(V, SX)| − 1)

(
1− 1

GIC(V, SX)

)
.

To analyze the algorithm’s query complexity, we lower bound Cost(V, SX) by GIC(V, SX).
Lemma 3.3. For any V ⊂ H and SX ⊂ X : GIC(V, SX) ≤ Cost(V, SX).

With this, we can prove that Algorithm 2: a) has query complexity of O(Cost(H, ∅) ln |H|); b)
identifies h∗ when the labeler’s labeling strategy is identifiable. Please see Appendix C for all the
proofs.
Theorem 3.4 (Algorithm 2’s query complexity guarantee). If Algorithm 2 interacts with a labeling
oracle T , then it incurs total query cost at most GIC(H, ∅) ln |H| + 1 ≤ Cost(H, ∅) ln |H| + 1.
Furthermore, if Algorithm 2 interacts with an identifiable oracle T consistent with some h∗ ∈ H,
then it identifies h∗.

3.1 ACCESSING THE E-VS

Algorithm 2 may be viewed as the E-VS variant of the well-known, VS bisection algorithm (Tong &
Koller, 2001), an “aggressive” active learning algorithm that greedily queries the informative point
that maximally bisects the VS. The canonical approach for accessing the VS is via sampling, by
assuming access to a sampling oracle O. For example, ifH is linear, the VS is a single polytope and
one can use a polytope sampler to evaluate and search for the point x that maximally bisects the VS.

E-VS Structure: Maximal E-VS bisection point search is less straightforward by contrast. The
following structural lemma shows that there exists a setting of linear hypothesis classes in Rd with
X and S such that the E-VS comprises of an exponential number of disjoint polytopes. This means
that it is computationally intractable to access the E-VS as polytopes, if one is to use the sampling
approach as in VS-bisection.
Proposition 3.5. There exists an instance space X ⊂ Rd, a linear hypothesis class H, and query
response S such that the resultant E-VS comprises of an exponential in d number of disjoint polytopes.
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Algorithm 2 E-VS Bisection Algorithm

Require: Data pool X , hypothesis classH
1: V ← H, S ← ∅ ▷ VS, queried dataset
2: while

∣∣E(V, SX)
∣∣ ≥ 2 and SX ̸= X do

3: Query: ▷ Maximal E-VS bisection
point

x = argmin
x∈X\SX

max
y∈{−1,+1}

∣∣E(V, SX)[(x, y)]
∣∣

4: Labeler T provides label response: y ∈
{−1,+1,⊥}

5: S ← S ∪
{
(x, y)

}
6: if y ̸=⊥ then
7: V ← V [(x, y)]
8: return h, the unique element in E(V, SX)

Algorithm 3 Bisection Point Search Sub-routine

Require: Unqueried examples U = X \ SX ,
abstained examples S⊥, Version Space V ,
sampling oracle O

1: for sample h ∼ O(V ) do
2: Construct Z1 =

{
(x,−h(x)) : x ∈ S⊥},

Z2 =
{
(x, h(x)) : x ∈ X \ S⊥}

3: Run C-ERM to obtain: ĥ ∈
argmin

{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

4: if ĥ ̸= h then continue
5: else ▷ h ∈ E(V, SX) in this case
6: r−x ← r−x +1 if h(x) = −1 else r+x ←

r+x + 1 for x ∈ U , n← n+ 1
7: return x∗ = argminx∈U |r+x /n− r−x /n|

Towards tractable maximal E-VS bisection point search: To overcome this issue, we develop a
novel, oracle-efficient method for accessing the E-VS. We observe that a structural property of the
E-VS can be used to check membership given access to a constrained empirical risk minimization
(C-ERM) oracle (Dasgupta et al., 2007). This allows us to design an oracle-efficient subroutine,
Algorithm 3 for any general hypothesis classH, which we prove is sound.

Definition 3.6. A constrained-ERM oracle for hypothesis classH, C-ERM, takes as input labeled
datasets Z1 and Z2, and outputs a classifier: ĥ ∈ argminh′∈H

{
err(h′, Z1) : err(h

′, Z2) = 0
}

,
where for dataset Z, err(h′, Z) =

∑
(x,y)∈Z 1(h

′(x) ̸= y).

Proposition 3.7. Given some h ∈ V and access to a C-ERM oracle, lines 2to 4 in Algorithm 3
verifies whether h ∈ E(V, SX), with one call to the oracle.

3.2 COMPARING WITH THE VS BISECTION ALGORITHM

Labeling without identifiability: An advantage of the E-VS algorithm is its robustness to strategic
labeling. Theorem 3.4 states that the E-VS algorithm has provable guarantees, even when the labeler
does not guarantee identification. By contrast, VS-bisection is not robust this way. To concretely
compare the two, we construct a learning setup without identification, wherein Algorithm 2 incurs a
much smaller number of samples.

Theorem 3.8. There exists aH and X such that the number of labeled examples queried by the E-VS
bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |) labels.

Remark: The key observation here is that, by optimistically assuming identifiability (even when
this is not guaranteed), Algorithm 2 can ensure a small query cost. It does so by using the E-VS
cardinality to detect when the labeling strategy is non-identifiable and halt the interaction.

Please refer to Appendix D for all proofs in these subsections and a comparison with EPI-CAL (Huang
et al., 2016), a natural ‘mellow” active learning algorithm that can handle labeler abstentions.
Additionally, please see Appendix I for some toy experiments based on synthetic data.

4 EXTENSIONS TO OTHER LEARNING SETTINGS

The prior sections have assumed that the labeler (e.g. data labeling company) is resourcefully
providing non-noisy, labeled data that exactly identifies h∗. In this section, we examine a few ways
in which the labeler (e.g. a human worker) may be imperfect in labeling, and extend our guarantees
to show how the learner may learn in such settings. Indeed, it is possible for the labeler to abstain
non-strategically simply due to uncertainty (or lack of knowledge) about the label. As we will see,
Algorithm 2 will also allow for efficient learning with non-strategic, abstaining labelers.
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4.1 APPROXIMATE IDENTIFIABILITY

A relaxation of the goal of exact learning is PAC learning: learning some ĥ such that its error
Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ on distribution D supported on X , with probability (w.p.) greater than
1− δ. This learning goal can arise when the learner wishes to relax the learning outcome/termination
criterion, or wishes to weaken the assumption that the labeler identifies h∗, to only knowing a fairly
accurate hypothesis ĥ ∈ H.

Reduction: To study the PAC setting, one may use the standard PAC to exact learning reduc-
tion (Vapnik, 1999). It is well known that PAC learning can be reduced to to exact learning on a
sub-sampled set, Xm ⊆ X , of m = O(VC(H)

ϵ (ln 1
ϵ + ln 1

δ )) i.i.d points from D (VC(H) denotes the
VC dimension ofH).

Then, Xm partitions H into clusters of equivalent hypotheses. Let the projection of H on Xm be
H|Xm =

{
h(Xm) : h ∈ H

}
. For y ∈ H|Xm , a cluster C(y) of equivalent hypotheses may then be

defined as C(y) =
{
h ∈ H : h(Xm) = y

}
. The reduction guarantees that, w.p. over 1− δ over the

samples Xm, identifying h∗’s cluster C(h∗(Xm)) suffices for finding ĥ with error ≤ ϵ.

Approximate Identification: Using this reduction, we may analyze the query complexity of approxi-
mate identification in the resulting learning game. In this game, the learner sets the data pool to be
Xm (can be much smaller than X ) and aims to only learn the cluster h∗ belongs to, C(h∗(Xm)).

We demonstrate how our E-VS representation can be adapted to apply Algorithm 2 in this approximate
identification game. We first note that the original E-VS, defined overH and Xm will no longer suffice
as state representation. Consider some h ∈ H such that |C(h(Xm))| ≥ 2 with

{
h′, h

}
⊆ C(h(Xm)).

Then, h(Xm) = h′(Xm)⇒ h′(Xm \ ∅) = h(Xm \ ∅), which results in the premature elimination
of the entire C(h(Xm)) cluster at the very start.

To address this, we define a refinement of E-VS, Xm-E-VS. This fix follows from observing that in
this game, we should only consider non-identifiability with respect to hypotheses from other clusters.

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
With this, we note that the Xm-E-VS bisection algorithm attains analogous near-optimal guarantees.
Corollary 4.1. Consider Algorithm 2 instantiated with data pool Xm and state representation Xm-E-
VS. When interacting with a labeling oracle T , it incurs total query cost at most GICXm

(H, ∅) ln |H|+
1 (see Definition E.2). Furthermore, if the Xm-E-VS bisection algorithm interacts with an identifiable
oracle T consistent with some h∗ ∈ H, then it identifies h∗.

The only remaining consideration is how to efficiently search for the point that maximally bisects
clusters in Xm-E-VS. Here, we show that we may adapt the membership check implemented in
Algorithm 3 (with the data pool set to Xm) to check hypothesis membership in the coarser Xm-E-VS.
That is, we still have an oracle-efficient way of accessing the Xm-E-VS, without needing to explicitly
compute and iterate through the clusters.
Proposition 4.2. h ̸∈ EXm

(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM
output on Algorithm 3, Line 3 with X = Xm.

4.2 NOISED LABELING

In some cases, a labeler can make honest mistakes simply due to human error. We can model this by
assuming noised queries (Castro & Nowak, 2008): querying example x returns h∗(x) w.p. 1− δ(x),
and −h∗(x) w.p. δ(x). In this setup, we may use the common approach of repeatedly query a datum
to estimate its label w.h.p. (e.g. as in Yan et al. (2016)). This approach thus reduces the noised-label
setting to cost-sensitive exact learning, where each x incurs differing cost c(x) dependent on δ(x). In
Appendix C, we prove the generalized version of the results in Section 3 that factors in example-based
cost, showing that Algorithm 2 can be applied in this setting with near-optimal guarantees.

4.3 ARBITRARY LABELING

Thus far, we have assumed a labeler who can (approximately) identify h∗. Here, we touch on when
the labeler either does not know h∗ (or h∗’s cluster), or myopically labels in a way that cannot

7
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guarantee the learning outcome. Since the labeler behaves arbitrarily, the learner now cannot be
assured of any learning outcome guarantees. In this case, we note that the learner can use the E-VS to
preemptively detect when the learning outcome cannot be realized, and halt the interaction. While
the h∗ is unknown, it is possible to detect when no hypothesis/cluster is learnable. This is when the
E-VS is empty, certifying that the labeler cannot realize the learning outcome. Here, our Theorem 3.4
provides guarantees on the maximum number of times that a non-identifiable oracle will be queried.
Corollary 4.3 (of Theorem 3.4). Algorithm 2 guarantees bounded query complexity
GIC(H, ∅) ln |H|+ 1 even when the labeling oracle is non-identifiabble.

Finally, we note that our algorithm is sound in that if the labeler can identify h∗, then our algorithm
learns h∗. Thus, in summary, Algorithm 2 is both sample-efficient with respect to an identifiable
labeler, and robust to a non-identifiable one. Please see Appendix E for more details on this section.

5 MULTI-TASK LEARNING FROM A STRATEGIC LABELER

Multi-task setting: In most jobs, workers in fact perform multiple roles. This motivates the study of
multi-task exact learning from a strategic labeler, which we now outline:

• The learner is now interested in learning multiple h∗
i ∈ Hi, for tasks i ∈ [n]. Define learner’s

hypothesis class H = ×n
i=1Hi which contains h∗ = (h∗

1, . . . , h
∗
n). The learner can query

from instance domain X ⊆ ×n
i=1Xi, where Xi is the instance domain for task i.

• Labeler now provides multi-task labels y ∈ Yn = {+1,−1,⊥}n, and for the label cost:
i) One natural extension of the single task payoff is: cone(y) = 1(∃i, yi ̸=⊥).
ii) Another variant of the multi-task labeling payoff is: call(y) = 1(∀i, yi ̸=⊥).

We are interested in asking: can the labeler use the multi-task structure to further amplify the query
complexity? To answer this question, we relate the multi-task query complexity to that of single-task.

Single-task setting:

• Definition of Si
X : given queried data SX , define the queried data for task i, Si

X , as:
Si
X = Xi \ (X \ SX)i, where we use the notation that set Zi = {xi : x ∈ Z} for Z ⊆ X .

In words, Si
X are examples in Xi whose label can no longer be obtained. Note that in the

multi-task setting, there may exist multiple points that can label some xi ∈ Xi. So abstention
on one of those points does not necessarily mean that xi cannot be labeled.
Example: X = {x11, x12} × {x21, x22}. SX =

{
[x11, x21], [x12, x22]

}
, then Si

X = {}
for i = 1, 2. This is because it is still possible for the labeler to give labels on all points, i.e.
x11, x22 through [x11, x22] and x12, x21 through [x12, x21].

• Definition of Vi: given the current multi-task version space V , we can naturally define the
single-task version space for task i as: (V )i = Vi = {hi : h ∈ V }

5.1 UPPER BOUND

To understand if multi-task structure can inflate query complexity, we upper bound the multi-task
complexity in terms of the sum of the single-task complexities. Proving an upper bound would imply
that the labeler cannot increase the query complexity through the multi-task structure. We find that
upper bounds only arise under certain regularity assumptions. Thus, we first provide complementary
negative results without these assumptions, showing settings where the labeler can amplify the
multi-task query complexity. All proofs in this section may be found in Appendix F, where we also
prove results in the non-abstention setting that may be of independent interest.
Proposition 5.1. Under both label costs, there exists a non-Cartesian product version space V ⊆ H
and query response S ⊆ (X × Y)∗ such that Cost(Vi, S

i
X) ≥ 0 for all i, and: Cost(V, SX) ≥∑n

i=1 Cost(Vi, S
i
X) + n− 1.

Furthermore, we show that if the version space is allowed to be a Cartesian product, and the (more
generous) cone is used as label cost, the labeler can still increase the query complexity.
Proposition 5.2. Assuming the version space is a Cartesian product, under label cost cone(y) =
1(∃i, yi ̸=⊥), there exists V and S such that Cost(Vi, S

i
X) = 1, but Cost(V, SX) = |X |. This

implies that: Cost(V, SX) >
∑n

i=1 Cost(Vi, S
i
X).

8
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Thus, for the labeler to be unable to increase multi-task query complexity, two necessary conditions
are a) the VS is a cartesian product b) the payoff cost is call (and not cone). Below, we prove the two
conditions are sufficient, providing a full characterization when the upper bound can be achieved.

Theorem 5.3. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥),
Cost(V, SX) ≤

∑n
i=1 Cost(Vi, S

i
X).

For the remainder of the section, we will prove results under the (more generous) label cost, cone.

5.2 LOWER BOUND

Through lower bounds, we illustrate that the multi-task version space structure can in fact speed up
learning as well. The intuition is that the structure in V may make it so that the multi-task E-VS
shrinks faster due to unidentifiability. The following negative example evidences this.

Proposition 5.4. There exists a non-Cartesian product version space V and query response S such
that Cost(Vi, S

i
X) ≥ 0 for all i, but: Cost(V, SX) < maxi∈[n] Cost(Vi, S

i
X).

Proposition 5.5. There exists a Cartesian product version space V and query response S with
Cost(V, SX) < 0 such that: Cost(V, SX) < maxi∈[n] Cost(Vi, S

i
X).

Thus, we have that identifiability (Cost(V, SX) ≥ 0), and V being a Cartesian product are needed to
prove a lower bound.

Theorem 5.6. For all V = ×i∈[n]Vi and SX ⊆ X , if Cost(V, SX) ≥ 0, then: Cost(V, SX) ≥
maxi∈[n] Cost(Vi, S

i
X).

6 RELATED WORKS

The theory of Active Learning (Hanneke, 2009) (AL) has a rich history and began with the study of
realizable learning (Angluin, 1988; Hegedűs, 1995; Freund et al., 1997; Dasgupta, 2004; Dasgupta
et al., 2005). To the best of our knowledge, we are the first to consider a labeler whose objective is
odds with the learner. In face of such a strategic labeler, we develop an active learning algorithm with
near-optimal query complexity guarantees.

Abstaining Labeler: The closest two papers to our work are Yan et al. (2016); Huang et al. (2016),
which also study learning from an abstaining labeler. In Yan et al. (2016), the labeler can abstain
or noise, where the rate of an incorrect label/abstention is fixed apriori. Our work differs from that
of Yan et al. (2016; 2015) in that the labeler can adaptively label (abstain) based on the full interaction
history so far, thus allowing for more complex, sequential labeling strategies. In Huang et al. (2016),
the labeler abstains when uniformed, and after a number of abstentions in a region, learns to label the
region (an “epiphany”). Our setting differs in that the labeler does know the labels for all regions,
but instead strategically abstains to increase query complexity. Please see Appendix H for further
discussion on related works and on alternative formulations of the learning game, including when the
learner is allowed to query an example multiple times.

7 DISCUSSION

In this paper, we provide the first set of theoretical evidence that labelers can slow down learning
through strategic abstentions, making even active learning algorithms sample-inefficient. Motivated
by this, we study the learning game involving a strategic labeler, in both the single and multi-task
setting. Our theoretical study is motivated by the broader observation that a labeler’s objective may be
fundamentally at odds with the learner’s. This conflict in interest arises for instance in AI-automation
setting, where workers have the incentive to slow down model training, in order to delay replacement
and to maximize compensation for their labeling services before replacement.

Societal/Broader Impact: Zooming further out, workers have an incentive to slow down training if
they lack financial security after being replaced. Indeed, ML offers tremendous potential in bettering
our lives, automating away jobs people do not want to do. However, it can also automate away jobs
that people do want to do. It is our hope that this paper adds to the important discussion on whether
we should always automate, once we have the ability to automate, as well as the discussion on fair
labeler compensation during the automation process (De Vynck, 2023).
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Notation
S S =

{
(x1, y1), (x2, y2), ...

}
, query responses in the interaction history

SX SX =
{
x : (x, y) ∈ S

}
, indexes the queried examples in S

S⊥ S⊥ =
{
x : (x, y) ∈ S, y =⊥

}
, queried examples that were given abstention

V y
x , V [(x, y)] V y

x , V [(x, y)] =
{
h ∈ V : h(x) = y

}
, updated VS (used interchangeably)

E(V, SX) E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
, effective VS

SA,T Interaction history between A and T
Ai Ai = {xi : i ∈ A}
Si
X Si

X = Xi \ (X \ SX)i
(V )i (V )i = Vi = {hi : h ∈ V }
cone(y) cone(y) = 1(∃i, yi ̸=⊥)
call(y) call(y) = 1(∀i, yi ̸=⊥)

Table 2: Table of commonly used notation.

Figure 1: The setup behind Proposition 1.1 is that of learning an one-to-one threshold-interval
hypothesis class H =

{
(hi, h

′
i)
}
i∈[n]

. The learner seeks to identify (hi∗ , h
′

i∗). The labeler can
abstain on X1, and prevent the learner from learning through this sample-efficient part of the instance
space. This forces the learner to learn the interval h

′∗
i (instead of threshold h∗

i ) through X2, and incur
much larger sample complexity.

A PROOFS FOR SECTION 1

A.1 TECHNICAL RESULTS

Proposition A.1. There exists a hypothesis classH, instance domain X such that the exact learning
sample complexity is O(log |X |) if the labeler is unable to abstain, and Ω(|X |) for any learning
algorithm if the labeler is allowed to abstain.

