

000 RESCHED: RETHINKING FLEXIBLE JOB SHOP 001 SCHEDULING FROM A TRANSFORMER-BASED AR- 002 CHITECTURE WITH SIMPLIFIED STATES 003 004

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Neural approaches to the Flexible Job Shop Scheduling Problem (FJSP), par-
014 ticularly those based on deep reinforcement learning (DRL), have gained grow-
015 ing attention in recent years. Yet existing methods often rely on cumbersome
016 state representations (i.e. sometimes requiring more than 20 handcrafted features)
017 and suboptimal neural architectures. We introduce RESCHED, a minimalist DRL
018 framework that rethinks both the scheduling formulation and model design. First,
019 we revisit the Markov Decision Process (MDP) formulation of FJSP, reducing the
020 state to just four essential features and replacing historical dependencies with a
021 graph structure that directly encodes intra-job operation relationships. Second,
022 we employ Transformer blocks with dot-product attention, augmented by three
023 lightweight but effective architectural modifications tailored to scheduling. Ex-
024 tensive experiments show that RESCHED outperforms classical dispatching rules
025 and state-of-the-art DRL methods on FJSP. Moreover, RESCHED generalizes well
026 to the Job Shop Scheduling Problem (JSSP) and the Flexible Flow Shop Schedul-
027 ing Problem (FFSP), achieving competitive performance against neural baselines
028 specifically designed for these variants.

030 1 INTRODUCTION

032 The Flexible Job Shop Scheduling Problem (FJSP) is a fundamental combinatorial optimization
033 problem (COP) with wide applications in manufacturing (Ding et al., 2019; Wang et al., 2024a),
034 edge computing (Luo et al., 2021; Yang et al., 2025), and logistics (SAT, 2014; Arunarani et al.,
035 2019). In FJSP, jobs are decomposed into operations, each of which can be processed by one of
036 several compatible machines. Solving FJSP requires assigning machines to operations and sequen-
037 cing operations on each machine. As a generic model, FJSP unifies multiple real-world scheduling
038 problems: it reduces to the Job Shop Scheduling Problem (JSSP) when machines are fixed, and to
039 the Flexible Flow Shop Scheduling Problem (FFSP) when jobs follow a shared stage sequence but
040 retain machine flexibility. This generality makes FJSP adaptable for diverse scheduling scenarios.

041 Recent work has explored deep reinforcement learning (DRL) for constructing scheduling heuris-
042 tics (Feng et al., 2021; Lei et al., 2022), where partial solutions (states) are typically represented by
043 disjunctive graphs (Błażewicz et al., 2000) enriched with complex node features. However, many
044 of these features are redundant¹, and incorporating historical construction information into the cur-
045 rent state can even degrade learning (see Section 4.1.2). Likewise, pruning unpromising actions
046 based on human heuristics (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025), while intended
047 to improve efficiency, often hurts policy generalization and leads to suboptimal solutions (see Ap-
048 pendix B.3). These practices require persistent tracking of auxiliary variables at every decision
049 step, introducing considerable computational overhead. Architecturally, most DRL methods rely on
050 graph attention networks (GATs) (Velickovic et al., 2017), which impose strong inductive biases:
051 modeling long-range operation interactions requires deep stacking, and linear attention mechanisms
052 struggle to capture complex scheduling relationships. Those above observations raise a central ques-

053 ¹For instance, in Appendix B.3, we show using DANIEL (Wang et al., 2024b) that removing half of the
054 features does not affect performance.

tion: *Can we design a general construction policy, derived from a minimal Markov-sufficient state and implemented with a generic yet expressive network, that generalizes naturally to FJSP variants?*

We answer this question with RESCHED, a DRL framework that unifies minimalist state design with flexible neural modeling to achieve state-of-the-art (SOTA) performance on FJSP and its variants. Our formulation introduces a compact state representation with only four core node features and a graph structure that explicitly encodes intra-job operation dependencies, thereby removing the need for historical tracking. To boost representational power, we replace conventional GNN-based policies (Franco et al., 2009) with a Transformer backbone comprising two complementary branches: self-attention for operations and cross-attention for machines. Applying Transformers to FJSP poses unique challenges: self-attention must capture intra-job dependencies without additional parameters or indices, while cross-attention must overcome indirect edge-feature integration and the severe imbalance between operations and machines (often over 10:1). We address these challenges by incorporating rotary positional encoding (RoPE) for self-attention, and by introducing direct edge-feature embedding together with a self-connected cross-attention module that mitigates representation dilution. Empirical results show that RESCHED establishes a new SOTA on FJSP, surpassing both handcrafted heuristics and leading DRL baselines. More importantly, it generalizes robustly across problem sizes, benchmark datasets, and related scheduling variants (JSSP, FFSP), demonstrating that minimalist design coupled with expressive modeling enables broad applicability in real-world scheduling. Our contributions are summarized as follows:

- We revisit the MDP for FJSP and design a compact state representation with only four essential node features and a graph structure that explicitly encodes intra-job operation relationships, eliminating redundant features, historical dependencies, auxiliary variables.
- We introduce a dual-branch Transformer architecture tailored for scheduling, with self-attention (enhanced by RoPE) to model intra-job dependencies and a novel cross-attention module that directly incorporates edge features and mitigates operation–machine imbalance through self-connections.
- Our RESCHED achieves SOTA performance on FJSP benchmarks and demonstrates strong generalization across problem sizes and scheduling variants, including JSSP and FFSP.

2 RELATED WORK

Priority dispatching rules (PDRs) (Haupt, 1989; Sels et al., 2012) are widely used in real-world FJSPs for their simplicity, interpretability, and fast decision-making. However, designing effective and generalizable PDRs remains challenging, as they often rely on domain expertise and fail to adapt across diverse problem instances. This limitation has motivated a surge of interest in learning PDRs through deep reinforcement learning (DRL). Most DRL-based methods formulate FJSP as a disjunctive graph, where nodes represent operations and machines, and edges encode precedence and assignment constraints. Graph neural networks (GNNs) are then employed to capture the complex relationships among operations and machines. For example, Song et al. (2023) proposed HGNN, a heterogeneous GNN tailored for FJSP; Wang et al. (2024b) introduced a dual-attention mechanism to jointly model operation and machine features; and Zhao et al. (2025) developed a GNN-based approach augmented with reward shaping to improve training efficiency. While effective, these methods typically depend on heavily engineered state representations, which limit scalability and generalization. Beyond FJSP, DRL has also been applied to other scheduling variants. For instance, Zhang et al. (2020) proposed a GNN-based DRL framework for JSSP that learns operation sequencing policies, and Kwon et al. (2021) introduced a mixed-score attention mechanism to model operation-machine interactions in FFSP. These works further highlight the growing role of neural methods in advancing data-driven scheduling.

3 PRELIMINARY

3.1 FLEXIBLE JOB SHOP SCHEDULING PROBLEM (FJSP)

Consider a generic scheduling problem with *operations* as fundamental units. Suppose there are two sets: a set of operations $\mathcal{O} = \{O_1, O_2, \dots, O_n\}$ and a set of machines $\mathcal{M} = \{M_1, M_2, \dots, M_m\}$.

108 Each operation O_i can be processed by one of the machines in \mathcal{M} with a specific duration (processing
 109 time) $D_i^m > 0$. In FJSP, jobs are collections of operations that must be executed sequentially.
 110 Each job J_i consists of several operations, so operations can be represented as O_{ij} , where i denotes
 111 the job index and j represents the position of the operation in job i . Each operation O_{ij} can be
 112 processed by one or multiple machines, which means "flexible", from a compatible machine set
 113 $\mathcal{M}_{ij} \subseteq \mathcal{M}$ with duration $D_{ij}^m > 0$. Meanwhile, the FJSP is subject to several important *constraints*:
 114 (1) An operation can only begin after all its preceding operations in the job sequence have been
 115 completed. (2) Each operation must be assigned to a single eligible machine and executed non-
 116 preemptively, without interruption once started. (3) Each machine processes only one operation at
 117 a time, requiring sequential execution without overlap. The *objective* of FJSP is to find a feasible
 118 solution that satisfies all the above constraints while minimizing the overall makespan, which is de-
 119 fined as the maximum finish time among all operations. Moreover, the transformation of FJSP to
 120 other variants like JSSP and FFSP are presented in Appendix A.2.

121 3.2 TRANSFORMER BLOCK

123 The Transformer block (Vaswani et al., 2017) is a fundamental component designed to capture
 124 dependencies in sequential data. It primarily consists of a multi-head attention (MHA) mechanism
 125 and a feed-forward network (FFN), combined with residual connections and layer normalization (He
 126 et al., 2016; Ba et al., 2016). In the attention mechanism, each element attends to all others through
 127 a weighted combination of their representations. For a given input sequence $h = [h_1, h_2, \dots, h_n]$,
 128 the attention weights are computed by measuring the similarity between a query $q_a \in \mathbb{R}^d$ and keys
 129 $k_b \in \mathbb{R}^d$, typically obtained via learned linear projections of h_a and h_b . The normalized attention
 130 weight $\alpha_{a,b}$ from node a to node b , and the resulting embedding h'_a for node a are computed as
 131 follows (head is omitted for brevity):

$$132 \alpha_{a,b} = \text{softmax}_b \left(\frac{\langle q_a, k_b \rangle}{\sqrt{d}} \right), \quad h'_a = \sum_{b=1}^n \alpha_{a,b} v_b, \quad (1)$$

135 where $\langle \cdot, \cdot \rangle$ denotes the dot product, \sqrt{d} is a scaling factor to stabilize training, and $v_b \in \mathbb{R}^d$ is
 136 the value vector corresponding to node b . The outputs from multiple heads are concatenated and
 137 passed through a linear transformation to form the final MHA output, which is then processed by a
 138 position-wise FFN, with residual connections and layer normalization applied after both the atten-
 139 tion and FFN sub-layers. This structure allows the Transformer block to effectively capture global
 140 dependencies and complex interactions among elements in the input.

141 4 METHODOLOGY

144 In this section, we introduce *ReSched*, a construction-based neural framework designed for solving
 145 scheduling problems. We begin by revisiting the problem formulation, focusing on the Flexible Job
 146 Shop Scheduling Problem (FJSP), a generalized model that captures diverse scheduling scenarios.
 147 Within this formulation, we cast scheduling as a Markov Decision Process (MDP), where each
 148 decision step resolves a subproblem using a compact, task-specific state representation. Building on
 149 this MDP, we develop a Transformer-based policy network equipped with structure-aware attention
 150 mechanisms and trained via reinforcement learning.

151 4.1 STATE REPRESENTATION

153 In our framework, we aim to minimize the complexity of the state representation while ensuring it
 154 remains fully expressive and sufficient to guide optimal scheduling decisions.

155 4.1.1 REVISITING THE SCHEDULING FORMULATION

157 We represent an FJSP instance using a heterogeneous disjunctive graph (Song et al., 2023), as illus-
 158 trated in Figure 1a. A solution to FJSP consists of two key components: *assignment* and *order*. To
 159 evaluate solution quality, an explicit formulation is required to compute the makespan.

161 Let $a_{t,ij}^m \in \{0, 1\}$ indicate assignment of O_{ij} to machine m at step t . To ensure only one operation-
 162 machine pair is scheduled per step, we enforce a constraint: $\sum_{m \in \mathcal{M}} \sum_{(ij) \in \mathcal{O}} a_{t,ij}^m = 1, \forall t$. When

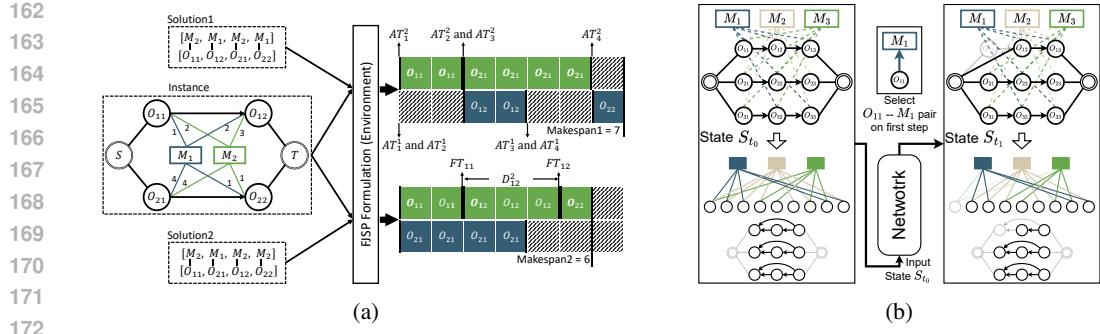


Figure 1: (a) Illustration of the formulation for a 2-job, 2-operation, 2-machine (2-2-2) FJSP instance. (b) Changes in topology and O2M/O2O Connection between two steps for a 3-3-3 instance.

