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ABSTRACT

Neural approaches to the Flexible Job Shop Scheduling Problem (FJSP), par-
ticularly those based on deep reinforcement learning (DRL), have gained grow-
ing attention in recent years. Yet existing methods often rely on cumbersome
state representations (i.e. sometimes requiring more than 20 handcrafted features)
and suboptimal neural architectures. We introduce RESCHED, a minimalist DRL
framework that rethinks both the scheduling formulation and model design. First,
we revisit the Markov Decision Process (MDP) formulation of FJSP, reducing the
state to just four essential features and replacing historical dependencies with a
graph structure that directly encodes intra-job operation relationships. Second,
we employ Transformer blocks with dot-product attention, augmented by three
lightweight but effective architectural modifications tailored to scheduling. Ex-
tensive experiments show that RESCHED outperforms classical dispatching rules
and state-of-the-art DRL methods on FJSP. Moreover, RESCHED generalizes well
to the Job Shop Scheduling Problem (JSSP) and the Flexible Flow Shop Schedul-
ing Problem (FFSP), achieving competitive performance against neural baselines
specifically designed for these variants.

1 INTRODUCTION

The Flexible Job Shop Scheduling Problem (FJSP) is a fundamental combinatorial optimization
problem (COP) with wide applications in manufacturing (Ding et al., 2019; Wang et al., 2024a),
edge computing (Luo et al., 2021; Yang et al., 2025), and logistics (SAT, 2014; Arunarani et al.,
2019). In FJSP, jobs are decomposed into operations, each of which can be processed by one of
several compatible machines. Solving FJSP requires assigning machines to operations and sequenc-
ing operations on each machine. As a generic model, FJSP unifies multiple real-world scheduling
problems: it reduces to the Job Shop Scheduling Problem (JSSP) when machines are fixed, and to
the Flexible Flow Shop Scheduling Problem (FFSP) when jobs follow a shared stage sequence but
retain machine flexibility. This generality makes FJSP adaptable for diverse scheduling scenarios.

Recent work has explored deep reinforcement learning (DRL) for constructing scheduling heuris-
tics (Feng et al., 2021; Lei et al., 2022), where partial solutions (states) are typically represented by
disjunctive graphs (Błażewicz et al., 2000) enriched with complex node features. However, many
of these features are redundant1, and incorporating historical construction information into the cur-
rent state can even degrade learning (see Section 4.1.2). Likewise, pruning unpromising actions
based on human heuristics (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025), while intended
to improve efficiency, often hurts policy generalization and leads to suboptimal solutions (see Ap-
pendix B.3). These practices require persistent tracking of auxiliary variables at every decision
step, introducing considerable computational overhead. Architecturally, most DRL methods rely on
graph attention networks (GATs) (Velickovic et al., 2017), which impose strong inductive biases:
modeling long-range operation interactions requires deep stacking, and linear attention mechanisms
struggle to capture complex scheduling relationships. Those above observations raise a central ques-

1For instance, in Appendix B.3, we show using DANIEL (Wang et al., 2024b) that removing half of the
features does not affect performance.
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tion: Can we design a general construction policy, derived from a minimal Markov-sufficient state
and implemented with a generic yet expressive network, that generalizes naturally to FJSP variants?

We answer this question with RESCHED, a DRL framework that unifies minimalist state design with
flexible neural modeling to achieve state-of-the-art (SOTA) performance on FJSP and its variants.
Our formulation introduces a compact state representation with only four core node features and a
graph structure that explicitly encodes intra-job operation dependencies, thereby removing the need
for historical tracking. To boost representational power, we replace conventional GNN-based poli-
cies (Franco et al., 2009) with a Transformer backbone comprising two complementary branches:
self-attention for operations and cross-attention for machines. Applying Transformers to FJSP poses
unique challenges: self-attention must capture intra-job dependencies without additional parameters
or indices, while cross-attention must overcome indirect edge-feature integration and the severe im-
balance between operations and machines (often over 10:1). We address these challenges by incor-
porating rotary positional encoding (RoPE) for self-attention, and by introducing direct edge-feature
embedding together with a self-connected cross-attention module that mitigates representation di-
lution. Empirical results show that RESCHED establishes a new SOTA on FJSP, surpassing both
handcrafted heuristics and leading DRL baselines. More importantly, it generalizes robustly across
problem sizes, benchmark datasets, and related scheduling variants (JSSP, FFSP), demonstrating
that minimalist design coupled with expressive modeling enables broad applicability in real-world
scheduling. Our contributions are summarized as follows:

• We revisit the MDP for FJSP and design a compact state representation with only four
essential node features and a graph structure that explicitly encodes intra-job operation
relationships, eliminating redundant features, historical dependencies, auxiliary variables.

• We introduce a dual-branch Transformer architecture tailored for scheduling, with self-
attention (enhanced by RoPE) to model intra-job dependencies and a novel cross-attention
module that directly incorporates edge features and mitigates operation–machine imbalance
through self-connections.

• Our RESCHED achieves SOTA performance on FJSP benchmarks and demonstrates strong
generalization across problem sizes and scheduling variants, including JSSP and FFSP.

2 RELATED WORK

Priority dispatching rules (PDRs) (Haupt, 1989; Sels et al., 2012) are widely used in real-world
FJSPs for their simplicity, interpretability, and fast decision-making. However, designing effective
and generalizable PDRs remains challenging, as they often rely on domain expertise and fail to adapt
across diverse problem instances. This limitation has motivated a surge of interest in learning PDRs
through deep reinforcement learning (DRL). Most DRL-based methods formulate FJSP as a dis-
junctive graph, where nodes represent operations and machines, and edges encode precedence and
assignment constraints. Graph neural networks (GNNs) are then employed to capture the complex
relationships among operations and machines. For example, Song et al. (2023) proposed HGNN, a
heterogeneous GNN tailored for FJSP; Wang et al. (2024b) introduced a dual-attention mechanism
to jointly model operation and machine features; and Zhao et al. (2025) developed a GNN-based
approach augmented with reward shaping to improve training efficiency. While effective, these
methods typically depend on heavily engineered state representations, which limit scalability and
generalization. Beyond FJSP, DRL has also been applied to other scheduling variants. For instance,
Zhang et al. (2020) proposed a GNN-based DRL framework for JSSP that learns operation se-
quencing policies, and Kwon et al. (2021) introduced a mixed-score attention mechanism to model
operation–machine interactions in FFSP. These works further highlight the growing role of neural
methods in advancing data-driven scheduling.

3 PRELIMINARY

3.1 FLEXIBLE JOB SHOP SCHEDULING PROBLEM (FJSP)

Consider a generic scheduling problem with operations as fundamental units. Suppose there are two
sets: a set of operations O = {O1, O2, . . . , On} and a set of machinesM = {M1,M2, . . . ,Mm}.

2
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Each operation Oi can be processed by one of the machines inM with a specific duration (process-
ing time) Dm

i > 0. In FJSP, jobs are collections of operations that must be executed sequentially.
Each job Ji consists of several operations, so operations can be represented as Oij , where i denotes
the job index and j represents the position of the operation in job i. Each operation Oij can be
processed by one or multiple machines, which means ”flexible”, from a compatible machine set
Mij ⊆M with duration Dm

ij > 0. Meanwhile, the FJSP is subject to several important constraints:
(1) An operation can only begin after all its preceding operations in the job sequence have been
completed. (2) Each operation must be assigned to a single eligible machine and executed non-
preemptively, without interruption once started. (3) Each machine processes only one operation at
a time, requiring sequential execution without overlap. The objective of FJSP is to find a feasible
solution that satisfies all the above constraints while minimizing the overall makespan, which is de-
fined as the maximum finish time among all operations. Moreover, the transformation of FJSP to
other variants like JSSP and FFSP are presented in Appendix A.2.

3.2 TRANSFORMER BLOCK

The Transformer block (Vaswani et al., 2017) is a fundamental component designed to capture
dependencies in sequential data. It primarily consists of a multi-head attention (MHA) mechanism
and a feed-forward network (FFN), combined with residual connections and layer normalization (He
et al., 2016; Ba et al., 2016). In the attention mechanism, each element attends to all others through
a weighted combination of their representations. For a given input sequence h = [h1, h2, . . . , hn],
the attention weights are computed by measuring the similarity between a query qa ∈ Rd and keys
kb ∈ Rd, typically obtained via learned linear projections of ha and hb. The normalized attention
weight αa,b from node a to node b, and the resulting embedding h′

a for node a are computed as
follows (head is omitted for brevity):

αa,b = softmaxb

(
⟨qa, kb⟩√

d

)
, h′

a =

n∑
b=1

αa,bvb, (1)

where ⟨·, ·⟩ denotes the dot product,
√
d is a scaling factor to stabilize training, and vb ∈ Rd is

the value vector corresponding to node b. The outputs from multiple heads are concatenated and
passed through a linear transformation to form the final MHA output, which is then processed by a
position-wise FFN, with residual connections and layer normalization applied after both the atten-
tion and FFN sub-layers. This structure allows the Transformer block to effectively capture global
dependencies and complex interactions among elements in the input.

4 METHODOLOGY

In this section, we introduce ReSched, a construction-based neural framework designed for solving
scheduling problems. We begin by revisiting the problem formulation, focusing on the Flexible Job
Shop Scheduling Problem (FJSP), a generalized model that captures diverse scheduling scenarios.
Within this formulation, we cast scheduling as a Markov Decision Process (MDP), where each
decision step resolves a subproblem using a compact, task-specific state representation. Building on
this MDP, we develop a Transformer-based policy network equipped with structure-aware attention
mechanisms and trained via reinforcement learning.