Proof. Let the hi : [0, 1] → {+1,−1} for i ∈ [n] denote intervals of length 1/n centered at
(2i − 1)/2n for i ∈ [n], and h′

i : (1, 2] → {+1,−1} for i ∈ [n] denote thresholds at 1 + i/n for
i ∈ [n]. Define hybrid-hypothesis classH of threshold-intervals,H = {f1, ..., fn}, where:

fi(x) =

{
hi(x) x ∈ [0, 1]

h′
i(x) x ∈ (1, 2]

Let X = X1 ∪ X2, where X1 =
{

1
2n , ...,

2n−1
2n

}
and X2 =

{
1 + 3

2n , ..., 1 +
2n−1
2n

}
.

1) When the labeler is not allowed to abstain, the learner may binary search on X2 to identify h′
i∗ ,

which identifies fi∗ . The required sample complexity is O(log n).

2) When the labeler is allowed to abstain, consider the following labeling strategy T :

i) T (x) =⊥ for all x ∈ X2

ii) T (x) = hi∗(x) for all x ∈ X1.

Note T is a labeling strategy that allows for identification. H[T (X )] = H[T (X1)] = {fi∗}.
Interacting with T is equivalent to learning one of n disjoint intervals, which requires Ω(n) samples
under any learning algorithm (Dasgupta, 2004). And so, T induces Ω(n) samples, which in turn
lower bounds the sample complexity induced by the minimax labeling strategy.

Remark A.2. We note that one may generalize the above result to any cross-space learning set-
ting (Tao et al., 2022) with significant differences in query complexity among the instance spaces.
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Protocol 4 Minimax strategic slow learning game

Require: Instance domain X , hypothesis classH
S ← ∅, V ← H
▷ Throughout, the labeler needs to maintain that there is at least one classifier consistent with all

labels so far and is identifiable
while |E(V, SX)| ≥ 2 do

Learner queries example x ∈ X \ SX

Labeler provides label feedback y ∈ {−1,+1,⊥}
Learner incurs cost c(y), and updates its version space V ← V y

x

S ← S ∪
{
(x, y)

}
Nature sets h∗ to be the only model in E(V, SX) if |E(V, SX)| = 1 ▷ Nature sides with the
labeler, sets h∗ to be the remaining model at the end

The labeler’s optimal strategy here is simple: label only through the instance space that leads to the
highest query complexity, and abstain on all other (more informative) instance spaces.

Remark A.3. We also add that the labeling strategy need not be identifiable for this result to hold.
One can simply define T to still abstain on all of X2 and output −1 on all of X1, which still induces
Ω(|X |) query complexity.

B PROOFS FOR SECTION 2

B.1 THE MINIMAX LEARNING GAME

We present Protocol 4, which can be viewed as a relaxation of the original Protocol 1 by allowing h∗

to be chosen aposteriori. This gives the labeler more freedom in answering the learner’s queries, and
therefore any query complexity upper bound here translates to query complexity upper bounds in
Protocol 1. Recall that the optimal value function of this game is given in equation (1).

B.2 PRELIMINARIES

We now come back to Protocol 1. The game strategy for the labeler and learner now corresponds to a
labeling oracle, and a querying algorithm, which we formally define below.

Labeling Oracle Notation: Given h ∈ H, recall that we define the set of labeling oracles consistent
with h as,

Th = {T : X → {+1,−1,⊥}|∀x ∈ X s.t Th(x) ̸=⊥, T (x) = h(x)}

Given subset SX ⊆ X , let us define T (SX) to be the set of labeled examples induced by oracle T on
the examples SX .

Suppose V ⊆ H, let us define:

V [T (SX)] =
{
h ∈ V |h(x) = T (x),∀x ∈ SX ∧ T (x) ̸=⊥

}
A labeling strategy T ∈ Th is an identifiable oracle ifH[T (X )] = {h}.

Querying Algorithm Notation: Formally, a deterministic learning algorithm A consists of the
following:

• Query function fquery : (X × Y)∗ → X

• Termination function fterm : (X × Y)∗ → {TRUE,FALSE}

• Output function fout : (X × Y)∗ → H

A interacts with the labeler by:

13
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Algorithm 5 The interaction process between A and labeler

S ← ∅
while fterm(S) = FALSE do

Query x← fquery(S)
Receive label y
S ← S ∪

{
(x, y)

}
return fout(S)

Properties of fterm:

• If A is an exact learning algorithm, fterm(S) = TRUE if |E(V, SX)| ≤ 1.
• If A has a fixed budget N , fterm outputs TRUE when S is such that:
|
{
(x, y) ∈ S : y ̸=⊥

}
| = N

The formal interaction process between the learner using A and the labeler is summarized in Algo-
rithm 5.

Learning Game Payoff: Denote CostA,T (V, SX) as the learning game payoff under an exact
learning querying strategy A and labeling strategy T . Formally, let point xA,S be queried by A
after seeing interaction history S (corresponding to some sequentially labeled dataset) induced by
labeling oracle T . With this, the value function of the learning game with strategies A and T may be
recursively defined as follows:

CostA,T (V, SX) =


−∞ E(V, SX) = ∅
0, |E(V, SX)| = 1

1(T (xA,S) ̸=⊥) + Cost(V [(xA,S , T (xA,S))], SX ∪
{
xA,S

}
) |E(V, SX)| ≥ 2,

B.3 TECHNICAL RESULTS

Lemma B.1. Let the deterministic query algorithm A interact with labeling oracle
T ∈ Th0

for M queries, generating the following interaction history: SM =
(x1, T (x1)), (x2, T (x2)), ..., (xM , T (xM )). Suppose there exists a classifier h1 and T ′ ∈ Th1

such
that for all x ∈ {x1, ..., xM}, T (xi) = T ′(xi). Then,A generates the same interaction history, when
interacting with T ′ for M queries.

Proof. As defined previously, algorithm A comprises of query function fquery , termination function
fterm and output function fout. We show by induction that for steps i = 0, 1, ...,M , the interaction
histories of A with T and T ′ agree on their first i elements for i ≤M .

Base Case: For step i = 0, both interaction histories are empty and thus agree.

Induction Step: Suppose the statement holds up until step i for some i < M . That is, when A
interacts with T and T ′ generates the same set of queried examples:

Si =
{
(x1, y1), ..., (xi, yi)

}
Consider step i+ 1. Firstly, A continues to make a query and does not terminate, since fterm(Si) =
FALSE for i < M .

Now, for the (i + 1)-th query, A applies function fquery and queries xi+1 = fquery(Si). Since
T ′(xj) = T (xj) for all j and in particular for j = i + 1, we have that (xi+1, T

′(xi+1)) =
(xi+1, T (xi+1)). And so, with this and the induction hypothesis, we have that A when interact-
ing with T ′ and T generates the same set of queried examples:

Si+1 =
{
(x1, y1), ..., (xi+1, yi+1)

}
up to step i+ 1.

Using this, we can conclude that the interaction histories after M steps of A with T ′ and T are
identical.
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Remark B.2. Suppose, after the M th step, we have that TRUE = fterm(SA,T ) = fterm(SM ). And
so, we have that SM = SA,T ′ , and the interaction of A with T ′ also terminates at the M th step.

Thus, for model output, we have SA,T = SM = SA,T ′ ⇒ fout(SA,T ) = fout(SA,T ′).

Proposition B.3. Let N denote the labeling budget. Let SA,T
N be the interaction history of a

deterministic algorithm A with oracle T up until the N th label is given, or at termination (without
using all of the budget). Let (SX)A,T

N be the unlabeled examples queried during the interaction. For
any deterministic algorithm A, if N < Cost(H, ∅), there exists some h ∈ H and identifiable oracle
T ∈ Th such that |E(H[SA,T

N ], (SX)A,T
N )| ≥ 2.

Proof. Fix a deterministic algorithm A. We will show the following. If A has already obtained an
ordered sequence of queried examples S, and has a remaining label budget N ≤ Cost(H[S], SX)−1,
then there exists h ∈ H[S] and Th such that, A, when interacting with Th:

1. obtains a sequence of queried examples S in the first |S| rounds

2. when the interaction terminates, the E-VS has cardinality at least two:
|E(H[SA,Th

N ], (SX)A,Th

N )| ≥ 2.

The theorem follow from the second point of this claim by taking S = ∅.
We now turn to proving the above claim by induction on A’s remaining label budget N .

Base Case: If N = 0, then Cost(H[S], SX) ≥ 1. By Lemma C.10, we know that |E(H[S], SX)| ≥
2.

Construction of Th:

Let h ∈ E(H[S], SX).

Define Th to be such that for (xi, yi) ∈ S, Th(xi) = yi = h(xi) (the latter equality holds by
definition of h) if yi ̸=⊥ and Th(xi) =⊥ if yi =⊥, and define Th(x) = h(x) for all x ∈ X \ SX .

Since h ∈ E(H[S], SX), we know that h(X \ S⊥) ̸= h′(X \ S⊥),∀h′ ̸= h ∈ V . And so,
H[T (X )] = H[T (X \ S⊥)] = {h}, which implies that T is an identifiable oracle for h.

By construction and using Lemma B.1, Th’s interaction with A results in S, satisfying the first item.
Moreover, since N = 0, SA,Th

0 = S. And so, |E(H[SA,Th

0 ], (SX)A,Th

0 )| = |E(H[S], SX)| ≥ 2.

Induction Step: Suppose the claim holds for all N ≤ n for some 0 ≤ n < Cost(H, ∅)− 1.

Now, suppose during the interaction, algorithmA has remaining budget N = n+1, and the obtained
queried examples history S is such that Cost(H[S], SX) ≥ N + 1 = n+ 2.

Our goal is to show the existence of h and Th that satisfy the two listed properties under these two
assumptions.

Define x′
j for index j ≥ 1 to be the next example A queries such that a binary label y′j is given (i.e

y′j ̸=⊥), as we recursively unroll the Cost expression, via the construction procedure below.

Algorithm 6 The construction procedure for (x′
j , y

′
j)

L← S, LX ← SX , j ← 1
repeat

Query x′
k ← f(L) using A

Labeler return y′k = argmaxy∈{−1,+1,⊥}

(
1(y ̸=⊥) + Cost(H[L ∪

{
(x′

k, y)
}
], LX ∪

{
x′
k

})
L← L ∪

{
(x′

k, y
′
k)
}

LX ← LX ∪
{
x′
k

}
until y′j ̸=⊥ or fterm(L) = TRUE

There are two cases:
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• If the final j satisfies y′j ̸=⊥, then after querying
{
(x′

i, y
′
i)
}
1:j

, the learner has a remaining
budget of N − 1 = n.

Next, we see that with each abstention, the Cost value is non-decreasing, as justified in the
first three steps:

We have that:

Cost(H[S], SX) ≤ max
y1∈{+1,−1,⊥}

1(y1 ̸=⊥) + Cost(H[S ∪
{
(x′

1, y1)
}
], SX ∪

{
x′
1

}
)

= 1(y′1 ̸=⊥) + Cost(H[S ∪
{
(x′

1, y
′
1)
}
], SX ∪

{
x′
1

}
)

= Cost(H[S ∪
{
(x′

1, y
′
1)
}
], SX ∪

{
x′
1

}
)

≤ ... (unroll from j − 1 to 1, using 1(y′i ̸=⊥) = 0 for i < j and ⋄)
≤ 1(y′j ̸=⊥) + Cost(H[S ∪

{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

)

= 1 + Cost(H[S ∪
{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

) (2)

(⋄) : We may use the non-decreasingness property to unroll, because from non-
decreasingness, for all l ≤ j, Cost(H[S ∪

{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
) =

Cost(H[S], SX) ≥ n + 2 ≥ 2. Therefore,
∣∣∣E(H[S ∪

{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
)
∣∣∣ ≥ 2,

and we have that:

Cost(H[S ∪
{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
) =

min
x

max
y

1(y ̸=⊥) + Cost(H[S ∪
{
(x′

i, y
′
i)
}
1:l
∪
{
(x, y)

}
], SX ∪

{
x′
i

}
1:l
∪ {x})

Continuing equation (2), we get that:

n ≤ Cost(H[S], SX)− 2 ≤ Cost(H[S ∪
{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

)− 1

By induction hypothesis, there exists h ∈ H[S ∪
{
(x′

i, y
′
i)
}
1:j

] and Th, such that when A
interacts with Th (after obtaining query history S ∪

{
(x′

i, y
′
i)
}
1:j

) and with label budget n,
the final version space is of cardinality at least two:

|E(H[SA,Th

N ], (SX)A,Th

N )| ≥ 2

In addition, when interacting with Th,A obtains history S ∪
{
(x′

i, y
′
i)
}j
i=1

in its first |S|+ j

rounds of interaction, which implies that it obtains example sequence S in its first |S| rounds
of interaction with Th. This proves the first property also holds and completes the induction.

• Now, we consider the case the final j satisfies y′j =⊥. This means that the other exit
condition must hold: fterm(L) = TRUE. And so, A terminates with all abstentions:
y′i =⊥ for i ∈ [j].

As above, we iteratively use the non-decreasingness of Cost with abstention y′i =⊥ to get
that:

n+ 2 ≤ Cost(H[S], SX) ≤ ... ≤ Cost(H[L], LX)

for the final stateH[L], LX .

From this, we have that |E(H[L], LX)| ≥ 2.

Pick some h ∈ E(H[L], LX). As in the prior Th construction, define Th so that: Th(x) = y
for all (x, y) ∈ L, and Th(x) = h(x) for all x ∈ X \ LX .

By construction and Lemma B.1, Th’s interaction with A induces L.

Since fterm(L) = TRUE, SA,T
N = L. And so, |E(H[SA,Th

N ], (SX)A,Th

N )| =
|E(H[L], LX)| ≥ 2, satisfying the second condition.

Finally, since A’s interaction with Th generates L, the first |S| steps also matches S. This
satisfies the first property.
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Proposition B.4. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ Cost(H, ∅)

Proof. From Prop. B.3, we know that for N = Cost(H, ∅)− 1, there exists some h ∈ H and T ∈ Th
such that |E(H[SA,T

N ], (SX)A,T
N )| ≥ 2.

We construct a labeling strategy T ′ that yields at least N + 1 binary labeled examples as follows:

1. Let T ′(x) = T (x) for x ∈ SA,T
N .

2. Let T ′(x) = h(x) for x ∈ X \ SA,T
N .

Note that T ′ is an identifiable oracle for h by construction.

And so, we have that:

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ CostA,T ′(H, ∅)

= N +CostA,T ′(H[SA,T ′

N ], (SX)A,T ′

N ) (⋄)

= Cost(H, ∅)− 1 + CostA,T ′(H[SA,T ′

N ], (SX)A,T ′

N )

≥ Cost(H, ∅)− 1 + 1 (⋄⋄)

Two steps in the above derivation are justified as follows:

(⋄) : Since T ′(x) = T (x) for x ∈ SA,T
N , by Lemma B.1, we must have that SA,T ′

N = SA,T
N , and

(SX)A,T ′

N = (SX)A,T
N .

In particular, note that this implies |E(H[SA,T ′

N ], (SX)A,T ′

N )| = |E(H[SA,T
N ], (SX)A,T

N )| ≥ 2.

(⋄⋄) : Since A is an exact learning algorithm, it does not terminate at the |SA,T ′

N |th step, because
|E(SA,T ′

N , (SX)A,T
N ))| ≥ 2.

And so,Awill make at least one more query on some x ∈ X\SA,T ′

N . Since T ′(x) ̸=⊥ for any x ∈ X\
SA,T ′

N , and T ′ is identifiable (yielding terminal cost 0), we have that CCA,T ′(H[SA,T ′

N ], (SX)A,T ′

N ) ≥
1.
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C PROOFS FOR SECTION 3

C.1 EXAMPLE-DEPENDENT COST SETTING: DEFINITIONS

In this section, we consider the following generalization of our learning setting that allows each
binary label to have varying cost dependent on the feature x:

• A cost function c : X → (0,+∞) is known to both the learner and the labeler ahead of
time.

• The learner is interested in learning a hypothesis h∗ in hypothesis class H ⊂ (X →
{+1,−1}) over a finite pool of unlabeled data X , collected by the learner. A cost function

• The labeler knows h∗, and responds using labeling strategy T with response T (x) ∈{
h∗(x),⊥

}
.

• The learner repeatedly interacts with the labeler adaptively, and makes label queries on
unqueried example x, and incurs cost c(x) if T (x) ̸=⊥, and cost 0 otherwise.

Note that the setting studied in the main text is a special case with cost function c ≡ 1. We aim to
analyze the following generalization of Algorithm 2:

Algorithm 7 E-VS Bisection Algorithm

Require: Data pool X , hypothesis classH
1: V ← H, S ← ∅ ▷ VS, queried dataset
2: while

∣∣E(V, SX)
∣∣ ≥ 2 and SX ̸= X do

3: Query: ▷ Maximal E-VS bisection point

x = argmin
x∈X\SX

max
y∈{−1,+1}

∣∣E(V, SX)[(x, y)]
∣∣

c(x)

4: Labeler T provides label response: y ∈ {−1,+1,⊥}
5: S ← S ∪

{
(x, y)

}
6: if y ̸=⊥ then
7: V ← V [(x, y)]
8: return h, the unique element in E(V, SX)

For the analysis below, we slightly abuse notation and let c(x, y) denote to c(x)1(y ̸=⊥), the cost of
querying example x and receiving label feedback y.
Definition C.1 (Generalization of Definition 3.1). GivenH,X and cost c, define the global identifi-
cation cost of version space V ⊂ H and example set S as

GIC(V, SX) = inf{t ∈ R : ∀T : X \ SX → {−1,+1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Definition C.2. Define ΓV,SX
: N→ {TRUE,FALSE} as:

ΓV,SX
(t) =

∀T : X \ SX → {−1,+1,⊥} ,∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1


Note that ΓV,SX

is monotonically increasing: for t1, t2 ∈ N, if t1 < t2, then ΓV,SX
(t1)→ ΓV,SX

(t2).
Also, with this notation, GIC(V, SX) = inf

{
t : ΓV,SX

(t) = TRUE
}

.

We have the following definition of all possible cumulative cost values that can appear in the learning
process.

Definition C.3. Define C =
{∑

x∈S c(x) : S ⊂ X
}

.
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Note that C is a finite set since X is finite.

The following lemma implies that the set
{
t : ΓV,SX

(t) = TRUE
}

is a left-closed interval.

Lemma C.4. If {tn} ↓ t and ΓV,SX
(tn) = TRUE for all n, then ΓV,SX

(t) = TRUE.

Proof. Since {tn} ↓ t and C is a finite set, there exists n large enough such that for any z,

z ∈ C ∧ z ≤ tn =⇒ z ≤ t.

Importantly, since for any T : X \ SX → {−1,+1,⊥} ,Σ ⊂ X \ SX ,
∑

x∈Σ c(x, T (x)) ∈ C, we
have: ∑

x∈Σ

c(x, T (x)) ≤ tn =⇒
∑
x∈Σ

c(x, T (x)) ≤ t

and therefore, for any T : X \ SX → {−1,+1,⊥}, there exists Σ ⊂ X \ SX such that∑
x∈Σ c(x, T (x)) ≤ tn (and thus

∑
x∈Σ c(x, T (x)) ≤ t) and |E(V [T (Σ)], SX ∪ Σ)| ≤ 1, proving

that ΓV,SX
(t) = TRUE.