$a_{t,ij}^m = 1$, the finish time FT_{ij} is computed as:

$$FT_{ij} = \max(FT_{i(j-1)}, AT_t^m) + D_{ij}^m, \quad \text{if } a_{t,ij}^m = 1, \quad (2)$$

$$AT_t^m = \begin{cases} FT_{i'j'} & \text{if } a_{t-1,i'j'}^m = 1 \\ AT_{t-1}^m & \text{otherwise.} \end{cases}$$

Here, $FT_{i(j-1)}$ denotes the finish time of the preceding operation in job J_i , AT_t^m is the available time of machine m at step t , and $(i'j')$ is the operation assigned to machine m at the previous step. The goal of FJSP is to minimize the maximum finish time across all operations, which is defined as $FT_{\max} = \max_{(ij) \in \mathcal{O}} FT_{ij}$. This unified formulation supports our state representation simplification, and it can also be adapted to JSSP and FFSP by appropriately modifying machine assignment rules. For the sake of space, the detailed mathematical formulation of FJSP and its variants are provided in Appendix A.1.

Looking at Figure 1a again, it illustrates how two different solutions for the same FJSP instance are translated, via the above formulation, into concrete Gantt charts and makespan values. Specifically, the top solution with order $[O_{11}, O_{12}, O_{21}, O_{22}]$ and assignment $[M_2, M_1, M_2, M_1]$ results in a makespan of $FT_{\max} = 7$, while the bottom solution with order $[O_{11}, O_{21}, O_{12}, O_{22}]$ and assignment $[M_2, M_1, M_2, M_2]$ achieves a makespan of $FT_{\max} = 6$.

4.1.2 MDP FORMULATION

As a construction method, the scheduling process can be viewed as a sequential decision-making problem, where the agent iteratively selects an operation-machine pair to assign at each step. This leads to a natural formulation of the scheduling problem as an MDP.

State: Minimal Representation According to Eq. (2), computing the finish time for operation O_{ij} at step t requires three pieces of information: (1) the finish time of its predecessor $O_{i(j-1)}$, (2) the Duration D_{ij}^m of O_{ij} on machine M_m , and (3) the available time AT_t^m of machine M_m . Particularly, “predecessor” denotes the precedence constraint between operations: an operation may start only after all of its predecessors have finished; we refer to this as the *operation-to-operation (O2O) dependency*. Meanwhile, the *Machine Available Time* AT_t^m is determined by the finish time of the operation assigned to machine M_m at the previous steps. Therefore, the AT_t^m is influenced by the *operation-to-machine (O2M) connection*. From a consistency perspective, the finish time of $O_{i(j-1)}$ can also be interpreted as the *Operation Available Time* for its successor O_{ij} .

Thus, iterate environment from step $t-1$ to t only requires the following information: 1) Operation and Machine Available Time (Node feature); 2) Duration (Edge feature); 3) O2O Dependency (Graph structure); 4) O2M Connection (Graph structure).

Definition 4.1. Let $\mathcal{S}_t \in \mathbb{S}$ be the state representation at decision step t , which uniquely determines: 1) the available times of all machines, 2) the completion status of all jobs (i.e., the finish times of their most recently scheduled operations), 3) the O2O precedence between operations, and 4) the O2M connections (including the corresponding durations).

216
217
218
219
220

Proposition 1 (State-dependent Optimality in Scheduling). *For any two scheduling trajectories τ_1 and τ_2 that reach the same state S_t , the corresponding remaining subproblems share an identical feasible solution set.*

221
222
223
224
225

As an immediate consequence, the optimal decision at step t depends only on S_t , rather than on the full trajectory history. With this state definition, the scheduling problem can be viewed as a finite-state MDP that satisfies the Markov property. A formal proof of Proposition 1 is provided in Appendix D.

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

State: Subproblem In our framework, each scheduling step is modeled as an individual subproblem. To better support this formulation, we refine the state representation along two dimensions: available time from *node features* and O2O dependencies from *graph structure*, thereby excluding historical information and focusing solely on the current subproblem. 1) Relative Available Time. We normalize all operation and machine available times by subtracting the global minimum available time at each step. This prevents the unbounded growth of absolute time values and mitigates potential generalization issues. A conceptually related idea of removing historical dependencies and using relative-time features for JSSP was explored by Lee & Kim (2024); Different from this JSSP-specific design, we remove all historical information under a subproblem-based formulation and extend the relative-time principle to a unified minimal state for FJSP and its variants. 2) O2O Connection. Instead of the bidirectional operation-to-operation (O2O) edges commonly used in prior work (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025), we adopt backward-looking edges. Under the subproblem formulation, each operation only requires information from its successors, making redundant historical tracking unnecessary. To further improve efficiency, we introduce hop connections from each operation to all its successors, granting direct access to job-level future constraints without relying on multi-layer message passing. Figure 1b illustrates how graph topology and O2O/O2M connections evolve: once an operation is scheduled, it and its associated O2O/O2M connections are removed, yielding a new subproblem.

243
244
245
246
247
248
249

Regarding the node feature mentioned in *Minimal Representation*, we also incorporate the Minimum Duration across candidate machines as a compact yet informative proxy. This value provides a lower bound on processing time, enabling the network to distinguish operations of varying difficulty. Although it depends on the set of candidate machines and may be sensitive to instance variations, prior work (Song et al., 2023; Lei et al., 2022; Wang et al., 2024b; Zhao et al., 2025) shows that it is a simple and effective approximation in practice. In our framework, it significantly improves learning efficiency without requiring explicit machine assignments.

250
251
252
253

State: Features Our state representation consists of four key features: 1) Operation Available Time; 2) Machine Available Time; 3) Duration; and 4) Minimum Duration. Note that dependency and machine eligibility are not features but graph structure, represented by O2O/O2M connections.

254
255
256
257
258
259
260
261
262

Action In our MDP formulation, the action at step t corresponds to selecting an operation-machine pair (ij, m) , meaning that operation O_{ij} is assigned to machine M_m . For simplicity, we denote this action as a_t , and the complete schedule is represented as a sequence of actions: $\mathcal{A} = \{a_1, \dots, a_t, \dots, a_n\}$, where n is the total number of scheduling steps (i.e., the total number of operations). In contrast to many existing neural approaches for FJSP, which introduce auxiliary notions such as free time or current time to prune the action space at each step (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025), our framework avoids such heuristic constraints. The only restriction we impose is the natural precedence constraint between operations (Zhang et al., 2020).

263
264
265
266

Transition After taking action a_t , the environment transitions deterministically to a new state s_{t+1} , fully determined by the current state s_t and action a_t . Specifically, operation and machine status are updated according to Eq. (2).

267
268
269

Reward Inspired by Zhang et al. (2020), we use an estimated lower-bound makespan as the reward. Before the scheduling process begins, the lower-bound finish time for each operation can be computed iteratively as: $\underline{FT}_{ij} = \underline{FT}_{i(j-1)} + \min_{m \in \mathcal{M}_{ij}} D_{ij}^m$, and $\underline{FT}_{\max} = \max_{(ij) \in \mathcal{O}} \underline{FT}_{ij}$, where \underline{FT}_{ij} denotes the lower-bound finish time of operation O_{ij} , and \underline{FT}_{\max} represents the es-

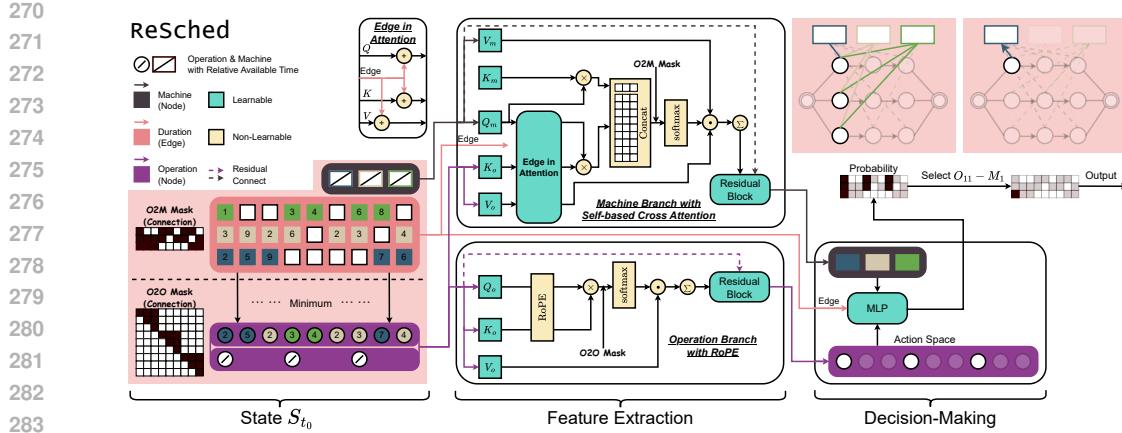


Figure 2: The RESCHED framework. The state consists of four information, resulting in four key features (available time and minimum duration for operation; available time for machine; duration), and incorporates three (underlined) architectural enhancements for Transformer-based network. **For decision-making module, we concatenate the embeddings of each feasible operation–machine pair, feed them into an MLP to obtain a score.**

timated lower-bound makespan. During the scheduling process, we compute the estimated lower-bound finish time $\underline{FT}_{\max}(s_t, a_t)$ based on the current state s_t and action a_t . Reward at step t is defined as negative difference between current estimated lower-bound makespan and the next one:

$$r_t = -(\underline{FT}_{\max}(s_{t+1}, a_{t+1}) - \underline{FT}_{\max}(s_t, a_t)). \quad (3)$$

4.2 POLICY NETWORK ARCHITECTURE

We design a decoder-only neural architecture (Drakulic et al., 2023) to solve scheduling problems, consisting of two main modules: a feature extraction network that models structural and temporal information into embeddings, and a lightweight MLP-based policy head that makes scheduling decisions. The overall architecture is illustrated in Figure 2.

4.2.1 FEATURE EXTRACTION NETWORK

To effectively represent both structural and temporal aspects of the scheduling problem, we design a feature extraction network composed of two branches. The operation branch models O2O dependencies via self-attention, while the machine branch is built around cross-attention that aggregates operation information into machine embeddings. Both branches are built upon standard Transformer layers, with several targeted adaptations to better capture the unique scheduling characteristics.

Operation branch with RoPE In the absence of explicit positional encoding, intra-job order (i.e., O2O dependency) must be inferred implicitly across network layers, which is inefficient and less reliable. To address this, we incorporate Rotary Positional Embedding (RoPE) (Su et al., 2024) into the *operation* branch to directly model relative intra-job distances without introducing additional learnable parameters, as shown in the middle bottom of Figure 2. Particularly, RoPE makes the similarity between query q_a and key k_b a function g not only of their content embeddings x_a and x_b , but also of their relative position $a - b$:

$$\langle \text{RoPE}_q(x_a, a), \text{RoPE}_k(x_b, b) \rangle = g(x_a, x_b, a - b). \quad (4)$$

In scheduling, dependencies arise only within individual jobs. Operations from different jobs or machines can be permuted arbitrarily without affecting decision-making, rendering their relative positions irrelevant. In this sense, RoPE is exclusively applied within the operation branch, injecting positional awareness into intra-job attention patterns. Unlike index-based positional features, RoPE has been shown to provide stronger generalization and better structural encoding. This allows us to simplify the feature set while still preserving the essential sequential information at the job level.

324 **Machine branch with Edge in Attention** The *machine* branch is designed to capture the structural
 325 interactions between operations and machines. A key aspect of this interaction is the processing
 326 duration, which is naturally defined on edges rather than belonging to either operation or machine
 327 nodes. To model this, we employ a cross-attention mechanism in which each operation attends to all
 328 of its candidate machines, incorporating both node-level and edge-level information. This design is
 329 illustrated in Figure 2 (upper branch of the Feature Extraction module).