4.1 STATE REPRESENTATION

In our framework, we aim to minimize the complexity of the state representation while ensuring it
remains fully expressive and sufficient to guide optimal scheduling decisions.

4.1.1 REVISITING THE SCHEDULING FORMULATION

We represent an FJSP instance using a heterogeneous disjunctive graph (Song et al., 2023), as illus-
trated in Figure 1a. A solution to FJSP consists of two key components: assignment and order. To
evaluate solution quality, an explicit formulation is required to compute the makespan.

Let amt,ij ∈ {0, 1} indicate assignment of Oij to machine m at step t. To ensure only one operation-
machine pair is scheduled per step, we enforce a constraint:

∑
m∈M

∑
(ij)∈O amt,ij = 1, ∀t. When

3
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Figure 1: (a) Illustration of the formulation for a 2-job, 2-operation, 2-machine (2-2-2) FJSP in-
stance. (b) Changes in topology and O2M/O2O Connection between two steps for a 3-3-3 instance.

amt,ij = 1, the finish time FTij is computed as:

FTij = max
(
FTi(j−1), ATm

t

)
+Dm

ij , if amt,ij = 1,

ATm
t =

{
FTi′j′ if amt−1,i′j′ = 1

ATm
t−1 otherwise.

(2)

Here, FTi(j−1) denotes the finish time of the preceding operation in job Ji, ATm
t is the available

time of machine m at step t, and (i′j′) is the operation assigned to machine m at the previous
step. The goal of FJSP is to minimize the maximum finish time across all operations , which is
defined as FTmax = max(ij)∈O FTij . This unified formulation supports our state representation
simplification, and it can also be adapted to JSSP and FFSP by appropriately modifying machine
assignment rules. For the sake of space, the detailed mathematical formulation of FJSP and its
variants are provided in Appendix A.1.

Looking at Figure 1a again, it illustrates how two different solutions for the same FJSP instance
are translated, via the above formulation, into concrete Gantt charts and makespan values. Specifi-
cally, the top solution with order [O11, O12, O21, O22] and assignment [M2,M1,M2,M1] results in
a makespan of FTmax = 7, while the bottom solution with order [O11, O21, O12, O22] and assign-
ment [M2,M1,M2,M2] achieves a makespan of FTmax = 6.

4.1.2 MDP FORMULATION

As a construction method, the scheduling process can be viewed as a sequential decision-making
problem, where the agent iteratively selects an operation-machine pair to assign at each step. This
leads to a natural formulation of the scheduling problem as an MDP.

State: Minimal Representation According to Eq. (2), computing the finish time for operation
Oij at step t requires three pieces of information: (1) the finish time of its predecessor Oi(j−1),
(2) the Duration Dm

ij of Oij on machine Mm, and (3) the available time ATm
t of machine Mm.

Particularly, “predecessor” denotes the precedence constraint between operations: an operation may
start only after all of its predecessors have finished; we refer to this as the operation-to-operation
(O2O) dependency. Meanwhile, the Machine Available Time ATm

t is determined by the finish time
of the operation assigned to machine Mm at the previous steps. Therefore, the ATm

t is influenced
by the operation-to-machine (O2M) connection. From a consistency perspective, the finish time of
Oi(j−1) can also be interpreted as the Operation Available Time for its successor Oij .

Thus, iterate environment from step t-1 to t only requires the following information: 1) Opera-
tion and Machine Available Time (Node feature); 2) Duration (Edge feature); 3) O2O Dependency
(Graph structure); 4) O2M Connection (Graph structure).

Definition 4.1. Let St ∈ S be the state representation at decision step t, which uniquely determines:
1) the available times of all machines, 2) the completion status of all jobs (i.e., the finish times of
their most recently scheduled operations), 3) the O2O precedence between operations, and 4) the
O2M connections (including the corresponding durations).

4
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Proposition 1 (State-dependent Optimality in Scheduling). For any two scheduling trajectories τ1
and τ2 that reach the same state St, the corresponding remaining subproblems share an identical
feasible solution set.

As an immediate consequence, the optimal decision at step t depends only on St, rather than on
the full trajectory history. With this state definition, the scheduling problem can be viewed as a
finite-state MDP that satisfies the Markov property. A formal proof of Proposition 1 is provided in
Appendix D.

State: Subproblem In our framework, each scheduling step is modeled as an individual subprob-
lem. To better support this formulation, we refine the state representation along two dimensions:
available time from node features and O2O dependencies from graph structure, thereby excluding
historical information and focusing solely on the current subproblem. 1) Relative Available Time.
We normalize all operation and machine available times by subtracting the global minimum avail-
able time at each step. This prevents the unbounded growth of absolute time values and mitigates
potential generalization issues. A conceptually related idea of removing historical dependencies and
using relative-time features for JSSP was explored by Lee & Kim (2024); Different from this JSSP-
specific design, we remove all historical information under a subproblem-based formulation and
extend the relative-time principle to a unified minimal state for FJSP and its variants. 2) O2O Con-
nection. Instead of the bidirectional operation-to-operation (O2O) edges commonly used in prior
work (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025), we adopt backward-looking edges.
Under the subproblem formulation, each operation only requires information from its successors,
making redundant historical tracking unnecessary. To further improve efficiency, we introduce hop
connections from each operation to all its successors, granting direct access to job-level future con-
straints without relying on multi-layer message passing. Figure 1b illustrates how graph topology
and O2O/O2M connections evolve: once an operation is scheduled, it and its associated O2O/O2M
connections are removed, yielding a new subproblem.

Regarding the node feature mentioned in Minimal Representation, we also incorporate the Minimum
Duration across candidate machines as a compact yet informative proxy. This value provides a
lower bound on processing time, enabling the network to distinguish operations of varying difficulty.
Although it depends on the set of candidate machines and may be sensitive to instance variations,
prior work (Song et al., 2023; Lei et al., 2022; Wang et al., 2024b; Zhao et al., 2025) shows that
it is a simple and effective approximation in practice. In our framework, it significantly improves
learning efficiency without requiring explicit machine assignments.

State: Features Our state representation consists of four key features: 1) Operation Available
Time; 2) Machine Available Time; 3) Duration; and 4) Minimum Duration. Note that dependency
and machine eligibility are not features but graph structure, represented by O2O/O2M connections.

Action In our MDP formulation, the action at step t corresponds to selecting an opera-
tion–machine pair (ij,m), meaning that operation Oij is assigned to machine Mm. For simplic-
ity, we denote this action as at, and the complete schedule is represented as a sequence of actions:
A = {a1, · · · , at, · · · , an}, where n is the total number of scheduling steps (i.e., the total number
of operations). In contrast to many existing neural approaches for FJSP, which introduce auxiliary
notions such as free time or current time to prune the action space at each step (Song et al., 2023;
Wang et al., 2024b; Zhao et al., 2025), our framework avoids such heuristic constraints. The only
restriction we impose is the natural precedence constraint between operations (Zhang et al., 2020).

Transition After taking action at, the environment transitions deterministically to a new state
st+1, fully determined by the current state st and action at. Specifically, operation and machine
status are updated according to Eq. (2).

Reward Inspired by Zhang et al. (2020), we use an estimated lower-bound makespan as the re-
ward. Before the scheduling process begins, the lower-bound finish time for each operation can be
computed iteratively as: FT ij = FT i(j−1) + minm∈Mij D

m
ij , and FTmax = max(ij)∈O FT ij ,

where FT ij denotes the lower-bound finish time of operation Oij , and FTmax represents the es-

5
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Figure 2: The RESCHED framework. The state consists of four information, resulting in four key
features (available time and minimum duration for operation; available time for machine; duration),
and incorporates three (underlined) architectural enhancements for Transformer-based network. For
decision-making module, we concatenate the embeddings of each feasible operation–machine pair,
feed them into an MLP to obtain a score.

timated lower-bound makespan. During the scheduling process, we compute the estimated lower-
bound finish time FTmax (st, at) based on the current state st and action at. Reward at step t is
defined as negative difference between current estimated lower-bound makespan and the next one:

rt = −(FTmax (st+1, at+1)− FTmax (st, at)). (3)

4.2 POLICY NETWORK ARCHITECTURE

We design a decoder-only neural architecture (Drakulic et al., 2023) to solve scheduling problems,
consisting of two main modules: a feature extraction network that models structural and tempo-
ral information into embeddings, and a lightweight MLP-based policy head that makes scheduling
decisions. The overall architecture is illustrated in Figure 2.

4.2.1 FEATURE EXTRACTION NETWORK

To effectively represent both structural and temporal aspects of the scheduling problem, we design
a feature extraction network composed of two branches. The operation branch models O2O depen-
dencies via self-attention, while the machine branch is built around cross-attention that aggregates
operation information into machine embeddings. Both branches are built upon standard Transformer
layers, with several targeted adaptations to better capture the unique scheduling characteristics.

