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Abstract

Attention-based Multiple Instance Learning (MIL) has become a prominent framework
for analysing whole-slide images (WSI). These models have been shown to achieve good
performance on classification tasks, while also offering an inherent proxy for interpretability
through attention weights. In this work, we first question the validity of using attention for
the interpretability of MIL models. Subsequently, we propose Counterfactual Intervention
in Attention for MIL (CIA-MIL), a causal extension of attention-based MIL that explic-
itly measures and optimizes the contribution of attention to slide-level predictions. Across
four histopathology classification benchmarks (BRCA, NSCLC, LUAD, Camelyonl6) and
two feature encoders (Resnet50, UNI), we investigate how the interpretability of atten-
tion relates to the representation space, and the downstream performance. We then show
that CIA-MIL achieves performance comparable to strong MIL baselines while providing a
more causally meaningful attention vector. Qualitative perturbation experiments show that
dropping the top-attended patches leads to a larger confidence degradation in CIA-MIL
compared to baseline ABMIL, highlighting the potential of causal supervision for reliable
and interpretable WSI-based prediction.

Keywords: Multiple Instance Learning, Attention, Interpretability, Whole Slide Images,
Digital Pathology, Causal Intervention.

1. Introduction

Multiple Instance Learning (MIL) is a weakly supervised learning framework designed for
scenarios in which data are organized into sets of instances, referred to as bags, while
supervision labels are only provided at the bag level (Dietterich et al., 1997; Maron and
Lozano-Pérez, 1997). MIL is a relevant framework in many domains where fine-grained
annotations are scarce or expensive, such as digital histopathology (Amores, 2013; Wang
et al., 2016; Diao et al., 2021; Campanella et al., 2019), where labels are typically provided
at the level of Whole Slide Images (WSIs), which can reach extremely large resolutions
(often as large as 100k pixels per side)(Lu et al., 2021b).

In the standard MIL assumption, a bag is labeled positive if at least one of its instances is
positive, and negative otherwise. While this assumption is appropriate in certain detection
tasks, it is often restrictive for real-world biomedical applications. In practice, slide-level
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labels usually arise from complex interactions between multiple tissue regions rather than
from a single discriminative patch. To address this limitation, numerous attention-based
MIL approaches have been proposed, enabling models to learn instance-level importance
directly from data (Ilse et al., 2018; Shao et al., 2021; Li et al., 2021). These methods
replace strategies such as max or mean pooling with learnable attention mechanisms that
assign relevance scores to each instance, referred to as attention.

Despite the remarkable success of attention-based MIL in digital pathology, important
questions remain regarding the reliability of attention as an interpretability tool. Attention
weights are often visualized as heatmaps and interpreted as indicators of model reasoning
(Lu et al., 2021a; Wagner et al., 2023). However, recent work on interpretability has shown
that attention may not reliably reflect the true importance of instances for the final predic-
tion (Hense et al., 2024; Zhang et al., 2022; Early et al., 2023; Javed et al., 2022). In some
cases, models can achieve similar predictions while relying on substantially different atten-
tion distributions, revealing a potential disparity between attention and decision-making.
This limitation is particularly critical in medical applications, where interpretability is not
merely a convenience but a prerequisite for trust, clinical adoption, and regulatory approval.

In this work, we investigate the reliability of raw attention scores as a proxy for inter-
pretability in MIL models. We study a broad family of attention-based MIL architectures
within a unified experimental framework and quantitatively and qualitatively report how
different design choices—such as attention type, multihead formulations, clustering strate-
gies, and entropy regularization affect the attention effect on predictions. In a second part,
we explore the use of causal counterfactual intervention to guide the learning of attention
toward representations that are more causally aligned with the model’s predictions. By
enforcing counterfactual consistency during training, our goal is to promote attention pat-
terns that reflect more accurately the underlying causal mechanisms. This introduces an
explicit trade-off between predictive performance and interpretability, which we characterize
empirically.

The main contributions of this work can be summarized as follows: (i) attention reli-
ability analysis, we perform an extensive evaluation of attention reliability across a wide
range of MIL models, including standard attention MIL and its variants such as clustering-
based MIL, multi-head attention MIL, and DSMIL. Our analysis reveals that the attention
byproduct of current state-of-the-art MILs does not fully align causally with downstream
prediction. (7i) novel counterfactual attention intervention framework (CIA-MIL), we pro-
pose, according to our knowledge, for the first time a novel counterfactual-guided attention
learning strategy designed to improve the causal alignment and stability of attention mech-
anisms in MIL models. (iii) analysis of the interplay between downstream performance and
attention interpretability, we conduct extensive experiments on real-world digital pathol-
ogy datasets, demonstrating the complex trade-offs between predictive performance and
interpretability of attention.

