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ABSTRACT
This work proposes a new computational framework for automatically learning a
closed-loop transcription between multi-class multi-dimensional data and a linear
discriminative representation (LDR) that consists of multiple multi-dimensional
linear subspaces. In particular, we argue that the optimal encoding and decoding
mappings sought can be formulated as the equilibrium point of a two-player
minimax game between the encoder and decoder. A natural utility function for this
game is the so-called rate reduction, a simple information-theoretic measure for
distances between mixtures of subspace-like Gaussians in the feature space. Our
formulation avoids expensive evaluating and minimizing approximated distances
between arbitrary distributions in either the data space or the feature space. To a
large extent, conceptually and computationally this new formulation unifies the
benefits of Auto-Encoding and GAN and naturally extends them to the settings of
learning a both discriminative and generative representation for complex multi-
class and multi-dimensional real-world data. Our extensive experiments on many
benchmark datasets demonstrate tremendous potential of this framework: under fair
comparison, visual quality of the learned decoder and classification performance of
the encoder is competitive and often better than existing methods based on GAN,
VAE or a combination of both.

1 INTRODUCTION AND RELATED WORK

One of the most fundamental tasks in machine learning is to learn and model complex distributions
(or structures) of real-world data, such as images or texts, from a set of observed samples. By “learn
and model”, one typically means that we want to establish a (parameteric) mapping between the
distribution of the real data, say x ∈ RD, and a more compact random variable, say z ∈ Rd:

f(·, θ) : x ∈ RD 7→ z ∈ Rd or the inverse g(·, η) : z ∈ Rd 7→ x ∈ RD, (1)

where z has certain standard structure or distribution (e.g. normal distributions). The so-learned
representation or feature z would be much easier to use for either generative or discriminative
purposes. Be aware that the support of the distribution of x (and that of z) can be low-dimensional
hence the above map(s) may not be so well defined off the support in the space RD (or Rd).

1.1 LEARNING GENERATIVE MODELS VIA AUTO-ENCODING OR GAN
Auto-Encoding. In the machine learning literature, roughly speaking, there have been two repre-
sentative approaches to such a distribution-learning task. One is the classic “Auto Encoding” (AE)
approach (Kramer, 1991; Hinton & Zemel, 1993) that aims to simultaneously learn an encoding
mapping f from x to z and an (inverse) decoding mapping g from z back to x:

X
f(x,θ)−−−−−−→ Z

g(z,η)−−−−−−→ X̂. (2)

Here we use bold capital letters to indicate a matrix of finite samples X = [x1, . . . ,xn] ∈ RD×n of
x and their mapped features Z = [z1, . . . ,zn] ⊂ Rd×n, respectively. Typically, one wishes for two
properties: firstly, the (empirical) distribution of the mapped samples Z, denoted as p̂(z |X, θ), is
close to certain desired distribution p(z), say some much lower-dimensional disentangled multivariate
Gaussian;1 and, secondly, the decoded samples X̂ are “similar” or close to the original X .

In the feature space z, to enforce the learned distribution p̂(z) to be close to a target p(z), one
normally minimizes a certain “distance” between the two distributions, say the KL-divergence:
minDKL(p̂, p). However, it is very difficult, often computationally intractable, to precisely compute
or minimize such a distance D between two arbitrary degenerate distributions in high-dimensional

1The classical PCA can be viewed as a special case of this task. In fact, the original auto-encoding is precisely
justified as nonlinear PCA (Kramer, 1991).
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spaces. So in practice, one typically chooses to minimize instead certain approximate bounds
(surrogates) of the distance, such as a variational bound in variational auto-encoding (VAE) (Kingma
& Welling, 2013; Zhao et al., 2017) and the earth mover’s (Wasserstein) distance. In this work, we
will show that if we impose specific requirements on the (distribution of) learned feature z (e.g. being
subspace-like Gaussians), natural distances can be given in closed-form.

GAN. Compared to measuring distribution distance in the (often controlled) feature space z, a much
more challenging issue is how to effectively measure the distance between the decoded samples X̂
and the original X in the data space x. For instance, for visual data such as images, despite extensive
studies in the computer vision and image processing literature (Wang et al., 2004), it remains elusive
to find a good measure for similarity of real images that is both efficient to compute and effective in
capturing visual quality and semantic information of the images equally well. Generative Adversarial
Nets (GAN) (Goodfellow et al., 2014) offers an ingenious idea to resolve this difficulty by utilizing
a powerful discriminator d, usually modeled and learned by a deep network, to discern differences
between the generated samples X̂ and the real ones X:

Z
g(z,η)−−−−−−→ X̂,X

d(x,θ)−−−−−−→ Y ∈ 0,1}. (3)

Such a discriminator minimizes the Jensen-Shannon divergence, between the data X and X̂ . But as
shown in (Arjovsky et al., 2017), the JS-divergence can be highly ill-conditioned to optimize when the
distributions are low-dim. So in practice, one may choose to replace the JS-divergence with the earth
mover’s distance or other variants. The original GAN aims to directly learn a mapping g, called a
generator, from a standard distribution (say a low-dim Gaussian random field) to the real (visual) data
distribution in a high-dim space. However, distributions of real-world data can be rather sophisticated
and often contain multiple classes and multiple factors in each class (Bengio et al., 2013). That makes
learning the mapping g rather challenging in practice, suffering difficulties such as mode-collapse
(Srivastava et al., 2017). As a result, many variants of GAN have been subsequently developed in
order to improve the stability and performance in learning multiple modes and disentangling different
factors in the data distribution, such as Conditional GAN (Mirza & Osindero, 2014; Sohn et al., 2015;
Mathieu et al., 2016; Van den Oord et al., 2016; Wang et al., 2018), InfoGAN (Chen et al., 2016; Tang
et al., 2021), or Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018; Li et al., 2020)

In particular, to learn a generator for multi-class data, prevalent conditional GAN literature requires
label information as inputs during training (Mirza & Osindero, 2014; Odena et al., 2017; Dumoulin
et al., 2016; Brock et al., 2018). Recently Wu et al. (2019b;a) has proposed to train a k-class GAN
by generalizing the two-class cross entropy to a (k + 1)-class cross entropy. In this work, we will
introduce a more refined 2k-class measure for the k real and k generated classes. In addition, to avoid
features for each class to collapse to a singleton, we will use the so-called rate reduction measure
that promotes multi-dimension in the learned features (Yu et al., 2020).

Another line of research is about how to stablize the training of GAN. SN-GAN (Miyato et al., 2018)
has shown spectral normalization on the discriminator is rather effective, which we will adopt in our
work. PacGAN (Lin et al., 2018) shows that the training stability can be significantly improved by
packing a pair of real and fake images together for the discriminator. In this work, we show how to
naturally generalize this idea to discriminating an arbitrary number of pairs of real and decoded
samples. Also, Wu et al. (2019a) has shown that optimizing the latent features leads to state of
the art visual quality. There are strong reasons to believe that their method essentially utilizes the
Compressed Sensing principle to implicitly exploit low-dimensionality of the feature distribution.
Our framework will explicitly impose and exploits such low-dimensional structures of the learned
feature distribution.