Operation branch with RoPE In the absence of explicit positional encoding, intra-job order (i.e.,
O2O dependency) must be inferred implicitly across network layers, which is inefficient and less
reliable. To address this, we incorporate Rotary Positional Embedding (RoPE) (Su et al., 2024) into
the operation branch to directly model relative intra-job distances without introducing additional
learnable parameters, as shown in the middle bottom of Figure 2. Particularly, RoPE makes the
similarity between query qa and key kb a function g not only of their content embeddings xa and xb,
but also of their relative position a− b:

⟨RoPEq(xa, a),RoPEk(xb, b)⟩ = g(xa, xb, a− b). (4)

In scheduling, dependencies arise only within individual jobs. Operations from different jobs or
machines can be permuted arbitrarily without affecting decision-making, rendering their relative
positions irrelevant. In this sense, RoPE is exclusively applied within the operation branch, injecting
positional awareness into intra-job attention patterns. Unlike index-based positional features, RoPE
has been shown to provide stronger generalization and better structural encoding. This allows us to
simplify the feature set while still preserving the essential sequential information at the job level.

6
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Machine branch with Edge in Attention The machine branch is designed to capture the struc-
tural interactions between operations and machines. A key aspect of this interaction is the processing
duration, which is naturally defined on edges rather than belonging to either operation or machine
nodes. To model this, we employ a cross-attention mechanism in which each operation attends to all
of its candidate machines, incorporating both node-level and edge-level information. This design is
illustrated in Figure 2 (upper branch of the Feature Extraction module).

Unlike prior cross-attention approaches (Kwon et al., 2021; Drakulic et al., 2024), which incorporate
edge features indirectly by adjusting attention scores, our design integrates edge information directly
by embedding it into the value vectors. This ensures that edge attributes influence not only the
attention weights but also the final aggregated representations. Formally, for an operation node Oij

and a machine node Mm, the attention is computed as:

Attention(Mm, Oij) = σ

(
(qm + qm,ij)

⊤(kij + km,ij)√
d

)
· (vij + vm,ij), (5)

where σ denotes the softmax function, qm is the query from the machine node, kij and vij are the
key and value from the operation node, and qm,ij , km,ij , vm,ij are edge-specific projections derived
from the duration Dm

ij . Since the number of operation–machine pairs scales with |O|×|M|, learning
independent projection parameters for each edge would be computationally prohibitive. To maintain
efficiency, we share projection weights across all attention heads as well as across the query, key,
and value projections, significantly reducing parameter count and memory usage.

Machine branch with Self-based Cross-attention In scheduling problems, the number of oper-
ations often exceeds the number of machines by an order of magnitude. This structural asymmetry
leads to a severe information imbalance: each machine must aggregate information from a dispro-
portionately large number of operations, i.e., often 10 times or more, which dilutes attention sig-
nals and destabilizes training. Inspired by the machine-node embedding aggregation in Song et al.
(2023), we introduce a self-based cross-attention mechanism, where each machine node also attends
to its own representation during attention weight computation (Figure 2, upper branch of the Feature
Extraction module). While residual connections inject self-information unconditionally after atten-
tion, the self-based formulation enables the model to assign a soft, adaptive attention weight to the
machine’s own embedding. This helps preserve critical machine-level information in the presence of
overwhelming inter-node messages. Formally, for a machine node Mm with projected value vector
vm and operation projected value vectors vij ∈ Rd, the attention output h′

m is defined as:

h′
m = αmmvm +

∑
(ij)∈N (Mm)

αijvij , (6)

where αmm is the attention weight assigned to the machine node itself, αij are the attention weights
for operation nodes connected to Mm, and N (Mm) denotes the set of such operation nodes. To
reduce parameters, we share the query, key, and value projection weights across machine nodes.

4.2.2 DECISION-MAKING

Our decision-making module follows a standard policy network design adopted in prior DRL-based
scheduling works (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025) based on operation-
machine pairs. It consists of a multi-layer perceptron (MLP) that takes as input the operation and
machine embeddings from the feature extraction network, along with the edge (i.e., duration) em-
beddings, and produces a scalar score for each feasible operation–machine pair. A softmax over
these scores yields the final probability distribution. Notably, for simplicity, we do not include a
global embedding in decision-making, as it shows limited effectiveness2. Additionally, as discussed
in Section 4.1.2, we do not incorporate heuristic masking to prune the action space beyond the hard
scheduling constraints (i.e., O2O dependency/O2M connection).

However, unlike most prior works (Zhang et al., 2020; Song et al., 2023; Wang et al., 2024b; Zhao
et al., 2025) that adopt actor-critic frameworks such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), we leverage a simple REINFORCE algorithm (Williams, 1992) to optimize the

2We demonstrate in Appendix B.3, using DANIEL (Wang et al., 2024b) as an example, that removing its
global embedding does not degrade performance.
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policy. Although vanilla REINFORCE is known to exhibit higher variance than actor–critic meth-
ods such as PPO, we adopt it in this work for the sake of simplicity. This choice not only makes the
training procedure easy to implement but also follows the standard practice in Transformer-based
neural combinatorial optimization such as AM (Kool et al., 2019) and POMO (Kwon et al., 2020).
It keeps the training pipeline minimal, without additional critic networks or auxiliary losses, and
allows us to focus on the impact of the proposed state representation and architecture rather than
on the specific RL algorithm. (However, we also implemented the PPO version of our method for
a more comprehensive evaluation, which is presented in xxx). The reward is defined (in Eq. (3))
as the negative difference between the estimated lower-bound makespan before and after taking an
action. Details of the training algorithm are provided in Appendix B.3.

5 EXPERIMENTS

In this section, we conduct extensive experiments on FJSP to demonstrate the effectiveness of
RESCHED, comparing it with strong baselines and performing ablations on its key components.
As a generic framework, we also extend our evaluation to JSSP and FFSP to showcase its generality.

Training and Evaluation Settings We train RESCHED on FJSP and two variants, JSSP and FFSP,
respectively. For each problem, we generate one or two million instances for training, depends on the
problem size. The models are trained on smaller problem sizes and evaluated on significantly larger
ones as well as standard benchmarks: Bandimarte (Brandimarte, 1993) and Hurink (Hurink et al.,
1994) for FJSP, Taillard (Taillard, 1993) and DMU (Demirkol et al., 1998) for JSSP, and extended
sizes up to 100×12 for FFSP3. Notably, for both JSSP and FFSP, we use only a single training size
(10×10 for JSSP and 20×12 for FFSP) to demonstrate generalization capability. Additionally, we
evaluate the policies not only using a greedy strategy, but also with a sampling strategy. Following
HGNN (Song et al., 2023) and DANIEL (Wang et al., 2024b), for each test instance we run 100
independent stochastic decoding trajectories of the policy in parallel, where at every decision step
the next operation–machine pair is sampled from the network’s categorical output, and we report the
solution with the smallest makespan among the 100 trajectories. Further details of the dataset and
configurations are provided in Appendix B.2. We will make the implementation code and data
publicly available.

Baselines We compare RESCHED against three groups of baselines. (i) Classical priority dis-
patching rules (PDRs), including FIFO, SPT, MOPNR, and MWKR. (ii) State-of-the-art DRL-based
methods: HGNN (Song et al., 2023), DANIEL (Wang et al., 2024b), and DOAGNN (Zhao et al.,
2025) for FJSP; L2D (Zhang et al., 2020) and RL-GNN (Park et al., 2021) for JSSP; and Mat-
Net (Kwon et al., 2021) for FFSP. (iii) Strong non-learning baselines, including the 2SGA ge-
netic algorithm (Rooyani & Defersha, 2019) tailored for FJSP and the CP-SAT solver from OR-
Tools (Da Col & Teppan, 2019), which we apply to both FJSP and JSSP benchmarks. More details
are given in Appendix B.3.

5.1 PERFORMANCE ON FJSP

In-Distribution Performance Table 1 shows RESCHED outperforms all baselines on both
SD1 (Song et al., 2023) and SD2 (Wang et al., 2024b) datasets, achieving superior results in 14/16
cases. The advantage is most pronounced on challenging SD2 instances, where RESCHED reduces
the gap by 30% versus DANIEL (15×10 case). Even on simpler SD1 instances, it maintains con-
sistent improvements, cutting DANIEL’s gap by half in 15×10 and 20×10 settings, demonstrating
robust performance across difficulty levels.