330 Unlike prior cross-attention approaches (Kwon et al., 2021; Drakulic et al., 2024), which incorporate
 331 edge features indirectly by adjusting attention scores, our design integrates edge information directly
 332 by embedding it into the value vectors. This ensures that edge attributes influence not only the
 333 attention weights but also the final aggregated representations. Formally, for an operation node O_{ij}
 334 and a machine node M_m , the attention is computed as:

$$336 \text{Attention}(M_m, O_{ij}) = \sigma \left(\frac{(q_m + q_{m,ij})^\top (k_{ij} + k_{m,ij})}{\sqrt{d}} \right) \cdot (v_{ij} + v_{m,ij}), \quad (5)$$

338 where σ denotes the softmax function, q_m is the query from the machine node, k_{ij} and v_{ij} are the
 339 key and value from the operation node, and $q_{m,ij}, k_{m,ij}, v_{m,ij}$ are edge-specific projections derived
 340 from the duration D_{ij}^m . Since the number of operation–machine pairs scales with $|\mathcal{O}| \times |\mathcal{M}|$, learning
 341 independent projection parameters for each edge would be computationally prohibitive. To maintain
 342 efficiency, we share projection weights across all attention heads as well as across the query, key,
 343 and value projections, significantly reducing parameter count and memory usage.

344 **Machine branch with Self-based Cross-attention** In scheduling problems, the number of operations
 345 often exceeds the number of machines by an order of magnitude. This structural asymmetry
 346 leads to a severe information imbalance: each machine must aggregate information from a dispropor-
 347 tionately large number of operations, i.e., often 10 times or more, which dilutes attention sig-
 348 nals and destabilizes training. Inspired by the machine-node embedding aggregation in Song et al.
 349 (2023), we introduce a self-based cross-attention mechanism, where each machine node also attends
 350 to its own representation during attention weight computation (Figure 2, upper branch of the Feature
 351 Extraction module). While residual connections inject self-information unconditionally after attention,
 352 the self-based formulation enables the model to assign a soft, adaptive attention weight to the
 353 machine’s own embedding. This helps preserve critical machine-level information in the presence of
 354 overwhelming inter-node messages. Formally, for a machine node M_m with projected value vector
 355 v_m and operation projected value vectors $v_{ij} \in \mathbb{R}^d$, the attention output h'_m is defined as:

$$356 h'_m = \alpha_{mm} v_m + \sum_{(ij) \in \mathcal{N}(M_m)} \alpha_{ij} v_{ij}, \quad (6)$$

359 where α_{mm} is the attention weight assigned to the machine node itself, α_{ij} are the attention weights
 360 for operation nodes connected to M_m , and $\mathcal{N}(M_m)$ denotes the set of such operation nodes. To
 361 reduce parameters, we share the query, key, and value projection weights across machine nodes.

363 4.2.2 DECISION-MAKING

364 Our decision-making module follows a standard policy network design adopted in prior DRL-based
 365 scheduling works (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025) based on operation–
 366 machine pairs. It consists of a multi-layer perceptron (MLP) that takes as input the operation and
 367 machine embeddings from the feature extraction network, along with the edge (i.e., duration) em-
 368 beddings, and produces a scalar score for each feasible operation–machine pair. A softmax over
 369 these scores yields the final probability distribution. Notably, for simplicity, we do not include a
 370 global embedding in decision-making, as it shows limited effectiveness². Additionally, as discussed
 371 in Section 4.1.2, we do not incorporate heuristic masking to prune the action space beyond the hard
 372 scheduling constraints (i.e., O2O dependency/O2M connection).

373 However, unlike most prior works (Zhang et al., 2020; Song et al., 2023; Wang et al., 2024b; Zhao
 374 et al., 2025) that adopt actor-critic frameworks such as Proximal Policy Optimization (PPO) (Schul-
 375 man et al., 2017), we leverage a simple REINFORCE algorithm (Williams, 1992) to optimize the

377 ²We demonstrate in Appendix B.3, using DANIEL (Wang et al., 2024b) as an example, that removing its
 378 global embedding does not degrade performance.

378 policy. Although vanilla REINFORCE is known to exhibit higher variance than actor–critic meth-
 379 ods such as PPO, we adopt it in this work for the sake of simplicity. This choice not only makes the
 380 training procedure easy to implement but also follows the standard practice in Transformer-based
 381 neural combinatorial optimization such as AM (Kool et al., 2019) and POMO (Kwon et al., 2020).
 382 It keeps the training pipeline minimal, without additional critic networks or auxiliary losses, and
 383 allows us to focus on the impact of the proposed state representation and architecture rather than
 384 on the specific RL algorithm. (However, we also implemented the PPO version of our method for
 385 a more comprehensive evaluation, which is presented in *xxx*). The reward is defined (in Eq. (3))
 386 as the negative difference between the estimated lower-bound makespan before and after taking an
 387 action. Details of the training algorithm are provided in Appendix B.3.

389 5 EXPERIMENTS

391 In this section, we conduct extensive experiments on FJSP to demonstrate the effectiveness of
 392 RESCHED, comparing it with strong baselines and performing ablations on its key components.
 393 As a generic framework, we also extend our evaluation to JSSP and FFSP to showcase its generality.

395 **Training and Evaluation Settings** We train RESCHED on FJSP and two variants, JSSP and FFSP,
 396 respectively. For each problem, we generate one or two million instances for training, depends on the
 397 problem size. The models are trained on smaller problem sizes and evaluated on significantly larger
 398 ones as well as standard benchmarks: Bandimarte (Brandimarte, 1993) and Hurink (Hurink et al.,
 399 1994) for FJSP, Taillard (Taillard, 1993) and DMU (Demirkol et al., 1998) for JSSP, and extended
 400 sizes up to 100×12 for FFSP³. Notably, for both JSSP and FFSP, we use only a single training size
 401 (10×10 for JSSP and 20×12 for FFSP) to demonstrate generalization capability. Additionally, we
 402 evaluate the policies not only using a greedy strategy, but also with a sampling strategy. Following
 403 HGNN (Song et al., 2023) and DANIEL (Wang et al., 2024b), for each test instance we run 100
 404 independent stochastic decoding trajectories of the policy in parallel, where at every decision step
 405 the next operation–machine pair is sampled from the network’s categorical output, and we report the
 406 solution with the smallest makespan among the 100 trajectories. Further details of the dataset and
 407 configurations are provided in Appendix B.2. **We will make the implementation code and data**
 408 **publicly available.**

409 **Baselines** We compare RESCHED against three groups of baselines. (i) Classical priority dis-
 410 patching rules (PDRs), including FIFO, SPT, MOPNR, and MWKR. (ii) State-of-the-art DRL-based
 411 methods: HGNN (Song et al., 2023), DANIEL (Wang et al., 2024b), and DOAGNN (Zhao et al.,
 412 2025) for FJSP; L2D (Zhang et al., 2020) and RL-GNN (Park et al., 2021) for JSSP; and Mat-
 413 Net (Kwon et al., 2021) for FFSP. (iii) Strong non-learning baselines, including the 2SGA ge-
 414 netic algorithm (Rooyani & Defersha, 2019) tailored for FJSP and the CP-SAT solver from OR-
 415 Tools (Da Col & Teppan, 2019), which we apply to both FJSP and JSSP benchmarks. More details
 416 are given in Appendix B.3.

417 5.1 PERFORMANCE ON FJSP

419 **In-Distribution Performance** Table 1 shows RESCHED outperforms all baselines on both
 420 SD₁ (Song et al., 2023) and SD₂ (Wang et al., 2024b) datasets, achieving superior results in **14/16**
 421 cases. The advantage is most pronounced on challenging SD₂ instances, where RESCHED reduces
 422 the gap by **30%** versus DANIEL (15×10 case). Even on simpler SD₁ instances, it maintains con-
 423 sistent improvements, cutting DANIEL’s gap by half in 15×10 and 20×10 settings, demonstrating
 424 robust performance across difficulty levels.

425 **Generalization Performance** RESCHED demonstrates strong generalization on both synthetic
 426 and benchmark datasets (Table 1). On larger synthetic instances (30×10 to 40×10), it outperforms
 427 DRL baselines in **6/8** cases, even surpassing OR-Tools by **7.61%** on the challenging SD₂ with
 428 40×10 setting. For Brandimarte and Hurink benchmarks, trained solely on SD₁, RESCHED achieves
 429 best performance in **7/8** cases across both strategies. Notably, the DOAGNN does not report results

431 ³The notation $n \times m$ indicates n jobs and m machines(the number of operations per job varies across
 432 datasets and is omitted here for brevity).

432 Table 1: Results on datasets: in-distribution (top); out-of-distribution (middle); benchmark (bottom)
433

434	435	Dataset	Size	PDRs				Greedy			Sampling			OR-Tools ¹							
				FIFO	SPT	MOPNR	MWKR	436	HGN	DANIEL	RESCHED	437	HGN	DANIEL	RESCHED						
438	439	SD ₁	10 × 5	Gap(%↓)	24.06	34.76	19.87	17.58	436	16.03	10.87	12.25	437	9.66	5.57	5.98	96.32 (5%)				
			20 × 5	Gap(%↓)	14.87	22.56	13.85	11.51	436	12.27	5.03	4.63	437	10.31	2.46	2.33	188.15 (0%)				
			15 × 10	Gap(%↓)	28.65	38.22	20.68	19.41	436	16.33	12.42	6.51	437	12.13	6.79	3.09	143.53 (7%)				
			20 × 10	Gap(%↓)	19.22	30.25	12.20	10.30	436	10.15	1.31	0.48	437	9.64	-1.03	-1.55	195.98 (0%)				
440	441	SD ₂	10 × 5	Gap(%↓)	76.47	57.96	72.52	70.01	438	71.42	25.68	16.36	439	49.71	12.57	6.39	326.24 (96%)				
			20 × 5	Gap(%↓)	74.59	38.91	74.58	71.31	438	76.79	11.52	9.87	439	60.70	4.66	3.68	602.04 (0%)				
			15 × 10	Gap(%↓)	132.23	86.74	125.32	121.45	438	115.26	57.16	18.14	439	101.52	38.70	9.81	377.17 (28%)				
			20 × 10	Gap(%↓)	135.27	78.82	129.09	124.98	438	126.12	31.58	14.18	439	114.15	19.13	7.90	464.16 (1%)				
441	442	Dataset	Size	Top PDRs			Greedy			Sampling			OR-Tools								
				SPT	MWKR	10 × 5	20 × 10	10 × 5	20 × 10	10 × 5	20 × 10	10 × 5	20 × 10								
442	443	SD ₁	30 × 10	Gap(%↓)	27.47	13.96	14.61	14.01	442	5.10	2.50	3.44	4.69	442	12.36	13.49	4.43	1.67	3.49	1.51	274.67 (6%)
			40 × 10	Gap(%↓)	21.66	13.37	14.21	13.75	442	3.65	1.52	2.54	1.64	443	12.26	13.49	3.77	1.14	3.64	1.10	365.96 (3%)
443	444	SD ₂	30 × 10	Gap(%↓)	59.74	122.89	126.55	123.57	443	14.85	11.95	8.79	6.30	443	115.21	111.51	9.47	4.80	3.59	1.40	692.26 (0%)
			40 × 10	Gap(%↓)	38.74	108.66	109.87	108.12	443	0.52	-1.67	-2.40	-4.58	444	102.45	99.26	-2.74	-6.60	-5.69	-7.61	998.39 (0%)
444	445	Strategy	Dataset	MWKR			HGN			DANIEL			DOAGNN			2SGA	OR-Tools	UB ²			
				(Top PDR)	10 × 5	15 × 10	10 × 5	15 × 10	10 × 5	15 × 10	10 × 5	15 × 10	10 × 5	15 × 10							
445	446	Greedy	Brandimarte	Gap(%↓)	28.91	28.52	26.77	13.58	445	12.97	31.64	9.08³	12.49	445	175.20(3.17%)	174.20(1.5%)	172.7				
			Hurink(edata)	Gap(%↓)	18.6	15.53	15.0	16.33	445	14.41	16.21	15.48	16.34	446	-	1028.93(-0.03%)	1028.88				
			Hurink(rdata)	Gap(%↓)	13.86	11.15	11.14	11.42	445	12.07	11.83	10.18	10.31	446	-	935.80(0.11%)	934.28				
			Hurink(vdata)	Gap(%↓)	4.22	4.25	4.02	3.28	445	3.75	4.32	3.48	2.55	446	812.20(0.39%)	919.60(-0.01%)	919.50				
446	447	Sampling	Brandimarte	Gap(%↓)	28.91	18.56	19.0	9.53	446	8.95	18.62	6.61	8.14	446	175.20(3.17%)	174.20(1.5%)	172.7				
			Hurink(edata)	Gap(%↓)	18.6	8.17	8.69	9.08	446	8.72	8.46	8.13	10.39	447	-	1028.93(-0.03%)	1028.88				
			Hurink(rdata)	Gap(%↓)	13.86	5.57	5.95	4.95	446	5.49	5.83	5.04	4.92	447	-	935.80(0.11%)	934.28				
			Hurink(vdata)	Gap(%↓)	4.22	1.32	1.34	0.69	446	0.72	1.44	0.82	0.69	447	812.20(0.39%)	919.60(-0.01%)	919.50				

1. OR-Tools (1800s per instance): solution and optimal ratio reported;
2. UB is the best-known solution (Behnke & Geiger, 2012), used as the baseline to compute gaps;
3. **Instance-wise average gap** is reported to reduce bias from varying instance scales.

