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Abstract

Integrated Assessment Models (IAMs) such as RICE have long provided a foun-
dation for studying the coupled dynamics of the global economy and climate sys-
tem. Traditionally, these models have been used in a forward-simulation mode,
with parameters hand-calibrated and dynamics treated as fixed. In this work,
we introduce RICE-N-JAX, a fully differentiable implementation of the multi-
region RICE-N model in JAX. Beyond significantly accelerating the training of
multi-agent reinforcement learning (MARL) agents, differentiability opens new
research directions, including automated calibration to historical data, recovery
of latent regional behavioral parameters (e.g., risk aversion and time preferences)
and sensitivity analysis of economic and technological assumptions. Moreover, it
allows us to treat policy design and international negotiation mechanisms as learn-
able parameters within a gradient-based optimization framework. We outline new
research opportunities that arise when an IAM becomes a differentiable environ-
ment and discuss implications for climate—economics modeling, machine learning
for climate policy and the fusion of data- and theory-driven approaches.

1 Introduction

The impacts of climate change are already evident: ecosystems are shifting and extreme weather
events are intensifying, threatening livelihoods and economic stability and underscoring the urgent
need for action [Portner et al., 2022].

Climate change is a shared global challenge, yet mitigation entails trade-offs. Investments in low-
carbon technologies and systemic transformation can constrain short-term growth and costs are
unevenly distributed: wealthier nations can invest more readily, while developing countries must
balance climate goals with basic development needs. This imbalance reinforces a collective-action
dilemma, where self-interest threatens global progress [Gardiner, 2001}, Erickson et al., 2015].

Integrated assessment models (IAMs) quantify these climate—economic trade-offs by linking COq
emissions, temperatures and growth dynamics. The pioneering Dynamic Integrated model of Cli-
mate and Economy (DICE) captures global interactions among population, technology, emissions
and damages within a single economy [Nordhaus, [2007|]. Its regional extension, the Regional In-
tegrated model of Climate and Economy (RICE), disaggregates these processes across multiple re-
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gions [Nordhaus and Yang, |1996] and has been extended to include tariffs and trade [Nordhaus,
2015} |Lessmann et al., 2009]].

Traditional IAMs such as DICE and RICE struggle to capture the strategic complexity of inter-
national climate negotiations. Their analytic formulations assume fixed policies or Nash equilib-
ria [[Nordhaus and Yang, [1996], making it difficult to represent coalition formation, commitment
and adaptive strategies. They also lack mechanisms for evolving negotiation protocols, enforcement
or the emergence of cooperation without central authority. As model fidelity increases, the high
dimensionality of these multi-agent systems renders analytic solutions intractable [Pindyckl |2013|
Farmer et al., 2015| |Gazzotti, 2022].

To address these limitations, Zhang et al. introduced RICE-N, which augments RICE with multi-
agent reinforcement learning (MARL) to endogenize strategic interaction [Zhang et al.| [2025].
Agents learn behaviors through feedback and negotiation, forming trade and climate agreements
dynamically. However, training these agents is computationally intensive, hindering large-scale
sensitivity analysis and the exploration of richer negotiation protocols.

We therefore developed a complete reimplementation of RICE-N in JAX [Bradbury et al., 2018]].
JAX provides hardware acceleration via XLLA compilation and automatic vectorization, yielding
substantial speedups that enable experiments previously infeasible. Training times are reduced by
orders of magnitude, allowing population-based training, large-scale hyperparameter optimization
and high-throughput policy evaluation.

More fundamentally, the JAX implementation introduces full differentiability of the cli-
mate—economic simulation. Every component—from climate dynamics and production to trade
and negotiation—is differentiable with respect to parameters, initial conditions and policy choices.
This enables gradient-based sensitivity analysis, differentiable policy optimization and exact com-
putation of long-term climate derivatives with respect to early interventions. Beyond speed, dif-
ferentiability unlocks entirely new research directions, outlined in Section [3| and demonstrated in
Section 4]

2 Differentiable Climate-Economic Modeling with RICE-N-JAX

We present a high-performance implementation of RICE-N [Zhang et al., |2025], re-engineered en-
tirely within the JAX ecosystem [Bradbury et al.l 2018]]. This re-implementation enables significant
performance gains through JAX function transformations, such as JIT and vmap, for seamless vec-
torized execution on hardware accelerators like GPUs. This is particularly noteworthy when training
RL agents fully end-to-end on the GPU [Lu et al., [2022]. Additionally, our new version allows us
to easily differentiate through the entire economic simulation by simply decorating the environment
step function with @jax.grad.