Remark C.5. The above lemma implies that in the definition of GIC, the infimum is achieved in the
set
{
t : ΓV,SX

(t) = TRUE
}

. In other words,

GIC(V, SX) = min
{
t : ΓV,SX

(t) = TRUE
}
.

And therefore,

GIC(V, SX) ≤ N

⇐⇒ ΓV,SX
(N) = TRUE

⇐⇒ ∀T : X \ SX → {−1,+1,⊥} ,∃Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ N ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1

and

GIC(V, SX) > N−

⇐⇒ ΓV,SX
(N−) = FALSE

⇐⇒ ∃T : X \ SX → {−1,+1,⊥} ,∀Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ N− → |E(V [T (Σ)], SX ∪ Σ)| ≥ 2

C.1.1 LEMMAS

We prove several lemmas on the properties of E-VS and Cost.

Lemma C.6. For any V ⊂ H and SX ⊂ X ,

E(V, SX ∪ {x∗}) ⊆ E(V, SX)

Proof. It suffices to prove that h ∈ E(V, SX ∪ {x∗})⇒ h ∈ E(V, SX).

To see this, let h ∈ E(V, SX ∪{x∗}). Then, ∀h′ ∈ V \ {h} , h((X \SX) \ {x∗})) ̸= h′((X \SX) \
{x∗}))⇒ ∀h′ ∈ V \ {h} , h(X \ SX) ̸= h′(X \ SX). This implies that h ∈ E(V, SX).

Lemma C.7. We have the following:

1. For any x ∈ X \ SX and y ∈ {−1, 1},

E(V [(x, y)], SX ∪ {x}) = E(V, SX)[(x, y)].

2. For any set of binary-labeled examples W ⊂ (X × {−1, 1}),

E(V [W ], SX ∪W ) = E(V, SX)[W ].
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Proof. 1. We have the following equivalence:

h ∈ E(V [(x, y)], SX ∪ {x})
⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ (SX ∪ {x})) ̸= h(X \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h(x) = y ∧ h ∈ E(V, SX)

⇐⇒ h ∈ E(V, SX)[(x, y)]

where the first equality uses the definition of effective version space; the second equality uses
the fact that for h, h′ ∈ V [(x, y)], h′(X \ (SX ∪ {x})) ̸= h(X \ (SX ∪ {x})) is equivalent
to h′(X \ SX) ̸= h(X \ SX); the third equality follows from that for h such that h(x) = y,
for all h′ ∈ V such that h′(x) ̸= y, h′(x) ̸= h(x) and therefore h′(X \ SX) ̸= h(X \ SX)
holds trivially; the fourth equality uses the definition of effective version space; the last
equality uses the definition of version space with respect to labeled examples.

2. The claim follows by induction on |W |:

Base case. If |W | = 1, the claim follows from the previous item.

Inductive case. Assume that E(V [W ′], SX ∪W ′) = E(V, SX)[W ′] holds for any W ′

such that |W ′| < n; Now consider any W of size n; W can be represented as
{
(x, y)

}
∪W ′

for some (x, y) ∈ X × {−1, 1} and |W ′| = n− 1. We have:

E(V [W ], SX ∪W ) =E(V [W ′][(x, y)], SX ∪W ′ ∪ {x}) (Definition of version space)

=E(V [W ′], SX ∪W ′)[(x, y)] (item 1)

=E(V, SX)[W ′][(x, y)] (Inductive hypothesis)
=E(V, SX)[W ] (Definition of version space)

This completes the induction.

Lemma C.8. E(V, SX) ̸= ∅ iff Cost(V, SX) ≥ 0.

Proof. (⇐) From the first terminal condition in the definition of Cost, we know that E(V, SX) =
∅ =⇒ Cost(V, SX) = −∞ < 0. So Cost(V, SX) ≥ 0 =⇒ E(V, SX) ̸= ∅.
(⇒) By backward induction on |SX |.

Base case. If SX = X , |E(V, SX)| = 0 or 1. If |E(V, SX)| = 1, we have by the base case of the
definition of Cost, Cost(V, SX) = 0. Therefore, E(V, SX) ̸= ∅ =⇒ Cost(V, SX) ≥ 0.

Inductive case. Suppose E(V, SX) ̸= ∅ =⇒ Cost(V, SX) ≥ 0 holds for any dataset SX of size
≥ j + 1. Consider SX of size j and V such that E(V, SX) ̸= ∅:

• If |E(V, SX)| = 1, then Cost(V, SX) = 0 ≥ 0.

• Otherwise, |E(V, SX)| ≥ 2; take h1 ∈ E(V, SX); we have

Cost(V, SX) ≥ min
x

(
Cost(V [(x, h1(x))], SX ∪ {x}) + 1)

)
By Lemma C.7, h1 ∈ E(V [(x, h1(x))], SX ∪ {x}), by inductive hypothesis,
Cost(V [(x, h1(x))], SX ∪ {x}) ≥ 0, and therefore Cost(V, SX) ≥ 1 ≥ 0.

In summary, Cost(V, SX) ≥ 0.

This completes the induction.
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Taking the contrapositive of the above lemma we obtain the following corollary.
Corollary C.9. Cost(V, SX) = −∞ iff |E(V, SX)| = 0.
Lemma C.10. |E(V, SX)| ≥ 2 iff Cost(V, SX) ≥ 1.

Proof. (⇐) From the first two terminal conditions in the definition of Cost, we know that if
|E(V, SX)| ≤ 1⇒ Cost(V, SX) ≤ 0 and so, Cost(V, SX) ≥ 1⇒ |E(V, SX)| ≥ 2.

(⇒) Let h1 ∈ E(V, SX), consider labeling strategy T (x) = h1(x) for all x ∈ X \ S (i.e. never
abstains).

Following the definition of Cost(V, SX), we have

Cost(V, SX) ≥ min
x

(
Cost(V [(x, h1(x))], SX ∪ {x}) + 1)

)
Also, note that by Lemma C.7,

E(V [(x, h1(x))], SX ∪ {x}) = E(V, SX)[(x, h1(x))] ∋ h1

Therefore, by Lemma C.8, for every x, Cost(V [(x, h1(x))], SX∪{x}) ≥ 0, and thus Cost(V, SX) ≥
1.

Because Cost(V, SX) can have three possibilities: Cost(V, SX) =


−∞
= 0

≥ 1

, and E(V, SX) having

three possibilities: |E(V, SX)|


= 0

= 1

≥ 2

, the above two lemmas yield the following simple corollary.

Corollary C.11. Cost(V, SX) = 0⇔ |E(V, SX)| = 1.
Proposition C.12. For any V , |E(V,X )| ≤ 1.

Proof. We consider three cases:

1. If V = ∅, then E(V,X ) = ∅

2. If |V | = 1, then E(V,X ) = V

3. If |V | ≥ 2, then E(V,X ) = ∅.
This is because for any h ∈ V , consider some h′ ∈ V \ {h}. h′ trivially agrees with h on
X \ X = ∅. And so, h(∅) = h′(∅)⇒ h ̸∈ E(V,X ).

In summary, in all three cases, |E(V,X )| ≤ 1.

Lemma C.13. Algorithm 2 maintains the invariant that GIC(V, SX) ≤ GIC(H, ∅).

Proof. It suffices to show that GIC(V, SX) is nonincreasing throughout. In other words, after
obtaining queried sample (x, T (x)) during an iteration of the algorithm,

GIC(V [T (x)], SX ∪ {x}) ≤ GIC(V, SX) (3)

Denote by t = GIC(V, SX). It therefore suffices to show that, for any oracle T ′ : X \ (SX ∪{x})→
{−1,+1,⊥}, there exists Σ′ ⊂ X \ (SX ∪ {x}) such that:∑

x∈Σ′

c(x, T ′(x)) ≤ t ∧
∣∣E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

∣∣ ≤ 1. (4)

Below we construct such a Σ′ for each T ′.

First, define oracle T̃ : X \ SX → {−1,+1,⊥} as:

T̃ (z) =

{
T (x) z = x

T ′(z) z ̸= x
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By the definition of GIC(V, SX), for this T̃ , there exists Σ̃ such that:∑
x∈Σ̃

c(x, T̃ (x)) ≤ t ∧
∣∣∣E(V [T̃ (Σ̃)], SX ∪ Σ̃)

∣∣∣ ≤ 1. (5)

We now construct Σ′ by considering two cases of Σ̃ respectively:

1. If x ∈ Σ̃, we construct Σ′ := Σ̃\{x}. Note that
∑

x∈Σ′ c(x, T ′(x)) ≤
∑

x∈Σ̃ c(x, T̃ (x)) ≤
t, and by the definition of T̃ ,

E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

=E(V [T̃ (x)][T̃ (Σ̃ \ {x})], SX ∪ {x} ∪ (Σ̃ \ {x}))
=E(V [T̃ (Σ̃)], SX ∪ Σ̃)

and therefore has size ≤ 1.

2. If x /∈ Σ̃, we construct Σ′ = Σ̃. Note that
∑

x∈Σ′ c(x, T ′(x)) =
∑

x∈Σ̃ c(x, T̃ (x)) ≤ t,
and:

E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

=E(V [T̃ (Σ̃)][T (x)], SX ∪ Σ̃ ∪ {x}) (since T ′(Σ′) = T̃ (Σ̃))

⊆E(V [T̃ (Σ̃)], SX ∪ Σ̃) (⋄)

and therefore has size ≤ 1. Here, for the last inequality (⋄), we use Lemma C.7 (for when
T (x) ∈ {+1,−1}) and Lemma C.6 (for when T (x) =⊥) which implies that for any set
F ⊂ H and unlabeled examples U , E(F [T (x)], U ∪ {x}) ⊆ E(F , U).

In summary, there always exists Σ′ that satisfies equation (4), and therefore equation (3) holds for
every iteration of Algorithm 2. This concludes the proof of the lemma.

C.2 MAIN RESULTS

In this section, we prove the generalized version of results in Section 3, in which examples may incur
differing costs.

Lemma C.14. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:

max
y∈{−1,+1}

(
|E(V [(x, y)], SX ∪ {x}))| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Proof. Recall from Lemma C.7 that we have: E(V [(x, y)], SX ∪ {x})) = E(V, SX)[(x, y)], it
suffices to prove that there exists x ∈ X \ SX such that

max
y∈{−1,+1}

(
|E(V, SX)[(x, y)])| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Also, note that |E(V, SX)| = |E(V, SX)[(x,−1)]| + |E(V, SX)[(x,+1)]|, as E(V, SX)[(x,−1)]
and E(V, SX)[(x,+1)] form a disjoint partition of E(V, SX).

And so, equivalently, it suffices to show that there exists x ∈ X \ SX such that:

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
≥ c(x)

|E(V, SX)| − 1

GIC(V, SX)

So, assume towards contradiction that the statement above does not hold. Then, we have that
∀x ∈ X \ SX :

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
< c(x)

|E(V, SX)| − 1

GIC(V, SX)
(6)
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Define oracle T0 : X \ SX → {−1,+1,⊥} such that,

T0(x) = argmax
y∈{−1,1}

|E(V, SX)[(x, y)]|

With this, for every subset Σ ⊆ X \ SX such that
∑

x∈Σ c(x, T0(x)) ≤ GIC(V, SX), we have:

|E(V [T0(Σ)], SX ∪ Σ)| = |E(V, SX)[T0(Σ)]| (Lemma C.7, item 2)
= |E(V, SX)| − |{h ∈ E(V, SX) : ∃x ∈ Σ, h(x) ̸= T0(x)}|

(Set algebra)

≥ |E(V, SX)| −
∑
x∈Σ

|E(V, SX)[(x,¬T0(x))]| (Union bound)

= |E(V, SX)| −
∑
x∈Σ

min
y∈{+1,−1}

|E(V, SX)[(x, y)]|

(by definition of T0(x))

> |E(V, SX)| −
∑
x∈Σ

c(x, T0(x))
|E(V, SX)| − 1

GIC(V, SX)

(by Equation (6) and c(x) = c(x, T0(x)) since T0(x) ∈ {−1,+1})
≥ |E(V, SX)| − (|E(V, SX)| − 1) = 1,

In summary, the constructed oracle T0 is such that for any Σ ⊆ X \SX such that
∑

x∈Σ c(x, T0(x)) ≤
GIC(V, SX), |E(V [T0(Σ)], SX ∪ Σ)| > 1. Therefore, ΓV,SX

(GIC(V, SX)) = FALSE, which
contradicts the definition of GIC(V, SX).

Lemma C.15. For any V ⊂ H and SX ⊂ X ,

GIC(V, SX) ≤ Cost(V, SX)

Proof. Let ϵ > 0 and k = GIC(V, SX)− ϵ. By the definition of GIC, ΓV,SX
(k) = FALSE. That is:

∃T : X \ SX → {−1,+1,⊥} ,∀Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ k ⇒
∣∣E(V [T (Σ)], SX ∪ Σ)

∣∣ ≥ 2

(7)
Let T be a labeling oracle that satisfies the properties in equation (7). Let U be the output of executing
the following algorithm that simulates the interaction between a specific label query strategy and the
oracle T before a stopping criterion is reached:

Algorithm 8 Simulation process on letting T interacting with a targeted label query strategy

U ← ∅
while U ̸= X \ SX and

∑
x∈U c(x, T (x)) ≤ k do

Choose example

x = argmin
x∈X\(SX∪U)

max
y∈{−1,+1,⊥}

c(x, y) + Cost
(
V [T (U) ∪

{
(x, y)

}
], SX ∪ U ∪ {x}

)
. (8)

U ← U ∪ {x}
return U

We first claim that
∑

x∈U c(x, T (x)) > k. Suppose not, we have
∑

x∈U c(x, T (x)) ≤ k. By the
stopping criterion of Algorithm 8, we must have that U = X \ SX . In this case, by equation (7),
|E(V [T (U)], SX ∪ U)| = |E(V [T (U)],X )| ≥ 2. However, this contradicts Proposition C.12 that
for any V , |E(V [T (U)],X )| ≤ 1. Therefore,

∑
x∈U c(x, T (x)) > k.

Denote by x1, . . . , xm the sequence of m examples queried by Algorithm 8; with this notation,
U = {x1, . . . , xm}. Also, for i ∈ {0, 1, . . . ,m}, denote by Ui := {x1, . . . , xi} the set of first i
examples queried, with the convention that U0 := ∅.
We make two observations:
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• For any i ∈ {0, 1, . . . ,m− 1}, by the loop condition,
∑

x∈Ui
c(x, T (x)) ≤ k, therefore

by equation (7),
∣∣E(V [T (Ui)], SX ∪ Ui)

∣∣ ≥ 2, and therefore, by the definition of Cost,

Cost(V [T (Ui)], SX∪Ui) = min
x∈X\(SX∪Ui)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (Ui)][(x, y)], SX ∪ Ui ∪ {x})

)
(9)

• T (xm) ̸=⊥. This is because
∑m−1

i=1 c(xi, T (xi)) ≤ k <
∑m

i=1 c(xi, T (xi)), implying that
c(xm, T (xm)) > 0. Furthermore, by our notation that c(x, y) = c(x)1(y ̸=⊥),

m−1∑
i=1

c(xi, T (xi)) + c(xm,−1) =
m−1∑
i=1

c(xi, T (xi)) + c(xm,+1) > k.

by equation (7), we also have
∣∣E(V [T (U)], SX ∪ U)

∣∣ ≥ 2 and by Lemma C.10,
Cost(V [T (U)], SX ∪ U) ≥ 1.

Based on these observations, we have:

Cost(V, SX) = min
x∈X\SX

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [(x, y)], SX ∪ {x})

)
(Eq. 9 with i = 0)

= max
y∈{−1,+1,⊥}

(
c(x1, y) + Cost(V [(x1, y)], SX ∪ {x1})

)
(Eq. 8)

≥ c(x1, T (x1)) + Cost(V [T (U1)]), SX ∪ U1)

= c(x1, T (x1)) + min
x∈X\(SX∪U1)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (U1)][(x, y)], SX ∪ U1 ∪ {x})

)
(Eq. 9 with i = 1)

≥ ...

≥
m−1∑
i=1

c(xi, T (xi)) + Cost(V [T (Um−1)], SX ∪ Um−1)

(Repeated application of Eqs. 9 and 8)

=

m−1∑
i=1

c(xi, T (xi)) + min
x∈X\(SX∪U1)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (Um−1)][(x, y)], SX ∪ Um−1 ∪ {x})

)
≥

m−1∑
i=1

c(xi, T (xi)) + max
y∈{−1,+1}

(
c(xm, y) + Cost(V [T (Um−1)][(xm, y)], SX ∪ Um−1 ∪ {xm})

)
(Eq. 8 and restricting the choice of y)

≥
m∑
i=1

c(xi, T (xi)) > k

Here, in the second to last inequality, we use the following observations: first, for any c(xm,−1) =
c(xm,+1) = c(xm, T (xm)); second, |E(V [T (Um−1), SX ∪ Um−1])| ≥ 2, which implies that there
is at least one y ∈ {−1,+1} such that |E(V [T (Um−1)[(x, y)], SX ∪ Um−1 ∪ {x}])| ≥ 1 (recall
Lemma C.7), and therefore

Cost(V [T (Um−1)[(x, y)], SX ∪ Um−1 ∪ {x}]) ≥ 0.

In summary, for any ϵ > 0, we have shown that Cost(V, SX) ≥ GIC(V, SX) − ϵ. The lemma
statement follows by letting ϵ ↓ 0.

Theorem C.16. If Algorithm 2 interacts with a labeling oracle T , then it incurs total query cost
at most GIC(H, ∅) ln |H|+ 1. Furthermore, if Algorithm 2 interacts with an identifiable oracle T
consistent with some h∗ ∈ H, then it identifies h∗.

Proof. First, we show that Algorithm 2 terminates and correctly identifies h∗ when interacting with
an identifiable oracle of h∗. Its termination can be seen by the fact that the size of SX is increasing
by 1 for each iteration and SX ̸= X is part of the stopping criterion.

We now show that when it returns, E(V, SX) = {h∗}. This can be seen by:
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• As T is an identifiable oracle that is consistent with h∗, the algorithm maintains the invariant
that h∗ ∈ E(V, SX).

This is because if at some point h∗ ̸∈ E(V, SX), then exists some h′ ̸= h∗ in V =
H[T (SX)] such that h′(X \ SX) = h∗(X \ SX). Then, we combine with that h′ ∈
H[T (SX)] to get that h′ ∈ H[T (SX)∪h∗(X \SX)] ⊆ H[T (SX)∪T (X \SX)] = H[T (X )],
which is in contradiction with that T is an identifiable oracle.

• We claim that when it returns, |E(V, SX)| = 1. Since the E-VS always contains h∗, we
must have |E(V, SX)| ≥ 1.

And so, if it returns, we have the condition of the while loop being false, i.e., we either
have |E(V, SX)| < 2 =⇒ |E(V, SX)| = 1, or SX = X =⇒ |E(V, SX)| = 1 thanks to
Proposition C.12.

Next we bound the query cost complexity of Algorithm 2, when interacting with any labeling oracle.

Denote Vi and Si as the value of V and S at the i-th iteration, and denote (xi, yi) by the example
(x, y) obtained at the i-th iteration. We denote (Si)X as the unlabeled part of Si.

Therefore, Vi+1 = V [(xi, yi)] and Si+1 = Si ∪
{
(xi, yi)

}
.