Generalization Performance RESCHED demonstrates strong generalization on both synthetic
and benchmark datasets (Table 1). On larger synthetic instances (30×10 to 40×10), it outperforms
DRL baselines in 6/8 cases, even surpassing OR-Tools by 7.61% on the challenging SD2 with
40×10 setting. For Brandimarte and Hurink benchmarks, trained solely on SD1, RESCHED achieves
best performance in 7/8 cases across both strategies. Notably, the DOAGNN does not report results

3The notation n × m indicates n jobs and m machines(the number of operations per job varies across
datasets and is omitted here for brevity).
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Table 1: Results on datasets: in-distribution (top); out-of-distribution (middle); benchmark (bottom)

Dataset Size PDRs Greedy Sampling OR-Tools1
FIFO SPT MOPNR MWKR HGNN DANIEL RESCHED HGNN DANIEL RESCHED

SD
1

10× 5 Gap(%)↓ 24.06 34.76 19.87 17.58 16.03 10.87 12.25 9.66 5.57 5.98 96.32 (5%)
20× 5 Gap(%)↓ 14.87 22.56 13.85 11.51 12.27 5.03 4.63 10.31 2.46 2.33 188.15 (0%)
15× 10 Gap(%)↓ 28.65 38.22 20.68 19.41 16.33 12.42 6.51 12.13 6.79 3.09 143.53 (7%)
20× 10 Gap(%)↓ 19.22 30.25 12.20 10.30 10.15 1.31 0.48 9.64 -1.03 -1.55 195.98 (0%)

SD
2

10× 5 Gap(%)↓ 76.47 57.96 72.52 70.01 71.42 25.68 16.36 49.71 12.57 6.39 326.24 (96%)
20× 5 Gap(%)↓ 74.59 38.91 74.58 71.31 76.79 11.52 9.87 60.70 4.66 3.68 602.04 (0%)
15× 10 Gap(%)↓ 132.23 86.74 125.32 121.45 115.26 57.16 18.14 101.52 38.70 9.81 377.17 (28%)
20× 10 Gap(%)↓ 135.27 78.82 129.09 124.98 126.12 31.58 14.18 114.15 19.13 7.90 464.16 (1%)

Dataset Size
Top PDRs Greedy Sampling

OR-ToolsSPT MWKR HGNN DANIEL RESCHED HGNN DANIEL RESCHED
10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10

SD
1 30× 10 Gap(%)↓ 27.47 13.96 14.61 14.01 5.10 2.50 3.44 2.69 12.36 13.49 4.43 1.67 3.49 1.51 274.67 (6%)

40× 10 Gap(%)↓ 21.66 13.37 14.21 13.75 3.65 1.52 2.54 1.64 12.26 13.49 3.77 1.14 3.64 1.10 365.96 (3%)

SD
2 30× 10 Gap(%)↓ 59.74 122.89 126.55 123.57 14.85 11.95 8.79 6.30 115.21 111.51 9.47 4.80 3.59 1.40 692.26 (0%)

40× 10 Gap(%)↓ 38.74 108.66 109.87 108.12 0.52 -1.67 -2.40 -4.58 102.45 99.26 -2.74 -6.60 -5.69 -7.61 998.39 (0%)

Strategy Dataset MWKR HGNN HGNN DANIEL DANIEL DOAGNN RESCHED RESCHED 2SGA OR-Tools UB2
(Top PDR) 10× 5 15× 10 10× 5 15× 10 10× 5 10× 5 15× 10

G
re

ed
y Brandimarte Gap(%)↓ 28.91 28.52 26.77 13.58 12.97 31.64 9.083 12.49 175.20(3.17%) 174.20(1.5%) 172.7

Hurink(edata) Gap(%)↓ 18.6 15.53 15.0 16.33 14.41 16.21 15.48 16.34 - 1028.93(-0.03%) 1028.88
Hurink(rdata) Gap(%)↓ 13.86 11.15 11.14 11.42 12.07 11.83 10.18 10.31 - 935.80(0.11%) 934.28
Hurink(vdata) Gap(%)↓ 4.22 4.25 4.02 3.28 3.75 4.32 3.48 2.55 812.20(0.39%) 919.60(-0.01%) 919.50

Sa
m

pl
in

g Brandimarte Gap(%)↓ 28.91 18.56 19.0 9.53 8.95 18.62 6.61 8.14 175.20(3.17%) 174.20(1.5%) 172.7
Hurink(edata) Gap(%)↓ 18.6 8.17 8.69 9.08 8.72 8.46 8.13 10.39 - 1028.93(-0.03%) 1028.88
Hurink(rdata) Gap(%)↓ 13.86 5.57 5.95 4.95 5.49 5.83 5.04 4.92 - 935.80(0.11%) 934.28
Hurink(vdata) Gap(%)↓ 4.22 1.32 1.34 0.69 0.72 1.44 0.82 0.69 812.20(0.39%) 919.60(-0.01%) 919.50

1. OR-Tools (1800s per instance): solution and optimal ratio reported;
2. UB is the best-known solution (Behnke & Geiger, 2012), used as the baseline to compute gaps;
3. Instance-wise average gap is reported to reduce bias from varying instance scales.

Table 3: Results on Taillard Benchmark for
JSSP.

Size
PDRs DRL-based

OR-Tools UBSPT MWKR FDD/MWKR MOPNR L2D RL-GNN ReSched
10× 10

15× 15 54.8 56.7 47.1 45.0 26.0 20.1 15.74 0.1 1233.9
20× 15 65.2 60.7 50.6 47.7 30.0 24.9 19.7 0.2 1361.3
20× 20 64.2 55.7 47.6 42.8 31.6 29.2 16.3 0.7 1617.1
30× 15 61.6 52.6 45.0 45.6 33.0 24.7 21.5 2.1 1771.2
30× 20 66.0 63.9 56.3 48.2 33.6 32.0 22.5 2.8 1919.4

50× 15 51.4 40.9 34.8 30.1 22.4 15.9 16.1 0.0 2783.8
50× 20 59.5 53.9 41.5 37.9 26.5 21.3 15.6 2.8 2834.4
100× 20 41.0 32.9 23.4 20.2 13.6 9.2 9.6 3.9 5369.6

Brandimarte edata rdata vdata
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100

101
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Figure 3: Running Time on FJSP Benchmark

for the 15×10 setting, and is thus only compared using one configuration. Compared with strong
non-learning baselines, 2SGA and OR-Tools (with 3600s time limit) can often obtain solutions very
close to the best-known upper bounds, but at the cost of substantially longer computation time due
to lengthy population-based search or exact optimization. In contrast, once trained, RESCHED pro-
duces competitive solutions within a short inference time per instance (see Figure 3), and its perfor-
mance can be further improved by simple sampling-based decoding without additional training cost,
making it more suitable for time-sensitive or repeatedly solved scheduling scenarios. These results
suggest RESCHED’s potential for generalization to real-world settings with complex characteristics
under practical time budgets.

Running Time Analysis To evaluate runtime efficiency, we conduct experiments on open bench-
mark instances characterized by diverse problem structures. Each algorithm is independently exe-
cuted five times to ensure reliable results, and their average running times are reported in Figure 3.
Notably, our method achieves a runtime comparable to existing DRL-based approaches while out-
performing current state-of-the-art methods in terms of scheduling quality.

5.2 ABLATION STUDY

We conduct ablation studies on RESCHED’s two key innovations: (1) the minimal representation
and (2) attention-based architectural improvements, by removing each design element individually.
Results in Table 5 (Appendix B.3) confirm all components contribute positively to performance.
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5.3 PERFORMANCE ON JSSP AND FFSP

We evaluate RESCHED’s generalization capability on the Taillard benchmark (Taillard, 1993) for
JSSP. Trained solely on synthetic 10×10 instances (generated under the same distribution as Zhang
et al. (2020)), our model is directly tested on benchmark instances ranging from 15×15 to 100×20
by greedy strategy. The results in Table 3 show that, RESCHED outperforms L2D4 and RL-GNN
in 7 out of 8 test sizes, even surpassing their in-distribution performance (trained and tested on the
same size). For reference, we also report the results of the CP-SAT solver in OR-Tools (Da Col
& Teppan, 2019) with a 3600-second time limit per instance, which provides strong upper bounds
on the Taillard instances. This demonstrates exceptional scalability, as no size-specific tuning is re-
quired, which exhibits our framework’s ability to adapt to different scheduling problems. Results on
in-distribution settings and the DMU benchmark, when evaluated with a greedy decoding strategy,
also confirmed its consistent superiority (see Appendix B.3). We also evaluate RESCHED on FFSP
under MatNet’s setting (Kwon et al., 2021). Unlike MatNet, which trains a separate model for each
size (20/50/100), RESCHED, trained only on size 20, achieves the best results in most settings across
sizes under both greedy and sampling strategies (Table 8). Same as MatNet, we also use 24 parallel
solutions per instance, which showed superior generalization.

6 CONCLUSION

In this paper, we present RESCHED, a novel framework for solving scheduling problems using deep
reinforcement learning. RESCHED introduces a simplified state representation and a Transformer-
based architecture, which effectively captures the structural and temporal characteristics of schedul-
ing problems. Our extensive experiments on FJSP, JSSP, and FFSP demonstrate that RESCHED
achieves favorable performance while maintaining high efficiency. The results highlight the po-
tential of RESCHED as a generic framework for various scheduling tasks. However, RESCHED
currently encodes only O2O/O2M interaction with self-attention/unidirectional cross-attention; ex-
plicit machine to operation (M2O) feedback is not yet modeled and will be explored in future work.
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A STATE REPRESENTATION: FROM FJSP TO OTHER VARIANTS

A.1 REVISITING THE FSJP FORMULATION

In FJSP, for each operation node Oij , we define:

• STij : the start time of operation Oij ;
• Dm

ij : the duration of operation Oij on machine m;
• FTij : the finish time of operation Oij .

For each machine node Mm, we define:

• ATm
t : the available time of machine m at the current scheduling step.

Whenever amt,ij = 1, operation node Oij may start only satisfies the following two constraints:
the operation dependency constraints and the machine availability constraints. Then the finish time
FTij and start time STij can be computed as follows:

FTij = STij +Dm
ij , if amt,ij = 1

STij = max
(
FTi(j−1), ATm

t

) (7)

where FTi(j−1) is the finish time of predeccessor operation Oi(j−1) in the job Ji.

For the machine nodes, the available time ATm
t at step t is updated as follows:

ATm
t =

{
FTi′j′ if amt−1,i′j′ = 1

ATm
t−1 otherwise

(8)

where (i′j′) is the operation assigned to machine m at step t− 1.