2. Related Work

Attention-Based MIL — Embedding-level MIL models operate directly in the instance
embedding space to compute a compact bag-level representation that is subsequently passed
to a classifier. In the standard attention-based MIL formulation (Ilse et al., 2018), the bag
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representation is expressed as a weighted sum of instance embeddings, where the attention
weights are learned functions of the instances themselves. Building upon this framework,
numerous variants have been proposed to improve representational capacity and perfor-
mance. TransMIL (Shao et al., 2021) introduces self-attention (Wagner et al., 2023; Xiong
et al., 2021), while CLAM (Lu et al., 2021b) integrates clustering-based attention to capture
multiple discriminative regions within a bag. DSMIL (Li et al., 2021) adopts a dual-stream
architecture to explicitly model instance-level and bag-level interactions. Other extensions
leverage multi-head attention and multi-branch aggregation strategies. More recent mod-
els aim to regularize attention, reducing over-reliance on a few highly activated instances.
For instance, MHIM-MIL (Tang et al., 2023) adopts a Siamese framework with masked
attention to mine hard-to-classify instances, while ACMIL (Zhang et al., 2024) introduces
multi-branch attention together with stochastic top-K instance masking to promote diver-
sity in discriminative patterns. To further improve learning under limited supervision, data
distillation and pseudo-bag generation strategies such as DTFD-MIL (Zhang et al., 2022)
have also been proposed.

Interpretability of MIL Models — In digital histopathology, attention-based MIL
models typically rely on attention scores to generate patch-level relevance maps that high-
light regions of interest. Despite their intuitive appeal, several studies have shown that raw
attention maps do not necessarily provide faithful explanations of model behavior (Hense
et al., 2024; Javed et al., 2022; Zhang et al., 2022). To address this limitation, alternative
explainability strategies have been proposed. DTFD (Zhang et al., 2022) reframes MIL as
an equivalent image classification problem and derives patch-level importance scores using
Grad-CAM (Selvaraju et al., 2017). Other post-hoc explainability strategies have also been
proposed (Adebayo et al., 2018; Kindermans et al., 2019; Pirovano et al., 2020; Wang et al.,
2019; Bach et al., 2015; Baehrens et al., 2010; Shrikumar et al., 2017; Montavon et al., 2019;
Hense et al., 2024), including perturbation-based approaches (Early et al., 2023), while fully
additive models explicitly decompose the bag-level prediction into a sum of instance contri-
butions (Javed et al., 2022). Despite these advances, many existing interpretability methods
suffer from high computational cost, limited scalability to large bags, or simplifying assump-
tions that neglect complex inter-instance dependencies. Developing MIL models that are
simultaneously accurate, scalable, and faithfully interpretable remains an open challenge.
Causal Inference in MIL — Recently, causality (Pearl and Mackenzie, 2018; Pearl
et al., 2016) has been introduced into the MIL framework to account for confounding fac-
tors that may compromise model training. Models such as CAMIL (Chen et al., 2024a) and
CATTMIL (Wu et al., 2024) formulate the bag-level representation as a mediator between
patch embeddings and the final prediction by applying a front-door adjustment (Pearl et al.,
2016). In contrast, (Lin et al., 2023) adopts a back-door adjustment (Pearl et al., 2016)
strategy via a two-stage training procedure to explicitly control for co-founders. These
approaches highlight the growing interest in causal reasoning within MIL pipelines, partic-
ularly for medical imaging applications, where biased signals affecting images might degrade
prediction reliability. In our work, instead of reasoning in the image space, we operate di-
rectly at the attention level. We climb the causality ladder higher than the adjustment level
and apply counterfactual intervention in attention.

Counterfactual Intervention for Attention Learning — Counterfactual analysis pro-
vides a principled framework to measure the causal influence of input features on model
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predictions. In computer vision, counterfactual attention learning has been introduced to
guide attention mechanisms through causal supervision rather than relying solely on con-
ventional likelihood maximization. Notably, (Rao et al., 2021) proposes a counterfactual
attention learning framework that explicitly maximizes the prediction difference between
factual and counterfactual attentions to encourage the discovery of causally effective visual
regions. While these ideas have demonstrated strong performance in fine-grained recogni-
tion and re-identification tasks, their integration into multiple instance learning for digital
pathology remains largely unexplored. Our work bridges this gap by formulating counter-
factual causal supervision directly at the MIL aggregation level.