Combination of AE and GAN. Although AE (VAE) and GAN have started with somewhat
different motivations, they have evolved into popular and effective frameworks for learning and
modeling complex distributions of many real-world data such as images. Many recent efforts tend
to combine both Auto-Encoding and GAN to generate more powerful generative frameworks for
more diverse data sets, such as Larsen et al. (2015); Rosca et al. (2017); Srivastava et al. (2017); Bao
et al. (2017); Huang et al. (2018); Ulyanov et al. (2018); Vahdat & Kautz (2020). As we will see,
in our framework, AE and GAN can be naturally interpreted as two segments of a closed-loop data
transcription process. But unlike GAN or VAE, the distribution of the feature z is learned from the
data x and its low-dim support in Rd is explicitly modeled as a union of discriminative subspaces.
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1.2 LEARNING LINEAR DISCRIMINATIVE REPRESENTATION VIA RATE REDUCTION

Recently, Chan et al. (2021) has proposed a new objective for deep learning that aims to learn a linear
discriminative representation (LDR) for multi-class data. The basic idea is to map distributions of
real data, potentially on multiple nonlinear submanifolds, to a family of canonical models consisting
of multiple incoherent (or orthogonal) linear subspaces. To some extent, this generalizes nonlinear
PCA (Kramer, 1991) to the more general/realistic settings where we simultaneously apply multiple
nonlinear PCAs to data on multiple nonlinear submanifolds. Unlike conventional discriminative
methods that only aim to predict class labels, the LDR aims to learn the likely multi-dimensional
distribution of the data hence is potentially suitable for both discriminative and generative purposes.
It has been shown that this can be achieved via maximizing the so-called “rate reduction” objective.

MCR2. More precisely, consider a set of data samples X = [x1, . . . ,xn] ∈ RD×n from k different
classes and we use Πj , j = 1, . . . , k to denote the memberships of the samples in k classes X =
∪kj=1Xj . One seeks a continuous mapping f(·, θ) : x 7→ z from X to an optimal representation
Z = [z1, . . . ,zn] ⊂ Rd×n that maximizes the following coding rate reduction objective, known as
the MCR2 principle (Yu et al., 2020):

max
Z

∆R(Z,Π, ε)
.
=

1

2
log det

(
I + αZZ∗

)
︸ ︷︷ ︸

R(Z,ε)

−
k∑
j=1

γj
2

log det
(
I + αjZΠjZ∗

)
︸ ︷︷ ︸

Rc(Z,ε|Π)

,
(4)

where α = d
nε2 , αj = d

tr(Πj)ε2 , γj = tr(Πj)
n for j = 1, . . . , k. In this paper, for simplicity we denote

∆R(Z,Π, ε) as ∆R(Z) assuming Π, ε are known and fixed. The first term R(Z |ε) is the coding
rate of the whole feature set Z (coded as a Gaussian source) with a prescribed precision ε; the second
term Rc(Z |Π, ε) is the average coding rate of the k subsets of features Zj = f(Xj) (each coded as
a Gaussian). As it has been shown by Yu et al. (2020), maximizing the difference between the two
terms will “expand” the whole feature set while “compressing and linearizing” features of each of the
k classes. If the mapping f maximizes the rate reduction, it maps the features of different classes into
independent (orthogonal) subspaces in Rd. Figure 1 illustrates a simple example of data with k = 2
classes (on two submanifolds) mapped to two incoherent subspaces (solid black lines).

2 DATA TRANSCRIPTION VIA RATE REDUCTION

2.1 LDR TRANSCRIPTION

One issue with this one-sided LDR learning is that maximizing the above objective tends to maximize
the dimension of the learned subspace for features in each class.2 To verify whether the learned
features are good, we may consider learning a decoder g(·, η) : z 7→ x from the representation
Z = f(X, θ) back to the data space x: X̂ = g(Z, η), and check how close X and X̂ are or how
close their features Z and Ẑ are. The overall pipeline can be illustrated by the following diagram:

X
f(x,θ)−−−−−−→ Z

g(z,η)−−−−−−→ X̂
f(x,θ)−−−−−−→ Ẑ, (5)

where the overall model has parameters: Θ = {θ, η}. Notice that in the above process, the segment
from X to (X̂,X) resembles a typical Auto-Encoding process although, as we will soon see, our
MCR2-based encoder f plays an additional role as a discriminator. The segment from Z to (Ẑ,Z)
draws resemblance to the typical GAN process although, in our context, the distribution of the latent
variable z will be learned from the data x, which often is a distribution with multiple modes and each
mode with multiple factors.

Here, in the specific context of rate reduction, we name this special auto-encoding process LDR
Transcription since the maximal rate reduction principle explicitly transcribes the data X , via f ,
to features Z on a linear discriminative representation (LDR), which can be subsequently decoded
back to the data space X̂ , via g. Hence, the encoding and decoding maps f and g together form a
closed-loop process, as illustrated in Figure 1. We wish this closed-loop transcription process to have
the following good properties:

• Injectivity: the generated x̂ = g(f(x, θ), η) ∈ X̂ to be as close to (ideally the same as)
the original data x ∈X , in terms of certain measure of similarity or distance.

2If the dimension of the feature space d is too high, maximizing the rate reduction may over-estimate the
dimension of each class. Hence to learn a good representation, one needs to pre-select a proper dimension for
the feature space, as done in the experiments in (Yu et al., 2020).
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Figure 1: Closed-loop LDR Transcription. The encoder f has dual roles: it learns an LDR z for
the data x and also discerns any discrepancy in the data x and the decoded x̂.

• Surjectivity: for all mapped images z = f(x) ∈ Z of the training data x ∈X , there are
decoded samples ẑ = f(g(z, η), θ) ∈ Ẑ close to (ideally the same as) z.

2.2 MEASURING DISTANCES IN THE FEATURE SPACE AND DATA SPACE

Contractive Measure. For the second item in the above wishlist, as the representations in the
feature space z are by design linear subspaces or (degenerate) Gaussians, we have geometrically
or statistically meaningful metrics for both samples and distributions in the feature space z. For
example, we care about distance between distributions between the features of the original data Z

and the transcribed Ẑ. Since the features of each class, Zj and Ẑj , are subspace/Gaussian-like, their
“distance” can be measured by the rate reduction, with (4) restricted to two sets of equal size):

∆R
(
Zj , Ẑj

) .
= R

(
Zj ∪ Ẑj

)
− 1

2

(
R
(
Zj) +R

(
Ẑj)
)
, (6)

which, as shown in Fig. 1, measures the space volume between a pair of black lines and blue lines, as
per interpretation of rate reduction in (Yu et al., 2020). Then for the “distance” of all, say k, classes,
we simply sum the rate reduction for all pairs:

d(Z, Ẑ)
.
= min

η

k∑
j=1

∆R
(
Zj , Ẑj

)
= min

η

k∑
j=1

∆R
(
Zj , f(g(Zj , η), θ)

)
, (7)

where Zj = f(Xj , θ) and Ẑj = f(X̂j , θ). Obviously, a main goal of the learned decoder g(·, η)
is to minimize the distance between these distributions. Notice that if the encoder f preserves (i.e.
injective for) the intrinsic structures of the original data X ,3 this criterion essentially aims to ensure
there will be some decoded sample x̂ close to every data sample x – hence the decoder should be
“surjective.” According to the ideas of IMLE (Li & Malik, 2018), such a requirement could effectively
help avoid mode-collapsing or mode-dropping.