We claim that

(
∣∣E(Vi+1, (Si+1)X)

∣∣− 1) ≤ (
∣∣E(Vi, (Si)X)

∣∣− 1) · exp
(
− c(xi, yi)

GIC(H, ∅)

)
. (10)

To see this, we consider two cases:

1. If yi ∈ {−1,+1}, then applying Lemma C.14 with V = Vi, SX = (Si)X , x = xi, we have

(|E(Vi+1, (Si+1)X)| − 1) ≤ max
y∈{−1,+1}

(∣∣E(Vi[(xi, y)], (Si+1)X)
∣∣− 1

)
≤(|E(Vi, (Si)X)| − 1)

(
1− c(xi)

GIC(Vi, (Si)X)

)
(Lemma C.14 since yi ∈ {−1,+1})

≤(|E(Vi, (Si)X)| − 1)

(
1− c(xi)

GIC(H, ∅)

)
(by Lemma C.13, GIC(Vi, (Si)X) ≤ GIC(H, ∅))

≤(
∣∣E(Vi, (Si)X)

∣∣− 1) · exp
(
− c(xi)

GIC(H, ∅)

)
.

(since 1− x ≤ e−x)

2. If yi =⊥, c(xi, yi) = 0. Therefore, to show Equation (10), it suffices to show that
E(Vi+1, (Si+1)X) ⊆ E(Vi, (Si)X). This follows from Lemma C.6.

To summarize, equation (10) holds for each iteration i.

Consider the last iteration i0 before the termination condition is reached; note that by the termination
criterion, the penultimate E-VS is such that |E(Vi0 , (Si0)X)| ≥ 2. We now upper bound the total
cost up to iteration i0 − 1. By repeatedly using equation (10) for i = 1, . . . , i0 − 1, we have:

1 ≤
∣∣E(Vi0 , (Si0)X)

∣∣− 1 ≤
∣∣E(H, ∅)

∣∣ · exp(−∑i0−1
i=1 c(xi, yi)

GIC(H, ∅)

)
Therefore,

∑i0−1
i=1 c(xi, yi) ≤ GIC(H, ∅) ln |H| (since E(H, ∅) = H) and:

i0∑
i=1

c(xi, yi) = c(xi0 , yi0) +

i0−1∑
i=1

c(xi, yi) ≤ GIC(H, ∅) ln |H|+ 1.
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D PROOFS FOR SUBSECTIONS 3.1 AND 3.2

D.1 COMPARING VS VERSUS E-VS

Consider the case when H is linear: H =
{
hw(x) = sign(wTx)|w = [w′, 1], w′ ∈ [0, 1]d

}
. We

observe that, for any set of points X , X divide polytope W =
{
w = [w′, 1] : w′ ∈ [0, 1]d

}
into

clusters, where every point in the cluster has the same labeling of X . Thus, without loss of generality,
we can treat each cluster formed by X as an element ofH, andH comprises of all the clusters that
lie in polytope W . In this setting, the (conventional) version space is a single convex polytope, which
we may access by sampling using any polytope sampler. The structural lemma below illustrates that,
by contrast, the E-VS can be a more complicated object to access.

Proposition D.1. There exists an instance space X ⊂ Rd and query responses S such that the
resultant E-VS is a union of eΩ(d) disjoint polytopes.

Proof. Defining the Instance Space: We construct aX that allows us to easily reason about the E-VS.
Consider any 3n positive reals ajk for j ∈ [n], k ∈ [3] such that 0 < a11 < a12 < a13 < ... < an3 < 1.
Define xi

jk = [−ei, ajk] for i ∈ [d]. As a concrete example, x1
23 = [−1, 0, ..., a32].

Define the instance space to be X =
{
xi
jk|i ∈ [d], j ∈ [n], k ∈ [3]

}
. With X defined, we see

the clusters of W formed by X (referred to as cells subsequently) consists of: ×d
i=1I , where

I =
{
[0, a11], [a

1
1, a

1
2], [a

1
2, a

1
3], ..., [a

n
3 , 1]

}
.

Now, define the interaction history S =
{
(xi

jk,⊥)|i ∈ [d], j ∈ [n], k = 2
}

. Note that then SX ={
xi
jk|i ∈ [d], j ∈ [n], k = 2

}
.

Characterizing the E-VS: We first claim that for any cell with one of its faces a subset of a hyperplane
in SX cannot be in the E-VS. Specifically, if there ∃i ∈ [d], j ∈ [n] such that wi ∈ [aj1, a

j
3], then the

cell w belongs to is not in the E-VS.

To see this, WLOG wi ∈ [aj1, a
j
2]; the case of wi ∈ [aj2, a

j
2] can be analyzed analogously.

Now, construct w̃ = [w1, ..., wi−1, w̃i, wi+1, ...1], for some w̃i ∈ [aj2, a
j
3]. Note that by construction,

w′ does not lie in the same cell as w. Then, we see that sign(w′Tx) = sign(wTx), ∀x ∈ X \
{
xi
j2

}
.

And so, since X \ SX ⊆ X \
{
xi
j2

}
, we have that w(X \ SX) = w′(X \ SX)⇒ w ̸∈ E(V, SX).

This means that only the set of disjoint cells ×d
i=1I

′, where I ′ =
{
[0, a11], [a

1
3, a

2
1], . . . , [a

n
3 , 1]

}
, can

be in the E-VS. Next, we will argue that the E-VS is all of ×d
i=1I

′.

Consider a classifier corresponding to some cell c ∈ ×d
i=1I

′. Consider any other cell classifier
corresponding to cell c′ ∈ ×d

i=1I . Since c ̸= c′, there must be at least one dimension, WLOG i, such
that c and c′ belong to different sub-intervals, when projected onto coordinate i.

We know that along dimension i, c’s sub-interval is either of the form [0, a11], [a
j
3, a

j+1
1 ] for some j,

or [an3 , 1].

We see that in the first case, xi
11 ∈ X \ SX must separate c and c′, since c(x) = +1 ̸= −1 = c′(x).

Analogously, in the second case, either xi
j3 or xi

(j+1)1 must separate c and c′ (with both such points
are in X \ SX ). Finally, in the last case, xi

n3 ∈ X \ SX must separate c and c′.

This shows that all of ×d
i=1I

′ is in the E-VS. And so, since I ′ comprises of n+ 1 disjoint intervals,
there are in total (n+ 1)d number of disjoint cells, corresponding to distinct classifiers.

D.2 E-VS MEMBERSHIP CHECK

The key idea behind the membership check h ∈ E(V, SX) (lines 2 to 4 in Algorithm 3) is that
we want to find a hypothesis ĥ in V , different from h, that agrees on the rest of the unqueried
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Figure 2: Geometric view of the linear hypothesis class in dual space (as in Tong & Koller (2001)),
with examples as hyperplanes and hypotheses as cells, illustrates: (i) Abstention on example x1

(hyperplane in black) renders hypotheses wi1 and wi2 (cells of the same color) indistinguishable from
each other. In this way, abstentions can carve up the VS (single polytope) into multiple polytopes, as
in Proposition 3.5. (ii) In the approximate identifiability game (Subsection 4.1), if x1 is not in pool
Xm, then it induces clusters of merged {wi1, wi2} for i ∈ [4]. The goal then is to only identify up to
clusters (e.g. the blue cluster of {w21, w22}), instead of the exact hypothesis (e.g. cell w21).

samples. If we succeed in finding this ĥ, then this means that even if all of the remaining unqueried
samples X \ SX is labeled, h and ĥ cannot be distinguished from each other. This implies that h is
non-identifiable and does not belong to the E-VS.
Proposition D.2. Given some h ∈ V and access to a C-ERM oracle, lines 2 to 4 in Algorithm 3
verifies whether h ∈ E(V, SX), with one call to the oracle.

Proof. Firstly, note that by definition, ∀h, h′ ∈ H, h ̸= h′ ⇒ h(X ) ̸= h′(X ).
Recall that in Algorithm 3, S⊥ denotes the set of examples in SX on which the labeler abstains. Now,
we rewrite the definition of h ∈ V not being in the E-VS:

h ̸∈ E(V, SX)

⇔∃h′ ∈ V \ {h} , h′(X \ SX) = h(X \ SX)

⇔∃h′, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(X ) ̸= h(X ) ∧ h′(X \ SX) = h(X \ SX)

⇔∃h′, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(S⊥) ̸= h(S⊥) ∧ h′(X \ SX) = h(X \ SX)

⇔∃h′,∃x⊥ ∈ S⊥, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(x⊥) ̸= h(x⊥) ∧ h′(X \ SX) = h(X \ SX)

And so, we may check for the existence of such a h′ with one C-ERM call onH, given some h ∈ V ,
using the following program:

min
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ X \ S⊥

(11)

This may be emulated by defining data Z1 =
{
(x,−h(x))

}
x∈S⊥ , Z2 =

{
(x, h(x))

}
x∈X\S⊥ , and

calling C-ERM on Z1, Z2 to compute ĥ ∈ argmin
{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

. It can
be now seen that: if C-ERM outputs ĥ ̸= h, then h ̸∈ E(V, SX); otherwise, ĥ = h and therefore
h ∈ E(V, SX).

D.3 CONTRASTING E-VS BISECTION ALGORITHM WITH VS BISECTION

D.3.1 PROOF OF THEOREM 3.8

In this section we prove Theorem 3.8, showing an exponential gap between our new E-VS bisection
algorithm and the conventional VS bisection algorithm.

Setup: Our example will revolve around a hybrid hypothesis class of thresholds and inter-
vals. Let n ≥ 8. Our instance space X = X ∪ X2, where X1 =

{
1
2n , . . . ,

2n−3
2n

}
and

X2 =
{
1 + 3

2n , . . . , 1 +
2n−1
2n

}
. Note that |X | = 2(n− 1).
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Let fi : (−∞, 1]→ {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i− 1)/n, i/n]) for
i ∈ [n− 1].

Let f ′
i : (1,+∞)→ {+1,−1} denote thresholds, f ′

i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].

DefineH =
⋃n−1

i=1

{
hfi,f ′

i
, hfi,f ′

i+1

}
, where hf,f ′(x) =

{
f(x), x ≤ 1

f ′(x), x > 1
.

D.3.2 ALGORITHM ANALYSIS

Under the paired interval-threshold setup, we compare the algorithms based on the number of samples
queried before termination.

In the case of the VS-bisection algorithm, it queries the point that maximally bisects the VS each
time. Accordingly, the algorithm terminates when there is no point that can split the VS. This arises
either because the set of unqueried points is non-empty but the VS agrees on all their labels, or the
set of unqueried points is empty.

While for the E-VS bisection algorithm, it terminates either when the E-VS is of cardinality zero or
of one.

Lemma D.3 (E-VS bisection algorithm query complexity). In the paired interval-threshold hypothesis
learning setting, the E-VS algorithm incurs O(log n) sample complexity against any labeling oracle.

Proof. Define ρ(E(V, SX), x) = miny∈{+1,−1} |E(V, SX)[x, y]|.

1. Let U2 ⊆ X2 denote the unlabeled part of X2 such that U2 ={
x : ρ(E(V, SX), x) > 0, x ∈ X2

}
(i.e. x ∈ X2 is in the disagreement region formed by

the current E-VS).

Definition D.4. A point x ∈ U2 is balanced if there exists a three-point segments with
x2
i +2/n = x2

i+1+1/n = x2
i+2, x2

j+2/n = x2
j+1+1/n = x2

j+2 such that x2
i+2 < x < x2

j ,
where points x2

i , x
2
i+1, x

2
i+2 ∈ U2, and x2

j , x
2
j+1, x

2
j+2 ∈ U2.

We have that, if:

a) x is a balanced point

b) all queried points thus far have been in X2, then:

ρ(E(V, SX), x) ≥ 2 = max
x′∈X1

ρ(E(V, SX), x′)

This follows because if no points have been queried in X1, x2
i , x

2
i+1, x

2
i+2 ∈ U2 implies

that hfi+1,f ′
i+1

and hfi+1,f ′
i+2
∈ E(V, SX). Similarly, x2

j , x
2
j+1, x

2
j+2 ∈ U2 implies that

hfj+1,f ′
j+1

and hfj+1,f ′
j+2
∈ E(V, SX).

Since x2
i+2 < x < x2

j , the two pairs of models disagree on x (in the second coordinate).

And so, if there is some point x ∈ U2 that is balanced, and all points queried thus far
have been in X2, then the E-VS algorithm will query a point in U2 (we assume that in a
tie-breaker, the E-VS algorithm will select the point in X2).

2. From Lemma D.5, we have that the E-VS algorithm will query some point in U2 ⊆ X2 so
long as |U2| ≥ 7.

The number of binary labeled samples needed to reach |U2| < 7 is at most log n. This
because abstention decreases |U2| by 1, while a binary label removes ⌊|U2|/2⌋ points from
U2.

And so, since |U2| = n, there can be at most log n binary labeled examples before |U2| < 7.

3. It remains to count the number of binary label samples needed when |U2| < 7 before the
interaction finishes.
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We note that if |U2| < 7, then the size of the |E(V, SX)| ≤ 2 · 6 + 2 (since it always holds
that |E(V, SX)| ≤ 2|U2|+ 2).

As each binary label point removes at least one hypothesis from the E-VS, at most 11 more
binary label points are needed.

In summary, we have that the E-VS algorithm incurs O(log n) samples.

Below are the deferred lemmas:

Lemma D.5. If |U2| ≥ 7, then the E-VS algorithm will query some point x ∈ U2 ⊆ X2.

Proof. We will show the following properties about U t
2, which is U2 at the tth step.

If |U t
2| ≥ 7, then:

i) U t
2 is of the form {a1 : b1} ∪ {b2 : a2}, where b1 ≤ b2 ( {a1 : b1} is used to abbreviate{

a1, a1 + 1/n, ..., b1 − 1/n, b1
}

).

ii) Some x ∈ {b1, b2} satisfies the following: ||
{
x′ ∈ U t

2 : x′ < x
}
| − |

{
x′ ∈ U t

2 : x′ > x
}
|| ≤ 1.

iii) No points x1, ..., xt−1 will have been queried from X1.

iv) E-VS will query some point x ∈ U t
2 at step t.

We will see that, at step t, proving property i), ii), iii) proves iv), which is the desired result.

We prove by induction on j, the number of queries, that i), ii), iii) and thus iv) holds.

Base Case: When j = 0, no points have been queried from X1. And so, properties i)-iii) are true with
U2 =

{
1 + 3/2n : 1 + (2n− 1)/2n

}
. Since n ≥ 8, |U2| = |X2| = 7, and so Lemma D.6 applies,

meaning iv) is satisfied.

Induction Step: Suppose that if |U j
2 | ≥ 7, properties i)-iv) holds for time step j = 0, ..., k − 1.

Now consider time step j = k. Suppose |Uk
2 | ≥ 7.

This means that, at time step k−1, |Uk−1
2 | ≥ |Uk

2 | ≥ 7 (since the disagreement region only decreases
in size).

From induction hypothesis, we know Uk−1
2 satisfies i)-iv). Let Uk−1

2 =
{
a′1 : b′1

}
∪
{
b′2 : a′2

}
.

Since iv) holds at time j = k − 1 (xk−1 ∈ X2), combined with that iii) applies at time k − 1
(x1, ..., xk−2 ∈ X2) implies property iii) holds at time j = k (x1, ..., xk−1 ∈ X2)).

Since iv) is satisfied at time step k − 1, we may WLOG xk−1 = b′1. There are two cases to consider:

• If a label is given for xk−1, then we know that Uk
2 is either

{
a′1 : b′1 − 1/n

}
or {b2 : a2},

in either case, both i) and ii) are satisfied at step j = k.

• If an abstention is given for xk−1, then we know that Uk
2 =

{
a′1 : b′1 − 1/n

}
∪
{
b′2 : a′2

}
,

which proves i).

Since xk−1 = b′1, we have that ||
{
a′1 : b′1

}
| − |

{
b′2 : a′2

}
|| ≤ 1.

If |
{
b′2 : a′2

}
| ≥ |

{
a′1 : b′1

}
|, picking b′2 satisfies the property, else picking b′1 − 1/n

satisfies the property. And so, property ii) for Uk
2 holds.

Finally, since iii), i) and ii) holds for Uk
2 , using Lemma D.6, we have that xk ∈ X2, which means that

iv) holds at j = k.

Lemma D.6. If |U t
2| ≥ 7, and i)-iii) holds at step t: the E-VS algorithm will query one of b1, b2 ∈ U t

2.

Proof. Due to ii), we know at least one of b1, b2 satisfies ||
{
x′ ∈ U t

2 : x′ < x
}
| −

|
{
x′ ∈ U t

2 : x′ > x
}
|| ≤ 1.
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WLOG let this be b1 (assume that b1 wins the E-VS algorithm tie-breaker if both b1, b2 satisfy this
condition). We claim the E-VS algorithm will query b1.

• For points in X2 \ U t
2, they are not in the disagreement region and ρ(E(V, SX), x) = 0,

which means they will not be queried.

• For points in U t
2, we have the following observation.

Due to i) and iii):

ρ(E(V, SX), x) = min(2 · |
{
x′ ∈ U t

2 : x′ < x
}
|+ 1, 2 · |

{
x′ ∈ U t

2 : x′ > x
}
|+ 1)

= 2 ·min(|
{
x′ ∈ U t

2 : x′ < x
}
|, |
{
x′ ∈ U t

2 : x′ > x
}
|) + 1

From this, we can see that from ii),

b1 = argmax
x∈Ut

2

min(|
{
x′ ∈ U t

2 : x′ < x
}
|, |
{
x′ ∈ U t

2 : x′ > x
}
|)

= argmax
x∈Ut

2

ρ(E(V, SX), x)

• For points x ∈ X1.

We know that |U t
2| ≥ 7⇒ min(|

{
x′ ∈ U t

2 : x′ < b1
}
|, |
{
x′ ∈ U t

2 : x′ > b1
}
|) ≥ 3.

Due to i), we know that
{
x′ ∈ U t

2 : x′ < b1
}

and
{
x′ ∈ U t

2 : x′ > b1
}

are contiguous. And
so, one can find three-point segments to the left and right of b1, which means that b1 is
balanced.

And so, ρ(E(V, SX), b1) ≥ 2 = maxx∈X1
ρ(E(V, SX), x).

In conclusion, b1 is the point that maximally bisects the E-VS out of all unqueried points, and will
thus be queried by the E-VS bisection algorithm.

Remark D.7. In closing, we note that the construction is nontrivial in that the same result does not
hold if the hypothesis class is simplyH =

{
hf1,f ′

1
, . . . , hfn−1,f ′

n−1

}
.

In this case, the E-VS-bisection algorithm will also have a linear label complexity, as abstention from
U2 does not result in a reduction in the size of E-VS. For a formal justification of this, please refer to
the proof of Proposition 1.1

Theorem D.8. There exists a H and X such that the number of labeled examples queried by the
E-VS bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |).

Proof. From Lemma D.3, we have shown the first part of the theorem. It remains to analyze the VS
bisection query complexity.

VS bisection algorithm complexity: By contrast, we show that there exists a labeling oracle that
induces Ω(n) sample complexity from the VS algorithm.