Finally, for a scheduling problem like FJSP, we aim to optimize the solution A to minimize the
makespan FTmax, which is defined as the maximum finish time across all operations:

FTmax = max
(ij)∈O

FTij . (9)

Remark 1. As we analysed in the Proposition 1, it is unnecessary to explicitly retain the full history
of past states. This means we do not need to directly track the finish times of operations scheduled in
previous steps. However, since the finish time of an operation Oij−1 serves as the available time for
its successor Oij , we can instead maintain the operation available time a quantity that captures the
same information in a recursive manner. Thus the Eq. (7) can be simplified as Eq. (2) in the main
text.

Using the above formulation, for a given FJSP instance and feasible solution A, we can compute
each operation’s status and machine’s status at each scheduling step.

A.2 FROM FJSP TO OTHER SCHEDULING PROBLEMS

From heterogeneous graph perspective, FJSP provides a unified formulation that naturally extends
to two classical variants: JSSP and FFSP.

JSSP as a special case. In JSSP, each operation is tied to exactly one machine rather than a set of
machines. Consequently, the duration Dm

ij and schedule amt,ij degenerate to Dij and at,ij , respec-
tively. The O2O dependencies remain unchanged, whereas the O2M connections become one-hot.
The state representation and update rules are the same as in FJSP, with trivial O2M connections.

FFSP as a special case. In FFSP, all jobs follow an identical sequence of stages, i.e. an identical
routing with one operation per stage. In this context, an “operation” can be viewed as a stage. Each
stage j is executed at a station, and under the flexible setting, a station is typically composed of mul-
tiple parallel machines capable of performing the same task. Hence, FFSP can be viewed as an FJSP
withMij =Mj for all jobs i. The O2O dependencies reduce to stage-to-stage precedence, while
the O2M connections remain similar to FJSP, where each stage is connected to its corresponding
station’s machines.
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Figure 4: The illustration of JSSP and FFSP instances, respectively.

Implications for our framework. Across these variants, the core state representation and update
rules remain consistent with those of FJSP. The O2O dependencies are preserved; differences arise
only in the pattern of O2M connections, reflecting each problem’s machine-availability constraints.
Figure 4 illustrates both variants with identical O2O dependencies and differing machine-availability
constraints.

B TRAINING ALGORITHM AND EXPERIMENT

B.1 TRAINING ALGORITHM

We introduce the training algorithm for RESCHED in Algorithm 1. The training process follows the
REINFORCE algorithm, where we sample actions from the policy network and compute the policy
loss based on the rewards received. The model parameters are updated using gradient descent.

Algorithm 1 Training RESCHED with REINFORCE

1: Input: Scheduling environment E , model parameters θ, number of epochs E, training episodes
N , batch size B, learning rate α;

2: for epoch e = 1 to E do
3: Initialize score and loss meter;
4: while ep < N do
5: Generate B instances using environment E ;
6: Reset the environment to get initial state s0;
7: Initialize empty trajectory: T = ∅;
8: repeat
9: Process current state st into model input;

10: Sample action at ∼ πθ(· | st);
11: Execute at to get reward rt and next state st+1;
12: Store (st, at, rt, st+1) into T ;
13: st ← st+1;
14: until task is finished
15: Compute return Gt using discounted cumulative rewards;
16: Normalize advantages: At = Gt −mean(Gt);
17: Compute policy loss L = −

∑
t At log πθ(at | st);

18: Update parameters: θ ← θ − α∇θL;
19: ep← ep+B;
20: end while
21: Validate πθ on validation set;
22: end for
23: Output: Trained model parameters θ

14
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B.2 EXPERIMENT DETAILS

Datasets For FJSP, the model is trained on synthetic datasets SD1 (Song et al., 2023) and
SD2 (Wang et al., 2024b), to evaluate its in-distribution performance, and then evaluated on larger
size as well as standard benchmark: Bandimarte (Brandimarte, 1993) and Hurink (Hurink et al.,
1994). The synthetic datasets are generated using the same method as in Song et al. (2023) and Wang
et al. (2024b). Specifically, for an instance of FJSP with n jobs and m machines:

• SD1: Duration Dm
ij is uniformly sampled from [1, 20]; Each job’s operations number is

uniformly sampled from [0.8n, 1.2n];

• SD2: Duration Dm
ij is uniformly sampled from [1, 99]; Each job’s operations number is

uniformly sampled from [1, n].

For JSSP, the model is trained on the synthetic dataset generated with the same method as in Zhang
et al. (2020), to evaluate its in-distribution performance, and then evaluated on the standard bench-
mark: Taillard (Taillard, 1993) and DMU (Demirkol et al., 1998). The synthetic dataset is generated
as follows: Duration Dij is uniformly sampled from [1, 99]; Each job’s operations number is uni-
formly sampled from [1, n].

For FFSP, the model is trained on the synthetic dataset generated with the same method as in Kwon
et al. (2021), to evaluate its in-distribution performance and cross-size generalization performance.
The synthetic dataset is generated as follows: Duration Dm

ij is uniformly sampled from [2, 9]; Each
job has 3 stages, and each stage has 4 parallel machines as a station.

Configurations The RESCHED framework is implemented in PyTorch (Paszke et al., 2019) and
trained using the REINFORCE algorithm (Williams, 1992). The feature extraction network con-
sists of 2-layer Transformer blocks, each with 8 attention heads, a hidden dimension of 128, and
a feed-forward dimension of 512. The decision-making network is a 3-layer MLP, with each layer
containing 64 hidden units, following prior works (Zhang et al., 2020; Song et al., 2023; Wang et al.,
2024b; Zhao et al., 2025). We use the Adam optimizer with a learning rate of 5×10−5. The model is
trained for 2000 epochs, with 1000 training instances per epoch and a batch size of 50. The discount
factor γ is set to 0.99. Due to resource constraints, for lager sized problem, the number of training
instances per epoch is reduced to 500 and the batch size to 24. During training, we use the estimated
lower bound of the makespan as the reward, as described in Eq. (3), with a discount factor of 0.99.
The model that achieves the best performance on the validation set is saved and later evaluated on
the test set (100 generated instances) and benchmark datasets. We use a single NVIDIA RTX A40
GPU for training and evaluation. We will release the code and data generation scripts.

Hyperparameter tuning and reporting We tune RESCHED on the SD1 10× 5 setting and keep
the selected hyperparameters fixed for all other datasets and sizes. For baselines, we do not perform
additional tuning beyond the authors’ default settings. We either directly report the results from their
original papers or use their open-source code with the provided hyperparameters and checkpoints
to ensure a fair comparison. All baselines have open-source implementations; some also provide
checkpoints.

Baselines To assess the effectiveness of RESCHED, we compare it against both rule-based and
DRL-based baselines commonly adopted in the FJSP literature. The baselines are grouped into two
categories:

(1) Priority Dispatching Rules (PDRs). We include four widely used heuristic rules:

• FIFO (First-In-First-Out): Selects the earliest operation–machine pair based on the order
of arrival.

• SPT (Shortest Processing Time): Selects the pair with the shortest operation duration.

• MOPNR (Most Operations Remaining): Selects the pair associated with the job that has
the largest number of remaining operations, breaking ties by the earliest machine available
time.
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• MWKR (Most Work Remaining): Selects the pair associated with the job that has the
largest total remaining processing time, using the average duration of successor operations,
and breaks ties by the earliest machine available time.

These heuristics are widely adopted due to their efficiency, simplicity, and strong generalization
ability, particularly in large-scale or unseen scheduling instances (Sels et al., 2012). We implement
these PDRs using the open-source code by Song et al. (2023) and keep the same hyperparameter
settings.

(2) Neural methods for FJSP We also compare RESCHED against three representative GNN-based
approaches developed for FJSP:

• HGNN (Song et al., 2023): Models the scheduling problem as a heterogeneous graph,
where operations and machines are treated as distinct node types.

• DANIEL (Wang et al., 2024b): Employs a dual-attention mechanism to jointly capture
operation–machine interactions.

• DOAGNN (Zhao et al., 2025): Leverages a decoupled disjunctive-graph formulation to
better encode precedence and machine constraints.

All three methods are DRL frameworks based on GNN or variants (e.g., GAT) (Velickovic et al.,
2017), and using the PPO (Schulman et al., 2017) as training algorithm. For HGNN and DANIEL,
we directly report the results from their original papers. For DOAGNN, we use their open-source
code and evaluate it on the open benchmark using their provided checkpoints. Additionally, we
retrain DANIEL from scratch in our ablation study to validate our simplified feature set, maintaining
the same hyperparameter settings as in the original work.

(3) Neural methods for other variants Additionally, we compare RESCHED against two GNN-
based methods targeting JSSP; and a transformer-based method for FFSP:

• L2D (Zhang et al., 2020): Proposes an end-to-end DRL framework that learns size-agnostic
priority dispatching rules for JSSP, based on disjunctive graph representation and Graph
Isomorphism Networks.

• RL-GNN (Park et al., 2021): Integrates RL with a GNN-based encoder-decoder network
to solve JSSP, capturing both job and machine contexts through dynamic graph representa-
tions.

• Matnet (Kwon et al., 2021): Introduces a matrix-based encoding of combinatorial struc-
tures for routing problems and FFSP, enabling flexible attention across decision steps. It
applies a transformer-style architecture to scheduling by encoding instance states as 2D
matrices and training via REINFORCE.