453
454 Table 3: Results on Taillard Benchmark for
455 JSSP.

456	457	Size	PDRs				DRL-based		OR-Tools	UB	
			SPT	MWKR	FDD/MWKR	MOPNR	L2D	RL-GNN			
458	459	15 × 15	54.8	56.7	47.1	45.0	26.0	20.1	15.74	0.1	1233.9
459	460	20 × 15	65.2	60.7	50.6	47.7	30.0	24.9	19.7	0.2	1361.3
460	461	20 × 20	64.2	55.7	47.6	42.8	31.6	29.2	16.3	0.7	1617.1
461	462	30 × 15	61.6	52.6	45.0	45.6	33.0	24.7	21.5	2.1	1771.2
462	463	30 × 20	66.0	63.9	56.3	48.2	33.6	32.0	22.5	2.8	1919.4
463	464	50 × 15	51.4	40.9	34.8	30.1	22.4	15.9	16.1	0.0	2783.8
464	465	50 × 20	59.5	53.9	41.5	37.9	26.5	21.3	15.6	2.8	2834.4
465	466	100 × 20	41.0	32.9	23.4	20.2	13.6	9.2	9.6	3.9	5369.6

466 for the 15×10 setting, and is thus only compared using one configuration. Compared with strong
467 non-learning baselines, 2SGA and OR-Tools (with 3600s time limit) can often obtain solutions very
468 close to the best-known upper bounds, but at the cost of substantially longer computation time due
469 to lengthy population-based search or exact optimization. In contrast, once trained, RESCHED
470 produces competitive solutions within a short inference time per instance (see Figure 3), and its performance
471 can be further improved by simple sampling-based decoding without additional training cost,
472 making it more suitable for time-sensitive or repeatedly solved scheduling scenarios. These results
473 suggest RESCHED’s potential for generalization to real-world settings with complex characteristics
474 under practical time budgets.

475 **Running Time Analysis** To evaluate runtime efficiency, we conduct experiments on open benchmark
476 instances characterized by diverse problem structures. Each algorithm is independently executed
477 five times to ensure reliable results, and their average running times are reported in Figure 3.
478 Notably, our method achieves a runtime comparable to existing DRL-based approaches while out-
479 performing current state-of-the-art methods in terms of scheduling quality.

480 5.2 ABLATION STUDY

481 We conduct ablation studies on RESCHED’s two key innovations: (1) the minimal representation
482 and (2) attention-based architectural improvements, by removing each design element individually.
483 Results in Table 5 (Appendix B.3) confirm all components contribute positively to performance.

486 5.3 PERFORMANCE ON JSSP AND FFSP
487

488 We evaluate RESCHED’s generalization capability on the Taillard benchmark (Taillard, 1993) for
489 JSSP. Trained solely on synthetic 10×10 instances (generated under the same distribution as Zhang
490 et al. (2020)), our model is directly tested on benchmark instances ranging from 15×15 to 100×20
491 by greedy strategy. The results in Table 3 show that, RESCHED outperforms L2D⁴ and RL-GNN
492 in 7 out of 8 test sizes, even surpassing their in-distribution performance (trained and tested on the
493 same size). For reference, we also report the results of the CP-SAT solver in OR-Tools (Da Col
494 & Teppan, 2019) with a 3600-second time limit per instance, which provides strong upper bounds
495 on the Taillard instances. This demonstrates exceptional scalability, as no size-specific tuning is re-
496 quired, which exhibits our framework’s ability to adapt to different scheduling problems. Results on
497 in-distribution settings and the DMU benchmark, when evaluated with a greedy decoding strategy,
498 also confirmed its consistent superiority (see Appendix B.3). We also evaluate RESCHED on FFSP
499 under MatNet’s setting (Kwon et al., 2021). Unlike MatNet, which trains a separate model for each
500 size (20/50/100), RESCHED, trained only on size 20, achieves the best results in most settings across
501 sizes under both greedy and sampling strategies (Table 8). Same as MatNet, we also use 24 parallel
502 solutions per instance, which showed superior generalization.

503 6 CONCLUSION
504

505 In this paper, we present RESCHED, a novel framework for solving scheduling problems using deep
506 reinforcement learning. RESCHED introduces a simplified state representation and a Transformer-
507 based architecture, which effectively captures the structural and temporal characteristics of schedul-
508 ing problems. Our extensive experiments on FJSP, JSSP, and FFSP demonstrate that RESCHED
509 achieves favorable performance while maintaining high efficiency. The results highlight the po-
510 tential of RESCHED as a generic framework for various scheduling tasks. However, RESCHED
511 currently encodes only O2O/O2M interaction with self-attention/unidirectional cross-attention; ex-
512 plicit machine to operation (M2O) feedback is not yet modeled and will be explored in future work.

513 514 REFERENCES
515

516 A multi-agent approach to intelligent transportation systems modeling with combinatorial auctions.
517 *Expert Systems with Applications*, 41(15):6622–6633, 2014. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2014.05.015>. URL <https://www.sciencedirect.com/science/article/pii/S0957417414002954>.

518 AR Arunarani, Dhanabalachandran Manjula, and Vijayan Sugumaran. Task scheduling techniques
519 in cloud computing: A literature survey. *Future Generation Computer Systems*, 91:407–415,
520 2019.

521 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *stat*, 1050:21, 2016.

522 Dennis Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling problem
523 with work centers. 2012.

524 Jacek Błażewicz, Erwin Pesch, and Małgorzata Sterna. The disjunctive graph machine repres-
525 entation of the job shop scheduling problem. *European Journal of Operational Research*, 127(2):
526 317–331, 2000.

527 Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. *Annals of Opera-
528 tions research*, 41(3):157–183, 1993.

529 Giacomo Da Col and Erich C Teppan. Industrial size job shop scheduling tackled by present day cp
530 solvers. In *International Conference on Principles and Practice of Constraint Programming*, pp.
531 144–160. Springer, 2019.

532 Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems. *Euro-
533 pean Journal of Operational Research*, 109(1):137–141, Aug 1998. doi: 10.1016/s0377-2217(97)
534 00019-2. URL [https://doi.org/10.1016/s0377-2217\(97\)00019-2](https://doi.org/10.1016/s0377-2217(97)00019-2).

535 536 537 538 539 ⁴We only report best OOD setting for L2D for short

540 Kai Ding, Felix TS Chan, Xudong Zhang, Guanghui Zhou, and Fuqiang Zhang. Defining a digital
 541 twin-based cyber-physical production system for autonomous manufacturing in smart shop floors.
 542 *International Journal of Production Research*, 57(20):6315–6334, 2019.

543

544 Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
 545 lation quotienting for efficient neural combinatorial optimization. *Advances in Neural Information
 546 Processing Systems*, 36:77416–77429, 2023.

547 Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial opti-
 548 mization agent learner. In *The Thirteenth International Conference on Learning Representations*,
 549 2024.

550

551 Yi Feng, Lu Zhang, Zhile Yang, Yuanjun Guo, and Dongsheng Yang. Flexible job shop scheduling
 552 based on deep reinforcement learning. In *2021 5th Asian Conference on Artificial Intelligence
 553 Technology (ACAIT)*, pp. 660–666. IEEE, 2021.

554 Scarselli Franco, Gori Marco, Tsoi Ah Chung, Hagenbuchner Markus, and Monfardini Gabriele.
 555 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2009.

556

557 Reinhard Haupt. A survey of priority rule-based scheduling. *Operations-Research-Spektrum*, 11(1):
 558 3–16, 1989.

559

560 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 561 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 562 770–778, 2016.

563

564 Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
 565 with multi-purpose machines. *Operations-Research-Spektrum*, 15(4):205–215, 1994.

566

567 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
 568 *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ByxBFsRqYm>.

569

570 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 571 Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural
 572 Information Processing Systems*, 33:21188–21198, 2020.

573

574 Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
 575 trix encoding networks for neural combinatorial optimization. *Advances in Neural Information
 576 Processing Systems*, 34:5138–5149, 2021.

577

578 Je-Hun Lee and Hyun-Jung Kim. Graph-based imitation learning for real-time job shop dispatcher.
 579 *IEEE Transactions on Automation Science and Engineering*, 2024.

580

581 Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng Tang.
 582 A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem.
 583 *Expert Systems with Applications*, 205:117796, 2022.

584

585 Quyuan Luo, Shihong Hu, Changle Li, Guanghui Li, and Weisong Shi. Resource scheduling in edge
 586 computing: A survey. *IEEE communications surveys & tutorials*, 23(4):2131–2165, 2021.

587

588 Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learn-
 589 ing to schedule job-shop problems: representation and policy learning using graph neural net-
 590 work and reinforcement learning. *International Journal of Production Research*, pp. 3360–3377,
 591 Jun 2021. doi: 10.1080/00207543.2020.1870013. URL <http://dx.doi.org/10.1080/00207543.2020.1870013>.

592

593 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 594 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 595 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

Danial Rooyani and Fantahun M Defersha. An efficient two-stage genetic algorithm for flexible
 job-shop scheduling. *Ifac-Paperonline*, 52(13):2519–2524, 2019.

594 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 595 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 596

597 Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A comparison of priority rules for the job
 598 shop scheduling problem under different flow time-and tardiness-related objective functions. *In-*
 599 *ternational Journal of Production Research*, 50(15):4255–4270, 2012.

600 Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
 601 neural network and deep reinforcement learning. *IEEE Transactions on Industrial Informatics*,
 602 19(2):1600–1610, 2023. doi: 10.1109/TII.2022.3189725.

603 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 604 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

605 E. Taillard. Benchmarks for basic scheduling problems. *European Journal of Operational Research*,
 606 pp. 278–285, Jan 1993. doi: 10.1016/0377-2217(93)90182-m. URL [https://doi.org/10.1016/0377-2217\(93\)90182-m](https://doi.org/10.1016/0377-2217(93)90182-m).

607 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 608 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 609 *tion processing systems*, 30, 2017.

610 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
 611 gio, et al. Graph attention networks. *stat*, 1050(20):10–48550, 2017.

612 Rongkai Wang, Yiyang Jing, Chaojie Gu, Shibo He, and Jiming Chen. End-to-end multi-target
 613 flexible job shop scheduling with deep reinforcement learning. *IEEE Internet of Things Journal*,
 614 2024a.

615 Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
 616 dual attention network-based reinforcement learning. *IEEE Transactions on Neural Networks and*
 617 *Learning Systems*, 35(3):3091–3102, 2024b. doi: 10.1109/TNNLS.2023.3306421.

618 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 619 learning. *Machine learning*, 8(3):229–256, 1992.

620 Yifan Yang, Gang Chen, Hui Ma, Cong Zhang, Zhiguang Cao, and Mengjie Zhang. Graph assisted
 621 offline-online deep reinforcement learning for dynamic workflow scheduling. In *International*
 622 *Conference on Learning Representations*, 2025.

