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Abstract
Optimizing machine learning models often requires careful tuning of parameters, especially the
learning rate. Traditional methods involve exhaustive searches or adopting pre-established rates,
both with drawbacks. The former is computationally intensive, a concern amplified by the trend to-
ward larger models like large language models (LLM). The latter risks suboptimal model training.
Consequently, there is growing research on adaptive and parameter-free approaches to reduce re-
liance on manual step size tuning. While adaptive gradient methods like AdaGrad, RMSProp, and
Adam aim to adjust learning rates dynamically, they still rely on learning rate parameters dependent
on problem-specific characteristics. Our work explores the interplay between step size and gradi-
ent dissimilarity, introducing a “diversity-adjusted adaptive stepsize” that adapts to different levers
of dissimilarity in sampled gradients within the SGD algorithm. We also investigate approximate
algorithms to compute this step size efficiently while maintaining performance.

1. Introduction

Optimizing machine learning models often requires careful selection of optimization parameters,
with the learning rate being a critical yet challenging parameter to tune. Conventional practices
involve exhaustive searches or pre-established learning rates from prior work, both of which have
their own challenges and issues. The first approach demands a lot of computation power. Consid-
ering the increasing trend towards employing larger models, such as large language models (LLM),
this approach becomes even less feasible. The latter approach increases the risk of training a subop-
timal model. Hence, there has been an increasing focus on research on adaptive and parameter-free
methods to reduce the reliance on fine-tuning step sizes or eliminate this requirement completely.

Adaptive gradient methods, like Adagrad [4], RMSProp [10], and Adam [7], can address this
challenge by dynamically adjusting the learning rate based on problem-specific characteristics.
Nonetheless, these methods still maintain a learning rate parameter, the ideal value of which de-
pends on problem-specific properties that are often challenging to discover. While these methods
have proven to enhance optimizer performance in modern problems like training deep neural net-
works, each method has its own limitations. Adagrad is effective in sparse settings but struggles
in dense and nonconvex scenarios due to rapid learning rate decay with dense gradients. Methods
like RMSProp, Adam, and AdaDelta [14] address this by using exponential moving averages of
recent squared gradients to adaptively adjust the learning rate, reducing reliance on past gradients.
Exponential moving average (EMA)-based adaptive methods like Adam and RMSProp are widely
used in deep learning but raise concerns about convergence and generalization. Research has shown
that EMA-based methods may not converge to the optimal solution in simple convex settings with
a constant minibatch size, as their effective learning rate can increase rapidly [15].
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The findings from these studies show the importance of approaching adaptive methods with
a new perspective. Consequently, our focus has shifted towards understanding the relationship
between step size and the inherent gradient dissimilarity found in the problem. We employ the
“diversity” measure proposed in [13] to quantify this dissimilarity, which naturally emerges in our
theoretical analysis of the optimal step size. We will show that our proposed step size is optimal for
smooth functions.

We propose a “diversity-adjusted adaptive step size”. It can automatically adjust to batch sizes
and only needs to be provided with an approximation of the L constant for L-smooth functions.
Our proposed method can adapt to varying batch sizes without requiring manual parameter tuning,
simplifying the training process of machine learning models. Recognizing that computing the exact
value of our proposed step size can be computationally demanding, we introduce algorithms for
approximating this value while preserving performance comparable to the exact value.

2. Related Works

In optimization techniques, many methods have been developed to address the challenges of setting
appropriate parameters and achieving efficient convergence. This section provides an overview of
relevant works.

Polyak’s step size [5] is a theoretically grounded adaptive method that provides a universal
solution when the optimal function value is known. An adaptive re-estimation procedure can recover
the optimal convergence rate even when this value is unavailable. Polyak stepsize with decreasing
stepsizes can recover the convergence rate of gradient descent in the deterministic setting, only if
the step size is initialized properly.

The AdaGrad family [4, 12, 14] of optimization methods, including Adam [7], has been widely
employed in a wide range of machine-learning applications. These methods dynamically adjust the
learning rate based on problem-specific characteristics, making them one the most popular methods
for training neural networks in practice. However, it is important to note that these AdaGrad-style
algorithms still rely on tuning the stepsize, preventing them from being fully parameter-free.