For L2D and RL-GNN, we directly report the results from their original papers. For Matnet, we use
their open-source code to retrain and evaluate it under the default hyperparameters.

B.3 EXPERIMENTAL RESULTS

Ablation Study on DANIEL The input embedding for decision-making module in DANIEL is
the concatenation of the operation, machine, pair and global embeddings, involving a total of 26
features (10 for operation, 8 for machine, 8 for pair); the global embedding is learned and does
not add additional raw features. To evaluate the effectiveness of each component, we conduct an
ablation study by removing the components one by one. The experiments are conducted on the
synthetic dataset SD2 with 15× 10, and the results are shown in Table 4.

We conduct an ablation study on DANIEL to analyze the impact of different input embeddings. The
results in Table 4 reveal the following insights:

• Del Global: Removing the global embedding leads to a slight improvement, indicating
that this component may introduce redundancy or noise.

• Del Global MA: Further removing the machine embedding, comprising 8 machine-related
features, results in continued improvement, suggesting that the model can perform well
without explicit machine descriptors.
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Table 4: Ablation study on DANIEL.

setting Obj.↓ Avg. ∆(%) ↓
DANIEL 589.44 56.28

Del Global 589.12 56.19
Del Global MA 588.66 56.07

Del Gloabl MA P(-P6) 588.76 56.10
Del Gloabl MA P(-P6) O(-O2379) 587.68 55.81

• Del Global MA P(-P6): Based on the previous experiment, we further prune the pair-wise
features from 8 to a single (6th) feature, which still maintains performance. This indicates
that most pair features are not essential for effective scheduling.

• Del Global MA P(-P6) O(-O2379): Afterwards, based on all the previous experiments,
we prune the operation features from 10 to 4 (retaining only features 2, 3, 7, and 9), and
the performance is still comparable to the original DANIEL. This further validates that the
full feature set is not strictly necessary for effective scheduling.

In the last step above, we eliminate the number of features in DANIEL from 26 to only 5 (4 for
operation, i.e. O2379, and 1 for pair-wise, i.e. P6), and the performance is still comparable to the
original DANIEL.

Table 5: Ablation study on ReSched.

Ablation In-Distribution Out-of-Distribution Open Benchmark Avg. ∆(%) ↓1
10× 5 30× 10 40× 10 Brandimarte

RESCHED
Gap(%)↓ 12.25 3.44 2.54 9.08 +0.00
∆(%) ↓ 0.00 +0.10 0.00 0.00

Connection Gap(%)↓ 16.42 6.74 3.83 14.48 +3.54
∆(%) ↓ +4.17 +3.30 +1.29 +5.40

Relative Available Time Gap(%)↓ 13.33 5.02 3.77 14.84 +2.41
∆(%) ↓ +1.08 +1.58 +1.23 +5.76

Current Time Gap(%)↓ 13.49 3.38 2.73 12.71 +1.25
∆(%) ↓ +1.24 -0.06 +0.19 +3.63

RoPE Gap(%)↓ 12.81 3.34 2.75 14.97 +1.64
∆(%) ↓ +0.56 -0.10 +0.21 +5.89

Edge in Att Gap(%)↓ 12.56 4.28 3.44 13.02 +1.50
∆(%) ↓ +0.31 +0.84 +0.90 +3.94

Self-based CA Gap(%)↓ 13.16 4.67 3.72 16.10 +2.59
∆(%) ↓ +0.91 +1.23 +1.18 +7.02

∆(%) indicates the gap deviation from standard RESCHED.
Avg. ∆ summarizes overall performance deterioration across all datasets.

Ablation Study on RESCHED To evaluate the effectiveness of each proposed component in
RESCHED, we conduct comprehensive ablation studies to analyze our simplified state representa-
tion and network architecture. Specifically, we individually remove six key ideas from our standard
framework, including simplifications and attention-related improvements. The ablation settings are
illustrated as follows:

• Connection: Removing the O2O connection, and using the original bidirectional connec-
tion, which are widely used in previous works (Zhang et al., 2020; Song et al., 2023; Wang
et al., 2024b; Zhao et al., 2025).

• Relative Available Time: Replacing the relative available time with the absolute available
time (for operation and machine).

• Current Time: Using the absolute current time to prune the action space as in previous
works (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025).

• RoPE: Removing the RoPE mechanism in operation branch.
• Edge in Att: Removing the edge features in cross-attention mechanism in machine branch.
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• Self-based CA: Removing the self-based cross-attention mechanism in machine branch.

All variants are trained on the smallest SD1 dataset (10×5) and evaluated on four test settings, in-
cluding in-distribution, out-of-distribution (30×10 and 40×10), and a challenging open benchmark
(Bandrimarte). As shown in Table 5, each component contributes to the overall performance, con-
firming the effectiveness and necessity of our design choices.

Performance on JSSP with Synthetic Data and DMU Benchmark In the main text, we have
reported the performance of RESCHED on the Taillard benchmark. Here, we also evaluate its per-
formance on synthetic JSSP data and the DMU benchmark. The synthetic data is generated using
the same method as in Zhang et al. (2020), and the DMU benchmark is a widely used benchmark for
JSSP. The results are shown in Table 6 and Table 7, respectively. Similar to the Taillard benchmark,
RESCHED achieves the best performance on both synthetic data and DMU benchmark by solely
using the same model trained on the 10× 10 synthetic data.

Table 6: Performance on synthetic datasets of JSSP.

Size
PDRs DRL-based

Opt. Rate(%)1
SPT MWKR FDD/MWKR MOPNR L2D RESCHED

10× 10

6× 6 42.0 34.6 24.0 29.2 17.7 7.0 100
10× 10 50.0 42.6 36.6 36.5 22.3 9.5 100
15× 15 59.2 52.6 45.1 42.6 26.7 14.3 99
20× 20 62.0 58.6 49.6 45.5 29.0 15.0 4
30× 20 65.3 58.7 48.6 44.7 29.2 16.0 12

50× 20 54.9 48.1 38.4 33.7 22.1 12.8 48
100× 20 35.1 27.0 19.6 14.7 9.4 4.3 2

Opt. Rate is the rate of instances for which OR-Tools returns the optimal solution.

Table 7: Performance on DMU benchmark of JSSP.

Size
PDRs DRL-based

UB1
SPT MWKR FDD/MWKR MOPNR L2D RESCHED

10× 10

20× 15 64.1 62.1 53.6 49.2 39.0 23.72 3023.8
20× 20 64.6 58.2 52.5 45.2 37.7 22.2 3472.6
30× 15 62.6 60.9 54.1 47.1 41.9 27.8 3879.0
30× 20 65.9 63.2 60.1 52.0 39.5 28.3 4248.4

40× 15 55.9 52.9 51.4 44.7 35.4 26.5 4871.2
40× 20 63.0 61.1 55.5 49.2 39.4 29.2 5240.9
50× 15 50.38 48.94 52.55 40.78 36.2 26.3 5950.6
50× 20 62.2 56.4 57.3 49.6 38.8 31.8 6227.3

1.Upper Bound (UB) is the best known solution (available) for each instance.
2.Instance-wise average gap is reported to provide a higher accuracy.

Table 8: Performance on FFSP.

Greedy Sampling
setting FFSP20 FFSP50 FFSP100 FFSP20 FFSP50 FFSP100

Matnet20 28.05 52.58 93.00 27.31 52.36 93.40
Matnet50 27.78 52.05 92.17 27.05 51.55 91.86

Matnet100 27.64 51.79 91.79 27.09 51.40 91.50
ReSched20 26.65 51.24 92.28 25.12 49.65 90.80
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Operation with Available Time
Computed by earlier steps

Operation with Available Time
Computed by this step 

Step 1 Step 2

Figure 5: Illustration of the KV cache mechanism in RESCHED.

Performance on FFSP In the main text, we reported the overall performance of RESCHED on the
FFSP. Here, we present the detailed results in Table 8.

C THEORETICAL ACCELERATION OPPORTUNITIES: KV CACHE

The RESCHED framework allows for theoretical acceleration via a Key-Value (KV) caching mech-
anism, owing to the following structural properties:

• Backward-looking edges: Each operation node is updated only by its successor operation;

• The representation of each successor operation is fixed (determined by the minimum dura-
tion);

• Operation nodes are not updated by machine nodes, which contain dynamic features that
vary across scheduling steps.

As illustrated in Figure 5, this structure enables us to cache and reuse the key-value pairs of previ-
ously computed operation nodes during multi-step decoding, avoiding redundant computation across
steps. To see this, consider an instance with n operations and m machines, decoded in n decision
steps by an L-layer Transformer. Without KV cache, at each step the O2O branch performs self-
attention over n operation nodes, with complexity O(Ln2), and the O2M branch performs cross-
attention between m machine queries and n operation keys/values, with complexityO(Lmn). Over
n decoding steps, the total attention cost is therefore

O
(
L(n3 +mn2)

)
.

With KV cache, the operation representations (and their keys/values) are computed only once in the
O2O branch, with cost O(Ln2), and then reused at all later steps; the O2M branch still needs to be
recomputed at each step due to changing machine availability, giving a total cost of

O
(
Ln2(1 +m)

)
.

The asymptotic reduction in attention computation is thus by a factor of

L(n3 +mn2)

Ln2(1 +m)
=

n+m

1 +m
,

which approaches n
1+m when n≫ m, a common regime in scheduling where the number of opera-

tions greatly exceeds the number of machines. In our experimental settings, the number of operations
is typically 10–40 times larger than the number of machines (i.e., n ≈ 10m–40m), which implies a
reduction of about 10–40× in attention computation when KV cache is applied.