623 Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi.
 624 Learning to dispatch for job shop scheduling via deep reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 625 *ral Information Processing Systems*, volume 33, pp. 1621–1632. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf.

626 Peng Zhao, You Zhou, Di Wang, Zhiguang Cao, Yubin Xiao, Xuan Wu, Yuanshu Li, Hongjia Liu,
 627 Wei Du, Yuan Jiang, and Liupu Wang. Dual operation aggregation graph neural networks for
 628 solving flexible job-shop scheduling problem with reinforcement learning. In *Proceedings of*
 629 *the ACM on Web Conference 2025*, WWW '25, pp. 4089–4100, New York, NY, USA, 2025.
 630 Association for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.3714616.
 631 URL <https://doi.org/10.1145/3696410.3714616>.

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A STATE REPRESENTATION: FROM FJSP TO OTHER VARIANTS
649650 A.1 REVISITING THE FSJP FORMULATION
651652 In FJSP, for each operation node O_{ij} , we define:
653

- ST_{ij} : the start time of operation O_{ij} ;
- D_{ij}^m : the duration of operation O_{ij} on machine m ;
- FT_{ij} : the finish time of operation O_{ij} .

657 For each machine node M_m , we define:
658

- AT_t^m : the available time of machine m at the current scheduling step.

661 Whenever $a_{t,ij}^m = 1$, operation node O_{ij} may start only satisfies the following two constraints:
662 the operation dependency constraints and the machine availability constraints. Then the finish time
663 FT_{ij} and start time ST_{ij} can be computed as follows:
664

$$\begin{aligned} FT_{ij} &= ST_{ij} + D_{ij}^m, & \text{if } a_{t,ij}^m = 1 \\ ST_{ij} &= \max(FT_{i(j-1)}, AT_t^m) \end{aligned} \quad (7)$$

667 where $FT_{i(j-1)}$ is the finish time of predecessor operation $O_{i(j-1)}$ in the job J_i .668 For the machine nodes, the available time AT_t^m at step t is updated as follows:
669

$$AT_t^m = \begin{cases} FT_{i'j'} & \text{if } a_{t-1,i'j'}^m = 1 \\ AT_{t-1}^m & \text{otherwise} \end{cases} \quad (8)$$

672 where $(i'j')$ is the operation assigned to machine m at step $t - 1$.
673674 Finally, for a scheduling problem like FJSP, we aim to optimize the solution \mathcal{A} to minimize the
675 makespan FT_{\max} , which is defined as the maximum finish time across all operations:
676

$$FT_{\max} = \max_{(ij) \in \mathcal{O}} FT_{ij}. \quad (9)$$

678 **Remark 1.** As we analysed in the Proposition 1, it is unnecessary to explicitly retain the full history
679 of past states. This means we do not need to directly track the finish times of operations scheduled in
680 previous steps. However, since the finish time of an operation O_{ij-1} serves as the available time for
681 its successor O_{ij} , we can instead maintain the **operation available time** a quantity that captures the
682 same information in a recursive manner. Thus the Eq. (7) can be simplified as Eq. (2) in the main
683 text.
684685 Using the above formulation, for a given FJSP instance and feasible solution \mathcal{A} , we can compute
686 each operation's status and machine's status at each scheduling step.
687

A.2 FROM FJSP TO OTHER SCHEDULING PROBLEMS

688 From heterogeneous graph perspective, FJSP provides a unified formulation that naturally extends
689 to two classical variants: JSSP and FFSP.
690691 **JSSP as a special case.** In JSSP, each operation is tied to exactly one machine rather than a set of
692 machines. Consequently, the duration D_{ij}^m and schedule $a_{t,ij}^m$ degenerate to D_{ij} and $a_{t,ij}$, respec-
693 tively. The O2O dependencies remain unchanged, whereas the O2M connections become one-hot.
694 The state representation and update rules are the same as in FJSP, with trivial O2M connections.
695696 **FFSP as a special case.** In FFSP, all jobs follow an identical sequence of stages, i.e. an identical
697 routing with one operation per stage. In this context, an “operation” can be viewed as a *stage*. Each
698 stage j is executed at a *station*, and under the flexible setting, a station is typically composed of mul-
699 tiple parallel machines capable of performing the same task. Hence, FFSP can be viewed as an FJSP
700 with $\mathcal{M}_{ij} = \mathcal{M}_j$ for all jobs i . The O2O dependencies reduce to stage-to-stage precedence, while
701 the O2M connections remain similar to FJSP, where each stage is connected to its corresponding
station's machines.
702

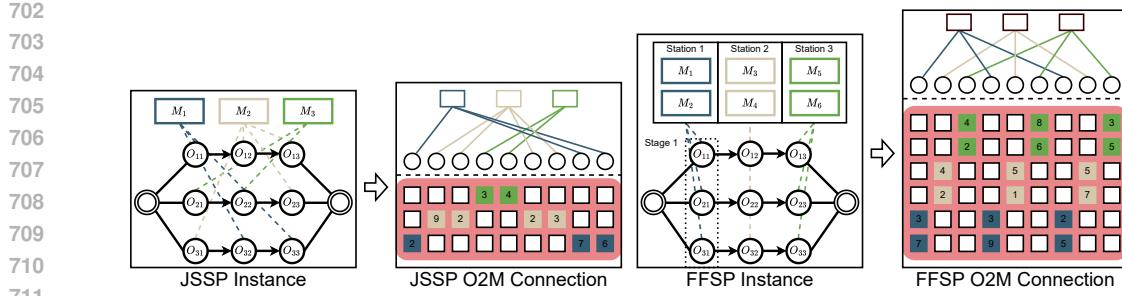


Figure 4: The illustration of JSSP and FFSP instances, respectively.

Implications for our framework. Across these variants, the core state representation and update rules remain consistent with those of FJSP. The O2O dependencies are preserved; differences arise only in the pattern of O2M connections, reflecting each problem’s machine-availability constraints. Figure 4 illustrates both variants with identical O2O dependencies and differing machine-availability constraints.

B TRAINING ALGORITHM AND EXPERIMENT

B.1 TRAINING ALGORITHM

We introduce the training algorithm for RESCHED in Algorithm 1. The training process follows the REINFORCE algorithm, where we sample actions from the policy network and compute the policy loss based on the rewards received. The model parameters are updated using gradient descent.

Algorithm 1 Training RESCHED with REINFORCE

```

1: Input: Scheduling environment  $\mathcal{E}$ , model parameters  $\theta$ , number of epochs  $E$ , training episodes
2:  $N$ , batch size  $B$ , learning rate  $\alpha$ ;
3: for epoch  $e = 1$  to  $E$  do
4:   Initialize score and loss meter;
5:   while  $ep < N$  do
6:     Generate  $B$  instances using environment  $\mathcal{E}$ ;
7:     Reset the environment to get initial state  $s_0$ ;
8:     Initialize empty trajectory:  $\mathcal{T} = \emptyset$ ;
9:     repeat
10:    Process current state  $s_t$  into model input;
11:    Sample action  $a_t \sim \pi_\theta(\cdot | s_t)$ ;
12:    Execute  $a_t$  to get reward  $r_t$  and next state  $s_{t+1}$ ;
13:    Store  $(s_t, a_t, r_t, s_{t+1})$  into  $\mathcal{T}$ ;
14:     $s_t \leftarrow s_{t+1}$ ;
15:   until task is finished
16:   Compute return  $G_t$  using discounted cumulative rewards;
17:   Normalize advantages:  $A_t = G_t - \text{mean}(G_t)$ ;
18:   Compute policy loss  $\mathcal{L} = -\sum_t A_t \log \pi_\theta(a_t | s_t)$ ;
19:   Update parameters:  $\theta \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}$ ;
20:    $ep \leftarrow ep + B$ ;
21:   Validate  $\pi_\theta$  on validation set;
22: end while
23: end for
24: Output: Trained model parameters  $\theta$ 

```

756 B.2 EXPERIMENT DETAILS
757

758 **Datasets** For FJSP, the model is trained on synthetic datasets SD_1 (Song et al., 2023) and
759 SD_2 (Wang et al., 2024b), to evaluate its in-distribution performance, and then evaluated on larger
760 size as well as standard benchmark: Bandimarte (Brandimarte, 1993) and Hurink (Hurink et al.,
761 1994). The synthetic datasets are generated using the same method as in Song et al. (2023) and Wang
762 et al. (2024b). Specifically, for an instance of FJSP with n jobs and m machines:

- 763 • SD_1 : Duration D_{ij}^m is uniformly sampled from $[1, 20]$; Each job's operations number is
764 uniformly sampled from $[0.8n, 1.2n]$;
- 765 • SD_2 : Duration D_{ij}^m is uniformly sampled from $[1, 99]$; Each job's operations number is
766 uniformly sampled from $[1, n]$.

767 For JSSP, the model is trained on the synthetic dataset generated with the same method as in Zhang
768 et al. (2020), to evaluate its in-distribution performance, and then evaluated on the standard bench-
769 mark: Taillard (Taillard, 1993) and DMU (Demirkol et al., 1998). The synthetic dataset is generated
770 as follows: Duration D_{ij} is uniformly sampled from $[1, 99]$; Each job's operations number is uni-
771 formly sampled from $[1, n]$.

772 For FFSP, the model is trained on the synthetic dataset generated with the same method as in Kwon
773 et al. (2021), to evaluate its in-distribution performance and cross-size generalization performance.
774 The synthetic dataset is generated as follows: Duration D_{ij}^m is uniformly sampled from $[2, 9]$; Each
775 job has 3 stages, and each stage has 4 parallel machines as a station.

776 **Configurations** The RESCHED framework is implemented in PyTorch (Paszke et al., 2019) and
777 trained using the REINFORCE algorithm (Williams, 1992). The feature extraction network con-
778 sists of 2-layer Transformer blocks, each with 8 attention heads, a hidden dimension of 128, and
779 a feed-forward dimension of 512. The decision-making network is a 3-layer MLP, with each layer
780 containing 64 hidden units, following prior works (Zhang et al., 2020; Song et al., 2023; Wang et al.,
781 2024b; Zhao et al., 2025). We use the Adam optimizer with a learning rate of 5×10^{-5} . The model is
782 trained for 2000 epochs, with 1000 training instances per epoch and a batch size of 50. The discount
783 factor γ is set to 0.99. Due to resource constraints, for larger sized problem, the number of training
784 instances per epoch is reduced to 500 and the batch size to 24. During training, we use the estimated
785 lower bound of the makespan as the reward, as described in Eq. (3), with a discount factor of 0.99.
786 The model that achieves the best performance on the validation set is saved and later evaluated on
787 the test set (100 generated instances) and benchmark datasets. We use a single NVIDIA RTX A40
788 GPU for training and evaluation. We will release the code and data generation scripts.

789 **Hyperparameter tuning and reporting** We tune RESCHED on the $SD_1 10 \times 5$ setting and *keep*
790 *the selected hyperparameters fixed* for all other datasets and sizes. For baselines, we do not perform
791 additional tuning beyond the authors' default settings. We either directly report the results from their
792 original papers or use their open-source code with the provided hyperparameters and checkpoints
793 to ensure a fair comparison. All baselines have open-source implementations; some also provide
794 checkpoints.

795 **Baselines** To assess the effectiveness of RESCHED, we compare it against both rule-based and
796 DRL-based baselines commonly adopted in the FJSP literature. The baselines are grouped into two
797 categories:

798 (1) **Priority Dispatching Rules (PDRs).** We include four widely used heuristic rules:

- 800 • **FIFO** (First-In-First-Out): Selects the earliest operation-machine pair based on the order
801 of arrival.
- 802 • **SPT** (Shortest Processing Time): Selects the pair with the shortest operation duration.
- 803 • **MOPNR** (Most Operations Remaining): Selects the pair associated with the job that has
804 the largest number of remaining operations, breaking ties by the earliest machine available
805 time.

810
811
812
813

- **MWKR** (Most Work Remaining): Selects the pair associated with the job that has the largest total remaining processing time, using the average duration of successor operations, and breaks ties by the earliest machine available time.