Contrastive Measure. For the first item in our wish-list, however, we normally do not have a
natural metric or “distance” for similarity of samples or distributions in the original data space x.4 To
alleviate this difficulty, we can measure the similarity or difference between X̂ and X through their
mapped images Ẑ and Z in the feature space (again assuming f is structure-preserving). If we are
interested in discerning any difference in the distributions of the original and transcribed samples, we
may view the MCR2 feature encoder f(·, θ) as a “discriminator” to magnify any difference between
all pairs of Xj and X̂j , by simply maximizing, instead of minimizing, the same quantity in (7):

d(X, X̂)
.
= max

θ

k∑
j=1

∆R
(
Zj , Ẑj

)
= max

θ

k∑
j=1

∆R
(
f(Xj , θ), f(X̂j , θ)

)
. (8)

That is, a “distance” between X and X̂ can be measured as the maximally achievable rate reduction
between all pairs of classes in these two sets. In a way, this measures how well or bad the decoded X̂
aligns with the original data X – hence measuring the goodness of “injectivity”. Notice that such a
discriminative measure is consistent with the idea of GAN (Goodfellow et al., 2014). Nevertheless,
here the MCR2-based discriminator f naturally generalizes to cases when the data distributions are
multi-class and multi-modal, and the discriminativeness is measured with a more refined measure –
the rate reduction, instead of the typical two-class loss (e.g. cross entropy) used in GANs.

3This is typically the case for MCR2-based feature representation (Yu et al., 2020).
4As mentioned before, finding proper metrics or distance functions on natural images has always been an

elusive and challenging task (Wang et al., 2004).
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Figure 2: Sx (red) is the submanifold for the orig-
inal data x; Sz (blue) is the image of Sx under the
mapping f , representing the learned feature z; and
the green curve is the image of the feature z under
the decoding mapping g.

One may wonder the reason why we need
the mapping f(·, θ) to function as a discrim-
inator between X and X̂ by maximizing
maxθ ∆R

(
f(X, θ), f(X̂, θ)

)
? Figure 2 gives

a simple illustration: there might be many decoders
g such that f ◦g is an identity mapping f ◦g(z) = z
for all z in the subspace Sz in the feature space.
However, g ◦ f is not necessarily an auto-encoding
map for x in the original distribution Sx (here
for simplicity drawn as a subspace). That is,
g ◦ f(Sx) 6⊂ Sx (let alone g ◦ f(x) = x). One
should expect, without careful control of the image
of g, this would typically be the case especially when
the support of the distribution of x is extremely
low-dimensional in the original high-dimensional
data space (e.g. in the millions for images).

2.3 ENCODING AND DECODING AS A TWO-PLAYER MINIMAX GAME

Comparing (7) and (8), we see the roles of the encoder f(·, θ) and the decoder g(·, η) naturally as
a “a two-player game”: while the encoder f tries to magnify the difference between the original
data and the transcribed; the decoder g aims to minimize the difference. Now for convenience, let us
define the “closed-loop encoding” function:

h(x, θ, η)
.
= f

(
g
(
f(x, θ), η

)
, θ
)

: x 7→ z. (9)
Ideally, we want this function to be very close to f(x, θ). With this notation, combining (7) and (8),
a closed-loop notion of “distance” between X and X̂ can be computed as an equilibrium point to the
following Min-Max program for the same utility in terms of rate reduction:

D(X, X̂)
.
= min

η
max
θ

k∑
j=1

∆R
(
f(Xj , θ), h(Xj , θ, η)

)
. (10)

Notice that this only measures the difference between (features of) the original data and its transcribed
version. It does not measure how good the representation Z (or Ẑ) is for the multiple classes within
X (or X̂). To this end, we may combine the above distance with the original MCR2-type objectives
(4): namely, the rate reduction ∆R(Z) and ∆R(Ẑ) for the learned LDR Z for X and Ẑ for the
decoded X̂ . The overall multi-class Min-Max program for learning the LDR model is:

min
η

max
θ

∆R
(
f(X, θ)

)︸ ︷︷ ︸
Expansive encode

+ ∆R
(
h(X, θ, η)

)︸ ︷︷ ︸
Compressive decode

+

k∑
j=1

∆R
(
f(Xj , θ), h(Xj , θ, η)

)︸ ︷︷ ︸
Contrastive encode & Contractive decode

.
= TX(θ, η).

(11)
Notice that, without the terms associated with the generative part h or with all such terms fixed
as constant, the above objective is precisely the original MCR2 objective.5 Also, notice that the
minimax objective function depends only on the data X hence one can learn the encoder and decoder
(parameters) without the need of sampling any other distribution (as needed by GANs)!

As a special case, if X only has one class, the above Min-Max program reduces6 to a special “binary”
form between X and X̂:7

Binary: min
η

max
θ

∆R
(
f(X, θ), h(X, θ, η)

)
. (12)

Sometimes, even when X contains multiple classes/modes, one could still view all classes together
as one class. Then the above binary objective is to align the union distribution of all classes with their
decoded X̂ . This is typically a simpler task to achieve than the multi-class one (11) since it does not
require to learn a more refined multi-class LDR for the data, as we will later see in experiments.

5In an unsupervised setting, if we view each sample (and its augmentations) as its own class, the above
formulation remains exactly the same! The number of classes k is simply the number of independent samples.

6as the first two terms become zero.
7Notice that this binary case resembles formulation of the original GAN (3) by viewing X and X̂ as two

classes {0,1}. Nevertheless, instead of using cross entropy, our formulation adopts a more refined rate reduction
measure, which has been shown to promote diversity in the learned representation (Yu et al., 2020).
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2.4 DISCUSSIONS ABOUT THE MINIMAX OBJECTIVE

There are many outstanding questions that one may wonder about the above formulation: When does
the game minθ maxη TX(θ, η) have a well-defined Nash-equilibrium point (θ?, η?)? What good
characteristics the associated optimal encoder f? and g? have? For instance, under what conditions,
will their composition be or close to be a true auto-encoding g? ◦ f? ≈ Id, and will the learned
features Z? = f(X, θ?) form orthogonal or highly incoherent subspaces?

In this paper, we will not be able to give complete rigorous answers to these questions. The main
purpose of this paper is to provide compelling empirical evidence that answers to the above questions
are highly likely to be positive under fair broad conditions (see Section 3). Here we will give some
preliminary justification based on characteristics of each team in TX(θ, η) and will also give reasons
why a rigorous characterization of the optimality conditions is mathematically challenging.

Let us first consider maximizing the first two rate reduction terms in TX(θ, η), assuming η fixed
and Z(θ) and Ẑ(θ) are aligned, i.e., ∆R

(
Zj(θ), Ẑj(θ)

)
reaches its minimum 0 for j ∈ [k] (to be

discussed below). Then they essentially maximize the rate reduction ∆R(Z(θ)) + ∆R(Ẑ(θ)) for
features of the k classes in Z(θ) = f(X, θ) and Ẑ(θ) = h(X, θ, η). Based on the results in Yu et al.
(2020), a sufficient condition for the rate reduction to reach a (local) maximum is when features of all
classes belong to subspaces orthogonal to each other8: Z>i Zj = 0 and Ẑ>i Ẑj = 0 for i 6= j.