This labeling oracle T is as follows:

i) T (x) =⊥ for all x ∈ X2

ii) T (x) = −1 for all x ∈ X1

Under T , we have that labeling each point x ∈ X1 removes two hypotheses from the version space at
any step in time. Namely, labeling x1

i = [ 2i−1
2n , 0] removes hfi,f ′

i
, hfi,f ′

i+1
.

And so, |X1| − 1 samples x ∈ X1 will be queried. Because if there exists two unqueried points
x1
i , x

1
j ∈ X1, then hfi,f ′

i
and hfj ,f ′

j
are both in the VS. This means that the disagreement region is

non-empty, and in particular contains both x1
i , x

1
j .
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Since each x ∈ X1 is given a binary label by T , the VS bisection algorithm incurs cost n− 1. We
note that in the end the VS will be of size 2, but the remaining sample in X1 cannot distinguish
between the two.

We may also obtain a corresponding result for an identified setting, by tweaking the above setting
slightly. In this setting, we still find that the VS-bisection algorithm still incurs an exponentially
larger sample complexity relative to E-VS bisections.

Proposition D.9. There exists a H, X , and a labeling oracle that leads to identification, and the
number of labeled examples queried by the E-VS bisection algorithm is O(log |X |), while the VS
bisection algorithm incurs Ω(|X |) samples.

Proof. Setup: Let X = X1 ∪ X2 ∪ {x̃}, where X1 =
{
x1
1, ..., x

1
n−1

}
=
{

1
2n , ...,

2n−3
2n

}
, X2 ={

x2
1, ..., x

2
n−1

}
=
{
1 + 3

2n , ..., 1 +
2n−1
2n

}
, and x̃ = − 1

2n . So |X | = 2(n− 1) + 1.

Let the fi : [−1, 1] → {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i − 1)/n, i/n])
for i ∈ {0, 1, . . . , n− 1}.
Let f ′

i : (1, 2]→ {+1,−1} denote thresholds, f ′
i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].

DefineH =
⋃n−1

i=1

{
hfi,f ′

i
, hfi,f ′

i+1

}
∪
{
hf0,f ′

1

}
, where hf,f ′(x) =

{
f(x), x ≤ 1

f ′(x), x > 1
.

Ensuring identifiability: Note that obtaining labeled example (x̃,+1) identifies h̃ := hf0,f ′
1
.

E-VS bisection algorithm complexity:

Note that for any V, SX , ρ(E(V, SX), x̃) ≤ 1.

And so, in the case analysis of Lemma D.6, we again find that as long as |U2| ≥ 7, the E-VS algorithm
will query some point x ∈ U2.

Thus, the E-VS algorithm will query at most log n labeled samples before reaching |U2| ≤ 6, at
which point the E-VS contains at most 2 · 6 + 2 hypotheses and will thus require at most 13 more
labeled examples before identification.

VS bisection algorithm complexity: We show that there exists an identifiable labeling oracle that
induces Ω(n) samples with the VS algorithm.

This labeling oracle T goes as follows:

i) T (x) =⊥ for all x ∈ X2

ii) T (x) = −1 for all x ∈ X1

iii) T (x̃) = 1

It is clear thatH[T (X )] =
{
h̃
}

and T is an identifiable oracle.

The main observation is that while |SX ∩ X1| < |X1| − 1, if a point in X \ X2 is queried, then it will
be a point in X1, and not x̃.

This is because x̃ for any V, SX , is such that ρ(E(V, SX), x̃) = 1. While for any x ∈ X1 \ SX ,
ρ(E(V, SX), x) = 2.

In more detail, if x1
i ̸∈ SX , then hfi,f ′

i
, hfi,f ′

i+1
∈ V [S], whose label for x1

i is [1,−1]. And when
|SX ∩ X1| < |X1| − 1, there exists at least two other models in V [S] that label x1

i with [−1,−1].
Hence, since T never abstains on x ∈ X1, |X1|−1 labels will be given, at which point the disagreement
region is still non-empty. Then, the algorithm either queries the x̃ or the remaining element in X1

depending on the tie-breaker, both of which identifies h̃.
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D.4 COMPARISON WITH EPI-CAL

EPI-CAL (Huang et al., 2016) is a “mellow” active learning algorithm that can handle labeler absten-
tion in a streaming setting, wherein the learner cannot control the query order (unlike Algorithm 2),
and performs PAC learning (Valiant, 1984). Despite the differences between this and our pool-based
setup, we can nevertheless analyze what happens when the labeler can strategically abstain. Our
finding is that a strategic labeler can again hold up learning and induce an arbitrarily large query
complexity, when the data pool size is not finite and the query order cannot be decided by the learner.
This may be evidenced in the simple setting of learning thresholds, where we note that the stream
samples are drawn i.i.d, from a continuous distribution satisfying a standard regularity condition.

In particular, we find that in the infinite-support case, even if the data stream is made up of i.i.d
samples, EPI-CAL can incur large sample complexity. This is because the learner experiences an
arbitrarily large “hold-up”, which may be evidenced even in the simple threshold example in the
lemma below.
Proposition D.10. Fix some constant ϵ > 0. Consider a PAC-learning task, where the learner seeks
to learn a 1D threshold with at most ϵ−risk with respect to continuous distribution D. For any m i.i.d
samples with m sufficiently large and D probability density bounded away from 0, there is a labeling
strategy under which EPI-CAL queries Ω(

√
m) labeled samples, with probability at least 1/2.

Proof. Let h∗ = h0 for the 1D threshold hypothesis classH =
{
hθ = 1(x ≥ θ) : θ ∈ [0, 1]

}
.

Let D be some continuous distribution with supp(D) = [0, 1]. Let X1, .., Xm denote the m i.i.d
samples from D. By assumption, suppose the pdf of D is lower bounded by κ > 0, i.e. Pr(x) ≥ κ,
∀x ∈ supp(D).
Then, Prx∼D(x ∈ (ϵ, 1]) = β ≥ (1− ϵ)κ = Ω(1).

Under m ≥ 6, consider some β0 with β0 ≤
ln 4

3

2m . Since the CDF is continuous, there exists r such
that Prx∼D(x ≤ r) < β0, which is such that:

Pr(∀i ∈ [m], xi ̸∈ [0, r]) ≥ (1− β0)
m ≥ exp(−2mβ0) ≥

3

4

using that 1− x ≥ exp(−2x) when x ∈ [0, 1/2].

Define r̂ = min(r, ϵ), which also satisfies the condition above since [0, r̂] ⊆ [0, r].

Now, we proceed to defining the labeling strategy:

1. Let M =
√
m. Using the continuity of Prx∼D(x < r) in r, we can find 1 = r1 > ... >

rM > rM+1 with rM+1 = ϵ, such that:

Pr
x∼D

(x ∈ [ri+1, ri]) =
β

M

Let Si = (ri+1, ri] for i ∈ [M ].

2. We make the observation that if EPI-CAL has only seen points from Si1 , ..., Sij , then any
point xk ∈ Sk with k > max(i1, ..., ij) will be accepted (bigger index means close to θ∗).

This is because with labeled points only from Si1 , ..., Sij , the resultant VS is a superset of
[0, rmax(i1,...,ij)+1].

And so, xk is in the disagreement region, since xk ≤ rmax(i1,...,ij)+1.

3. Now, we describe the sequential labeling strategy.

a) Abstain on the region: [r̂, ϵ].

b) Label if Xi ∈ [0, r̂). Note that labeling [0, r̂) ensures that ϵ−PAC learning is possible.

For Xi ∈ (ϵ, 1], sequentially label as follows:

i) Divide the m samples into M stages of M samples for M =
√
m.
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ii) At the ith stage, abstain if on the jth sample of this stage, Xij ̸∈ Si.

iii) The first time sample Xik for k ∈ [M ] is such that Xik ∈ Si, label it and abstain for the
rest of this stage.

Using our previous point, we know that any point Xik ∈ Si labeled will be accepted by
EPI-CAL, since i is increasing.

Intuitively, this labeling strategy slows down learning by only labeling points that shrink the
VS by a little.

4. To analyze the total number of labeled points, let random variable Zi denote whether a point
is labeled at stage i. It is Bernoulli with probability:

p = Pr(∃j ∈ [M ], Xij ∈ [ri+1, ri]) = 1− (1− β/M)M ≥ 1− exp(−β) = Ω(1)

Using one-sided Chernoff’s for Binomial random variables for M sufficiently large (i.e. for
M ≥ 8 ln 4

p ) with p constant, we have:

Pr(

M∑
i=1

Zi ≤Mp/2) ≤ exp(−Mp/8) ≤ 1/4

5. And so, using union bound, we have that:

Pr(xi ̸∈ [0, r̂],∀i ∈ [m] ∧
M∑
i=1

Zi ≥Mp/2)

≥ 1− Pr(∃i ∈ [m], xi ∈ [0, r̂])− Pr(

M∑
i=1

Zi < Mp/2)

≥ 1− 1/4− 1/4

= 1/2

And so, the probability that all m samples are seen (i.e. the interaction does not terminate
before all m), and that at least Mp/2 = Ω(

√
m) samples are labeled and accepted by

EPI-CAL occurs with probability at least 1/2.

Remark D.11. We remark that:

• Consider when there is no labeler abstention. Let Z ′
i = 1(xi ≤ minj∈[i−1] xj). Then we

see that the expected sample complexity is:

E[
m∑
i=1

Z ′
i] =

m∑
i=1

1/i = O(logm)

Thus, we see that this is yet another setting, where labeler abstention can significantly
increase the sample complexity.

• From the Erdős–Szekeres theorem, the Θ(
√
m) result is tight in expectation.
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E ADDITIONAL MATERIAL ON SECTION 4

In this section, we examine a few ways in which the labeler (e.g. a human worker) may be imperfect
in both labeling and strategy, and extend our guarantees to such settings. We elaborate on the content
covered in Section 4.

Note that in this paper, we make inroads into understanding the minimax strategies of the learning
game. Analyzing minimax strategies is the canonical way of characterizing games, studying how
players (e.g. a data provider company) may play rationally in the learning game. However, it has
been recognized that players with bounded rationality (e.g. a human worker) may play behavioral
strategies that are not minimax-optimal (Brown & Rosenthal, 1990). And so, we consider allow for
the labeler labeling in a way that is sub-optimal.

E.1 RELAXED LEARNING GOAL

In the previous section, it is assumed that the learner is interested in exact learning some h∗. One
may consider the relaxed goal of PAC learning some ĥ such that Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ w.p.
greater than 1− δ, for some distribution D supported on X .

Reduction: Then, following the standard realizable, PAC learning (with VC class) reduction (Vapnik,
1999), one may reduce the PAC setting to the exact learning by sampling m = O(V C(H)

ϵ (ln 1
ϵ +ln 1

δ ))
i.i.d samples from D.

More precisely, let this random subset be Xm ⊆ X . Xm partitions H into clusters of equivalent
hypotheses. If we let the projection ofH on Xm beH|Xm =

{
h(Xm) : h ∈ H

}
, then a cluster C(y)

of equivalent hypotheses is defined C(y) =
{
h(Xm) = y : y ∈ H|Xm , h ∈ H

}
.

The reduction guarantees that, with probability better than 1 − δ over the samples Xm,
identification of h∗’s cluster C(h∗(Xm)) is sufficient for ϵ−PAC learning. Xm is such
that w.h.p diam(C(h∗(Xm)) ≤ ϵ, where diameter of a set H is defined as diam(H) =

maxh,h′∈H Prx∼D(h(x) ̸= h′(x)). With this, picking any one model ĥ ∈ C(h∗(Xm)) satisfies
Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ, and PAC learning thus reduces to identifying cluster C(h∗(Xm)).

E.1.1 APPROXIMATE IDENTIFICATION GAME

Using this reduction, we may analyze the query complexity of PAC learning as an exact learning
game, where the learner chooses the data pool to be Xm (in place of X ). The goal is now only
approximate identifiability, and identifying the cluster h∗ belongs to, C(h∗(Xm)).

We demonstrate how our E-VS definition can be extended to develop a near-optimal algorithm under
this approximate identifiable game. Our first observation is that the original E-VS, defined overH
and Xm will no longer suffice:

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(Xm \ SX) ̸= h(Xm \ SX)

}
The issue is premature elimination. Consider some h ∈ H such that |C(h(Xm))| ≥ 2 with
h′ ∈ C(h(Xm)), h′ ̸= h. Then, h(Xm) = h′(Xm)⇒ ∃h′ ∈ H, h′(Xm \ ∅) = h(Xm \ ∅), which
results in the elimination of the entire C(h(Xm)) cluster at the very start. E(H, ∅) will not contain
any clusters with cardinality more than one.

To address this degeneracy, we define a modification of the E-VS, Xm-E-VS, with relaxed elimination
condition. This is a coarser E-VS, and so, we observe that we should only consider non-identifiability
with respect to hypotheses from other clusters:

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
The added constraint of V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
means that two h, h′ within the same

cluster do not render each other un-identifiable. And so, we only consider h′’s from another cluster
(that differs on Xm) that can render h (h’s cluster) un-identifiable.
Remark E.1. Through this we see that either an entire cluster is in the Xm-E-VS or it is not.
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We also define the global identification cost in the approximate identification game accordingly:
Definition E.2. GivenH and a set of unlabeled examples Xm, define the global identification cost
of version space V ⊂ H and instance set SX :

GICXm

(V, SX) = min{t ∈ N : ∀T : Xm \ SX → {+1,−1,⊥} ,

∃Σ ⊆ Xm \ SX s.t.
∑
x∈Σ

1(T (x) ̸=⊥) ≤ t ∧ |EXm

(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Under the new definitions of Xm−E-VS and Xm−GIC, we may prove that the Xm−E-VS bisection
algorithm similarly attains near-optimal guarantees. One may follow the same proof structure as in
Lemma C.14 and Theorem C.16 to show both results also hold under Xm-E-VS. Thus, it suffices to
prove the following two lemmas, which are analogues of Lemmas C.6 and C.7.
Lemma E.3. For any V ⊂ H and SX ⊂ X ,

EXm

(V, SX ∪ {x}) ⊆ EXm

(V, SX)

Proof. It suffices to prove that h ∈ EXm

(V, SX ∪ {x})⇒ h ∈ EXm

(V, SX).

To see this, let h ∈ EXm

(V, SX ∪ {x}). Then if h is such that:

∀h′ ∈ V, h′(Xm) ̸= h(Xm), h((X \ SX) \ {x})) ̸= h′((X \ SX) \ {x}))
⇒ ∀h′ ∈ V, h′(Xm) ̸= h(Xm), h(X \ SX) ̸= h′(X \ SX)

⇒ h ∈ E(V, SX)

Lemma E.4. For any x ∈ X \ SX and y ∈ {−1, 1},

EXm

(V [(x, y)], SX ∪ {x}) = EXm

(V, SX)[(x, y)]

Proof. The proof is identical to the one for the fine-grain E-VS:

h ∈ EXm

(V [(x, y)], SX ∪ {x})
⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′(Xm) ̸= h(Xm)→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h(x) = y ∧ h ∈ EXm

(V, SX)

⇐⇒ h ∈ EXm

(V, SX)[(x, y)]

Guarantee from learning from labeler with h′ that approximates h∗: Suppose the labeler labels
with h′ and Pr(h′(x) ̸= h∗(x)) ≤ ϵ/2. One may consider the approximate identifiability learning
game with precision ϵ/2. Approximately-identifying some ĥ ∈ C(h′(Xm)) will be such that
Pr(ĥ(x) ̸= h′(x)) ≤ ϵ/2. From this, we can conclude that:

Pr(ĥ(x) ̸= h∗(x)) = Pr(ĥ(x) = h′(x) ∧ h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x) ∧ h′(x) = h∗(x))

≤ Pr(h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x))

≤ ϵ

E.1.2 ACCESSING THE Xm−E-VS

After modifying the E-VS definition, the remaining issue is that we wish to find the maximal bisection
point for coarse, Xm-E-VS. Here, we show that for the coarsened E-VS, the membership check
implemented in Algorithm 3 (with the pool being Xm) is still sound. That is, we still have an
oracle-efficient way of accessing the coarser Xm-E-VS, and can can implicitly track clusters through
calls to the C-ERM oracle.
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Proposition E.5. h ̸∈ EXm(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM
output below:

ĥ = argmin
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ Xm \ S⊥

(12)

Proof.

¬(h ∈ EXm(V, SX))⇔ ¬(∀h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) ̸= h(Xm \ SX))

⇔ ∃h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ ∈ V � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(S⊥) ̸= h(S⊥) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(S⊥) ̸= h(S⊥) � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ∃h′ �
∑

x′∈S⊥

1
{
h′(x′) = h(x′)

}
< |S⊥| � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ĥ(Xm) ̸= h(Xm) � ĥ(Xm \ S⊥) = h(Xm \ S⊥)

E.2 NOISED LABELING

It may be reasonable that in some cases, a labeler can make mistakes (even when they have tried
their best) due to differing opinion and/or human error. For example, for medical diagnoses, doctors
may hold differing opinions for the same case. This can be naturally modeled by the noised learning
setting, as in (Castro & Nowak, 2008): querying example x returns h∗(x) with known probability
1− δ(x), and −h∗(x) with noise rate δ(x).

In this setup, we may use the common approach of repeatedly query a datum to estimate its label
w.h.p. (e.g. as (Yan et al., 2016)). This approach reduces noised-label exact learning to cost-sensitive
exact learning, where for each x there is some known query cost c(x) — associated with determining
h∗(x) with high probability. With this, we may apply the results from Subsection C.2 to see that
E-VS bisection algorithm will have near-optimal guarantees in this setting with example-dependent
costs.

E.3 MYOPIC LABELING

Some labelers may want to enlarge the query complexity, but myopically may not have a near-optimal
identifiable strategy. Instead, the labeler may have only a heuristic, which is only h∗-labeling, and
can be non-identifiable. Non-identifiability is something neither parties want: the learner wants to
learn h∗, and the labeler wants to be paid, which can only happen if h∗ is learned.

In this light, we believe that the E-VS game representation is not only useful for the learner, but
also for a labeler to reason about the game’s state. For the labeler, there is an oracle-efficient way
through which identifiability can be checked without enumerating the entire E-VS: simply apply the
membership check on h∗ as in Line 3 of Algorithm 3.

So even if the labeler is using some sub-optimal heuristic that may lead to non-identifiability of h∗,
the labeler can prevent the next label from leading to non-identifiability by performing a membership
check with a single C-ERM call. We add that only verifying that h∗ is in E-VS, need not require
enumerating all of the E-VS, and is thus tractable provided access to a C-ERM oracle.
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F PROOFS FOR SECTION 5

F.1 LEMMAS USED

Lemma F.1. For all V = ×n
i=1Vi and SX ,

E(V, SX) = ×n
i=1E(Vi, S

i
X)

Proof. We show both that:

1. For V = ×n
i=1Vi, ×n

i=1E(Vi, S
i
X) ⊆ E(V, SX):

It suffices to show that if hi ∈ E(Vi, S
i
X) for i ∈ [n], then h = (h1, .., hn) ∈ E(V, SX) for

V = ×n
i=1Vi.

Firstly, since hi ∈ Vi and V = ×i∈[n]Vi, we have that h ∈ V .

Now suppose there is some h′ ∈ V such that h′(X \ SX) = h(X \ SX); we would like to
show that h′ = h – proving this would conclude that h ∈ E(V, SX).

Indeed, consider any i; we have h′
i((X\SX)i) = hi((X\SX)i); equivalently, h′

i(Xi\Si
X) =

hi(Xi \ Si
X).