814 These heuristics are widely adopted due to their efficiency, simplicity, and strong generalization
815 ability, particularly in large-scale or unseen scheduling instances (Sels et al., 2012). We implement
816 these PDRs using the open-source code by Song et al. (2023) and keep the same hyperparameter
817 settings.

818 **(2) Neural methods for FJSP** We also compare RESCHED against three representative GNN-based
819 approaches developed for FJSP:

820
821
822
823
824
825
826

- **HGNN** (Song et al., 2023): Models the scheduling problem as a heterogeneous graph, where operations and machines are treated as distinct node types.
- **DANIEL** (Wang et al., 2024b): Employs a dual-attention mechanism to jointly capture operation-machine interactions.
- **DOAGNN** (Zhao et al., 2025): Leverages a decoupled disjunctive-graph formulation to better encode precedence and machine constraints.

827 All three methods are DRL frameworks based on GNN or variants (e.g., GAT) (Velickovic et al.,
828 2017), and using the PPO (Schulman et al., 2017) as training algorithm. For HGNN and DANIEL,
829 we directly report the results from their original papers. For DOAGNN, we use their open-source
830 code and evaluate it on the open benchmark using their provided checkpoints. Additionally, we
831 retrain DANIEL from scratch in our ablation study to validate our simplified feature set, maintaining
832 the same hyperparameter settings as in the original work.

833 **(3) Neural methods for other variants** Additionally, we compare RESCHED against two GNN-based
834 methods targeting JSSP; and a transformer-based method for FFSP:

835
836
837
838
839
840
841
842
843
844
845

- **L2D** (Zhang et al., 2020): Proposes an end-to-end DRL framework that learns size-agnostic priority dispatching rules for JSSP, based on disjunctive graph representation and Graph Isomorphism Networks.
- **RL-GNN** (Park et al., 2021): Integrates RL with a GNN-based encoder-decoder network to solve JSSP, capturing both job and machine contexts through dynamic graph representations.
- **Matnet** (Kwon et al., 2021): Introduces a matrix-based encoding of combinatorial structures for routing problems and FFSP, enabling flexible attention across decision steps. It applies a transformer-style architecture to scheduling by encoding instance states as 2D matrices and training via REINFORCE.

846 For L2D and RL-GNN, we directly report the results from their original papers. For Matnet, we use
847 their open-source code to retrain and evaluate it under the default hyperparameters.
848

849 B.3 EXPERIMENTAL RESULTS

850
851 **Ablation Study on DANIEL** The input embedding for decision-making module in DANIEL is
852 the concatenation of the *operation*, *machine*, *pair* and *global* embeddings, involving a total of **26**
853 features (10 for operation, 8 for machine, 8 for pair); the global embedding is learned and does
854 not add additional raw features. To evaluate the effectiveness of each component, we conduct an
855 ablation study by removing the components one by one. The experiments are conducted on the
856 synthetic dataset SD₂ with 15 × 10, and the results are shown in Table 4.

857 We conduct an ablation study on DANIEL to analyze the impact of different input embeddings. The
858 results in Table 4 reveal the following insights:

859
860
861
862
863

- **Del Global:** Removing the *global* embedding leads to a slight improvement, indicating that this component may introduce redundancy or noise.
- **Del Global MA:** Further removing the *machine* embedding, comprising 8 machine-related features, results in continued improvement, suggesting that the model can perform well without explicit machine descriptors.

864
865
866 Table 4: Ablation study on DANIEL.
867
868
869
870
871
872
873

setting	Obj.↓	Avg. Δ(%) ↓
DANIEL	589.44	56.28
Del Global	589.12	56.19
Del Global MA	588.66	56.07
Del Global MA P(-P6)	588.76	56.10
Del Global MA P(-P6) O(-O2379)	587.68	55.81

874
875
876
877
878
879
880
881
882
883
884

- **Del Global MA P(-P6):** Based on the previous experiment, we further prune the *pair-wise* features from 8 to a single (6th) feature, which still maintains performance. This indicates that most pair features are not essential for effective scheduling.
- **Del Global MA P(-P6) O(-O2379):** Afterwards, based on all the previous experiments, we prune the *operation* features from 10 to 4 (retaining only features 2, 3, 7, and 9), and the performance is still comparable to the original DANIEL. This further validates that the full feature set is not strictly necessary for effective scheduling.

In the last step above, we eliminate the number of features in DANIEL *from 26 to only 5* (4 for operation, i.e. O2379, and 1 for pair-wise, i.e. P6), and the performance is still comparable to the original DANIEL.

885
886 Table 5: Ablation study on *ReSched*.

Ablation	In-Distribution		Out-of-Distribution		Open Benchmark Brandimarte	Avg. Δ(%) ↓ ¹
	10 × 5	30 × 10	40 × 10			
RESCHED	Gap(%)↓ Δ(%) ↓	12.25 0.00	3.44 +0.10	2.54 0.00	9.08 0.00	+0.00
Connection	Gap(%)↓ Δ(%) ↓	16.42 +4.17	6.74 +3.30	3.83 +1.29	14.48 +5.40	+3.54
Relative Available Time	Gap(%)↓ Δ(%) ↓	13.33 +1.08	5.02 +1.58	3.77 +1.23	14.84 +5.76	+2.41
Current Time	Gap(%)↓ Δ(%) ↓	13.49 +1.24	3.38 -0.06	2.73 +0.19	12.71 +3.63	+1.25
RoPE	Gap(%)↓ Δ(%) ↓	12.81 +0.56	3.34 -0.10	2.75 +0.21	14.97 +5.89	+1.64
Edge in Att	Gap(%)↓ Δ(%) ↓	12.56 +0.31	4.28 +0.84	3.44 +0.90	13.02 +3.94	+1.50
Self-based CA	Gap(%)↓ Δ(%) ↓	13.16 +0.91	4.67 +1.23	3.72 +1.18	16.10 +7.02	+2.59

900
901 Δ(%) indicates the gap deviation from standard RESCHED.
902 Avg. Δ summarizes overall performance deterioration across all datasets.

903
904 **Ablation Study on RESCHED** To evaluate the effectiveness of each proposed component in
905 RESCHED, we conduct comprehensive ablation studies to analyze our simplified state representa-
906 tion and network architecture. Specifically, we individually remove six key ideas from our standard
907 framework, including simplifications and attention-related improvements. The ablation settings are
908 illustrated as follows:

909
910
911
912
913
914
915
916
917

- **Connection:** Removing the O2O connection, and using the original bidirectional connec-
tion, which are widely used in previous works (Zhang et al., 2020; Song et al., 2023; Wang
et al., 2024b; Zhao et al., 2025).
- **Relative Available Time:** Replacing the relative available time with the absolute available
time (for operation and machine).
- **Current Time:** Using the absolute current time to prune the action space as in previous
works (Song et al., 2023; Wang et al., 2024b; Zhao et al., 2025).
- **RoPE:** Removing the RoPE mechanism in operation branch.
- **Edge in Att:** Removing the edge features in cross-attention mechanism in machine branch.

918 • **Self-based CA:** Removing the self-based cross-attention mechanism in machine branch.
 919

920 All variants are trained on the smallest SD₁ dataset (10×5) and evaluated on four test settings, in-
 921 cluding in-distribution, out-of-distribution (30×10 and 40×10), and a challenging open benchmark
 922 (Bandrimarte). As shown in Table 5, each component contributes to the overall performance, con-
 923 firming the effectiveness and necessity of our design choices.
 924

925 **Performance on JSSP with Synthetic Data and DMU Benchmark** In the main text, we have
 926 reported the performance of RESCHED on the Taillard benchmark. Here, we also evaluate its per-
 927 formance on synthetic JSSP data and the DMU benchmark. The synthetic data is generated using
 928 the same method as in Zhang et al. (2020), and the DMU benchmark is a widely used benchmark for
 929 JSSP. The results are shown in Table 6 and Table 7, respectively. Similar to the Taillard benchmark,
 930 RESCHED achieves the best performance on both synthetic data and DMU benchmark by solely
 931 using the **same** model trained on the 10 × 10 synthetic data.
 932

933 Table 6: Performance on synthetic datasets of JSSP.

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971				935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971		
	SPT	MWKR	FDD/MWKR	MOPNR	L2D	RESCHED 10 × 10	Opt. Rate(%) ¹
6 × 6	42.0	34.6	24.0	29.2	17.7	7.0	100
10 × 10	50.0	42.6	36.6	36.5	22.3	9.5	100
15 × 15	59.2	52.6	45.1	42.6	26.7	14.3	99
20 × 20	62.0	58.6	49.6	45.5	29.0	15.0	4
30 × 20	65.3	58.7	48.6	44.7	29.2	16.0	12
50 × 20	54.9	48.1	38.4	33.7	22.1	12.8	48
100 × 20	35.1	27.0	19.6	14.7	9.4	4.3	2

944 Opt. Rate is the rate of instances for which OR-Tools returns the optimal solution.
 945

946 Table 7: Performance on DMU benchmark of JSSP.

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971				947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971		
	SPT	MWKR	FDD/MWKR	MOPNR	L2D	RESCHED 10 × 10	UB ¹
20 × 15	64.1	62.1	53.6	49.2	39.0	23.7²	3023.8
20 × 20	64.6	58.2	52.5	45.2	37.7	22.2	3472.6
30 × 15	62.6	60.9	54.1	47.1	41.9	27.8	3879.0
30 × 20	65.9	63.2	60.1	52.0	39.5	28.3	4248.4
40 × 15	55.9	52.9	51.4	44.7	35.4	26.5	4871.2
40 × 20	63.0	61.1	55.5	49.2	39.4	29.2	5240.9
50 × 15	50.38	48.94	52.55	40.78	36.2	26.3	5950.6
50 × 20	62.2	56.4	57.3	49.6	38.8	31.8	6227.3

960 1.Upper Bound (UB) is the best known solution (available) for each instance.
 961 2.Instance-wise average gap is reported to provide a higher accuracy.
 962

963 Table 8: Performance on FFSP.

964 965 966 967 968 969 970 971	964 965 966 967 968 969 970 971			964 965 966 967 968 969 970 971			964 965 966 967 968 969 970 971
	SPT	MWKR	FDD/MWKR	MOPNR	L2D	RESCHED 10 × 10	
Matnet20	28.05	52.58	93.00		27.31	52.36	93.40
Matnet50	27.78	52.05	92.17		27.05	51.55	91.86
Matnet100	27.64	51.79	91.79		27.09	51.40	91.50
ReSched20	26.65	51.24	92.28		25.12	49.65	90.80

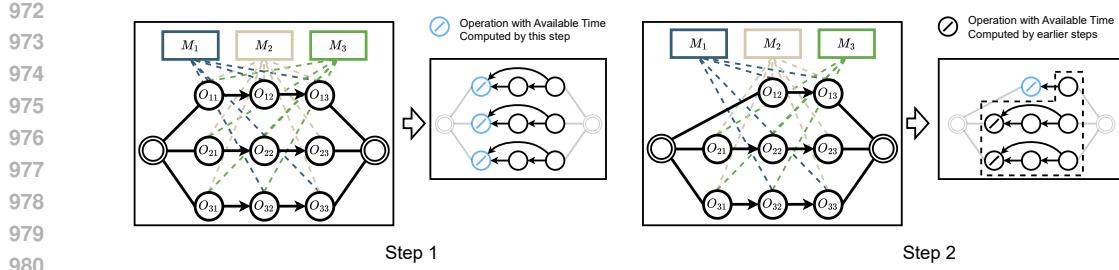


Figure 5: Illustration of the KV cache mechanism in RESCHED.

Performance on FFSP In the main text, we reported the overall performance of RESCHED on the FFSP. Here, we present the detailed results in Table 8.

C THEORETICAL ACCELERATION OPPORTUNITIES: KV CACHE

The RESCHED framework allows for theoretical acceleration via a Key-Value (KV) caching mechanism, owing to the following structural properties:

- *Backward-looking edges*: Each operation node is updated *only* by its successor operation;
- The representation of each successor operation is *fixed* (determined by the minimum duration);
- Operation nodes are *not* updated by machine nodes, which contain dynamic features that vary across scheduling steps.