3. Methods

3.1. Attention-Based Multiple Instance Learning

We adopt the attention-based MIL formulation of (Ilse et al., 2018). A bag X = {z;}Y,
consists of N instances, each mapped to a feature embedding by a shared frozen encoder:

Zi:f(.fi), ’izl,...,N. (1)

The instance embeddings are aggregated into a bag-level representation using a learnable
attention-weighted pooling, Z = Ziil a;Z; which is passed to a classifier to obtain the final
bag prediction Y = ¢(Z).

3.2. Counterfactual Attention Intervention

To explicitly model the causal contribution of attention to prediction, we model an attention-
based MIL framework through a structural causal model (SCM) graph (Pearl et al., 2016)
as shown in Fig.1, where X: WSI (bag), Y: bag label, A: attention distribution. X — A
indicates that attention is generated from X, A — Y indicates that attention leads to a bag
level prediction, and X — Y indicates that bag instances lead to a bag level prediction.
Let X = {z}}¥, denote the instance embeddings and A = {a;}}, the learned attention
distribution. The standard prediction is:

N
Y(AX)=¢ (Z am) = ¢(Z) (2)
=1

We introduce a counterfactual intervention in attention by cutting the path from X to A
and measuring the effect of this intervention on the prediction as shown in Fig.1(b).

N
Y(do(A = A),X) = (Z az) =Y (3)

i=1
where the do-operation do(+) forcibly assigns a specific non-informative value to A, referred
to as A, while keeping X fixed. A ~ « may be sampled as random or uniform attention.

This way, the attention effect is defined as:

Yettect = E 4o [V (A4, X) — Y (do(A = 4), X)] (4)
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Figure 1: Overview of CIA-MIL and its causal intervention module. (a) CIA-MIL:
Proposed model architecture. (b) Structural causal graph of the counterfactual
attention intervention.

In practice, according to the results in (Baldi and Sadowski, 2014), the expectation is
approximated by sampling a single counterfactual attention per bag, resulting in negligible
training overhead and no additional inference cost. To guide the learning of causally effective
attention, we add a cross-entropy loss between the effect caused by the counterfactual
intervention and the ground-truth bag label y. The final training objective is:

L=Lce(Y(A X),y) + ALcE(Yeffect, ¥) (5)

where ) is a hyperparameter, and it controls the influence of the counterfactual supervision.
The additional causal intervention loss term to the standard classification cross-entropy
loss guides the model to not only learn the classification task, but also to ensure attention
patterns that are effect causing for the model: a well-learned attention A should lead to a
correct prediction, while a random non-informative attention A should fail in leading to the
same level of prediction accuracy.

3.3. Attention-Based Perturbation Analysis

We assess the faithfulness of MIL attention as an interpretability proxy using a region per-
turbation strategy (Hense et al., 2024; Alber et al., 2019). Patches are ranked by decreasing

attention scores and partitioned into 100 disjoint subsets {r1,...,r100} of equal size. The
perturbed slide at step & < 100 is defined as:
100
X(k) = U ’)"Z" k = O, e ,99, (6)
i=k+1

The model’s prediction is evaluated at each perturbation step to obtain a perturbation
curve. For every slide X, we start first with prediction from the original bag with all
patches X(© = X and start removing subsequently at each following step k, subset 7,
to get the model’s prediction s(k) for the perturbed slide X(*). To evaluate the attention
influence on prediction, we calculate the Area Under the Perturbation Curve (AUPC). A
lower AUPC indicates a faster degradation of predictive confidence when highly attended
regions are removed, reflecting an attention mechanism valid for interpreting the model’s
decision.
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4. Experimental Setup