RICE-N-JAX is built to closely replicate the original RICE-N codebase and therefore retains the
original modular and extendable design. However, the new codebase trains agents in minutes on
typical office hardware, as opposed to hours in data centers. This enables much more comprehensive
experimentation across sources of variations (e.g. seeds), as well as hyperparameters and design
choices. Additionally, by retaining the original modularity and improving the performance, RICE-
N-JAX enables further exploration of different and more complex climate-economic scenarios.

Our open-source code E] comes equipped with the standard scenarios previously used in RICE-N.
This facilitates replicating the original results and serves as an example for future extensions. More-
over, we provide notebook examples for data visualization and for exploring the differentiability of
the simulation, including the code used in Section E}

3 Research Directions

Automated calibration [AMs traditionally rely on manual or heuristic parameter tuning (e.g., ge-
netic algorithms, particle swarm optimization) to match historical data—an expensive, expert-driven
and often non-reproducible process [[Pindyckl2017]. With a fully differentiable implementation, cal-
ibration becomes a scalable gradient-based optimization problem. Differentiable IAMs can jointly
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calibrate hundreds of parameters, far beyond the scope of non-gradient methods [Dyer et al., 2023
Kotthotf and Hamacher] 2022]]. Similar approaches in hydrology and land modeling have yielded
greater physical coherence and massive computational gains [Tsai et al.| 2021} [Fang et al.l [2024].
Using multi-region input—output (MRIO) data, we can systematically calibrate trade preferences,
production levels, mitigation efficiency and emissions histories across regions and time.

Sensitivity analysis Automatic differentiation (AD) enables direct computation of gradients, Ja-
cobians and Hessians of outcomes (e.g., welfare, emissions, temperature) with respect to model
parameters, states or policies. This provides fine-grained insights into which assumptions drive re-
sults, complementing costly perturbation-based analyses that scale poorly with dimensionality [[Kim
et al.| [2000]. It also supports systematic investigation of key uncertainties, such as the dominance of
economic-growth parameters in IAM projections [Nordhaus, 2017].

Uncertainty quantification Differentiability also enables efficient probabilistic calibration and un-
certainty quantification. Combining AD with methods such as Laplace approximations, variational
inference or Hamiltonian Monte Carlo [[Betancourt, 2018} |Qu et al., 2024, |Weber et al., [2025]] yields
full posterior distributions rather than point estimates [Gelbrecht et al., [2023]]. These uncertainties
can be propagated through rollouts or incorporated into RL training [Moerland et al.,|2022], offering
a principled approach to generate climate—economic futures and probabilities for policy analysis.

Inverse modeling Differentiability enables inverse modeling—inferring latent regional behavioral
parameters (e.g., risk aversion, time preferences, mitigation bias) from observed trajectories. Similar
to geoscientific inversion [Shen et al.} [2023]], this approach can reveal structural inequalities in trade
and development. For example, MRIO data can uncover unequal exchange coefficients that capture
export undercompensation in embodied resources and labor [Hickel et al., 2022]. By perturbing the
inferred coefficients, we can explore counterfactual developmental trajectories and illustrate novel
climate-economic scenarios.

Differentiable mechanism design Parameterizing negotiation protocols within the model allows
gradient-based optimization of cooperative mechanisms [Conitzer and Sandholm} 2014, Bichler and
Parkes|, [2025]]. Tariff levels, membership rules or enforcement penalties in climate clubs can be
treated as learnable parameters, guiding designs that maximize long-term welfare or cooperation.
This creates a pathway for using ML methods to the design of international governance structures.