As hi ∈ E(Vi, S
i
X) and h′

i ∈ Vi, we have that h′
i = hi. Therefore h′ and h are equal in all

components, and h′ = h.

2. For V = ×n
i=1Vi, E(V, SX) ⊆ ×n

i=1E(Vi, S
i
X):

Consider any h ∈ E(V, SX); we would like to show that for any i, hi ∈ E(Vi, S
i
X).

Suppose not, then there exists i, h′ ∈ Vi and h′ ̸= hi such that h′(Xi \ Si
X) = hi(Xi \ Si

X).
This implies that h′((X \ SX)i) = hi((X \ SX)i), therefore, consider

h̃ = (h1, . . . , hi−1, h
′, hi+1, . . . , hn)

We have that h̃ ∈ V , h̃ ̸= h, and h̃ agrees with h on X \ SX , which contradicts the
assumption that h ∈ E(V, SX).

Lemma F.2. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1,⊥}:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ Cost(V, SX)

Proof. We prove this by induction on |SX |.
Base Case:

The base case is when |SX | = |X | − 1. Here SX ∪ {x1} = X . We have two subcases:

• E(V [(x1, y1)], SX ∪ {x1}) = ∅.
In this case, the inequality is satisfied.

• |E(V [(x1, y1)], SX ∪ {x1})| = 1.

We will show in general that E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX):

i) If y ̸=⊥, we know from Lemma C.7 that E(V [(x1, y1)], SX ∪ {x1}) =
E(V, SX)[(x1, y1)] ⊆ E(V, SX).

ii) If y =⊥, then E(V [(x1, y1)], SX ∪ {x1}) = E(V, SX ∪ {x1}) ⊆ E(V, SX).

And so, |E(V, SX)| ≥ 1⇒ Cost(V, SX) ≥ 0 = Cost(V [(x1, y1)], SX ∪ {x1}).
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Induction Step:

For the inductive case, suppose the induction hypothesis holds for |SX | = |X |− 1, .., j+1. Consider
some SX with |SX | = j.

We have three subcases:

• E(V [(x1, y1)], SX ∪ {x1}) = ∅
In this case, the inequality is satisfied.

• |E(V [(x1, y1)], SX ∪ {x1})| = 1

As shown before, E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX).

And so, we have that |E(V, SX)| ≥ 1 ⇒ Cost(V, SX) ≥ 0 = Cost(V [(x1, y1)], SX ∪
{x1}).

• |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2.

Using similar logic as before, |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2⇒ |E(V, SX)| ≥ 2.

Define
x′ ∈ argmin

x∈X\SX

max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′})

With this definition,

Cost(V, SX) = max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′})

If x′ = x1, then the result follows since Cost(V, SX) ≥ 1(y1 ̸=⊥) +
Cost(V [(x1, y1)], SX ∪ {x1}).
If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1(y ̸=⊥) + Cost(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2 so we can unroll, and x′ ∈ X \ S ∪ {x1})

≤ max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= Cost(V, SX)

Lemma F.3. For y ̸=⊥, x ∈ X \ SX :

Cost(V [(x, y)], SX) = Cost(V [(x, y)], SX ∪ {x})

Proof. Firstly, we have that:

E(V [(x, y)], SX) =
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ SX) ̸= h(X \ SX)

}
=
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ (SX ∪ {x}) ̸= h(X \ SX ∪ {x})

}
= E(V [(x, y)], SX ∪ {x})

Hence the statement holds when SX = X \{x}, or more generally, when Cost(V [(x, y)], SX ∪{x})
or Cost(V [(x, y)], SX) is at its base case (one implies the other due to having the same E-VS).

Now, we will induct on the size of |SX |, since the base case of SX = X \ {x} is satisfied.

Base case: |SX | = |X | − 1.

If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;
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If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.

Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.

We first handle the base cases:

If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;

If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.

Finally, it remains to consider when |E(V, SX)| = |E(V, SX ∪ {x})| ≥ 2. In this case,

Cost(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V [(x′, y′)], SX ∪
{
x′}).

Define x∗ ∈ argminx′∈X\SX
maxy′∈{+1,−1,⊥} 1(y

′ ̸=⊥) + Cost(V [(x′, y′)], SX ∪
{
x′}).

We will show that x∗ ̸= x.

In fact, for any x′ ∈ X \ S, x′ ̸= x∗ (which exists because {x} ⊂ X \ SX ) we have:

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + Cost(V y
x , SX ∪ {x}), 1 + Cost(∅, SX ∪ {x}),Cost(V y

x , SX ∪ {x}))
= 1 + Cost(V y

x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)], SX ∪
{
x, x′})

(using 1 ≥ 1(y ̸=⊥) and Lemma F.2)

= max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

And so,

Cost(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′})

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y′

x′ [(x, y)]], SX ∪
{
x′})

(since we have just shown that x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y′

x′ [(x, y)]], (SX ∪
{
x′}) ∪ {x})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′})

(rearranging)
= Cost(V [(x, y)], SX ∪ {x})

F.2 UPPER BOUND

F.2.1 NEGATIVE RESULTS

Upper Bound when there is Identifiability:

We first observe that without assumptions on the structure of V , there exists a setting, in which the
upper bound does not hold.

Proposition F.4. There exists a non-Cartesian product version space V ⊆ H and query response
S ⊆ (X × Y)∗ such that Cost(Vi, S

i
X) ≥ 0 for all i, but:

Cost(V, SX) ≥
n∑

i=1

Cost(Vi, S
i
X) + n− 1
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Proof. We will construct a V and S such that Cost(V, SX) ≥ n− 1, but Cost(Vi, S
i
X) = 0.

Hypothesis Class: Define thresholds functions f1 = 1(x ≥ 1/4), f2 = 1(x ≥ 1/2), f3 = 1(x ≥
3/4) for x ∈ [0, 1].

DefineH′ as:
H′ =

{
(f1, f2, ..., f2), (f2, f1, ..., f2), ..., (f2, f2, , ...., f1)

}
where the jth model has its jth task model as f1 instead of f2.

Define the non-Cartesian product hypothesis class as:

H = H′ ∪
{
(f2, f2, ..., f2), (f3, f3, ..., f3)

}
We have thatHi = {f1, f2, f3}.
Data: Let X1 = {xi1}ni=1 and X2 = {xi2}ni=1, where xi1 = 1/3ei and xi2 = 2/3ei. Let X =
X1 ∪ X2.

Query Responses: Suppose S =
{
(xi2, [⊥, ...,⊥]) : i ∈ [n]

}
.

This means that SX =
{
xi2 : i ∈ [n]

}
, and that Si

X =
{
2/3
}

, since the only x ∈ X such that
xi = 2/3 is xi2 and xi2 ∈ SX .

Define V = H[S] = H. And so, Vi = {f1, f2, f3}.
We have that E(Vi, S

i
X) = {f1}, and so, Cost(Vi, S

i
X) = 0.

Now, it remains to show that E(V, SX) = H′.

Firstly, since V = H[S] = H, we examine each model inH.

The model (f2, f2, ..., f2) and (f3, f3, ..., f3)’s predictions on xi1 (for any i) are both
(−1,−1, . . . ,−1). Thus, they have the same predictions on {xi1}i∈[n] = X \ SX , and so,
(f2, f2, ..., f2), (f3, f3, ..., f3) ̸∈ E(V, SX).

With this, we see that E(V, SX) = H′, because for the ith element of H′, it disagrees with every
other element on xi1.

Finally, we will show that Cost(V, SX) ≥ n− 1.

Consider a labeling strategy that returns label (−1, ...,−1) for any xi1 queried.

This strategy identifies some h ∈ H, since each point in X1 that is queried removes one model from
E-VS. And so, after n − 1 queries on points in X1, the E-VS has one hypothesis and the learning
interaction finishes since the identification condition is met.

We note that any querying algorithm will require n− 1 labeled queries. Each binary labeled example
removes only one model from the E-VS, thus n− 1 labels are required for identification under any
querying algorithm. And so, we have that Cost(V, SX) ≥ n− 1.

Upper Bound when there is no Identifiability:
Proposition F.5. For non-Cartesian product hypothesis class V , there exists V, S such that
Cost(Vi, S

i
X) = −∞ for some i, but Cost(V, SX) ≥ 1.

Proof. ConsiderH =
{
(h1, h2), (h3, h4)

}
.

X =
{
[x1, 0], [0, x2]

}
, where for x1, x2 ̸= 0, h1(x1) ̸= h3(x1) and h2(x2) ̸= h4(x2). h1(0) =

h3(0) and h2(0) = h4(0).

Consider query response S =
{
([x1, 0], [⊥,⊥])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1} , S2
X = {0}.

V = H[S] = H. V1 = {h1, h3} and V2 = {h2, h4}.

E(V1, {x1}) = E({h1, h3} , {x1}) = ∅. However, E(V,
{
[x1, 0]

}
) = H, since (h1, h2) and

(h3, h4) differ on [0, x2].
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And so, 1 = Cost(V, SX) >
∑2

i=1 Cost(Vi, S
i
X) = −∞, since Cost(V1, S

1
X) = −∞.

Remark F.6. In conclusion, to show the upper bound, need to impose Cartesian product condition.

Negative Example motivating the need to assume a particular label cost definition:

When the label cost is cone, there are settings where Cost(V, SX) can be much larger i.e.
Cost(V, SX)≫

∑n
i=1 Cost(Vi, S

i
X).

Proposition F.7. Assuming the version space is a Cartesian product, under label cost cone(y) =
1(∃i, yi ̸=⊥), there exists V and S such that Cost(Vi, S

i
X) = 1, but Cost(V, SX) = |X |. This

implies that: Cost(V, SX) >
∑n

i=1 Cost(Vi, S
i
X).

Proof. Consider V = {h1, h2} × {h3, h4}, where h1, h2 ∈ V1 are thresholds functions h1 = 1(x ≥
0), h2 = 1(x ≥ 1) and h3, h4 ∈ V2 are also thresholds h3 = 1(x ≥ 0), h4 = 1(x ≥ 1).

X =
{
[ 1
m+1 ,

1
m+1 ], ..., [

m
m+1 ,

m
m+1 ]

}
, which means that X1 = X2 =

{
1

m+1 , ...,
m

m+1

}
.

We will show that:
Cost(V, ∅)≫ Cost(V1, ∅) + Cost(V2, ∅)

We first have that Cost(V1, ∅),Cost(V2, ∅) = 1, since only one labeled sample is needed to distin-
guish between h1, h2 and between h3, h4.

However, we have Cost(V, ∅) ≥ m = |X | with the following labeling strategy T :

1) As long as |SX | < m− 1, for queried point [ i
m+1 ,

i
m+1 ], return (⊥, h3(

i
m+1 )).

2) Only when |SX | = m− 1, for queried point [ j
m+1 ,

j
m+1 ], return (h1(

j
m+1 ), h3(

j
m+1 )).

We can first that this is an identifiable labeling strategy that identifies (h1, h3).

And, for any querying algorithm, h∗ is only identified when SX = X .

Thus, |X | labeled samples need to be queried, making Cost(V, ∅) = |X |.

Remark F.8. To prove the above bound, we need to assume the label cost to be: 1(y ̸=⊥) =
1(∀i, yi ̸=⊥) = call(y).

F.2.2 POSITIVE RESULTS

Change in Definition of the Game:

• To prove the upper bound, we have a changed definition in labeling payoff, which is now:

1(y ̸=⊥) := 1(∀i, yi ̸=⊥)

• The earlier negative example motivates requiring the assumption that V is a Cartesian
product.

Theorem F.9. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥):

Cost(V, SX) ≤
n∑

i=1

Cost(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .

Base Case: When SX = X ⇒ Si
X = Xi. So for all i, |E(Vi, S

i
X)| ≤ 1.

It suffices to check that Cost(V, SX) = 0⇒ ∀i,Cost(Vi, S
i
X) = 0.

Indeed, if Cost(V, SX) = 0, then |E(V,X )| = 1. Denote by h the only element of E(V,X ).
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We must have V = {h}, which in turn implies that for all i Vi = {hi}. Therefore, for all i,
|E(V,X )| = {hi} = 1, which implies ∀i,Cost(Vi, S

i
X) = 0.

Induction Step:

Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j (note that
SX ⊂ X ).

We will analyze the three cases:

• ∃i,Cost(Vi, S
i
X) = −∞

• ∀i,Cost(Vi, S
i
X) ≥ 0 and ∀i,Cost(Vi, S

i
X) = 0

• ∀i,Cost(Vi, S
i
X) ≥ 0 and ∃i,Cost(Vi, S

i
X) ≥ 1.

1. If there is at least one i such that Cost(Vi, S
i
X) = −∞.

It suffices to verify that ∃i, E(Vi, S
i
X) = ∅ ⇒ E(V, SX) = ∅.

This follows immediately from that E(V, SX) = ×n
i=1E(Vi, S

i
X) (Lemma F.1).

2. For all i, Cost(Vi, S
i
X) is at its base case and Cost(Vi, S

i
X) = 0.

That is, we have ∀i, |E(Vi, S
i
X)| = 1.

From Lemma F.1, we have that E(V, SX) = ×n
i=1E(Vi, S

i
X), which means that

|E(V, SX)| = 1. And so, Cost(V, SX) = 0 =
∑n

i=1 Cost(Vi, S
i
X).

3. Exists i such that Cost(V1, S
1
X) ≥ 1, and Cost(Vi, S

i
X) ≥ 0 for all i.

Without loss of generality, i = 1.

Note that if |E(V, SX)| ≤ 1, then Cost(V, SX) ≤ 0 ≤
∑n

=1 Cost(Vi, S
i
X).

And so, throughout the rest of the proof, we focus on the case that |E(V, SX)| ≥ 2. Also,
recall that since Cost(V1, S

1
X) ≥ 1 implies that E(V1, S

1
X) ≥ 2.

Define
x∗
1 = argmin

x∈X1\S1
X

max
y∈Y

1(y ̸=⊥) + Cost(V1[(x
∗
1, y)], S

1
X ∪ {x∗

1})

We may express:

Cost(V1, S
1
X) = max

y∈Y
1(y ̸=⊥) + Cost(V1[(x

∗
1, y)], S

1
X ∪ {x∗

1})

And since x∗
1 ∈ X1 \ S1

X , the set X∗
1 =

{
x′ ∈ X \ SX : x′

1 = x∗
1

}
is non-empty.

Denote LX =
{
x : (x, y) ∈ L

}
. Consider the following procedure:

repeat
L = ∅
Query some x ∈ X∗

1
Labeler returns y:

y = argmax
y

1(y ̸=⊥) + Cost(V [L ∪
{
(x, y)

}
], SX ∪ LX ∪ {x})

X∗
1 ← X∗

1 \ {x}
L← L ∪

{
(x, y)

}
until y1 ̸=⊥ or X∗

1 = ∅

Denote by ŷ1 the value of y1 at the end of the procedure, let |L| = m and, in
order, interaction history L is such that L =

{
(x1, y1), ..., (xm, ym)

}
. Let Li ={

(xi, yi) : (x, y) ∈ L, yi ̸=⊥
}

index the binary labeled data for the ith task.
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Cost(V, SX) ≤ 1(y1 ̸=⊥) + Cost(V [(x1, y1)], SX ∪
{
x1
}
)

(since x1 ∈ X∗
1 ⊆ X \ SX )

= Cost(V [(x1, y1)], SX ∪
{
x1
}
) (since y11 =⊥)

≤ ...
(unrolling according to L, which is possible as Cost(V, SX) ≥ 1⇒ Cost(V [L], SX ∪ LX) ≥ 1)

≤ 1(ym ̸=⊥) + Cost(V [L], SX ∪ LX)

≤ 1(ŷ1 ̸=⊥) + Cost(V [L], SX ∪ LX)
(1(∀i, ymi ̸=⊥) ≤ 1(ŷ1 ̸=⊥) since ym1 = ŷ1)

= 1(ŷ1 ̸=⊥) + Cost(×i∈[n]Vi[L
i], SX ∪ LX) (V is a Cartesian product)

≤ 1(ŷ1 ̸=⊥) +
n∑

i=1

Cost(Vi[L
i], (SX ∪ LX)i)

(using induction hypothesis as |LX | ≥ 1)

= 1(ŷ1 ̸=⊥) + Cost(V1[(x
∗
1, ŷ1)], S

1
X ∪ {x∗

1}) +
n∑

i=2

Cost(Vi[L
i], (SX ∪ LX)i)

(⋄)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi[L
i], (SX ∪ LX)i) (by definition of x∗

1)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi, S
i
X) (⋄⋄)

(⋄): For the fourth step, there are two cases:

• If upon exit, X∗
1 = ∅:

Then using the definition of S1
X , since ̸ ∃x ∈ X \ (SX ∪ LX) with x1 = x∗

1, we have
that (SX ∪ LX)1 = S1

X ∪ {x∗
1}.

Therefore, Cost(V1[L
1], (SX ∪ LX)1) = Cost(V1[(x

∗
1, ŷ1)], S

1
X ∪ {x∗

1}).
• Otherwise, upon exit, X∗

1 ̸= ∅. Then, we must have that ŷ ̸=⊥:
So ∃x ∈ X \ (SX ∪ LX) with xi = x∗

i .
Therefore, (SX ∪ LX)1 = S1

X , hence Cost(V1[L
1], (SX ∪ LX)1) =

Cost(V1[(x
∗
1, ŷ1)], S

1
X).

From Lemma F.3, we have that Cost(V1[(x
∗
1, ŷ1)], S

1
X) = Cost(V1[(x

∗
1, ŷ1)], S

1
X ∪

{x∗
1}).

(⋄⋄): For the last step, consider each task i for i ∈ {2, . . . , n}:
Define:

• Li1
X =

{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ∈ (SX ∪ LX)i

}
• Li2

X =
{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ∈ (SX ∪ LX)i

}
• Li3

X =
{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
• Li4

X =
{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
With these definitions, we have (SX ∪LX)i = Si

X ∪Li1
X ∪Li2

X . The binary labeled examples
comprise of Li

X = Li1
X ∪ Li3

X .
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We have that:
Cost(Vi[L

i], (SX ∪ LX)i) = Cost(Vi[L
i], Si

X ∪ Li1
X ∪ Li2

X)

= Cost(Vi[L
i], Si

X ∪ Li1
X ∪ Li2

X ∪ Li3
X)
(using Lemma F.3 on Li3

X )

= Cost(Vi[L
i ∪
{
(x,⊥) : x ∈ Li2

X

}
], Si

X ∪ Li1
X ∪ Li2

X ∪ Li3
X)

≤ Cost(Vi, S
i
X)

(iteratively applying Lemma F.2 on Li1
X ∪ Li2

X ∪ Li3
X )

F.3 LOWER BOUND

Label Cost Function: From this point onwards, we assume that the label cost is (the more generous)
cone.

F.3.1 NEGATIVE RESULTS

Lower Bound when there is Identifiability:

The following example leverages the fact that structure in the multi-task hypothesis class constrains
the target hypotheses across all n tasks. And so, abstentions can lead to the multi-task setting requiring
fewer samples than even the single-task setting with the highest sample complexity.
Proposition F.10. There exists a non-Cartesian product version space V and query response S such
that Cost(Vi, S

i
X) ≥ 0 for all i, but:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)

Proof. Hypothesis Class: Define all zero-classifier, h0(x) = 0 for all x. Let hi = 1(x ∈ [i, i+ 1))
for i ∈ [n] be the ith interval.