Datasets — We conduct our experiments on whole-slide images (WSIs) from multiple pub-
licly available datasets from TCGA (Tomczak et al., 2015): TCGA-NSCLC (Non—Small Cell
Lung Cancer) and TCGA-BRCA (Breast Invasive Carcinoma) for the binary subtyping task,
TCGA-LUAD (Lung Adenocarcinoma) for TP53 mutation prediction, Camelyonl6 (Be-
jnordi et al., 2017) for binary metastasis detection in breast lymph node.
Implementation Details — Slides were processed using the same approach as in (Lu
et al., 2021b) to obtain patches of size 256 x 256 at 20x magnification. We use pre-extracted
features with two different image encoders: (i) ResNet50 (He et al., 2016) pre-trained on
ImageNet (Deng et al., 2009) and (ii) UNI-V1 (Chen et al., 2024b) foundation model, to
test performance in both in and out of domain pre-training. Please note that any other
encoder could be integrated into our method. Experiments were conducted under five cross-
validation settings for TCGA-NSCLC, TCGA-BRCA, and TCGA-LUAD using a learning
rate of 0.0002. We used the originally published train-test split for Camelyonl6 in three
runs with a learning rate of 0.0002. All experiments were conducted using the Adam
optimizer (Kingma, 2014) with a maximum total of 150 epochs and an early stopping
criterion of 50 epochs.

5. Results and Discussion

We evaluate and challenge our method against standard ABMIL (Ilse et al., 2018) and
its variants, where additional modules are added to mitigate problems encountered during
training relative to attention, through clustering (CLAM-SB (Lu et al., 2021b)), multi-head
attention and attention masking (ACMIL (Zhang et al., 2024)), attention stage (AddMIL
(Javed et al., 2022)), hard instances mining in a 2-stage training framework (MHIM (Tang
et al., 2023)). As well as DSMIL (Li et al., 2021), where attention is calculated in a dual
stream manner, but the model still satisfies equations 1 and 2. We compare downstream
performance also against instance-based baselines, namely average and maximum pooling
strategies (MeanMIL/MaxMIL) that do not contain attention modules. When needed, and
if not explained differently, raw attention of models is used to assess their reliability. We
report performance metrics in terms of Area Under the Curve (AUC) and F1 score. For
Camelyon 16, for which we have access to fine-grained annotations at the level of patches,
we report the AUPRC, the area under the precision-recall curve for attention as a prediction
of instance labels, using both a sigmoid operator and a min-max normalisation per slide.

TCGA Benchmark — We evaluate all models on BRCA and NSCLC tumor subtyp-
ing and on the more challenging LUAD TP53 mutation prediction task (Table 1). Across
BRCA and NSCLC, most attention-based MIL models, particularly ABMIL-derived meth-
ods, achieve very high AUC, often exceeding 0.95 with in-domain foundation models such as
the UNI features. However, this strong predictive performance is accompanied by large vari-
ability in attention faithfulness. ABMIL-based models frequently exhibit elevated AUPC,
whereas DSMIL shows a more favorable performance-interpretability trade-off, although
with sensitivity to the feature encoder. In contrast, CIA-MIL consistently achieves among
the lowest AUPC while maintaining competitive or superior AUC across both feature ex-
tractors, reflecting an explicit and stable performance—interpretability balance. On LUAD,
where overall performance drops across all methods, CIA-MIL still achieves low AUPC with
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competitive AUC, indicating that counterfactual supervision remains effective even in low-
signal data. An important insight is that when attention-based MIL models already achieve
strong downstream performance, introducing the causal intervention primarily serves to
guide attention toward more interpretable and causally meaningful patterns. Conversely,
in settings where predictive performance is weaker, the intervention can also stabilize and
improve the training process itself, leading to more reliable attention and better overall
performance trade-off.

Table 1: TCGA Benchmark: Performance vs Attention Interpretability. Compar-
ison of classification performance (AUC 1) and attention faithfulness (AUPC J)
across three tasks (BRCA subtyping, NSCLC subtyping, LUAD TP53 mutation
prediction) and two feature extractors (ResNet50, UNI).

BRCA - ResNet50 BRCA - UNI NSCLC - ResNet50 NSCLC - UNI LUAD - ResNet50 LUAD - UNI

AUC (1) AUPC (]) AUC () AUPC () AUC (f) AUPC () AUC (1) AUPC(]) AUC(}) AUPC(]) AUC (1) AUPC ()
MeanMIL  89.043.8 N/A 93.242.4 N/A 91.1£3.0 N/A 96.941.3 N/A 66.946.5 N/A 71.556.3 N/A
MaxMIL  86.942.6 N/A  95.4+1.5  N/A 944416  N/A 97.541.0 N/A 61.4+9.2 N/A 76.045.4 N/A