Now let us consider minimizing the k rate reduction terms in the third term of TX(θ, η), assuming
θ fixed and the ∆R(Ẑ) achieves its maximum (as mentioned above). Then, from the property of
the log det(·) function, we know that each of the k terms in the contractive measure: according to
Lemma 10 of Chan et al. (2021), ∆R

(
Zj , h(Ẑj(η)

)
reaches its minimum (0) when the covariance

matrices of Zj and Ẑj are the same, i.e., ZjZ>j = ẐjẐ
>
j . If one further assumes that the encoder is

sufficiently injective, perfect alignment of Zj and Ẑj suggests perfect alignment of Xj and X̂j .

Based on the above properties, one may show that when the k classes in each of Z and Ẑ form k

orthogonal subspace and each corresponding pair of Zj and Ẑj aligns perfectly, then one reaches a
critical point9 of the minimax game minθ maxη TX(θ, η). It remains open whether such a critical
point is a strict saddle point – a (local) Nash equilibrium.

There are more subtle questions that one could or should ask too, such as: how are the learned features
Z and Ẑ distributed within the subspaces? Are features for individual sample zi ẑi (hence xi and
x̂i) well aligned? Results in Yu et al. (2020) suggest that covariance of the features in each subspace
needs to be nearly isotropic in order for a rate reduction term to be maximized. When minimizing a
rate reduction term, results about the so-called Brascamp-Lieb inequalities (Jonathan Bennett et al.,
2007) suggest that a necessary condition for the minimum to be reached is when the distribution
(density) within each subspace becomes Gaussian. Hence from these results one may conjecture
that the optimal distribution in each subspace for the minimax game is Gaussian too. Although
theoretically nothing is known about relationships between the features zi ẑi of individual samples,
(multi-class) experiments in next section suggest that they are actually very close.

Despite all these challenging open mathematical questions, one may notice that the aggregated
effect of all the terms associated with the decoder g(·, η) is precisely “opposite” to the effect of the
terms associated with the encoder f(·, θ). All together, the Min-Max program (11), or (12), aims to
strike a good tradeoff between maximizing the expressiveness and discriminativeness of the learned
representation as well as minimizing any unnecessary cost, in terms of the overall coding rate and
errors in decoding, all measured in rate reduction (assuming features being subspace Gaussians).

3 EMPIRICAL VERIFICATION ON REAL-WORLD IMAGERY DATASETS

The experiment section serves three purposes: First, we empirically justify the new formulation by
demonstrating good properties of the learned encoder, decoder, and representations. Second, we
compare our method with several representative methods from the GAN family and VAE family.
Finally, we evaluate the learned LDR through visualization and classification tasks.

8Here one must assume such a mapping f exists which puts conditions on the original data distribution X
and the family of functions that f(·, θ) can represent.

9That is, gradients of the utility T are zero w.r.t. θ and η because ∂∆R
∂Z

all vanishes.

6



Under review as a conference paper at ICLR 2022

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 3: Qualitative comparison on MNIST, CIFAR-10 and ImageNet. First row: original X; Other rows:
reconstructed X̂ for different methods.

Table 1: Quantitative comparison on MNIST and CIFAR-10. Average Inception scores (IS) (Salimans et al.,
2016) and FID scores (Heusel et al., 2017). ↑ means higher is better. ↓ means lower is better.

Method GAN GAN (LDR-Binary) VAE-GAN LDR-Binary LDR-Multi

MNIST
IS ↑ 2.08 1.95 2.21 2.02 2.07

FID ↓ 24.78 20.15 33.65 16.43 16.47

CIFAR-10
IS ↑ 7.32 7.23 7.11 8.11 7.13

FID ↓ 26.06 22.16 43.25 19.63 23.91

Datasets. We provide extensive qualitative and quantitative experimental results on the following
datasets: MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), STL-10 (Coates et al.,
2011), CelebA (Liu et al., 2015), LSUN bedroom (Yu et al., 2015), and ImageNet ILSVRC 2012
(Russakovsky et al., 2015). The network architectures and implementation details can be found in
Appendix A.1 and corresponding appendix section for each dataset.

3.1 EMPIRICAL JUSTIFICATION OF LDR TRANSCRIPTION

To empirically validate our new framework, we conduct experiments from a small low-variety dataset
(MNIST), to a small dataset of diverse real-world objects (CIFAR-10), to higher resolution images
(CelebA, LSUN-bedroom), to a large-scale image set (ImageNet). The results are evaluated both
quantitatively and qualitatively. Implementation details and more results are given in the Appendix.
Comparison (IS and FID) with other formulations. First, we conduct five experiments to fairly
compare our formulation with GAN (Radford et al., 2015) and VAE(-GAN) (Larsen et al., 2016) on
MNIST and CIFAR-10. Except for the objective function, everything else is exactly the same for all
methods (e.g. networks, training data, optimization method). These experiments are: 1). GAN; 2).
GAN with its objective replaced by that of the LDR-Binary (12); 3). VAE-GAN ; 4). Binary LDR
(12); and 5). Multi-class LDR (11). Some visual comparison is given in Fig. 3. IS (Salimans et al.,
2016) and FID (Heusel et al., 2017) scores are summarized in Table 1.

Figure 4: Visualizing
the alignment between
Z and Ẑ: |Z>Ẑ| and
in the feature space
for MNIST (top) and
CIFAR-10 (bottom).

As we see from the above Table 1, replacing cross-entropy with the Equa-
tion (12) can improve the generative quality. The two LDR formulations are
clearly on par with the others in terms of IS and significantly better in FID.
Finally, with the same training datasets, quality of LDR-Multi is lower than
LDR-Binary. This is expected as the multi-class task is more challenging.
Nevertheless, as we will see soon, images decoded by LDR-Multi align much
better with their classes than Binary.

Visualizing correlation of features Z and decoded features Ẑ. We visual-
ize the cosine similarity between Z and Ẑ learned from the multi-class objec-
tive (11) on MNIST and CIFAR-10, which indicates how close ẑ = f ◦ g(z)

is from z. Results in Fig 4 show that Z and Ẑ are aligned very well within
each class. The block-diagonal patterns for MNIST are sharper than those for
CIFAR-10, as images in CIFAR-10 have more diverse visual appearances.

Visualizing auto-encoding of the data X and the decoded X̂ . We com-
pare some representative X and X̂ on MNIST, CIFAR-10 and ImageNet
(10 classes) to verify how close x̂ = g ◦ f(x) is to x. The results are shown
in Fig 5, and visualizations are created from training samples. Visually, the
auto-encoded x̂ faithfully captures the visual features from its respective
training sample x. There also exist some auto-encoded images that are almost
identical to the original. We refer the reader to Appendix A.2 A.4 A.7 for
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(a) MNIST X (b) MNIST X̂ (c) CIFAR-10 X (d) CIFAR-10 X̂ (e) ImageNet X (f) ImageNet X̂

Figure 5: Visualizing the auto-encoding property of the learned LDR (x ≈ x̂ = g ◦ f(x)) on MNIST,
CIFAR-10, and ImageNet (zoom in for better visualization).