While this caching mechanism is not yet implemented in our current experiments, it presents a
promising future direction for further inference-time acceleration.

D PROOF OF STATE-DEPENDENT OPTIMALITY IN SCHEDULING
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Proof. Fix any decision step t and any state St ∈ S. By Definition 4.1, St uniquely specifies
the following elements: (i) the available time ATm

t of each machine m; (ii) for every job j, the
completion status of its operations up to t, which is equivalent to knowing the finish time of the
most recently scheduled operation of j; (iii) the operation–operation dependency (O2O); and (iv)
the operation–machine feasibility graph with duration (O2M).

Let O be the set of all operations in the scheduling instance described by St. From element (ii), we
can uniquely determine the subset

Odone(St) ⊆ O
of operations that have already been completed by step t, and hence the set of remaining operations

Orem(St) := O \ Odone(St).

From elements (iii) and (iv), we know for every pair of operations in O their precedence relations,
and for every operation inO the set of feasible machines together with the corresponding durations.
Restricting these relations to Orem(St) yields

(a) all remaining precedence constraints among operations in Orem(St),

(b) all remaining duration and machine-feasibility constraints for operations in Orem(St).

Finally, element (i) gives the current available time ATm
t of every machine m. From element (ii)

we know exactly which operations have already been completed, and thus the set of remaining op-
erations Orem(St). Element (iii) specifies all precedence constraints between operations; restricting
it to Orem(St) yields the remaining O2O dependencies. Element (iv) specifies, for each operation,
the set of feasible machines and their processing durations; restricting it to Orem(St) yields the
remaining O2M relations.

Any feasible completion of the schedule starting from St must therefore 1) assign each operation in
Orem(St) to exactly one machine that is feasible according to the restricted O2M graph; 2) respect
all restricted precedence constraints among operations in Orem(St); and 3) choose a start time for
each operation that is not earlier than both the available time ATm

t of its assigned machine and the
finish times of all its predecessors.

Let F(St) denote the set of all schedules for the remaining operations that satisfy 1)–3). By con-
struction, this feasible completion set F(St) is completely determined by the tuple(

AT
(·)
t , Orem(St), restricted O2O, restricted O2M

)
,

which itself is uniquely determined by St through elements (i)–(iv) above. In particular, F(St)
depends only on the current state St and not on which trajectory has led to St.
Now consider any two scheduling trajectories τ1 and τ2 (possibly defined on different execution
histories) that reach the same state St. Let F(St) denote the set of all feasible completions of
the schedule starting from St, that is, all feasible ways to schedule the remaining operations in
Orem(St). Since F(St) is a function of St only, the feasible solution set for the remaining sub-
problem induced by τ1 and τ2 is identical. For any objective that depends only on the operation
finish times (for example, the makespan), each completion in F(St) has the same objective value
regardless of whether it is viewed as a continuation of τ1 or τ2. Hence the optimal objective value
and the set of optimal completions from St are the same for both trajectories. This proves that the
corresponding remaining subproblems share an identical feasible solution set and the same set of
optimal solutions, which establishes the proposition.

E RESCHED WITH PROXIMAL POLICY OPTIMIZATION

In the main paper we train ReSched with REINFORCE, following standard practice in Transformer-
based neural combinatorial optimization (e.g., AM (Kool et al., 2019) and POMO (Kwon et al.,
2020)). This choice keeps the implementation simple and allows us to focus on our main contribu-
tions, namely the state representation and network architecture. To verify that our framework is not
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tied to REINFORCE, and to align with the PPO-based baseline DANIEL, we also implement a PPO
version of ReSched (denoted as ReSched-PPO).

E.1 TRAINING ALGORITHM WITH PPO

We also train RESCHED with Proximal Policy Optimization (PPO) using a clipped surrogate objec-
tive and generalized advantage estimation (GAE); the procedure is summarized in Algorithm 2.

Algorithm 2 Training RESCHED with PPO

1: Input: scheduling environment E , model parameters θ, total number of policy updates U , num-
ber of trajectories per update B, mini-batch size M , number of PPO epochs K per update,
discount factor γ, GAE parameter λ, clip range ε, learning rate α

2: for update u = 1 to U do
3: Set old parameters θold ← θ;
4: Initialize buffer D ← ∅;
5: for i = 1 to B do
6: Sample a training instance from E and reset to get initial state s0;
7: Initialize trajectory T ← ∅;
8: repeat
9: Encode current state st and compute πθold(· | st) and Vθold(st);

10: Sample action at ∼ πθold(· | st);
11: Execute at to obtain reward rt and next state st+1;
12: Store (st, at, rt, Vθold(st), log πθold(at | st)) into T ;
13: st ← st+1;
14: until the scheduling instance is finished
15: Append all time steps in T to buffer D;
16: end for
17: Using rewards and old values in D, compute returns Rt and advantages Ât with GAE(γ, λ);
18: for PPO epoch k = 1 to K do
19: Shuffle D and split into mini-batches of size M ;
20: for each mini-batch B ⊂ D do
21: For all (st, at) in B, compute πθ(· | st) and Vθ(st);
22: Let pt = πθ(at | st), pold

t = πθold(at | st), and rt = pt/p
old
t ;

23: Policy loss:

Lpolicy = −Et∈B

[
min

(
rtÂt, clip(rt, 1− ε, 1 + ε)Ât

)]
;

24: Value loss with clipping:

Lvalue = Et∈B

[
max

(
(Vθ(st)−Rt)

2,

(Vθold(st) + clip(Vθ(st)− Vθold(st),−ε, ε)−Rt)
2
)]

.

25: Entropy bonus: Lentropy = −Et∈B[H(πθ(· | st))];
26: Total loss: L = Lpolicy + cvLvalue + ceLentropy;
27: Update parameters: θ ← θ − α∇θL;
28: end for
29: end for
30: Optionally step the learning-rate scheduler and evaluate πθ on a validation set;
31: end for
32: Output: trained model parameters θ
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E.2 PPO CONFIGURATION AND EXPERIMENTAL SETUP

In the PPO version, we keep the state representation and network architecture identical to the RE-
INFORCE version. The PPO implementation follows the clipped-surrogate variant with generalized
advantage estimation (GAE). Unless otherwise stated, we adopt the same critic architecture and
PPO hyperparameters as DANIEL (Wang et al., 2024b), i.e., discount factor γ = 1, GAE parameter
λ = 0.98, clip range ε = 0.2, value-loss coefficient cv = 0.5 and entropy coefficient ce = 0.01. The
critic shares the encoder with the policy network and adds a small MLP head that outputs a scalar
state value Vθ(st).

Experimental setting. We evaluate ReSched-PPO on our main task, FJSP, and for simplicity we
restrict the comparison to the strongest DRL-based method specifically designed for FJSP, DANIEL.
We keep the same training and test splits as in the main paper: models are trained on synthetic
instances from the SD1/SD2 datasets and evaluated under a greedy decoding strategy on (i) in-
distribution synthetic instances, (ii) out-of-distribution synthetic instances of larger sizes, and (iii)
open FJSP benchmarks.

Training budget. For clarity, we measure the training budget in terms of the effective number of
trajectory updates.

In vanilla REINFORCE, each sampled trajectory is used once for a single gradient update. In the
main-paper configuration, we run 2000 updates and collect 1000 trajectories per update, which
yields 2000×1000 = 2,000,000 trajectories. We adopted this relatively large budget to compensate
for the higher variance and lower sample efficiency of REINFORCE and to stabilize training.

In PPO, for each policy update we collect a batch of B trajectories from the environment and reuse
them for K optimization epochs, which corresponds to BK effective trajectories per policy update.
To disentangle the effect of the RL algorithm from that of the training budget, and to enable a fair
comparison with DANIEL, we consider two budget regimes: In the small-budget setting, we choose
U = 400 updates with B = 50 trajectories per update and K = 4 PPO epochs, resulting in 400 ×
50 × 4 = 80,000 effective trajectory updates. This matches the training budget used by DANIEL,
for which we report the original DANIEL results while retraining both ReSched-REINFORCE and
ReSched-PPO under the same budget. In the large-budget setting, we increase U by a factor of
25 so that both DANIEL and ReSched-PPO are retrained with approximately 2,000,000 effective
trajectory updates, matching the budget of our original ReSched-REINFORCE configuration, for
which we directly reuse the main-paper model.

E.3 COMPARISON OF RESCHED AND DANIEL UNDER DIFFERENT TRAINING BUDGETS

The results for DANIEL, ReSched-REINFORCE, and ReSched-PPO are reported in Table 9.

In-distribution performance under a small training budget. Under the small-budget configura-
tion, ReSched-PPO converges in noticeably fewer updates than ReSched-REINFORCE and achieves
the best average in-distribution performance, with an average gap of 12.42% compared to 14.35%
for ReSched-REINFORCE and 19.45% for DANIEL. Even the REINFORCE version, despite its
slower convergence, still surpasses DANIEL in terms of average optimality gap, indicating that the
main gain comes from our architecture rather than from using a larger training budget. PPO further
exploits the limited data more efficiently than REINFORCE, yielding the best average results among
all compared methods.