ABMIL 89.242.6  73.3+25.3  95.3+1.7  70.74£26.5  93.4+1.7  57.0441.4 97.6+£1.0 63.3+40.4  68.2+5.6 49.9+18.9 T4.0+4.3  59.8+33.7
CLAM 89.4+1.8 7224243 945423  60.9+30.3  94.1£1.9  56.5437.2  97.9£0.8  70.9£28.8  65.5+46.2  55.9+£29.7  74.0+3.0  56.6+36.0
DSMIL 88.4+3.0  69.6£23.0 94.1+1.6 48.44+24.8 93.6+2.5 555 +29.2 97.4+1.1 23.74+28.2 67.8+6.3 51.9£14.5  66.9+4.7 46.6+£22.7
ACMIL 88.6+2.8  76.6+£26.3 944429  74.0+18.2  93.8+1.8  54.94+46.7 97.9£0.8  73.24£22.3  67.5+£5.0 50.8423.2 755474  59.9435.7
AddMIL 88.04+2.0 7834309  93.74£2.6  78.7£26.8  92.0£2.3  55.4+46.4  94.6+3.0  62.4442.2  63.4+3.8  54.2439.3  73.3£3.9  57.14£38.6
MHIM 90.0£1.9  74.7£24.8  942+1.1  71.3£28.1  94.8%1.5  57.8%18.1  97.9+0.9  75.2425.7  68.0+£3.1  52.0+12.6  73.8£3.7  57.0£35.9
CIA-MIL  90.1+2.8 61.24+16.6 94.5+1.2  56.74+25.2 91.6+2.4 49.4+21.2 96.5+1.6 51.5+23.1 69.1+5.1 52.3+11.2 77.5+2.5 55.64+27.0

BRCA - ResNet50 v BRCA - UNI NSCLC - ResNet50 NSCLC - UNI
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Figure 2: Attention-based perturbation analysis on the BRCA and NSCLC subtyping tasks.
The curves show the evolution of the target class probability as increasingly larger
fractions of highly attended patches are removed. Boxplots report statistics over
slides.

To further analyze the sensitivity of each model to attention-guided perturbations, Fig.2
presents the perturbation curves on BRCA and NSCLC. Models with causally faithful
attention exhibit a rapid degradation of prediction confidence when highly attended patches
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are removed, whereas models with diffuse attention remain comparatively insensitive. CIA-
MIL consistently shows steeper decay profiles, confirming that counterfactual supervision
effectively reshapes attention toward causally meaningful tissue regions for the model’s
prediction.

Camelyonl16 Benchmark — We evaluate models on Camelyonl6 with UNI features to
explicitly disentangle bag-level performance from instance-level interpretability. Table 2 re-
ports bag-level classification performance (AUC, F1) together with instance-level attention
interpretability (AUPC) and localization accuracy (AUPRC). AUPRC is computed either
by applying a sigmoid to raw patch attentions (Sig), or by min-max normalizing attentions
within each slide (MM). Comparing these two variants allows us to distinguish between the
global behavior of attention across all slides (Sig) and the relative spatial selectivity within
each slide (MM). At the bag level, nearly all attention-based MIL models achieve near-
saturated performance, with AUC values consistently above 98%. However, clear differences
emerge at the instance level. In particular, DSMIL shows an interesting instance-level be-
havior, with severely degraded AUPRC under the sigmoid setting, reflecting an attention
weighting of instances that tightly depend on the slide. In contrast, CIA-MIL achieves the
lowest AUPC while maintaining high AUPRC under both Sig and MM schemes, suggesting
that counterfactual intervention in attention yields attention that is simultaneously glob-
ally consistent, spatially selective, and causally aligned with outcome without compromising
slide-level performance.

Table 2: Camelyon16: Bag-Level Performance vs Instance-Level Interpretability.
Comparison of bag-level classification performance (AUC, F1) and instance-level
interpretability measured by AUPC and AUPRC. AUPRC (Sig) is computed by
applying a sigmoid to raw patch-level attentions, while AUPRC (MM) is obtained
by min-max normalizing attentions within each slide.