Yin et al. [13] delve into the connection between batch size and gradient dissimilarity, introduc-
ing a novel metric called “diversity” to measure gradient dissimilarity. It is shown that to prevent
saturation in minibatch Stochastic Gradient Descent (SGD), the batch size should be proportional
to diversity. This is similar to the stepsize we derive in this work.

Schaul et al. [11] proposed adaptive step size, which is claimed to be the optimum step size
for optimizing quadratic functions with SGD. This step size considers the present variation in data
samples in addition to the curvature of the target function, and in this regard, it is similar to our
proposed method. Unfortunately, all of the theoretical analysis of this paper is based on a strong
assumption. Authors in this work assume that the function can be approximated to a quadratic
function. Therefore, this work’s proposed theories and convergence proofs are limited to quadratic
functions. In contrast, our proposed theorems extend beyond quadratic functions and apply to a
broader range of functions, including smooth and strongly convex functions. The authors also pro-
posed an approximate algorithm for relaxing this constraint on the target function. This approximate
algorithm simply uses an exponential moving average to estimate the first and second moments of
the gradient.

Ivgi et al. [6] proposed an adaptive step size called DoG, incorporating a distance term with a
cumulative sum over the past gradients. In contrast to the AdaGrad family of optimization methods,
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their proposed method is fully parameter-free. However, this method uses cumulative sum over the
past gradients, which can be problematic. It often leads to a rapid decay in the learning rate when
gradients are dense, which is often the case in many machine-learning applications. This kind of
cumulative summing also can be problematic in non-stationary cases.

3. Proposed Methods

This section introduces our adaptive step size for Stochastic Gradient Descent (SGD) and provides
insights into its derivation.
Problem Setting. Our goal is to minimize a loss function f : Rd → R, where f is defined as:

arg min
x∈Rd

[f(x) := Eξ[f(x, ξ)]] .

We assume that f is lower bounded by a finite value f⋆. Stochastic Gradient Descent (SGD) is the
most commonly used method for approximating the solution of a stated problem. The SGD update
rule is defined as:

xt+1 = xt − γt∇f(xt, ξt) ,

where ξt denotes the randomness (e.g. data sample or mini-batch) selected uniformly at random at
iteration t.
Stepsize Derivation. When we assume that the objective function f is L-smooth, it holds

Eξt f(xt+1)− f(xt) ≤ −γt∥∇f(xt)∥2 +
L

2
γ2t Eξt

[
∥∇f(xt, ξt)∥2

]
. (1)

By minimizing the right-hand side of Equation (1), we can derive the optimal step size that maxi-
mizes the reduction in function value at each iteration:

γ⋆t = argmin
γt

{
−γt∥∇f(xt)∥2 +

L

2
γ2t Eξt

[
∥∇f(xt, ξt)∥2

]}
=
∥Eξt∇f(xt, ξt)∥2

LEξt∥∇f(xt, ξt)∥2
(2)

This leads us to propose our adaptive step size, defined as:

γ⋆t =
1

L
· ∥∇f(xt)∥2

∥∇f(xt)∥2 + Eξ∥∇f(xt)−∇f(xt, ξt)∥2
(3)

By defining the diversity measure in the following way :

Dt =
Eξt∥∇f(xt, ξt)∥2

∥Eξt∇f(xt, ξt)∥2
(4)

we can establish a connection between this measure and our proposed step size:

γ⋆t =
1

LDt
(5)

Discussion. Note that the proposed stepsize γ⋆t depends on the unknown parameters ∥∇f(xt)∥2,
Eξ∥∇f(xt)−∇f(xt, ξt)∥2 andL. Computing the gradient and the variance exactly in each iteration
would not be efficient, as this would amount to compute a full-batch gradient on all the data (except
for some toy problems). Therefore, the stepsize γ⋆t in (3) should be viewed as an idealized step
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size, that can offer valuable insights into a novel approach to developing adaptive step sizes. To
bridge the gap between theory and practice, we discuss methods to estimate approximations of these
parameters, and design variants of the exact method to make it suitable for practical applications
in Section C. Surprisingly, we observe that γ⋆t can be approximated with good precision with an
acceptable computational cost. For brevity, we will discuss the main properties of the ideal stepsize
γ⋆t in the main text.