Table 2: Comparison on CIFAR-10 and STL-10. Comparison with more existing methods and on ImageNet
can be found in Table 13 in the Appendix.

Method GAN based methods VAE/GAN based methods
SNGAN CSGAN LOGAN VAE-GAN NVAE DC-VAE LDR-Binary LDR-Multi

CIFAR-10
IS ↑ 7.4 8.1 8.7 7.4 - 8.2 8.1 7.1
FID ↓ 29.3 19.6 17.7 39.8 50.8 17.9 19.6 23.9

STL-10
IS ↑ 9.1 - - - - 8.1 8.4 7.7
FID ↓ 40.1 - - - - 41.9 38.6 45.7

more visualizations of results on these datasets, including similar results on transformed MNIST
digits and real-life images decoded by randomly sampling the learned feature subspaces.

3.2 COMPARISON TO EXISTING GENERATIVE METHODS

Table 2 gives a quantitative comparison of visual quality of our method with others on CIFAR-10,
STL-10, and ImageNet. In general, there is a large difference in terms of FID and IS scores between
the GAN family and the VAE family of models. SNGAN (Miyato et al., 2018) are commonly used
methods in most generative applications while LOGAN (Wu et al., 2019a) is the state-of-the-art
method on ImageNet in terms of FID and IS. As we see, even if the rate reduction is not specifically
designed nor engineered for visual quality10, our method is still rather competitive in terms of these
metrics.

3.3 BENEFITS OF THE LEARNED LDR TRANSCRIPTION MODEL

As we have argued before, the learned LDR transcription model (including the feature z, the encoder
f , and the decoder g) can be used for both generative and discriminative purposes.

Decoding samples from the feature distribution. Using the CIFAR-10 and CelebA datatsets, we
visualize images decoded from samples of learned feature subspace. For the CIFAR-10 dataset, for
each class j, we first compute the top-4 principal components of the learned features Zj (via SVD).
For each class j, we then compute |〈zij ,vlj〉|, the cosine similarity between the l-th principal direction
vlj and feature sample zij . After finding the top-5 zij according to |〈zij ,vlj〉| for each class j, we
reconstruct images x̂ij = g(zij). Each row of Fig. 6 is for one principal component. We observe that
images in the same row share many common features; images in different rows differ significantly
in characteristics like shape, background, and style. See Appendix A.4 for more visualization of
principal components learned for all 10 classes of CIFAR-10.

For the CelebA dataset, we calculate the principal components of all learned features in the latent
space. Fig 7(a) shows some decoded images along these principal directions. These components seem
to clearly disentangle visual attributes/factors such as wearing a hat, changing hair color and wearing
glasses. More examples can be found in Appendix A.6. The results are consistent with the property of
MCR2 that promotes diversity of the learned features. Fig. 7(b) shows interpolating features between
pairs of training image samples, where for two training images x1 and x2, we reconstruct based on
their interpolated feature representations by x̂ = g(αf(x1)+(1−α)f(x2)), α ∈ [0, 1]. The decoded
images show continuous morphing from one sample to another in terms of visual characteristics, as
opposed to merely a superposition of the two images.

10In our current implementation, the original objective is used without any other heuristics or regularization.
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(a) Horse (b) Ship
Figure 6: CIFAR-10 dataset. Visualization of top-5 reconstructed x̂ = g(z) based on the closest distance of
z to each row (top-4) principal components of data representations for class 7-‘Horse’ and class 8-‘Ship’.

(a) Disentangled attributes as principal components (b) Interpolation between distinct samples

Figure 7: CelebA dataset. (a): Sampling along three principal components that seem to correspond to different
visual attributes; (b): Samples decoded by interpolating along the line between features of two distinct samples.

Encoded features for classification. Notice that not only is the learned decoder good for generative
purpose, but also the encoder is good for discriminative tasks. In this experiment, we evaluate the
discriminativeness of the learned LDR model by testing how well the encoded features can help
classify the images. We use features of the training images to compute the learned subspaces for all
classes, then classify features of the test images based on a simple nearest subspace classifier. Results
in Table 3 show that our model gives competitive classification accuracy on MNIST, compared to
some of best VAE-based methods. We also tested the classification on CIFAR-10, the accuracy is
currently about 80.7%. As expected, the representation learned with the multi-class objective is very
discriminative and good for classification tasks. This demonstrates the learned LDR model is not
only generative but also discriminative.

Table 3: Classification accuracy on MNIST, comparing to classifier based VAE methods (Parmar et al., 2021).
Most of those VAE-based methods require auxiliary classifiers to boost classification performance.

Method VAE Factor VAE Guide-VAE DC-VAE LDR-Binary LDR-Multi

MNIST 97.12% 93.65% 98.51% 98.71% 89.12% 98.30%

3.4 CONCLUSION

This work provides a novel formulation for learning a both generative and discriminative represen-
tation for multi-class multi-dimensional real-world data. We have provided compelling empirical
evidence that the distribution of most data can be effectively mapped to an LDR, a union of inco-
herent subspaces. The main purpose of this paper is to demonstrate the conceptual simplicity and
practical potential of this new representation learning framework, instead of to strive for state of
the art performance. Nevertheless, with our preliminary implementation, LDR can be effectively
learned for a variety of real-world datasets, from small to large, from domain-specific to diverse.
In addition, the so-learned decoder g already enjoys the benefit of GAN for its good generative
visual quality and the encoder f with the benefit of AE for its discriminative property. From our
experience, the rate reduction based objective can be stably optimized across a wide range of datasets
and network architectures without any additional regularizations or engineering tricks. One may
notice that there are many ways our method can be significantly improved. For one, in this work, we
have simply adopted networks that were designed for GAN or AE, but they may not be optimal for
the rate reduction type objectives. Also notice that compared to GAN and AE, our method leads to
an explicit model for the feature distribution: a mixture of incoherent subspace Gaussians. Such an
explicit model has the potential of making many subsequent tasks much easier and better: importance
sampling for decoding, classification, or even incremental learning. We leave all these directions,
together with all the open mathematical problems, for future investigation.
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A APPENDIX

A.1 EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

Network backbones. For MNIST, we use the standard CNN models in Table 4 and Table 5, following
the DCGAN architecture (Radford et al., 2015). We resize the MNIST image resolution from 28 ×
28 to 32 × 32 to fit DCGAN architecture. All α in lReLU (lReLU is short for Leaky-ReLU) of the
encoder are set to 0.2.

We adopted conv ResNet architectures for CIFAR-10 in Tables 6 and 7, and STL-10 shown in Tables 8
and 9. Each ResBlock up is same as Resnet, but add an up-sampler after the first conv layer. All
batch normalization layers of ResBlock in encoder are replaced with spectral normalization layer.