Bag Instance
AUC (1)  F1(t)  AUPC () AUPRC,,(1) AUPRCyu(1)

Meanmil  62.5 £4.8  46.7 + 9.6 N/A N/A N/A

MaxMIL  98.3 £ 0.4 942+ 1.9 N/A N/A N/A

ABMIL 98.7 + 0.3 95.5 + 2.2 64.8 + 45.3 93.2 £ 1.2 79.2 £ 5.6
CLAM 99.7 £ 0.3 976 £+ 2.1 65.6 + 44.9 94.4 + 0.3 92.4 + 0.6
DSMIL 989 +1.1 979+ 1.1 66.2 +43.7 23.9 £9.8 82.0 £ 3.6
ACMIL 99.4 + 0.5 96.9 + 2.7 65.5 + 45.2 95.4 + 0.5 913+ 1.6
AddMIL 98.2 + 1.4 95.0 + 3.4 65.2 £+ 45.0 93.4 + 1.2 82.6 £ 4.5
MHIM 982+ 1.1 94.2 £ 2.8 58.8 + 32.5 93.2 £ 0.5 87.9 £ 3.0
CIA-MIL  99.2 £ 0.5 96.3 £2.0 53.3 £ 18.6 929 + 1.5 82.4 £ 5.4

Qualitative Attention Analysis. Fig.3 provides a qualitative comparison of attention
maps on representative crops from a metastatic Camelyonl6 slide. The first row shows a
metastatic region (red annotations), followed by the corresponding ABMIL, ACMIL and
CIA-MIL attention overlays, while the second row displays a non-metastatic region. ABMIL
exhibits more diffuse attention and assigns non-negligible attention to non-metastatic tissue.
In contrast, ACMIL and CIA-MIL concentrate attention sharply within metastatic regions
and suppress responses in non-metastatic areas.

Why Still Use ResNet in the Era of Foundation Models? — Although foundation
models such as UNI (Chen et al., 2024b) provide in-domain representations, we include
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Figure 3: Qualitative comparison of attention maps on a Camelyon16 WSI. At-
tention is normalised with min-max slide within the slide for compared models:
ABMIL, ACMIL, and CIA-MIL.

ResNet50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as a feature extrac-
tor. In fact, evaluating both out-of-domain and in-domain features allows us to disentangle
the effect of representation learning from that of attention supervision. Also, the fact
that CIA-MIL exhibits consistent interpretability improvements across both ResNet50 and
UNI demonstrates that the proposed counterfactual intervention is not tied to a specific
representation space. Notably, while UNI generally yields higher absolute AUC values, at-
tention faithfulness as measured by AUPC does not automatically improve with stronger
foundation features. In some cases, certain configurations of MIL models can achieve the
same performance or even slightly degraded with foundation models compared to generic
representations, as in the example of DSMIL on the LUAD TP53 mutation prediction as re-
ported in Table 1. This further supports our central claim: improvements in representation
power alone do not guarantee causally meaningful attention, and explicit counterfactual
supervision of attention can help mitigate this issue.

6. Ablation Study

Random vs Uniform Counterfactual Intervention — We study the impact of the
counterfactual attention distribution used for intervention. Table 3 compares random and
uniform counterfactual attentions across BRCA and NSCLC. Both strategies lead to con-
sistent improvements in attention faithfulness compared to ABMIL, validating that the
proposed causal mechanism is not sensitive to a specific choice of counterfactual distribu-
tion. However, subtle differences emerge between the two variants. Random counterfactual
attention generally yields slightly lower AUPC, especially on NSCLC with UNI features,
indicating stronger selective pressure on attention. Uniform counterfactual attention, by
contrast, occasionally preserves marginally higher AUC at the cost of slightly degraded
AUPC. This suggests that random intervention introduces stronger stochastic perturba-
tions that better suppress spurious correlations, whereas uniform intervention acts as a
weaker regularizer.
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Table 3: Intervention Choice: Random vs Uniform Counterfactual Attention
Distribution. Comparison of CIA-MIL using random and uniform counterfac-
tual attentions across BRCA and NSCLC datasets with both ResNet50 and UNI
feature extractors.