As illustrated in Figure 5, this structure enables us to cache and reuse the key-value pairs of previously computed operation nodes during multi-step decoding, avoiding redundant computation across steps. To see this, consider an instance with n operations and m machines, decoded in n decision steps by an L -layer Transformer. Without KV cache, at each step the O2O branch performs self-attention over n operation nodes, with complexity $\mathcal{O}(Ln^2)$, and the O2M branch performs cross-attention between m machine queries and n operation keys/values, with complexity $\mathcal{O}(Lmn)$. Over n decoding steps, the total attention cost is therefore

$$\mathcal{O}(L(n^3 + mn^2)).$$

With KV cache, the operation representations (and their keys/values) are computed only once in the O2O branch, with cost $\mathcal{O}(Ln^2)$, and then reused at all later steps; the O2M branch still needs to be recomputed at each step due to changing machine availability, giving a total cost of

$$\mathcal{O}(Ln^2(1 + m)).$$

The asymptotic reduction in attention computation is thus by a factor of

$$\frac{L(n^3 + mn^2)}{Ln^2(1 + m)} = \frac{n + m}{1 + m},$$

which approaches $\frac{n}{1+m}$ when $n \gg m$, a common regime in scheduling where the number of operations greatly exceeds the number of machines. In our experimental settings, the number of operations is typically 10–40 times larger than the number of machines (i.e., $n \approx 10m$ – $40m$), which implies a reduction of about 10–40× in attention computation when KV cache is applied.

While this caching mechanism is not yet implemented in our current experiments, it presents a promising future direction for further inference-time acceleration.

D PROOF OF STATE-DEPENDENT OPTIMALITY IN SCHEDULING

1026 *Proof.* Fix any decision step t and any state $\mathcal{S}_t \in \mathbb{S}$. By Definition 4.1, \mathcal{S}_t uniquely specifies
 1027 the following elements: (i) the available time AT_t^m of each machine m ; (ii) for every job j , the
 1028 completion status of its operations up to t , which is equivalent to knowing the finish time of the
 1029 most recently scheduled operation of j ; (iii) the operation–operation dependency (O2O); and (iv)
 1030 the operation–machine feasibility graph with duration (O2M).

1031 Let \mathcal{O} be the set of all operations in the scheduling instance described by \mathcal{S}_t . From element (ii), we
 1032 can uniquely determine the subset

$$\mathcal{O}^{\text{done}}(\mathcal{S}_t) \subseteq \mathcal{O}$$

1033 of operations that have already been completed by step t , and hence the set of remaining operations

$$\mathcal{O}^{\text{rem}}(\mathcal{S}_t) := \mathcal{O} \setminus \mathcal{O}^{\text{done}}(\mathcal{S}_t).$$

1037 From elements (iii) and (iv), we know for every pair of operations in \mathcal{O} their precedence relations,
 1038 and for every operation in \mathcal{O} the set of feasible machines together with the corresponding durations.
 1039 Restricting these relations to $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$ yields

1040 (a) all remaining precedence constraints among operations in $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$,

1041 (b) all remaining duration and machine-feasibility constraints for operations in $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$.

1044 Finally, element (i) gives the current available time AT_t^m of every machine m . From element (ii)
 1045 we know exactly which operations have already been completed, and thus the set of remaining op-
 1046 erations $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$. Element (iii) specifies all precedence constraints between operations; restricting
 1047 it to $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$ yields the remaining O2O dependencies. Element (iv) specifies, for each operation,
 1048 the set of feasible machines and their processing durations; restricting it to $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$ yields the
 1049 remaining O2M relations.

1050 Any feasible completion of the schedule starting from \mathcal{S}_t must therefore 1) assign each operation in
 1051 $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$ to exactly one machine that is feasible according to the restricted O2M graph; 2) respect
 1052 all restricted precedence constraints among operations in $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$; and 3) choose a start time for
 1053 each operation that is not earlier than both the available time AT_t^m of its assigned machine and the
 1054 finish times of all its predecessors.

1055 Let $\mathcal{F}(\mathcal{S}_t)$ denote the set of all schedules for the remaining operations that satisfy 1)–3). By con-
 1056 struction, this feasible completion set $\mathcal{F}(\mathcal{S}_t)$ is completely determined by the tuple

$$(AT_t^{(\cdot)}, \mathcal{O}^{\text{rem}}(\mathcal{S}_t), \text{restricted O2O, restricted O2M}),$$

1058 which itself is uniquely determined by \mathcal{S}_t through elements (i)–(iv) above. In particular, $\mathcal{F}(\mathcal{S}_t)$
 1059 depends only on the current state \mathcal{S}_t and not on which trajectory has led to \mathcal{S}_t .

1060 Now consider any two scheduling trajectories τ_1 and τ_2 (possibly defined on different execution
 1061 histories) that reach the same state \mathcal{S}_t . Let $\mathcal{F}(\mathcal{S}_t)$ denote the set of all feasible completions of
 1062 the schedule starting from \mathcal{S}_t , that is, all feasible ways to schedule the remaining operations in
 1063 $\mathcal{O}^{\text{rem}}(\mathcal{S}_t)$. Since $\mathcal{F}(\mathcal{S}_t)$ is a function of \mathcal{S}_t only, the feasible solution set for the remaining sub-
 1064 problem induced by τ_1 and τ_2 is identical. For any objective that depends only on the operation
 1065 finish times (for example, the makespan), each completion in $\mathcal{F}(\mathcal{S}_t)$ has the same objective value
 1066 regardless of whether it is viewed as a continuation of τ_1 or τ_2 . Hence the optimal objective value
 1067 and the set of optimal completions from \mathcal{S}_t are the same for both trajectories. This proves that the
 1068 corresponding remaining subproblems share an identical feasible solution set and the same set of
 1069 optimal solutions, which establishes the proposition. \square

E RESCHED WITH PROXIMAL POLICY OPTIMIZATION

1076 In the main paper we train ReSched with REINFORCE, following standard practice in Transformer-
 1077 based neural combinatorial optimization (e.g., AM (Kool et al., 2019) and POMO (Kwon et al.,
 1078 2020)). This choice keeps the implementation simple and allows us to focus on our main contribu-
 1079 tions, namely the state representation and network architecture. To verify that our framework is not

1080
 1081 tied to REINFORCE, and to align with the PPO-based baseline DANIEL, we also implement a PPO
 1082 version of ReSched (denoted as ReSched-PPO).
 1083
 1084
 1085

1086 E.1 TRAINING ALGORITHM WITH PPO

1087 We also train RESCHED with Proximal Policy Optimization (PPO) using a clipped surrogate objec-
 1088 tive and generalized advantage estimation (GAE); the procedure is summarized in Algorithm 2.
 1089

1090 **Algorithm 2** Training RESCHED with PPO

1091 1: **Input:** scheduling environment \mathcal{E} , model parameters θ , total number of policy updates U , num-
 1092 ber of trajectories per update B , mini-batch size M , number of PPO epochs K per update,
 1093 discount factor γ , GAE parameter λ , clip range ε , learning rate α
 1094 2: **for** update $u = 1$ to U **do**
 1095 3: Set old parameters $\theta_{\text{old}} \leftarrow \theta$;
 1096 4: Initialize buffer $\mathcal{D} \leftarrow \emptyset$;
 1097 5: **for** $i = 1$ to B **do**
 1098 6: Sample a training instance from \mathcal{E} and reset to get initial state s_0 ;
 1099 7: Initialize trajectory $\mathcal{T} \leftarrow \emptyset$;
 1100 8: **repeat**
 1101 9: Encode current state s_t and compute $\pi_{\theta_{\text{old}}}(\cdot | s_t)$ and $V_{\theta_{\text{old}}}(s_t)$;
 1102 10: Sample action $a_t \sim \pi_{\theta_{\text{old}}}(\cdot | s_t)$;
 1103 11: Execute a_t to obtain reward r_t and next state s_{t+1} ;
 1104 12: Store $(s_t, a_t, r_t, V_{\theta_{\text{old}}}(s_t), \log \pi_{\theta_{\text{old}}}(a_t | s_t))$ into \mathcal{T} ;
 1105 13: $s_t \leftarrow s_{t+1}$;
 1106 14: **until** the scheduling instance is finished
 1107 15: Append all time steps in \mathcal{T} to buffer \mathcal{D} ;
 1108 16: **end for**
 1109 17: Using rewards and old values in \mathcal{D} , compute returns R_t and advantages \hat{A}_t with GAE(γ, λ);
 1110 18: **for** PPO epoch $k = 1$ to K **do**
 1111 19: Shuffle \mathcal{D} and split into mini-batches of size M ;
 1112 20: **for** each mini-batch $\mathcal{B} \subset \mathcal{D}$ **do**
 1113 21: For all (s_t, a_t) in \mathcal{B} , compute $\pi_{\theta}(\cdot | s_t)$ and $V_{\theta}(s_t)$;
 1114 22: Let $p_t = \pi_{\theta}(a_t | s_t)$, $p_t^{\text{old}} = \pi_{\theta_{\text{old}}}(a_t | s_t)$, and $r_t = p_t / p_t^{\text{old}}$;
 1115 23: Policy loss:
 1116
$$\mathcal{L}_{\text{policy}} = -\mathbb{E}_{t \in \mathcal{B}} \left[\min(r_t \hat{A}_t, \text{clip}(r_t, 1 - \varepsilon, 1 + \varepsilon) \hat{A}_t) \right];$$

 1117
 1118 24: Value loss with clipping:
 1119
$$\mathcal{L}_{\text{value}} = \mathbb{E}_{t \in \mathcal{B}} \left[\max \left((V_{\theta}(s_t) - R_t)^2, \right. \right.$$

 1120
$$\left. \left. (V_{\theta_{\text{old}}}(s_t) + \text{clip}(V_{\theta}(s_t) - V_{\theta_{\text{old}}}(s_t), -\varepsilon, \varepsilon) - R_t)^2 \right) \right].$$

 1121
 1122 25: Entropy bonus: $\mathcal{L}_{\text{entropy}} = -\mathbb{E}_{t \in \mathcal{B}} [\mathcal{H}(\pi_{\theta}(\cdot | s_t))]$;
 1123 26: Total loss: $\mathcal{L} = \mathcal{L}_{\text{policy}} + c_v \mathcal{L}_{\text{value}} + c_e \mathcal{L}_{\text{entropy}}$;
 1124 27: Update parameters: $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}$;
 1125 28: **end for**
 1126 29: **end for**
 1127 30: Optionally step the learning-rate scheduler and evaluate π_{θ} on a validation set;
 1128 31: **end for**
 1129 32: **Output:** trained model parameters θ