Let g1, g2, g3 be three distinct threshold functions, g1 = 1(x ≥ 1/4), g2 = 1(x ≥ 1/2), g3 = 1(x ≥
3/4) for x ∈ [0, 1].

SetH to be
{
(h0, g1), (h0, g2),

{
(hi, g3)

}n
i=1

}
.

Data: Define X =
{
[x11, 0], ...., [x1n, 0], [0, x21], [0, x22]

}
where x1i = i + 1/2 for i ∈ [n] and

x21 = 1/3, x22 = 2/3. By construction, g1(x21) ̸= g2(x21) and g2(x22) ̸= g3(x22).

Define S =
{
([0, x21], [⊥,⊥])

}
. SX =

{
[0, x21]

}
, S1

X = {}, S2
X = {x21}.

We have V = H[S] = H. V1 = H1 = {h0, h1, h2, h3, ..., hn} and V2 = H2 = {g1, g2, g3}.
g1((X \ SX)2) = g2((X \ SX)2)⇒ (h0, g1), (h0, g2) ̸∈ E(V, SX).

We have E(V, SX) =
{
(hi, g3)

}n
i=1

, because for any i ̸= j, (hi, g3) and (hj , g3) differ on [x1j , 0].

From this, we get that Cost(V, SX) = n− 1. Querying any point [x1i, 0] at any time removes only
one model from the E-VS. Since the E-VS is of size n, n− 1 binary labeled examples are needed to
reduce the E-VS size to at most 1.

On the other hand, we have that for Cost(V1, S
1
X) with |V1| = n+ 1 and S1

X = ∅, Cost(V1, S
1
X) =

n > Cost(V, SX).

Lower Bound when there is no Identifiability even with Cartesian product assumption:
Proposition F.11. There exists a Cartesian product version space V and query response S with
Cost(V, SX) < 0 such that:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)
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Proof. Let H = {h11, h12} × {h21, h22}, where h11 = 1(x ≥ 0), h12 = 1(x ≥ 1) are intervals,
and h21 = 1(x ≥ 0), h22 = 1(x ≥ 1) are intervals.

X =
{
[x1, 0], [0, x2]

}
where x1 = 1/2, x2 = 1/2.

Labeling is: S =
{
([x1, 0], [⊥, 1])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1}, S2
X = {0}.

So V = H[S] = H. V1 = {h11, h12} and V2 = {h21, h22}.
Under S, we observe that E(V, SX) = ∅, since (h11, h) and (h12, h) for h ∈ V2 = {h21, h22},
predict the same on

{
[0, x2]

}
= X \ SX . Hence, Cost(V, SX) = −∞.

However, Cost(V2, S
2
X) = Cost({h21, h22} , {0}) = 1 > Cost(V, SX).

Remark F.12. To prove the lower bound, need to impose both identifiability Cost(V, SX) ≥ 0 *and*
Cartesian product condition.

F.3.2 POSITIVE RESULTS

Theorem F.13. For all V = ×i∈[n]Vi and SX ⊆ X , if Cost(V, SX) ≥ 0, then:

Cost(V, SX) ≥ max
i∈[n]

Cost(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .

Base Case: When SX = X ⇒ Si
X = Xi, so for all i, Cost(Vi, S

i
X) ≤ 0 ≤ Cost(V, SX).

Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1.

Now let |SX | = j. Note that this implies SX ⊂ X .

First, consider the case when Cost(V, SX) = 0. We have that |E(V, SX)| = 1. And so, using
Lemma F.1, for all i, |E(Vi, S

i
X)| = 1. Thus, Cost(Vi, S

i
X) = 0 for all i.

Now, we consider the case when Cost(V, SX) ≥ 1.

Let k = argmaxi∈[n] Cost(Vi, S
i
X). It suffices to verify the statement when Cost(Vk, S

k
X) ≥ 1.

Since X \ SX is non-empty due to SX ⊂ X , define:

xmin = argmin
x∈X\SX

max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

x , SX ∪ {x})

We have that Xk \Sk
X = (X \SX)k =

{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′}, and so xmin

k ∈ Xk \Sk
X

since xmin ∈ X \ SX .

Since Cost(Vk, S
k
X) ≥ 1, we know there exists ỹk such that:

Cost(Vk, S
k
X) ≤ 1(ỹk ̸=⊥) + Cost(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmin
k

}
).

Note in particular that E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ̸= ∅, as otherwise Cost(Vk, S

k
X) ≤ −∞

which would contradict our assumption that Cost(Vk, S
k
X) ≥ 1.
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Cost(V, SX) = max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

xmin , SX ∪
{
xmin

}
)

≥ 1(y ̸=⊥) + Cost(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
)

(setting y′ = y as constructed in Lemma F.14 and using that V y
xmin = ×i∈[n](Vi)

yi

xmin
i

)

≥ 1(y ̸=⊥) + max
i∈[n]

Cost((Vi)
yi

xmin
i

, (SX ∪
{
xmin
i

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1(ỹk ̸=⊥) + Cost((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k)

(1(y ̸=⊥) ≥ 1(yk ̸=⊥) = 1(ỹk ̸=⊥) as yk = ỹk by construction)

≥ 1(ỹk ̸=⊥) + Cost((Vk)
ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
)

(note that xmin
k ∈ (X \ SX)k, so xmin

k ∈ Xk \ Sk
X and ⋄)

≥ Cost(Vk, S
k
X)

(⋄): Either we have (SX ∪
{
xmin

}
)k = Sk

X ∪
{
xmin
k

}
or (SX ∪

{
xmin

}
)k = Sk

X . The former case
yields equality and the statement holds.

For the latter case, we can use Lemma F.2 (for ỹk =⊥) or Lemma F.3 (for ỹk ̸=⊥) to get that:
Cost((Vk)

ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) = Cost((Vk)

ỹk

xmin
k

, Sk
X) ≥ Cost((Vk)

ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
).

Lemma F.14. Suppose C(V, SX) ≥ 0 and xmin = argminx∈X\SX
maxy∈Y 1(y ̸=⊥) +

Cost(V y
x , SX∪{x}). If there ỹk such that Cost(Vk, S

k
X) ≤ 1(ỹk ̸=⊥)+Cost(Vk[(x

min
k , ỹk)], S

k
X∪{

xmin
k

}
) for Cost(Vk, S

k
X) ≥ 0, then there exists y such that its kth coordinate yk = ỹk such that:

Cost(V [(xmin, y)], SX ∪
{
xmin

}
) ≥ 0

Proof. We explicitly construct some y such that yk = ỹk and the above holds:

• Firstly, Cost(V, SX) ≥ 0, which implies there exists h ∈ E(V, SX).

h ∈ V implies that ∀i, hi ∈ Vi.

Also, Cost(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ≥ Cost(Vk, S

k
X) − 1 ≥ 0. This implies that

there exists some h̃k ∈ E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
).

• We claim that y = (h1(x
min
1 ), ..., h̃k(x

min
k ), ..., hn(x

min
n )) satisfies the condition.

To show this, define h̃ = (h1, ..., h̃k, ..., hn).

Firstly, since hi ∈ Vi (for i ̸= k, i ∈ [n]) and h̃k ∈ Vk, we have that h̃ ∈ ×i∈[n]Vi = V .
Also, h̃(xmin) = y. Therefore, h̃ ∈ V y

xmin .

• We will show that h̃ ∈ E(V y
xmin , SX ∪

{
xmin

}
), which proves the result.

From Lemma C.6, We have that:

h̃k ∈ E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ⊆ E(Vk[(x

min
k , ỹk)], (SX ∪

{
xmin

}
)k)

since Sk ∪
{
xmin
k

}
⊇ (SX ∪

{
xmin

}
)k.

For all i ̸= k, we have:

h ∈ E(V, SX)⇒ hi ∈ E(Vi, S
i
X)⇒ hi ∈ E(Vi[(x

min
i , yi)], S

i
X ∪

{
xmin
i

}
)
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since for all h′ ∈ Vi \ {hi} with h′(xmin
i ) = yi = hi(x

min
i ), h′ must be such that h′(X \

(Si
X ∪

{
xmin
i

}
)) ̸= hi(X \ (Si

X ∪
{
xmin
i

}
)). Since this holds for all h′ ∈ Vi[(x

min
i , yi)] \

{hi}, we have hi ∈ E(Vi[(x
min
i , yi)], S

i
X ∪

{
xmin
i

}
).

From Lemma C.6, We have that:

hi ∈ E(Vi[(x
min
i , yi)], S

i
X ∪

{
xmin
i

}
) ⊆ E(Vi[(x

min
i , yi)], (SX ∪

{
xmin

}
)i)

since Si
X ∪

{
xmin
i

}
⊇ (SX ∪

{
xmin

}
)i.

Hence,

h̃ ∈ ×k
i=1E(V [(xmin

i , yi)], (SX ∪
{
xmin

}
)i))⇒ h̃ ∈ E(V [(xmin, y)], SX ∪

{
xmin

}
))

since from Lemma F.1, we have that:

E(V [(xmin, y)], SX ∪
{
xmin

}
)) = ×k

i=1E(V [(xmin
i , yi)], (SX ∪

{
xmin

}
)i))

Remark F.15. As Cost(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
) ≥ 0, the precondition for induction hypoth-

esis holds.

F.4 MULTI-TASK ACTIVE LEARNING WITHOUT ABSTENTION

We also investigate the related multi-task, minimax active learning setting without abstention, which
may be of independent interest. To our knowledge, this is also an open problem. Our goal is again to
relate the multi-task complexity to the single-task complexity. Since abstention is the cause of several
of the negative examples above, one can prove more general upper bounds when labels have to be
given.

F.4.1 GAME SETUP

Without abstention, the state may now be tracked simply with VS (instead of E-VS). The analogous
game value may be defined as follows:

Cost(V, SX) =


−∞ |V | = 0

0, |V | = 1

minx∈X\SX
maxy∈{−1,+1}

(
1 + Cost(V y

x , SX ∪ {x})
)
, |V | ≥ 2

F.4.2 LEMMAS USED

Lemma F.16. For any SX , |V | ≥ 1⇔ Cost(V, SX) ≥ 0.

Proof. Base Case: We prove this by induction on |SX |. If SX = X , then |V | ≥ 1 ⇒ |V | = 1 ⇒
Cost(V, SX) = 0.

Induction Step: Suppose this is true for |SX | = |X |, ..., j + 1. Now |SX | = j. Let h ∈ V .

If |V | = 1, then the result holds.

Otherwise, |V | ≥ 2. We will show that |V | ≥ 2⇒ Cost(V, SX) ≥ 1:
Cost(V, SX) = min

x∈X\SX

max
y∈{+1,−1}

1 + Cost(V y
x , SX ∪ {x})

≥ 1 + Cost(V [(x∗, h(x∗)], SX ∪ {x∗}))
(for x∗ = argminx∈X\SX

maxy∈{+1,−1} 1 + Cost(V y
x , SX ∪ {x}))

≥ 1

The last step that Cost(V [(x∗, h(x∗)], SX ∪ {x∗})) ≥ 0 follows from induction hypothesis, whose
precondition is satisfied because h ∈ V ⇒ h ∈ V [(x∗, h(x∗)].

(⇐) |V | = 0⇒ Cost(V, SX) = −∞ < 0, hence Cost(V, SX) ≥ 0⇒ |V | ≥ 1.
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Corollary F.17. We have that:

1. Cost(V, SX) = −∞⇔ |V | = 0

2. Cost(V, SX) = 0⇔ |V | = 1

Proof. 1. (⇒): Follows from that Cost(V, SX) < 0⇒ |V | < 1⇒ |V | = 0.

(⇐): Follows from the base case definition of Cost.

2. (⇒): From the above, we have that |V | ≥ 2⇒ Cost(V, SX) ≥ 1. And so, Cost(V, SX) ≤
0⇒ |V | ≤ 1.

The result follows since Cost(V, SX) = 0 ̸= −∞⇒ |V | ≠ 0⇒ |V | = 1.

(⇐): Follows from the base case definition of Cost.

Lemma F.18. For V ′ ⊆ V and any SX ⊆ X :

Cost(V, SX) ≥ Cost(V ′, SX)

Proof. We will prove this statement by induction on the size of SX .

Base Case: SX = X . This means Cost(V, SX),Cost(V ′, SX) are at the base-case. If |V ′| = 1⇒
|V | = 1, and the statement holds. If |V ′| = 0, the statement holds since RHS is equal to −∞.

Induction Step: Suppose the statement holds for |SX | = |X |, ..., j + 1 and any V ′ ⊆ V . Consider
some SX such that |SX | = j.

(a) First, we examine what happens if |V | ≤ 1.

(i) if |V | = 0⇒ |V ′| = 0, then Cost(V, SX) = −∞ = Cost(V ′, SX)

(ii) if |V | = 1⇒ |V ′| ≤ 1, so Cost(V, SX) = 0 ≥ Cost(V ′, SX).

(b) If |V | ≥ 2 and |V ′| ≤ 1, then since |V | ≥ 1, we have Cost(V, SX) ≥ 0 ≥ Cost(V ′, SX) using
Lemma F.16.

(c) The remaining case is when |V | ≥ 2 and |V ′| ≥ 2.

We have that:

Cost(V, SX) = min
x∈X\SX

max
y∈{+1,−1}

1 + Cost(V y
x , SX ∪ {x}) (since |V | ≥ 2, we can unroll)

≥ min
x∈X\SX

max
y∈{+1,−1}

1 + Cost((V ′)yx, SX ∪ {x})

(for all x, y, V ′ ⊆ V ⇒ V ′[(x, y)] ⊆ V [(x, y)], so we may apply induction hypothesis)

= Cost(V ′, SX)

Lemma F.19. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1}:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ Cost(V, SX)

Proof. Base Case:

We first handle the case when |V [(x1, y1)]| ≤ 1:

If |V [(x1, y1)]| = 0, then the result holds.

If |V [(x1, y1)]| = 1⇒ |V | ≥ 1, and the result holds from Lemma F.16.

This covers the base case when SX = X .

Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.
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It suffices to examine the case that |V [(x1, y1)]| ≥ 2, which implies that |V | ≥ 2.

Define

x′ ∈ argmin
x∈X\SX

max
y

1 + Cost(V [(x′, y)], S ∪
{
x′});

with this definition,

Cost(V, SX) = max
y

1 + Cost(V [(x′, y)], SX ∪
{
x′})

If x′ = x1, then the result follows.

If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1 + Cost(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |V [(x1, y1)| ≥ 2 so we can unroll with x′ ∈ X \ SX ∪ {x1})
≤ max

y
1 + Cost(V [(x′, y)], SX ∪

{
x′})

(using induction hypothesis)
= Cost(V, SX)

Lemma F.20. For x ∈ X \ SX and some y ∈ {+1,−1}:

Cost(V [(x, y)], SX) = Cost(V [(x, y)], SX ∪ {x})

Proof. We show this by induction on size of SX .

Base Case: Firstly, the version space are the same, V [(x, y)].

So LHS is equal to RHS when |V [(x, y)]| ≤ 1 in the base case. This covers the case when SX = X .

Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.

It suffices to consider when |V [(x, y)]| ≥ 2. We may write:

Cost(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + Cost(V [(x′, y′)]], SX ∪
{
x′})

Define x∗ ∈ argminx′∈X\SX
maxy′∈{+1,−1} 1 + Cost(V [(x′, y′)]], SX ∪

{
x′}).

We will show that x∗ ̸= x.

In fact, for any x′ ∈ X \ SX , x′ ̸= x∗ (which exists because {x} ⊂ X \ SX ) we have:

max
y′∈{+1,−1}

1 + Cost(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + Cost(V y
x , SX ∪ {x}), 1 + Cost(∅, SX ∪ {x}))

= 1 + Cost(V y
x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x, x′}) (using Lemma F.19)

= max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)
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And so,

Cost(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′})

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y′

x′ [(x, y)]], SX ∪
{
x′})

(since x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y′

x′ [(x, y)]], (SX ∪
{
x′}) ∪ {x})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′})

(rearranging)
= Cost(V [(x, y)], SX ∪ {x})

F.4.3 UPPER BOUND

Theorem F.21. For all V ⊆ H and SX ⊆ X :

Cost(V, SX) ≤
n∑

i=1

Cost(Vi, S
i
X)

Proof. We will proceed by induction on the size of SX :

Base Case: When SX = X . In this case, Si
X = Xi. So all Cost’s are at the base-case.

It suffices to check that if Cost(V, SX) = 0⇒ ∀i,Cost(Vi, S
i
X) = 0.

This follows because Cost(V, SX) = 0 ⇔ |V | = 1. By definition of Vi, |Vi| = 1. And so,
Cost(V, SX) = 0 =

∑n
i=1 Cost(Vi, S

i
X).

Induction Step:

Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j ( with
SX ⊂ X ).

We consider three cases:

• ∃i, Vi = ∅

• ∀i, |Vi| ≥ 1 and ∀i, |Vi| = 1

• ∀i, |Vi| ≥ 1 and ∃i, |Vi| ≥ 2

1. If there is i such that Cost(Vi, S
i
X) = −∞.

Then Vi = ∅ ⇒ V = ∅, and therefore, Cost(V, SX) = −∞.

2. For all i, Cost(Vi, S
i
X) = 0.

This means that for all i, |Vi| = 1. And we wish to show that |V | ≤ 1, which would imply
that Cost(V, SX) ≤ 0 =

∑n
i=1 Cost(Vi, S

i
X).

Suppose not, there exists h, h′ ∈ V . Then, h ̸= h′ ⇒ ∃i such that hi ̸= h′
i ⇒ hi, h

′
i ∈

Vi ⇒ |Vi| ≥ 2, which is a contradiction.

3. Exists i such that Cost(Vi, S
i
X) ≥ 1, and Cost(Vj , S

j
X) ≥ 0 for all j.

Assume WLOG i = 1. Note that if |V | ≤ 1, then Cost(V, SX) ≤ 0 ≤
∑n

i=1 Cost(Vi, S
i
X).

And so, we will consider the case when |V | ≥ 2 and |V1| ≥ 2.
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Define
x∗
1 ∈ argmin

x∈X1\S1
X

max
y∈{+1,−1}

1 + Cost(V1[(x
∗
1, y)], S

1
X ∪ {x∗

1})

we may express:

Cost(V1, S
1
X) = max

y∈{+1,−1}
1 + Cost(V1[(x

∗
1, y)], S

1
X ∪ {x∗

1}) (13)

Moreover, we have that ∃x∗ ∈ X \ SX with the first coordinate equal to x∗
1. And so,

Cost(V, SX) ≤ max
y∈{+1,−1}n

1+Cost(V [(x∗, y)], SX∪{x∗}) = 1+Cost(V [(x∗, y′)], SX∪{x∗})

With this,

Cost(V, SX) ≤ 1 + Cost(V [(x∗, y′)], SX ∪ {x∗})

≤ 1 +

n∑
i=1

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using induction hypothesis)

= 1 + Cost((V [(x∗, y′)])1, (SX ∪ {x∗})1) +
n∑

i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

≤ 1 + Cost(V1[(x
∗
1, y

′
1)], S

1
X ∪ {x∗

1}) +
n∑

i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Lemma F.18 and ⋄ for task 1)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Equation 13)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi[(x
∗
i , y

′
i)], S

i
X ∪ {x∗

i })

(using Lemma F.18 and ⋄ for tasks 2 to n)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi, S
i
X) (using Lemma F.19 for tasks 2 to n)

For any task i:

Lemma F.22. For any x, y and V ,

(V [(x, y)])i ⊆ Vi[(xi, yi)]

Proof. We have that h′
i ∈ (V [(x, y)])i ⇒ ∃h ∈ V [(x, y)], hi = h′

i.

hi ∈ Vi[(xi, yi)], since h ∈ V [(x, y)]⇒ hi ∈ Vi ∧ hi(xi) = yi (from h(x) = y).