BRCA - ResNet50 BRCA - UNI NSCLC - ResNet50 NSCLC - UNI
AUC (1) AUPC (]) AUC (1) AUPC (|) AUC (f) AUPC (]) AUC (1) AUPC ()

ABMIL (Ilse et al., 2018)  89.2+2.6 73.3£25.3  95.3+1.7 70.7£26.5 93.4+1.7 57.0+41.4 97.6+£1.0 63.3+40.4

CTA-MIL (Random) 90.142.8  61.2+16.6 945+1.2 56.74£25.2 916424 4944212  96.5+1.6 51.5£23.1

CIA-MIL (Uniform) 90.2£3.1 60.0£17.8 946420 6754239 9015424 48.9421.3 97.2+41.9  67.4428.9
Causal Effect Weighting: Performance- BRCA-ResNets) L Moo Resheto
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a standard attention-based MIL base- o \\ /7/_.735052 o A\ \/ ool
line without causal supervision, result- T ,‘\’_/— RS i;::-\ ,’/\ 735055
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indicating progressively more selective

and causally aligned attention. Im- Figure 4: Performance-interpretability — trade-off

portantly, AUC remains stable within controlled by the causal effect weighting
a narrow range, showing that the im- coefficient \.

provement in interpretability comes at
a moderate and controlled cost in pre-
dictive performance.

7. Conclusion

In this work, we questioned the reliability of attention as an interpretability proxy for atten-
tion MIL models, and presented CIA-MIL, a causal attention learning framework for MIL
that explicitly enforces the causal contribution of attention to model prediction through
counterfactual supervision. Through extensive experiments on tumor subtyping, mutation
prediction, and metastasis detection benchmarks, we demonstrated that high predictive
performance does not necessarily imply reliable interpretability via attention. CIA-MIL
consistently improves attention reliability while maintaining competitive predictive perfor-
mance across both out-of-domain and in-domain feature spaces. This study establishes
counterfactual causal intervention supervision of attention as a promising mechanism to
improve the reliability of attention in MIL, taking a step further towards deploying trust-
worthy and clinically actionable Al systems in digital pathology.
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Appendix A. Additional details for the WSI Datasets

Table 4 presents in more detail the description of the different datasets used in our study.
Details about the number of samples and classes are included, together with a small descrip-
tion of each of the digital pathology whole slide image data. More details can be identified

in the original papers.

Table 4: Overview of Whole-Slide Image (WSI) datasets used in this study. For
each cohort, we report the data source, clinical or diagnostic task, number of slides,
and the distribution of labels.

Cohort

Description

# Slides # Labels

TCGA (Tomczak et al., 2015)

BRCA

NSCLC

LUAD (TP53)

WSIs from TCGA-BRCA.
Used for histological sub-
type classification between
invasive ductal carcinoma
(IDC) and invasive lobular
carcinoma (ILC).

WSIs from TCGA-LUAD
and TCGA-LUSC. Used
for distinguishing between
lung adenocarcinoma
(LUAD) and lung squa-
mous cell carcinoma
(LUSC).

TCGA-LUAD dataset for
TP53 mutation prediction
directly from H&E WSIs.
Labels correspond to mu-
tation status (mutated vs
wild-type).

C: 779
o7 ILC: 198
LUAD: 478
956 LUSC: 478
o TP53WT: 199

TP53 Mut: 228

Camelyon 16 Challenge (Bejnordi et al., 2017)

Camelyonl6
(Train)

Camelyonl6
(Test)

Lymph node metastasis
detection dataset. Train-
ing subset of whole-slide
images (H&E) annotated
for the presence of tumor
metastasis.

Official test subset from
the Camelyonl6 challenge.

Normal: 159

270 Tumor: 111
Normal: 80
129 Tumor: 49

Appendix B. Implementation Details about Attention MIL

We provide additional details here on the attention mechanism used in Attention-Based
Multiple Instance Learning (Ilse et al., 2018) used in our work. A bag B = {z;}}; consists
of N instances, each of which is first transformed into a low-dimensional embedding:

zi:f(:ci), ’iIl,...
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These embeddings are aggregated using an attention operator to obtain a bag-level
representation:

N
Z = Z Qa;7;. (8)
=1

The bag prediction is then obtained by applying a classifier to the aggregated represen-
tation:

Y = (). 9)

We adopt a gated attention (GA) mechanism (Dauphin et al., 2017) to produce more
expressive attention scores. The unnormalized attention score for instance i is computed
as:

ui =w' (tanh(Viz;) © 0(Vaz;)), (10)
where
e Vi, V, € REXM gre learnable projection matrices,
e w € R” is a learnable attention vector,
e (O denotes element-wise multiplication,
e o(-) denotes the sigmoid nonlinearity.

The normalized attention value is obtained using a softmax over all instances:

S C) 11
b ep(w) )

Substituting Eq. 11 into Eq. 8, we obtain the gated attention aggregation:

—Z eXp _oxplw) (12)

= j 1 eXp( )
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