These results show that the critical factor for determining the stepsize is the gradient variance
scaled by the full gradient norm. Additionally, it implies that as the noise variance increases, the op-
timization algorithm should adopt a more conservative approach, taking smaller steps. Conversely,
when the noise variance is small in comparison to the full gradient norm, the optimizer can act
more confidently and pursue more aggressive steps. Another benefit of the proposed step size is its
capability to adapt to different batch sizes automatically, without requiring any manual tuning.

Equation (3) bears similarities to previous research in this field. Specifically, for optimizing
quadratic functions with diagonal and similar Hessian matrices, our step size simplifies to the adap-
tive step size proposed in [11]. This indicates that the method presented in [11] can be considered a
special case of our adaptive step size. Our proposed approach also shares similarities with the work
introduced in [13]. They advocate that the optimal batch size for running the SGD algorithm should
be proportional to diversity, suggesting that gradient noise variance should be scaled inversely with
diversity. Our adaptive step size also leverages the diversity measure to regulate gradient noise
variance. For a more detailed exploration of these connections please refer to Appendix B.

4. Convergence Rate

Theorem 1 Let f be an L-smooth function (8) with x⋆ being its minimizer, and let assumption (10)
hold. If the proposed step size in equation (3) is chosen, then the iterates generated by Stochastic
Gradient Descent (SGD) satisfy:

1

T

T−1∑
t=0

E ∥∇f(xt)∥2 ≤
2L(f(x0)− f⋆)√

T
+

σ2√
T
. (6)

Theorem 2 Suppose f is an L-smooth (8) and µ-strongly convex (9) function with x⋆ being its
minimizer, and let assumption (10) hold. If we choose the proposed step size in equation (3), then
the iterates generated by Stochastic Gradient Descent (SGD) satisfy:

E
[
∥xT − x⋆∥2

]
≤ 2L

µ
·
max{σ2

µ2 , ∥x0 − x⋆∥2}
T

. (7)

The adaptive step size we have introduced is specifically designed for non-convex and smooth
functions. Consequently, while it provides acceptable convergence rates for such functions, it may
not yield the best possible rate for strongly convex functions. However, it is worth noting that
variations of our proposed step size could potentially offer a solution for strongly convex functions.
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Figure 1: Convergence of the average iterates of
DSGD vs. constant stepsize SGD. The average
iterate of constant stepsize SGD only converges
to a neighborhood of the solution.
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Figure 2: Comparing DSGD with Adam, vanilla
SGD, and DoG on LeNet with the CIFAR-10
dataset. Loss vs. number of iterations.

Figure 3: This figure shows how our proposed adaptive step size adapts to different batch sizes automatically.
The left figure illustrates stepsize vs. iterations, while the right panel provides the same plot with the initial
100 iterates excluded for clarity.

5. Experiments

For calculating the diversity measure in both of the experiments in Sections 5.2 and 5.3 without
having to compute full batch gradients, we employed an approximation algorithm outlined in Algo-
rithm 1 (termed DSGD), see Appendix C.

5.1. Convergence of DSGD

Figure 1 compares our proposed adaptive step size (DSGD) against constant stepsize SGD. We plot
the average of the gradient norms (from the first iteration to the iteration t). While SGD fails to
converge, DSGD demonstrates convergence. For this experiment, a linear classifier was trained on
a small portion of the MNIST [3] dataset. Zero-mean Gaussian noise with a variance of 0.5 was
added to all of the data points. The noise was added to give us control over the stochastic gradient
noise in the problem.