And so, we get that h′
i = hi ∈ Vi[(xi, yi)].

Using this lemma, we may apply Lemma F.18 to get that:

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i) ≤ Cost(Vi[(x
∗
i , y

′
i)], (SX ∪ {x∗})i)

We will show below that:

Cost(Vi[(x
∗
i , y

′
i)], (SX ∪ {x∗})i) = Cost(Vi[(x

∗
i , y

′
i)], S

i
X ∪ {x∗

i })

(⋄): There are two cases to consider:
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• Case 1: (SX ∪{x∗})i = Si
X ∪

{
x∗
i

}
; in this case, Cost(Vi[(x

∗
i , y

′
i)], (SX ∪{x∗})i) =

Cost(Vi[(x
∗
i , y

′
i)], S

i
X ∪

{
x∗
i

}
) holds;

• Case 2: (SX ∪ {x∗})i = Si
X , in this case, Cost(Vi[(x

∗
i , y

′
i)], (SX ∪ {x∗})i) =

Cost(Vi[(x
∗
i , y

′
i)], S

i
X) = Cost(Vi[(x

∗
i , y

′
i)], S

i
X ∪

{
x∗
i

}
), where the last equality uses

Lemma F.20.

F.4.4 LOWER BOUND

Example of non-Cartesian Product V can reverse inequality:
Proposition F.23. There exists a non-Cartesian product version space V and SX such that:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)

Proof. ConsiderH =
{
(h1, g1), (h2, g1), (h3, g2)

}
. hi and gj’s are thresholds.

Let X =
{
[x11, x2], [x12, x2]

}
, where x11 separates h1, h2, x12 separates h2, h3 and x2 separates

g1, g2.

Let S = ∅, so SX = S1
X = S2

X = ∅.

V = H =
{
(h1, g1), (h2, g1), (h3, g2)

}
, V1 = {h1, h2, h3}, V2 = {g1, g2}.

Then, we have that Cost(V1, ∅) = 2 for V1 = {h1, h2, h3}. However, Cost(V, ∅) = 1, since one
needs to query [x11, x2] only.

Remark F.24. The observation is that x11 helps to distinguish between h1 and h2 ∈ V1, while
x2 helps with distinguishing between g1 and g2 ∈ V2, which in turn helps to distinguish between
{h1, h2} and {h3} ⊂ V1.

Theorem F.25. For all V = ×i∈[n]Vi and SX ⊆ X such that Cost(V, SX) ≥ 0:

Cost(V, SX) ≥ max
i∈[n]

Cost(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .

Base Case: SX = X ⇒ Si
X = Xi.

If Cost(V,X ) = 0, then |V | = 1⇒ |Vi| = 1,∀i⇒ Cost(Vi, S
i
X) = 0 for all i.

Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1. Now let |SX | = j, note that
SX ⊂ X .

We first handle the base cases.

If Cost(V, SX) = 0, then V = {h} ⇒ ∀i, Vi = {hi} (due to the Cartesian product structure of V )
⇒ Cost(Vi, S

i
X) = 0.

Now, if Cost(V, SX) ≥ 1 and if k = argmaxi∈[n] Cost(Vi, S
i
X), then it suffices to verify the

statement when Cost(Vk, S
k
X) ≥ 1.

Define:
xmin = argmin

x∈X\SX

max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

x , SX ∪ {x})

From definition, Xk \ Sk
X = (X \ SX)k =

{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′}. And so xmin

k ∈
Xk \ Sk

X since xmin ∈ X \ SX . Since Cost(Vk, S
k
X) ≥ 1, we know there exists ỹk such that:

Cost(Vk, S
k
X) ≤ 1 + Cost(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmin
k

}
)
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Note in particular that Vk[(x
min
k , ỹk)] ̸= ∅ as otherwise Cost(Vk, S

k
X) ≤ −∞ (which contradicts our

assumption):

Cost(V, SX) = min
x∈X\SX

max
y′∈Y

1 + Cost(V y′

x , SX ∪ {x}) ( X \ SX is non-empty, since SX ⊂ X )

= max
y′∈Y

1 + Cost(V y′

xmin , SX ∪
{
xmin

}
)

≥ 1 + Cost(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
)

(setting y′ = y as constructed below (†) and using that V y
xmin = ×i∈[n](Vi)

yi

xmin
i

)

≥ 1 + max
i∈[n]

Cost((Vi)
yi

xmin
i

, (SX ∪
{
xmin
i

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1 + Cost((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) (by construction, yk = ỹk)

= 1 + Cost((Vk)
ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
)

(note that xmin
k ∈ (X \ SX)k, so xmin

k ∈ Xk \ Sk
X and ⋄)

≥ Cost(Vk, S
k
X)

(†) : Claim: There exists some y such that yk = ỹk and V y
xmin ̸= ∅ (that is, (Vi)

yi

xmin
i
̸= ∅ for each i).

Firstly, Cost(V, SX) ≥ 0⇒ |V | ≥ 1. This means that there exists h ∈ V , and that ∀i,∃hi ∈ Vi.

Since Vk[(x
min
k , ỹk)] ̸= ∅, there exists some h̃k ∈ Vk[(x

min
k , ỹk)] ̸= ∅.

We claim that y = (h1(x
min
1 ), ..., h̃k(x

min
k ), ..., hn(x

min
n )) satisfies the property.

Let h = (h1, ..., h̃k, ..., hn). Then we have h ∈ V y
xmin , since:

i) hi ∈ Vi, h̃k ∈ Vk implies h ∈ ×i∈[n]Vi = V

ii) h(xmin) = y.

And so, |V y
xmin | ≥ 1 ⇒ Cost(V y

xmin , SX ∪
{
xmin

}
) ≥ 0, which means we meet the precondition

needed to use the induction hypothesis.

(⋄): For task k, We know that (SX ∪
{
xmin

}
)k is either Sk

X or Sk
X ∪

{
xmin
k

}
. In the latter case,

equality holds.

In the former case, we may use Lemma F.20 to get that equality also holds:

Cost((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) = Cost((Vk)

ỹk

xmin
k

, Sk
X) = Cost((Vk)

ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
).
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G MISCELLANEOUS

G.1 DATA-BASED GAME REPRESENTATION

We begin with defining a natural state representation of the minimax learning game in Protocol 4,
using the examples queried by the learner so far, motivated by the definition of identifiability for
determining the termination condition.
Definition G.1. Given the set of labeled examples and their labels S, and the queried examples SX ,
classifier h ∈ H is said to be identifiable with respect to (S, SX), if (1) h is consistent with S; (2) for
all h′ ∈ H consistent with S,

h′(X \ SX) = h(X \ SX) =⇒ h′ = h

The above definition naturally motivates the following definition of effective version space:
Definition G.2. Given the set of labeled examples and their labels S, and the queried examples SX ,
define its induced effective version space as

F (S, SX) =
{
h ∈ H : h is identifiable with respect to (S, SX)

}
With this, it is natural to recursively define the game and its optimal value function using this state
representation:

f(S, SX) =



−∞, F (S, SX) = ∅
0, |F (S, SX)| = 1

minx∈X\SX
max

f(S ∪
{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 , |F (S, SX)| ≥ 2,

Here, we use the base-case game payoffs to encode the labeler’s promise of identifiability. Non-
identifiability (F (S, SX) = ∅) leads to a terminal payoff of −∞. Identifiability constrains the labeler
to not provide arbitrary labels and “string along” the learner for as long as possible. As we will later
see, this constraint is not crucial, as the algorithm we develop is also robust to a labeler that does not
guarantee identifiability.

G.1.1 VERSION SPACE-BASED GAME REPRESENTATION

We now turn to the version space game representation, which we use throughout, and prove it is
correct.
Definition G.3. Given a labeled dataset S and a set of classifiers V , define version space V [S] ={
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of classifiers in V consistent with S.

Definition G.4. Given the set of labeled examples and their labels S, and the queried examples SX ,
classifier h ∈ H is said to be identifiable with respect to (S, SX) if:

• h is consistent with S, h ∈ H[S].

• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for
brevity we denote h1(SX) = h2(SX) ⇐⇒ ∀x ∈ SX � h1(x) = h2(x).

Definition G.5. Given a set of classifiers V and a set of queried examples SX , define

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
as the effective version space (E-VS) with respect to V and SX .

The following proposition relates the effective version space to the classical notion of version space:
Proposition G.6.

F (S, SX) = E(H[S], SX)
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Proof.

h ∈ F (S, SX)⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′(X \ SX) = h(X \ SX) =⇒ h′ = h

⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′ ̸= h =⇒ h′(X \ SX) ̸= h(X \ SX)
(taking the contrapositive)

⇔ h ∈ E(H[S], SX)

Thus, another potential state space representation is using the version space and the unlabeled
examples that has been queried. The following structural lemma justifies that this is also a valid
representation.
Lemma G.7. f(S, SX) = Cost(H[S], SX)

Proof. We prove this by backward induction on SX .

Base case: SX = X . In this case, F (S,X ) = E(H[S],X ) has size 0 or 1; in both cases,
f(S, SX) = Cost(H[S], SX) by their respective definitions in the bases cases.

Inductive case. Suppose f(S, SX) = Cost(H[S], SX) holds for any S and any SX such that
|SX | ≥ j + 1. Now consider any S and any SX of size j.

If F (S, SX) = E(H[S], SX) has size 0 or 1, f(S, SX) = Cost(H[S], SX) holds true.

Otherwise, |F (S, SX)| = |E(H[S], SX)| ≥ 2. By inductive hypothesis, for any x ∈ X \ SX :

f(S ∪
{
(x,⊥)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

f(S ∪
{
(x,+1)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,+1)

}
], SX ∪ {x})

f(S ∪
{
(x,−1)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,−1)

}
], SX ∪ {x})

Therefore, for any x:

max


f(S ∪

{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 = max


Cost(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

1 + Cost(H[S ∪
{
(x,+1)

}
], SX ∪ {x})

1 + Cost(H[S ∪
{
(x,−1)

}
], SX ∪ {x})


Taking minimum over x ∈ X \ SX , we also have f(S, SX) = Cost(H[S], SX).

This completes the induction.
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H DISCUSSIONS ON ADDITIONAL RELATED WORKS AND FORMULATION

H.1 ADDITIONAL RELATED WORKS

More related AL works: Our technical results are inspired by the minimax results on exact learning
in Hanneke (2006). The noisy setup we consider is similar to that of e.g. Castro & Nowak (2008).
Our algorithm belongs the class of “aggressive” learning algorithms (Dasgupta, 2004; Golovin &
Krause, 2010), which has been of interest for their sample-efficiency. As in (Sabato et al., 2013), we
also study label-dependent cost.

Abstaining Classifiers: Prior works have studied the task of learning a predictor with the ability to
abstain (Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022). Our settings differ in that we aim
to learn the true classifier that does not abstain. Rather, it is the labeler that can abstain during the
learning process to slow-down learning.

Cross space learning: One of our constructions is related to the cross space learning (Tao et al.,
2022) setup, where each sample is represented in multiple instance spaces. The key observation is
that a strategic labeler can force learning on the instance space with the highest sample complexity,
by abstaining on all other instance spaces.

Strategic Machine Learning: Strategic ML is a line of work concerned with agent manipulation
of inputs into the ML model (Hardt et al., 2016). Much of this topic has focused on inference-time
feature manipulation to influence the model output. And among this large body of work, there is a
subset that deal with strategic manipulation of labels. In these settings, there are multiple agents,
each of whom can (mis)reports their data point label to manipulate the final model trained on all of
their collective data (Perote & Perote-Pena, 2004; Dekel et al., 2010; Chen et al., 2018). This line of
work largely focuses on the linear-regression setting, under various notions of strategyproofness.

Our work differs from this body of work in considering, at training time (instead of at inference time),
how a single labeler can maximize the query complexity of a learner under general hypothesis classes,
which includes the linear hypothesis class.

Economics of Knowledge Transfer: We note that the idea of strategically slowing down the transfer
of knowledge is not a novel conception. It is a real strategy that people have been documented to use
in apprenticeships for example (Garicano & Rayo, 2017; Fudenberg & Rayo, 2019), spanning across
several industries such as law, entertainment and culinary arts. There are two reasons that motivate
the slowed transfer of expertise.

Firstly, as described in (Garicano & Rayo, 2017; Fudenberg & Rayo, 2019), before the apprentice
has learned everything and can graduate, he will be working for the teacher (or master as is often
used in apprenticeship parlance) and performing labor for cheap. Thus, this incentivizes the master to
slowly down training, so that the apprentice takes longer to graduate and the master can enjoy this
cheap labor for longer.

Secondly, the master can better protect the value of his expertise by slowing down the transfer of his
expertise. Overly fast transfer of the master’s know-how would graduate too many apprentices too
quickly, all of whom also have the same expertise and could thus reduce the value of the master’s
expertise.

In our setting, we consider the relationship between a human teacher (labeler) and a student (machine).
There is a similar incentive at play in that, while the learner has yet to learn h∗, the labeler is paid by
the learner for the training labels provided. But once h∗ is identified, the student has no need for the
teacher. And so, this incentivizes the labeler to slow down learning, in order to give and be paid for
as many labels as possible. One difference we note is that in this setting, the transfer of expertise has
more serious consequences in rendering the labeler’s expertise obsolete, which is not the case in the
apprenticeship setting.

H.2 ALTERNATIVE FORMULATIONS

In our formulation, the learner is not allowed to query an example multiple times and the labeler must
label in a way to guarantee that the learner can identify h∗ at the end. It is reasonable to consider
alternative formulations when we relax either assumption. Here we provide motivation for why both
assumptions are reasonable:
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1. Learner can only query an example once: Allowing the learner to query as so would
result in deadlock in the learning game. To see this, at time t, an AL algorithm would
query the optimal point xt. If the labeler abstains and xt is not removed from the data pool
(since xt may be queried multiple times), the AL algorithm would again query xt at the next
iteration. This is because the state has not changed. xt would still be the best point to query,
and eligible to be queried since it is in the data pool.
Thus, for this alternative formulation to compile, there would have to be an apt way to
modify AL algorithms and ensure the process does not hang. This modification however
may compromise the guarantees of the AL algorithm. By contrast, in the current formulation,
a data point is removed from the pool at each time step, thus always ensuring continued
progress.

2. Labeler guaranteeing learning outcome: We assume guaranteed learning outcome for
two reasons. The first is for the purpose of analyzing minimax strategies. Indeed, in
game theory, one needs to consider players who play optimally in order to study the Nash
Equilibria/minimax query-complexity.
With that said, in Subsection 4.1 and 4.3, we study remedies when facing a player that
behaves sub-optimally, for instance due to lack of knowledge ofH.

• If the learner knows that the labeler may behave myopically, one idea is to loosen the
“learning outcome” to approximate identifiability. In Subsection 4.1, we show how to
extend our learning algorithms to the PAC learning setting.

• In Subsection 4.3, we observe that the E-VS can be used to detect when an abstained
point leads to non-identifiability. Thus, the learner can use this to send a certified
“warning” to the labeler: if this (critical) data point is abstained upon, it will provably
lead to non-identifiability. In this way, the learner can use the E-VS representation to
prevent an myopic/unaware labeler from prematurely halting the learning process.
Indeed, we note that non-identifiability is something neither party wants: the learner
wants to learn, and the labeler needs to realize the learning outcome in order to be paid.

57



Published as a conference paper at ICLR 2024

I EXPERIMENTS

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 3: The average number of examples queried by each algorithm across 50 randomly generated
instances, along with its standard deviation (shaded region). For this set of plots, the labeling oracle
is random (and may not ensure identifiability), with varying probability of abstention p. In the plots,
the lower the average, the better the algorithm (needing fewer samples).

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 4: The average number of examples queried by each algorithm across 50 randomly generated
instances, along with its standard deviation (shaded region). For this set of plots, the labeling oracle
is identifiable, with varying probability of abstention p. In the plots, the lower the average, the better
the algorithm (needing fewer samples).
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To supplement our theoretical minimax analysis in the main section, we examine the performance of
three learning algorithms, E-VS bisection, VS-bisection and randomly query (a point), in “average-
case” settings by randomly generating learning instances.

Experiment Setup: We consider five sizes for the hypothesis class ranging from 15 to 40. Given a
particular hypothesis class size |H|, we generate 50 random learning instances by randomly generating
the binary labels of hypotheses on examples x ∈ X , where the number of data points |X | is varied
from 5 to 30. Given a learning instance, we consider setting (the underlying hypothesis) h∗ to be
every h ∈ H, and thus average the query complexity across random instances as well as across H.
This is done to explore the average-case query complexity, where we do not focus on the query
complexity of one particular h∗ = h ∈ H (as was done in some of the worst-case analyses).

We investigate two possible labeling strategies, with varying amounts of abstention p =
0.0, 0.15, 0.3, 0.45, 0.6. The first strategy is that given the underlying hypothesis h∗ ∈ H, it abstains
on labeling a point x with probability p, and outputs h∗(x) otherwise (w.p. 1 − p). This labeling
strategy may be viewed as one that abstains arbitrarily, and may compromise identifiability. This
models the labeling strategy of a myopic labeler. The second strategy is a more careful, adaptive
labeling strategy that always ensures identifiability. Given the underlying h∗, when x is queried, it
computes the resultant E-VS if x was abstained upon. If abstention leads to non-identifiability, it
labels x and returns h∗(x). Otherwise, it abstains with probability p and provides the label otherwise.
This may be viewed as a more shrewd labeling strategy that always ensures identifiability, while
using some abstention.

Results: We plot results in Figure 3 and Figure 4, with Figure 3 corresponding to the first (random
labeling) strategy and Figure 4 corresponding to the identifiable labeling strategy.

We have a few observations. First, as a sanity check, we observe that in the absence of abstention
(p = 0.0), the E-VS and VS algorithm behave exactly the same and thus their performance should
match, which they do as in the first plot of both Figure 3 and Figure 4.

Next, we observe the general trend that the E-VS algorithm attains the lowest query complexity,
followed by the VS algorithm and then the random querying algorithm. Moreover, the gap becomes
more pronounced with the amount of abstention. This makes sense because the E-VS representation
is designed to handle abstention, while the VS is not. This trend thus illustrates the effectiveness of
using the E-VS representation in face of an abstaining labeler.

Finally, we see that the gap is most significant in face of a non-identifying labeler (as in plots of
Figure 3). This is because the E-VS algorithm can do early detection of non-identifiability and
aptly halt the interaction, while the VS bisection and random querying algorithm cannot detect
non-identifiability due to the use of the VS representation. We proved that the query complexity can
be significantly larger in a worst-case setup in Theorem 3.8. And here, we see that in addition to the
worst-case setting (as in Theorem 3.8), the E-VS also fares better in the average-case. Thus, this
again affirms the robustness of the E-VS algorithm in face of a non-identifying labeler.
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