Out-of-distribution performance under a small training budget. In the out-of-distribution set-
ting, models trained on SD1-10×5 and SD1-20×10 are evaluated on larger unseen instances. Under
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Table 9: Results on FJSP: in-distribution (top); out-of-distribution (middle); benchmark (bottom)

Dataset Size PDRs Small training budget Large training budget OR-Tools1
FIFO SPT MOPNR MWKR DANIEL RESCHED-REINFORCE RESCHED-PPO DANIEL RESCHED-REINFORCE RESCHED-PPO

SD
1

10× 5 Gap(%)↓ 24.06 34.76 19.87 17.58 10.87 14.61 11.20 9.22 12.25 11.48 96.32 (5%)
20× 5 Gap(%)↓ 14.87 22.56 13.85 11.51 5.03 8.51 5.84 3.08 4.63 4.20 188.15 (0%)
15× 10 Gap(%)↓ 28.65 38.22 20.68 19.41 12.42 12.91 9.41 10.84 6.51 5.21 143.53 (7%)
20× 10 Gap(%)↓ 19.22 30.25 12.20 10.30 1.31 6.97 3.50 -0.43 0.48 -0.36 195.98 (0%)

SD
2

10× 5 Gap(%)↓ 76.47 57.96 72.52 70.01 25.68 19.06 15.77 24.75 16.36 14.24 326.24 (96%)
20× 5 Gap(%)↓ 74.59 38.91 74.58 71.31 11.52 10.76 9.21 8.86 9.87 6.83 602.04 (0%)
15× 10 Gap(%)↓ 132.23 86.74 125.32 121.45 57.16 24.03 25.02 53.94 18.14 16.73 377.17 (28%)
20× 10 Gap(%)↓ 135.27 78.82 129.09 124.98 31.58 17.91 19.38 28.89 14.18 13.79 464.16 (1%)

Avg. Gap(%)↓ 63.17 48.53 58.51 55.82 19.45 14.35 12.42 17.39 10.30 9.02 -

Dataset Size
Top PDRs Small training budget Large training budget

OR-ToolsSPT MWKR DANIEL RESCHED-REINFORCE RESCHED-PPO DANIEL RESCHED-REINFORCE RESCHED-PPO
10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10 10× 5 20× 10

SD
1 30× 10 Gap(%)↓ 27.47 13.96 5.10 2.50 9.26 4.43 3.21 4.50 2.05 1.45 3.44 2.69 2.81 1.91 274.67 (6%)

40× 10 Gap(%)↓ 21.66 13.37 3.65 1.52 8.04 3.37 2.19 3.23 0.98 0.53 2.54 1.64 2.06 1.45 365.96 (3%)

SD
2 30× 10 Gap(%)↓ 59.74 122.89 14.85 11.95 37.76 8.17 8.97 11.96 21.51 18.59 8.79 6.30 5.16 7.05 692.26 (0%)

40× 10 Gap(%)↓ 38.74 108.66 0.52 -1.67 23.25 -3.39 -3.51 -1.29 4.60 0.05 -2.40 -4.58 -6.02 -6.02 998.39 (0%)

Avg. Gap(%)↓ 36.90 64.72 6.03 3.58 19.58 3.15 2.72 4.60 7.29 5.16 3.09 1.51 1.00 1.10 -

Strategy Dataset MWKR DANIEL RESCHED-REINFORCE RESCHED-PPO 2SGA OR-Tools UB2
(Top PDR) 10× 5 15× 10 10× 5 15× 10 10× 5 15× 10

Small training budget

Brandimarte Gap(%)↓ 28.91 13.58 12.97 13.50 14.33 10.52 10.77 175.20(3.17%) 174.20(1.5%) 172.7
Hurink(edata) Gap(%)↓ 18.60 16.33 14.41 18.06 16.34 18.29 20.00 - 1028.93(-0.03%) 1028.88
Hurink(rdata) Gap(%)↓ 13.86 11.42 12.07 10.28 9.92 10.45 13.44 - 935.80(0.11%) 934.28
Hurink(vdata) Gap(%)↓ 4.22 3.28 3.75 2.67 2.82 4.26 3.60 812.20(0.39%) 919.60(-0.01%) 919.50

Avg. Gap(%)↓ 16.40 11.15 10.80 11.13 10.86 10.88 11.95 - - -

Large training budget

Brandimarte Gap(%)↓ 28.91 14.10 14.58 9.08 12.49 10.34 10.97 175.20(3.17%) 174.20(1.5%) 172.7
Hurink(edata) Gap(%)↓ 18.60 14.67 15.71 15.48 16.34 16.25 18.16 - 1028.93(-0.03%) 1028.88
Hurink(rdata) Gap(%)↓ 13.86 11.20 10.34 10.18 10.31 10.59 10.42 - 935.80(0.11%) 934.28
Hurink(vdata) Gap(%)↓ 4.22 3.17 3.42 3.48 2.55 6.41 3.98 812.20(0.39%) 919.60(-0.01%) 919.50

Avg. Gap(%)↓ 16.40 10.79 11.01 9.56 10.42 10.90 10.88 - - -

1. OR-Tools (1800s per instance): solution and optimal ratio reported;
2. UB is the best-known solution (Behnke & Geiger, 2012), used as the baseline to compute gaps;
3. Instance-wise average gap is reported to reduce bias from varying instance scales.

the small training budget, as shown in Table 9, ReSched-PPO trained only on SD1-10×5 already
achieves the best average OOD performance, achieves the best average OOD performance (2.72%
gap), outperforming both DANIEL and ReSched-REINFORCE, showing that our architecture com-
bined with PPO can generalize well even when trained on the smallest problem size with limited
data. In contrast, the REINFORCE version trained on SD1-10×5 generalizes poorly under this
small budget, which is attributed to its lower sample efficiency. However, when the training size is
increased to SD1-20×10 (with the same budget), its OOD performance improves substantially and
becomes comparable to DANIEL. Overall, these results indicate that our architecture does general-
ize beyond the training size, with PPO exploiting limited data more efficiently (as PPO trains the
policy multiple times on the same data), whereas REINFORCE requires somewhat richer training
instances to reach a similar level of OOD performance.

Open benchmark performance under a small training budget. On the open benchmark sets,
all DRL-based methods achieve very similar average performance under the small training budget.
In particular, the REINFORCE and PPO versions of ReSched trained on small synthetic instances
remain competitive with the best DANIEL configuration. This indicates that, with only a small
amount of training data and a short training time (e.g., around 20 minutes for ReSched-PPO on
SD1-10×5 with our hardware), modern DRL-based methods already reach a reasonably strong level
on real-world scheduling benchmarks, highlighting their practical potential for real scheduling ap-
plications.

In-distribution performance under a large training budget. Under the large-budget setting,
both ReSched versions benefit from the increased data: the average gap of ReSched-REINFORCE
drops from 14.35% to 10.30%, and ReSched-PPO further improves it to 9.02%. ReSched-PPO con-
sistently improves over the REINFORCE version across almost all datasets. DANIEL also benefits
from the larger budget, yet even the REINFORCE version of ReSched now clearly outperforms
DANIEL on most SD2 and medium-sized SD1 instances, and the ReSched-PPO achieves the best
average in-distribution performance overall. This shows that, even when DANIEL is given a com-
parable large training budget, the proposed architecture (especially with PPO) remains substantially
stronger.
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Out-of-distribution performance under a large training budget. In the out-of-distribution set-
ting with a large training budget, both ReSched versions clearly outperform DANIEL on average,
and the PPO version consistently improves over the REINFORCE version across most datasets.

Interestingly, when we increase the training budget of DANIEL by 25×, its OOD performance on the
SD2 datasets does not improve and even degrades compared to the original setting. This suggests
that, under the current training setup, DANIEL does not clearly benefit from additional data, which
may partly explain why the original work chose a relatively small training budget. In contrast,
ReSched continues to improve when the training budget is increased, indicating that our architecture
can effectively leverage more trajectories.

Open benchmark performance under a small training budget. On the open benchmark sets,
all DRL-based methods achieve very similar average performance under the small training budget.
In particular, the REINFORCE and PPO versions of ReSched trained on small synthetic instances
remain competitive with the best DANIEL configuration. This indicates that, with only a small
amount of training data and a short training time (e.g., around 20 minutes for ReSched-PPO on
SD1-10×5 with our hardware), modern DRL-based methods already reach a reasonably strong level
on real-world scheduling benchmarks, highlighting their practical potential for real scheduling ap-
plications.

These new experiments show that our architecture works well with both REINFORCE and PPO:
the PPO version converges faster and further improves in-distribution and out-of-distribution perfor-
mance, while the REINFORCE version already remains competitive or better than DANIEL under
matched budgets. In particular, replacing REINFORCE with the stronger PPO algorithm fur-
ther improves ReSched’s performance, demonstrating that our framework can directly benefit
from stronger RL algorithms. Overall, across all budgets and RL algorithms, ReSched consistently
matches or outperforms DANIEL, indicating that the benefits come from our framework rather than
from the large amount of training data.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (e.g., ChatGPT) as a general-purpose assistant for language polish-
ing (grammar, wording, clarity) and for suggesting occasional non-substantive code snippets. LLMs
were not used for problem formulation, algorithm/model design, experimental design or analysis,
data generation, or drawing conclusions. All core code and technical content were implemented and
verified by us. We reviewed and edited all LLM-assisted text and code, and take full responsibility
for every part of the manuscript, including sections that benefited from LLM assistance.
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