Finally, we use the same architecture for CelebA, LSUN-bedroom, ImageNet-128 (see Tables 10 and
11) as all three datasets have the same 128×128 resolution. Again, each ResBlock up is same as
Resnet, but add an up-sampler after the first conv layer. And all batch normalization layers in encoder
are replaced with spectral normalization layer. All experiments utilize this lightweight PyTorch
library that provides implementations of popular state-of-the-art GANs and evaluation metrics.

Table 4: Decoder for MNIST.

z ∈ R1×1×128

4 × 4, stride=1, pad=0 deconv. BN 256 ReLU
4 × 4, stride=2, pad=1 deconv. BN 128 ReLU
4 × 4, stride=2, pad=1 deconv. BN 64 ReLU

4 × 4, stride=2, pad=1 deconv. 1 Tanh

Table 5: Encoder for MNIST.

Gray image x ∈ R32×32×1

4 × 4, stride=2, pad=1 conv 64 lReLU
4 × 4, stride=2, pad=1 conv 128 lReLU
4 × 4, stride=2, pad=1 conv 256 lReLU

4 × 4, stride=1, pad=0 conv 128

Table 6: Decoder for CIFAR-10.

z ∈ R128

dense −→ 4 × 4 × 256
ResBlock up 256
ResBlock up 256
ResBlock up 256

BN, ReLU, 3 × 3 conv, 3 Tanh

Table 7: Encoder for CIFAR-10.

RGB image x ∈ R32×32×3

ResBlock down 128
ResBlock down 128

ResBlock 128
ResBlock 128

ReLU
Global sum pooling

dense −→ 128

Table 8: Decoder for STL-10.

z ∈ R128

dense −→ 6 × 6 × 512
ResBlock up 256
ResBlock up 128
ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh

Table 9: Encoder for STL-10.

RGB image x ∈ R48×48×3

ResBlock down 64
ResBlock down 128
ResBlock down 256
ResBlock down 512

ResBlock 1024
ReLU

Global sum pooling
dense −→ 128

Training details. Across all of our experiments, we use Adam (Kingma & Ba, 2014) as our optimizer
for all experiments, with hyperparameters β1 = 0, β2 = 0.9. The initial value of learning rate is
0.00015 and is scheduled with linear decay. We choose ε2 = 0.5 for both equation 11 and 12 in all
LDR experiments. For all LDR-Multi experiments on ImageNet, we only choose 10 classes. The
details of the 10 classes as shown in Table 12. Most experiments are trained on RTX 3090ti GPUs.
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Table 10: Decoder for CelebA-128,
LSUN-bedroom-128, and ImageNet-
128.

z ∈ R128

dense −→ 4 × 4 × 1024
ResBlock up 1024
ResBlock up 512
ResBlock up 256
ResBlock up 128
ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh

Table 11: Encoder for CelebA-
128, LSUN-bedroom-128, and
ImageNet-128.

RGB image x ∈ R128×128×3

ResBlock down 64
ResBlock down 128
ResBlock down 256
ResBlock down 512
ResBlock down 1024

ResBlock 1024
ReLU

Global sum pooling
dense −→ 128

Table 12: ID and correspond category for 10 classes of ImageNet

ID Category

n02930766 cab, hack, taxi, taxicab
n04596742 wok
n02974003 car wheel
n01491361 tiger shark, Galeocerdo cuvieri
n01514859 hen
n09472597 volcano
n07749582 lemon
n09428293 seashore, coast, seacoast, sea-coast
n02504458 African elephant, Loxodonta africana
n04285008 sports car, sport car

A.2 MNIST

Settings. On MNIST dataset, we train our model using DCGAN (Radford et al., 2015) architecture
with our proposed models LDR-Multi (11) and LDR-Binary (12). We set the learning rate to 10−4,
batch size to 2048, and training 15,000 iterations. Due to the advantages of the LDR objective, we
can achieve between-class discriminative representations while the within-class diversity of these
representations can be preserved, which are shown in the following experimental results.

More results illustrating auto-encoding. Here we give more reconstruction results, or X̂ , of our
LDR-Multi and LDR-Binary models, compared to their corresponding original input X . As shown
in the Fig.8, for the LDR-Binary model, it can generate clean digit-like images but the decoded X̂
might resemble digits from similar but different classes to the input data X since LDR-Binary tends
to only align the distribution of all digits.

In contrast, with the LDR-Multi objective, the decoded X̂ not only are coherent with the correct class
with the input data X , but also show very clear one-to-one mapping between individual sample x and
x̂ although the objective 11 does not enforce that! Comparing with the results from the VAE-GAN
(Larsen et al., 2015), our decoded images preserve much better the individual characteristics of the
original samples.

Images decoded from random samples on the learned multi-class LDR. Since our LDR-Multi
objective function maps input data of each class into a different (orthogonal) subspace in the feature
space, we can generate images conditioned on each class by random sampling z in the subspace of
each class and then decode them back to the input space as x̂.

To do random sampling in the learned subspace, we first calculate the mean feature z̄j and the singular
vectors vij of the SVD (or principal components) of the learned features Zj of the class j of the
training data, where index i represents the ith principal components. We only use top r = 8 principal
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(a) Original X (b) VAE/GAN X̂ (c) LDR-Binary X̂ (d) LDR-Multi X̂

Figure 8: The comparison of the reconstruction results of different methods with the input data.

components of each class on MNIST dataset. These statistics of the subspace can be used for guiding
the random sampling. Then we sample z randomly along the principal components and around the
mean feature as

zrandom j = z̄j + α

r∑
i=1

ni ∗ σij ∗ vij , (13)

where z̄j is the mean feature of class j, σij and vij are the i-th singular value and principal component
of class j, ni are i.i.d. GaussianN (0, 1) random variables. That is, the feature in each subspace/class
is modeled by a r-dimensional multivariate Gaussian, with variances σij which characterize variances
of the training data in the feature space. Here, α is a hyper-parameter that controls the sampling
range. As for visualization of random generated images g(zrandom j) conditioned on the given class,
we compare our method with some other conditional generation method such as ACGAN (Odena
et al., 2017) and InfoGAN (Chen et al., 2016) (For ACGAN and InfoGAN, we generate images
conditioned on class labels with randomly sampled latent z according the procedures mentioned in
their respective works). Our model can give realistic and correct conditional generation results with
high diversity in each class, while other methods may make mistakes in the generation between some
similar classes such as classes 3 and 5 for InfoGAN.

(a) ACGAN (b) InfoGAN (c) LDR-Multi

Figure 9: Comparison of randomly generated images conditioned on each class.

A.3 TRANSFORMED MNIST

Settings. In this experiment, we verify that our LDR-Multi model can preserve diverse data modes in
the learned feature embeddings. We construct a transformed MNIST dataset with 5 modes: normal,
large(1.5 ×), small(0.5 ×), rotate 45◦ left, and rotate 45◦ right. Each image data will be randomly
transformed to one of the modes. Representative examples of such training data can be found in
Figure 10(a). We train the model with learning rate 1e-4 and batch size 2048 for 15,000 iterations.
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Auto-encoding results. Figure 10(b) gives the decoded results of the training data with different
modes. Even though the data are now much more diverse for each class, decoder learned from the
LDR-Multi objective can still achieve high sample-wise similarity to the original images.

(a) Original X (b) Decoded X̂

Figure 10: Original (training) data X and their decoded version X̂ on transformed MNIST.