1130
 1131
 1132
 1133

1134 E.2 PPO CONFIGURATION AND EXPERIMENTAL SETUP
11351136 In the PPO version, we keep the state representation and network architecture identical to the RE-
1137 INFORCE version. The PPO implementation follows the clipped-surrogate variant with generalized
1138 advantage estimation (GAE). Unless otherwise stated, we adopt the same critic architecture and
1139 PPO hyperparameters as DANIEL (Wang et al., 2024b), i.e., discount factor $\gamma = 1$, GAE parameter
1140 $\lambda = 0.98$, clip range $\epsilon = 0.2$, value-loss coefficient $c_v = 0.5$ and entropy coefficient $c_e = 0.01$. The
1141 critic shares the encoder with the policy network and adds a small MLP head that outputs a scalar
1142 state value $V_\theta(s_t)$.
11431144
1145 **Experimental setting.** We evaluate ReSched-PPO on our main task, FJSP, and for simplicity we
1146 restrict the comparison to the strongest DRL-based method specifically designed for FJSP, DANIEL.
1147 We keep the same training and test splits as in the main paper: models are trained on synthetic
1148 instances from the SD1/SD2 datasets and evaluated under a greedy decoding strategy on (i) in-
1149 distribution synthetic instances, (ii) out-of-distribution synthetic instances of larger sizes, and (iii)
1150 open FJSP benchmarks.
11511152
1153 **Training budget.** For clarity, we measure the training budget in terms of the effective number of
1154 trajectory updates.
11551156 In vanilla REINFORCE, each sampled trajectory is used once for a single gradient update. In the
1157 main-paper configuration, we run 2000 updates and collect 1000 trajectories per update, which
1158 yields $2000 \times 1000 = 2,000,000$ trajectories. We adopted this relatively large budget to compensate
1159 for the higher variance and lower sample efficiency of REINFORCE and to stabilize training.
11601161 In PPO, for each policy update we collect a batch of B trajectories from the environment and reuse
1162 them for K optimization epochs, which corresponds to BK effective trajectories per policy update.
1163 To disentangle the effect of the RL algorithm from that of the training budget, and to enable a fair
1164 comparison with DANIEL, we consider two budget regimes: In the *small-budget* setting, we choose
1165 $U = 400$ updates with $B = 50$ trajectories per update and $K = 4$ PPO epochs, resulting in $400 \times$
1166 $50 \times 4 = 80,000$ effective trajectory updates. This matches the training budget used by DANIEL,
1167 for which we report the original DANIEL results while retraining both ReSched-REINFORCE and
1168 ReSched-PPO under the same budget. In the *large-budget* setting, we increase U by a factor of
1169 25 so that both DANIEL and ReSched-PPO are retrained with approximately 2,000,000 effective
1170 trajectory updates, matching the budget of our original ReSched-REINFORCE configuration, for
1171 which we directly reuse the main-paper model.
11721173 E.3 COMPARISON OF RESCHED AND DANIEL UNDER DIFFERENT TRAINING BUDGETS
11741175 The results for DANIEL, ReSched-REINFORCE, and ReSched-PPO are reported in Table 9.
11761177 **In-distribution performance under a small training budget.** Under the small-budget configura-
1178 tion, ReSched-PPO converges in noticeably fewer updates than ReSched-REINFORCE and achieves
1179 the best average in-distribution performance, with an average gap of 12.42% compared to 14.35%
1180 for ReSched-REINFORCE and 19.45% for DANIEL. Even the REINFORCE version, despite its
1181 slower convergence, still surpasses DANIEL in terms of average optimality gap, indicating that the
1182 main gain comes from our architecture rather than from using a larger training budget. PPO further
1183 exploits the limited data more efficiently than REINFORCE, yielding the best average results among
1184 all compared methods.
11851186 **Out-of-distribution performance under a small training budget.** In the out-of-distribution set-
1187 ting, models trained on SD1-10×5 and SD1-20×10 are evaluated on larger unseen instances. Under
1188

1188 Table 9: Results on FJSP: in-distribution (top); out-of-distribution (middle); benchmark (bottom)
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206	1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206	1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206	1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206				1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206				1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206						
			FIFO	SPT	MOPNR	MWKR	DANIEL	RESCHED-REINFORCE	RESCHED-PPPO	DANIEL	RESCHED-REINFORCE	RESCHED-PPPO	OR-Tools ¹	OR-Tools	UB ²		
SD ¹	10 × 5	Gap(%) _↓	24.06	34.76	19.87	17.58	10.87	14.61	11.20	9.22	12.25	11.48	96.32 (5%)	-	-		
	20 × 5	Gap(%) _↓	14.87	22.56	13.85	11.51	5.03	8.51	5.84	3.08	4.63	4.20	188.15 (0%)	-	-		
	15 × 10	Gap(%) _↓	28.65	38.22	20.68	19.41	12.42	12.91	9.41	10.84	6.51	5.21	143.53 (7%)	-	-		
	20 × 10	Gap(%) _↓	19.22	30.25	12.20	10.30	1.31	6.97	3.50	-0.43	0.48	-0.36	195.98 (0%)	-	-		
SD ²	10 × 5	Gap(%) _↓	76.47	57.96	72.52	70.01	25.68	19.06	15.77	24.75	16.36	14.24	326.24 (96%)	-	-		
	20 × 5	Gap(%) _↓	74.59	38.91	74.58	71.31	11.52	10.76	9.21	8.86	9.87	6.83	602.04 (0%)	-	-		
	15 × 10	Gap(%) _↓	132.23	86.74	125.32	121.45	57.16	24.03	25.02	53.94	18.14	16.73	377.17 (28%)	-	-		
	20 × 10	Gap(%) _↓	135.27	78.82	129.09	124.98	31.58	17.91	19.38	28.89	14.18	13.79	464.16 (1%)	-	-		
Avg.		Gap(%) _↓	63.17	48.53	58.51	55.82	19.45	14.35	12.42	17.39	10.30	9.02	-	-	-		
Dataset	Size	Top PDRs				Small training budget				Large training budget				OR-Tools	OR-Tools		
		SPT	MWKR	DANIEL	RESCHED-REINFORCE	10 × 5	20 × 10	RESCHED-PPPO	10 × 5	DANIEL	RESCHED-REINFORCE	RESCHED-PPPO	10 × 5	20 × 10	OR-Tools		
SD ¹	30 × 10	Gap(%) _↓	27.47	13.96	5.10	2.50	9.26	4.43	3.21	4.50	2.05	1.45	3.44	2.69	2.81	1.91	274.67 (6%)
	40 × 10	Gap(%) _↓	21.66	13.37	3.65	1.52	8.04	3.37	2.19	3.23	0.98	0.53	2.54	1.64	2.06	1.45	365.96 (3%)
	30 × 10	Gap(%) _↓	59.74	122.89	14.85	11.95	37.76	8.17	8.97	11.96	21.51	18.59	8.79	6.30	5.16	7.05	692.26 (0%)
	40 × 10	Gap(%) _↓	38.74	108.66	0.52	-1.67	23.25	-3.39	-3.51	-1.29	4.60	0.05	-2.40	-4.58	-6.02	-6.02	998.39 (0%)
Avg.		Gap(%) _↓	36.90	64.72	6.03	3.58	19.58	3.15	2.72	4.60	7.29	5.16	3.09	1.51	1.00	1.10	-
Strategy	Dataset	MWKR (Top PDR)				DANIEL				RESCHED-REINFORCE				2SGA	OR-Tools	UB ²	
		10 × 5	15 × 10	10 × 5	15 × 10	10 × 5	15 × 10	RESCHED-PPPO	10 × 5	10 × 5	15 × 10	10 × 5	15 × 10	2SGA	OR-Tools	UB ²	
Small training budget	Brandimarte	Gap(%) _↓	28.91	13.58	12.97	13.50	14.33	10.52	10.77	175.20(3.17%)	174.20(1.5%)	-	172.7	-	-	-	
	Hurink(edata)	Gap(%) _↓	18.60	16.33	14.41	18.06	16.34	18.29	20.00	-	1028.93(-0.03%)	-	1028.88	-	-	-	
	Hurink(rdata)	Gap(%) _↓	13.86	11.42	12.07	10.28	9.92	10.45	13.44	-	-	-	935.80(0.11%)	934.28	-	-	
	Hurink(vdata)	Gap(%) _↓	4.22	3.28	3.75	2.67	2.82	4.26	3.60	812.20(0.39%)	919.60(-0.01%)	-	919.50	-	-	-	
Avg.		Gap(%) _↓	16.40	11.15	10.80	11.13	10.86	10.88	11.95	-	-	-	-	-	-	-	
Large training budget	Brandimarte	Gap(%) _↓	28.91	14.10	14.58	9.08	12.49	10.34	10.97	175.20(3.17%)	174.20(1.5%)	-	172.7	-	-	-	
	Hurink(edata)	Gap(%) _↓	18.60	14.67	15.71	15.48	16.34	16.25	18.16	-	1028.93(-0.03%)	-	1028.88	-	-	-	
	Hurink(rdata)	Gap(%) _↓	13.86	11.20	10.34	10.18	10.31	10.59	10.42	-	935.80(0.11%)	-	934.28	-	-	-	
	Hurink(vdata)	Gap(%) _↓	4.22	3.17	3.42	3.48	2.55	6.41	3.98	812.20(0.39%)	919.60(-0.01%)	-	919.50	-	-	-	
Avg.		Gap(%) _↓	16.40	10.79	11.01	9.56	10.42	10.90	10.88	-	-	-	-	-	-	-	

1. OR-Tools (1800s per instance): solution and optimal ratio reported;
2. UB is the best-known solution (Behnke & Geiger, 2012), used as the baseline to compute gaps;
3. **Instance-wise average gap** is reported to reduce bias from varying instance scales.

the small training budget, as shown in Table 9, ReSched-PPO trained only on SD1-10×5 already achieves the best average OOD performance, achieves the best *average* OOD performance (2.72% gap), outperforming both DANIEL and ReSched-REINFORCE, showing that our architecture combined with PPO can generalize well even when trained on the smallest problem size with limited data. In contrast, the REINFORCE version trained on SD1-10×5 generalizes poorly under this small budget, which is attributed to its lower sample efficiency. However, when the training size is increased to SD1-20×10 (with the same budget), its OOD performance improves substantially and becomes comparable to DANIEL. Overall, these results indicate that our architecture does generalize beyond the training size, with PPO exploiting limited data more efficiently (as PPO trains the policy multiple times on the same data), whereas REINFORCE requires somewhat richer training instances to reach a similar level of OOD performance.

Open benchmark performance under a small training budget. On the open benchmark sets, all DRL-based methods achieve very similar average performance under the small training budget. In particular, the REINFORCE and PPO versions of ReSched trained on small synthetic instances remain competitive with the best DANIEL configuration. This indicates that, with only a small amount of training data and a short training time (e.g., around 20 minutes for ReSched-PPO on SD1-10×5 with our hardware), modern DRL-based methods already reach a reasonably strong level on real-world scheduling benchmarks, highlighting their practical potential for real scheduling applications.

In-distribution performance under a large training budget. Under the large-budget setting, both ReSched versions benefit from the increased data: the average gap of ReSched-REINFORCE drops from 14.35% to 10.30%, and ReSched-PPO further improves it to 9.02%. ReSched-PPO consistently improves over the REINFORCE version across almost all datasets. DANIEL also benefits from the larger budget, yet even the REINFORCE version of ReSched now clearly outperforms DANIEL on most SD2 and medium-sized SD1 instances, and the ReSched-PPO achieves the best average in-distribution performance overall. This shows that, even when DANIEL is given a comparable large training budget, the proposed architecture (especially with PPO) remains substantially stronger.

1242

1243

1244

Out-of-distribution performance under a large training budget. In the out-of-distribution setting with a large training budget, both ReSched versions clearly outperform DANIEL on average, and the PPO version consistently improves over the REINFORCE version across most datasets.

1247

1248

1249

1250

1251

1252

Interestingly, when we increase the training budget of DANIEL by 25x, its OOD performance on the SD2 datasets does not improve and even degrades compared to the original setting. This suggests that, under the current training setup, DANIEL does not clearly benefit from additional data, which may partly explain why the original work chose a relatively small training budget. In contrast, ReSched continues to improve when the training budget is increased, indicating that our architecture can effectively leverage more trajectories.

1253

1254

1255

Open benchmark performance under a small training budget. On the open benchmark sets, all DRL-based methods achieve very similar average performance under the small training budget. In particular, the REINFORCE and PPO versions of ReSched trained on small synthetic instances remain competitive with the best DANIEL configuration. This indicates that, with only a small amount of training data and a short training time (e.g., around 20 minutes for ReSched-PPO on SD1-10x5 with our hardware), modern DRL-based methods already reach a reasonably strong level on real-world scheduling benchmarks, highlighting their practical potential for real scheduling applications.

1263

1264

1265

1266

1267

1268

1269

1270

These new experiments show that our architecture works well with both REINFORCE and PPO: the PPO version converges faster and further improves in-distribution and out-of-distribution performance, while the REINFORCE version already remains competitive or better than DANIEL under matched budgets. **In particular, replacing REINFORCE with the stronger PPO algorithm further improves ReSched’s performance, demonstrating that our framework can directly benefit from stronger RL algorithms.** Overall, across all budgets and RL algorithms, ReSched consistently matches or outperforms DANIEL, indicating that the benefits come from our framework rather than from the large amount of training data.

1271

1272

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

1273

We used large language models (e.g., ChatGPT) as a general-purpose assistant for language polishing (grammar, wording, clarity) and for suggesting occasional non-substantive code snippets. LLMs were not used for problem formulation, algorithm/model design, experimental design or analysis, data generation, or drawing conclusions. All core code and technical content were implemented and verified by us. We reviewed and edited all LLM-assisted text and code, and take full responsibility for every part of the manuscript, including sections that benefited from LLM assistance.

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295