Joint agent—environment training In MARL, differentiability enables co-adaptation: simulta-
neously learning agent policies and adapting environment parameters [Padakandla, 2021]]. This
bi-level optimization reveals how alternative economic assumptions or climate responses co-evolve
with strategy learning, identifying structural conditions that promote stable cooperation and align-
ment between self-interest and global welfare.

Hybrid IAMs Differentiable IAMs can be combined with data-driven components to form hybrid
models that bridge process-based theory and machine learning [Reichstein et al., [2019]]. Similar
approaches are transforming Earth System Models, where neural components complement physical
representations of unresolved processes [Beucler, [2025]]. In climate—economic modeling, analytical
modules such as production, damages or abatement can be augmented with neural surrogates trained
on empirical or high-resolution simulation data, capturing socio-economic dynamics difficult to
formalize analytically. Embedded within frameworks like RICE-N, these modules retain end-to-
end differentiability while enhancing realism and flexibility. Universal Differential Equation (UDE)
formulations [Rackauckas et al.| 2021]] provide a natural foundation, enabling joint optimization
of physical and neural components. The result is a new class of [AMs that remain empirically
grounded, theoretically coherent and interpretable for policy.

4 Proof of Concept

As a proof of concept, we perform an end-to-end calibration of the damage function, a key IAM
component linking temperature increases to economic losses. It has long been criticized as arbitrary
or poorly justified [Pindyckl 2017 |Drupp and Hinsel, 2021]. We adopt a functional form from
recent meta-analyses [Howard and Sterner, 2017, |[Hénsel et al., 2020]:
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where the true parameter a = 0.7438 serves as the calibration target.



Training Data To generate training data, we fixed a to its target value and rolled out the environment
under static agent policies (no mitigation, savings rate = 0.25). The aggregate gross output across
all regions—directly affected by climate damages—served as the calibration target, though other
observables such as temperature or regional output could also be used.

Calibration of the Damage Function Starting from ¢ = 0 (no damages), we optimized a using
Adam for 400 iterations in the differentiable environment. As shown in Figure [Ta] simulated gross
output initially deviated from the ground truth but converged rapidly. The estimated a = 0.7413
closely matches the target, showing that differentiable calibration efficiently recovers structural pa-
rameters.
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Figure 1: Combined visualization of calibration results: (a) Gross output trajectories over time
before and after calibration. (b) Laplace-approximated posterior for the damage parameter a. (c)
Histogram of outputs over stochastic rollouts based on the uncertainty around the damage parameter.

Uncertainty Estimation Rather than scenario-based sensitivity tests, we leverage differentiability
to compute the Hessian of the loss with respect to a, yielding a Laplace-approximated posterior
variance. Figure [Ib] shows the Gaussian approximation centered near the estimate, with the true
value within the 95% confidence interval.

Stochastic Rollout Using this inferred uncertainty, we ran Monte Carlo rollouts to quantify how un-
certainty in a propagates to economic outcomes. The JAX implementation enables efficient stochas-
tic inference even in high-dimensional settings, as illustrated by the output distribution in Figure

5 Conclusion

Next Steps Future work will extend this demonstration beyond a single parameter by using empiri-
cal or scenario-based datasets (e.g., GDP or emissions from SSP or NGFS) as ground truth for multi-
parameter calibration. The differentiable framework also enables non-parametric damage functions,
where neural or spline-based surrogates famg(7'; #) are fitted directly to data, relaxing quadratic as-
sumptions while preserving interpretability through smoothness and monotonicity constraints. This
evolution moves from estimating scalar coefficients to learning functional relationships, supporting
data-informed and flexible damage formulations in next-generation IAMs.

Summary This proof of concept shows how differentiability transforms IAM calibration from
manual tuning into systematic, data-driven optimization. RICE-N-JAX can efficiently reproduce
established results while serving as a foundation for hybrid, empirically grounded climate—economic
modeling.
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Figure 2: State attributes throughout an episode averaged over a 1000 rollouts with the shaded
area representing standard deviation. To obtain these results, we trained all agents 100 times in
a negotiation disabled setting for 1 million timesteps. After each training run we performed 10
rollouts.



	Introduction
	Differentiable Climate-Economic Modeling with RICE-N-JAX
	Research Directions
	Proof of Concept
	Conclusion
	Appendix