Identifying different modes. Similar to the earlier experiments of Fig. 6 for CIFAR-10 in the main
paper, we find the top principal components of features of each class Zj (via SVD) and generate new
images using the learned decoder g from features of the training images aligned the best with these
components.

In Fig 11, we select three classes 0, 1, 2 and visualize samples from top r = 8 principal components
for each class. Each row represents one principal components direction. As it can be seen in the
figure, the decoded images along each principal component shows similar mode and the modes along
different component directions are rather incoherent. All major modes of the original data can be
identified as one of these principal directions. This clearly shows that our LDR-Multi model can keep
the different modes within each class of the data Xj as the principal component directions of Zj ,
and these modes can also be retained in the decoded images X̂j .

(a) Components of class “0” (b) Components of class “1” (c) Components of class “2”

Figure 11: The reconstructed images X̂ from the features Z best aligned along top-8 principal
components on the transformed MNIST dataset. Each row represents a different principal component.

A.4 CIFAR-10

Settings. For all experiments on CIFAR-10, we follow the common training hyper-parameters in
section A.1. Beyond that, for each experiment, we run 450,000 iterations with mini-batch size 1600.
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Images decoded from random samples on the learned multi-class LDR. We sample z in the
feature space randomly along the principal components and around the mean feature of each class Zj
as in the MNIST case, according to equation (13). The generated images from the sampled features
are illustrated in Fig 12, one row per class. As we see, the generator learned from the LDR-multi
objective is capable of generating diverse images for each class.

Further, for visualization of random generated images g(zrandom j) conditioned on the given class,
we also compare our method with some other conditional generation method such as ACGAN (Odena
et al., 2017) and InfoGAN (Chen et al., 2016). For all three experiments, we have randomly sampled
8 images per class in CIFAR-10. For more complex dataset like CIFAR-10, our model can give more
realistic conditional generation results for different classes with high diversity within each class.

(a) ACGAN (b) InfoGAN (c) LDR-Multi

Figure 12: Comparison of randomly generated images conditioned on each class.

Generating image along different PCA components for each class. For each class, we first
compute top-10 principal components (singular vectors of the SVD) of Z and then for each of the
top singular vectors, we display in each row the top-10 reconstructed image X̂ whose Z are closest
to the singular vector using method described in the main body of the paper, Section 3.3. The results
are given in Figure 13 below.

A.5 STL-10

Settings. For all experiments on STL-10, we follow the common training hyper-parameters in
section A.1. For LDR-Binary setting, we train 150,000 iterations. For LDR-Multi setting, we
initialize the weights from the 20,000-th iteration of LDR-Binary checkpoint and train for another
80,000 iterations (with the LDR-Multi objective). The IS and FID scores on the STL-10 dataset are
reported in Table 13, on par or even better than existing methods such as SNGAN (Miyato et al.,
2018) or DC-VAE (Parmar et al., 2021).

Visualizing auto-encoding property for LDR-Binary. We visualize the original images x and their
decoded x̂ using the LDR model learned from LDR-Binary objective. The results are shown in
Figure 14 for STL-10.

A.6 CELEB-A AND LSUN

To verify that our formulation works on images of higher-resolution, we conduct experiments on the
Celeb-A and LSUN datasets, which have a resolution of 128× 128.

Settings. For all experiments on these datasets, we follow the common training hyper-parameters
in Section A.1. We choose a 300 mini-batch size for Celeb-A and LSUN. Both of them are trained
with the LDR-Binary formulation, and for 450,000 iterations.
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(a) Airplane (b) Automobile (c) Bird

(d) Cat (e) Deer (f) Dog

(g) Frog (h) Horse (i) Ship

(j) Truck

Figure 13: Reconstructed images X̂ from features Z close to the principal components learned for
the 10 classes of CIFAR-10.
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(a) Original X (b) Decoded X̂

Figure 14: Visualizing the original x and corresponding decoded x̂ results on STL-10 dataset. Note
the model is trained from LDR-Binary (12) hence sample or class wise correspondence is relatively
poor. But the decoded image quality is very good.

(a) Hat (b) Hair Color (c) Glasses

Figure 15: Sampling along the 9-th, 19-th, and 23-th principal components of the learned features Z
seems to manipulate the visual attributes for generated images, on the CelebA dataset.

Generating image along different PCA components. We calculate the principal components of
the learned features Z in the latent subspace. We manually choose 3 principle components which are
related to hat, hair color, and glasses (see Fig 15). The three components are 9-th, 19-th, and 23-th
respectively from the overall 128 principal components. These principal directions seem to clearly
disentangle visual attributes/factors such as wearing hat, changing hair color, and wearing glasses.

Images generated from random sampling of the feature space. We sample z randomly according
to the following Gaussian model:

zrandom = z̄ + α

r∑
i=1

ni ∗ σi ∗ vi, (14)

where z̄ is the mean feature, σi and vi are the ith singular value and singular vector, ni are i.i.d.
Gaussian N (0, 1) random variables. As before α is a hyper-parameter to control the sampling range.
We use top r=100 principle components for random sampling. The random generated images are
realistic and diverse. (see Fig 16)

Visualizing auto-encoding property for LDR-Binary. We visualize the original image x and their
decoded x̂ using the LDR model learned from LDR-Binary formulation. The results are shown in
Fig 17 and Fig 18 for the Celeb-A dataset and the LSUN dataset, respectively. The LDR-Binary
formulation can give very good visual quality for x̂ but cannot ensure sample to sample alignment.
Nevertheless, the decoded x̂ seems to be similar in style to the original x. We believe it manages to
align only the dominant principal component(s) associated with the most salient visual attributes, say
pose of the face for Celeb-A or layout of the room for LSUN, between features of X and X̂ .

A.7 IMAGENET

Settings. To verify that our formulation works on large-scale datasets, we train a model on the entire
ImageNet. For all experiments on the ImageNet, we follow the common training hyper-parameters in
Section A.1.

We first train our model with LDR-Binary (12) with a mini-batch size 1800 on the whole ImageNet
ILSVRC 2012 dataset. The number of training iterations is 450,000.
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Figure 16: Images decoded from randomly sampled features, as a learned Gaussian distribution (14),
for the CelebA dataset.

(a) Original X (b) Decoded X̂

Figure 17: Visualizing the original x and corresponding decoded x̂ results on Celeb-A dataset. The
LDR model is trained from LDR-Binary (12).

(a) Original X (b) Decoded X̂

Figure 18: Visualizing the original x and corresponding decoded x̂ results on LSUN-bedroom dataset.
The LDR model is trained from LDR-Binary (12).
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Table 13: Comparison on CIFAR-10, STL-10, and ImageNet.

Method
CIFAR-10 STL-10 ImageNet

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓
GAN based methods
DCGAN Radford et al. (2015) 6.6 - 7.8 - - -
SNGAN Miyato et al. (2018) 7.4 29.3 9.1 40.1 - 48.73
CSGAN Wu et al. (2019b) 8.1 19.6 - - - -
LOGAN Wu et al. (2019a) 8.7 17.7 - - - -

VAE/GAN based methods
VAE Kingma & Welling (2013) 3.8 115.8 - - - -
VAE/GAN Larsen et al. (2016) 7.4 39.8 - - - -
NVAE Vahdat & Kautz (2020) - 50.8 - - - -
DC-VAE Parmar et al. (2021) 8.2 17.9 8.1 41.9 - -
LDR-Binary (ours) 8.1 19.6 8.4 38.6 7.74 46.95
LDR-Multi (ours) 7.1 23.9 7.7 45.7 6.44 55.51

After that, we fine-tune the Binary-pretrained model with LDR-Multi (11), on 10 selected classes.
Information about the 10 classes can be found in Table 12. The fine-tune mini-batch size is 1024, and
we train another 35,000 iterations. This experiment took 8 A100-SXM4 GPUs, each with 40GB of
CUDA memory for 120 GPU hours. Note that our choice of mini-batch size is substantially larger
than those commonly adopted in other works while training on the ImageNet (e.g. 128 in Miyato
et al. (2018)). We empirically observe that training with a larger mini-batch generates images of
better quality and clearer class alignment. This is consistent with the proposed LDR framework as
the LDR-Multi objective explicitly encourages alignment of class distributions, therefore benefiting
from a larger batch that better captures overall data distributions. We leave a more rigorous study of
the effect of batch size for future work.

Due to the heavy computation of such large batch size, we present the following intermediate results
obtained at 35,000 iterations whereas most existing methods run with magnitude larger number of
iterations. Nevertheless, these intermediate results already verify the efficacy of our framework. In
addition, we present the full version of the comparison with existing generative methods in Table 13.
We see the SI and FID scores for LDR-Multi degraded a little after the finetuning. This is expected
as learning a more refined separation and alignment of 10 classes is a more challenging task than 2
classes. This is consistently observed from experiments on other datasets too.

Visualizing feature similarity for LDR-Multi. We visualize the cosine similarity among features
Z of different classes learned from the LDR-Multi objective in Figure 19. In addition, we provide
the visualization of alignment between features Z and decoded features features Ẑ. These results
demonstrate that not only the encoder has already learnt to discriminate between classes, Z and Ẑ
also are aligned clearly within each class.

Visualizing auto-encoding property for LDR-Multi. We visualize the original image x and their
decoded x̂ using the LDR model fine-tuned using LDR-Multi formulation. The results are shown in
Fig 20 for the selected 10 classes in ImageNet. The LDR-Multi formulation can give good visual
quality for x̂ as well as decent sample-to-sample alignment.

A.8 ABLATION STUDY ON OBJECTIVE FUNCTIONS

To empirically validate the importance of the rate reduction (∆R) loss, we keep the closed-loop
formulation but replace all rate reduction (∆R) loss terms in (11) with corresponding cross-entropy
loss.

To replace the rate reduction (∆R) terms in the objective function (11) with cross-entropy, we
introduce a linear mapping W ∈ Rd×k to map Z ∈ Rd×n from feature space to logits γ = Z>W .
We then calculate the softmax cross-entropy function on logits γ and one hot label matrix Y . Here
H(γ,Y ) =

∑n
i=1

∑k
j=1 Yij log eγij∑k

j=1 e
γij

is the formulation of softmax cross-entropy function and
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(a) |Z>Z| (b) |Z>Ẑ|

Figure 19: Visualizing feature alignment: (a) among features |Z>Z|, (b) between features and
decoded features |Z>Ẑ|. These results obtained after 200,000 iterations.

(a) Original X (b) Decoded X̂

Figure 20: Visualizing the original x and corresponding decoded x̂ results on ImageNet (10 classes).
The LDR model fine-tuned using LDR-Multi (11).

Y ∈ Rn×k is one hot label matrix. Then, we can replace the first two terms of (11) (∆R
(
Z
)

and
∆R

(
Ẑ
)
) with H(Z>W ,Y ) and H(Ẑ>W ,Y ). For the third term of (11), we extract j-th class

one hot feature γj = Z>j W , γ̂j = Ẑ>j W from Z and Ẑ, and define the distance D(γj , γ̂j) =
eγj

eγj+eγ̂j
of them. For the third term of (11), we further introduce k linear layers as discriminators

{Dj}kj=1 for each class. Then, we replace the third term with the GAN’s objective function as∑k
j=1 E[logDj(Zj)] + E[log(1−Dj(Ẑj))] 11. Now, we have the cross-entropy version objective

function (15) for closed loop framework. We denote the closed loop framework with cross-entropy as
Closed-loop-CE.

11E[X] denote the expectation of X .
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(a) Original X (b) X̂ by Closed-loop-CE (c) X̂ by LDR-Multi

Figure 21: The comparison of sample-wise reconstruction between Close-loop-CE and LDR-Multi.

min
η

max
θ,W ,D

TX(θ, η,W ,D)
.
= H

(
Z>W ,Y

)
+H

(
Ẑ>W ,Y

)
+

k∑
j=1

E[logDj(Zj)] + E[log(1−Dj(Ẑj))]. (15)

We run the experiments on MNIST and CIFAR10. The architectures of MNIST and CIFAR10 are
given in Table 4 to Table 712.

Results on MNIST. The training hyper-parameters of LDR-Multi and Closed-loop-CE on MNIST
are following Section A.1. Comparisons between LDR-Multi and Closed-loop-CE are listed in
Figure 21, 22, and 23.

Figure 21(b) and 21(c) show the reconstructed images X̂ from Closed-loop-CE and LDR-Multi. Both
methods can give sample-wise reconstruction results due to the transcription framework. However,
comparing training images whose features are best aligned with the principal components of class ‘2’
in Figure 22, we see that the principal components of CE features do not correspond to consistent
visual attributes of the images, whereas ours do.

From the heatmaps in Figure 23(a) and 23(b), we see the features learned by rate reduction possess
clear orthogonal subspace structures, whereas those learned by Closed-loop-CE do not. Moreover,
Figure 23(c) and 23(d) show that the learned features of LDR-Multi have higher singular values for
the top principal components of each class, corresponding to a more linearized and diverse feature
distribution, whereas those by Closed-loop-CE do not.

Failed Attempts on CIFAR-10 with Cross Entropy. The training hyper-parameters of Closed-loop-
CE on CIFAR10 follow Section A.1. We do the grid search on three hyper-parameters: learning
rate {1.5× 10−2, 1.5× 10−3, 1.5× 10−4}, mini batch size (800 or 1600), and inner loop (1,2,3,4),
conduct 24 experiments in total. All cases of the Closed-loop-CE fail to converge or experience
model collapse on the CIFAR-10 dataset.

12In the context of this section, we use the term Decoder and Generator interchangeably; similarly for Encoder
and Discriminator.
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(a) Closed-loop-CE (b) LDR-Multi

Figure 22: Training samples along different principal components of the learned features of digit ‘2’.

(a) |Z>Ẑ| from Closed-loop-CE (b) |Z>Ẑ| from LDR-Multi

(c) PCA: Closed-loop-CE learned feature for ev-
ery class

(d) PCA: LDR-Multi learned feature for every
class

Figure 23: Comparison Closed-loop-CE and LDR-Multi on |Z>Ẑ| and PCA singular values.
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