5.2. Comparing Approximate DSGD with Other Commonly Used Methods

In Figure 2, we conducted a performance comparison between our proposed method and other
well-known optimization algorithms. Here we trained a LeNet deep neural network from scratch.
The objective of this training was image classification using the CIFAR-10 dataset [8]. It is worth
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noting that we fine-tuned hyperparameters for both the Adam and SGD algorithms. For the fine-
tuning of the hyperparameters, The fine-tuning process involved testing ten different step sizes with
logarithmic spacing. Furthermore, in this experiment, a hash table with a length of 100 (C = 100)
was employed, and the exact evaluation period was configured to be 2000 (K = 2000).

5.3. DSGD Adaptes to Different Batch Sizes

One notable advantage of our proposed method is its ability to adapt to different batch sizes auto-
matically. Figure 3 illustrates how our adaptive step size responds to changes in batch sizes when
optimizing the same problem. For this experiment, we optimized the weights of a linear regression
model using our proposed adaptive step size for the SGD algorithm. The model is optimized to fit
the YearPredictionMSD [1] data set.

6. Conclusion

In this paper, we introduced an adaptive step size aimed at maximizing the decrease in function
value at each iteration. This adaptive step size leverages the diversity measure to adapt according to
varying levels of gradient noise. We provided a convergence proof for both smooth and non-convex
functions. Additionally, we presented approximation methods to make our approach applicable in
practical scenarios. While our method ensures convergence for strongly convex functions as well,
it does not achieve the optimal convergence rate known for this class of functions. This observation
could inspire future research in this direction.
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Appendix A. Appendix

Assumption 1 (L-smooth) The function f : Rd → R is L-smooth if

f(x)− f(y) +∇f(y)T (x− y) ≥ 1

2L
∥∇f(x)−∇f(y)∥2 , x,y ∈ Rd (8)

Assumption 2 (µ -convex) The function f : Rd → R is µ-strongly convex if

f(x)− f(y)−∇f(y)T (x− y) ≥ µ

2
∥x− y∥2 , x,y ∈ Rd (9)

Assumption 3 The function f(x, ξ) has a bounded gradient variance if

Eξt ∥∇f(xt)−∇f(xt, ξt)∥ ≤ σ2 (10)

Proof [Proof of Theorem 1]
From the quadratic upper bound, we know

E f(xt+1) ≤ f(xt)−
∥∇f(xt)∥2

2LEξ ∥∇f(xt, ξ)∥2
∥∇f(xt)∥2

≤ min
γ

[
f(xt)− γ ∥∇f(xt)∥2 +

γ2L

2
Eξ ∥∇f(xt, ξ)∥2

]
≤ f(xt)− γ ∥∇f(xt)∥2 +

γ2L

2
Eξ ∥∇f(xt, ξ)∥2

≤ f(xt) + (
L

2
γ2 − γ) ∥∇f(xt)∥2 +

γ2L

2
σ2

7



DIVERSITY-ADJUSTED ADAPTIVE STEP SIZE

After taking an expectation and sum on both sides of the inequality, and setting the step size to
γ = 1

L
√
T

we have

γ(1− L

2
γ)

T−1∑
t=0

E ∥∇f(xt)∥2 ≤ E [f(x0)− f(xT )] +
γ2LT

2
σ2

1

T

T−1∑
t=0

E ∥∇f(xt)∥2 ≤ 2
E [f(x0)− f(xT )]

Tγ
+ γLσ2

≤ 2
Lf(x0)√

T
+

σ2√
T

Lemma 3 Assume a transformation ψ is defined as:

ψβ,r(z) =
β + rz

β + z
z (11)

for any α > 0 , r ∈ [0, 1) , b > 0 and c = 1−r
β+ r

b
; then

ψβ,r

(
1

ck + b

)
≤ 1

c(k + 1) + b
. (12)

Proof (This proof idea is from [9]). Consider x = 1
y . Then, define S as the multiplicative inverse

of ψβ,r :

ψβ,r(x) = ψβ,r

(
1

y

)
=

1

y

βy + r

βy + 1
:=

1

S(y)
.

Next, we consider the sequence ak := ck + b. We start by expanding the difference:

S (ak)− ak+1 = ak
βak + 1

βak + r
− (ak + c)

=
ak(1− r − cβ)− cr

βak + r

=
kc(1− r − cβ) + (b(1− r − cβ)− cr)

βck + (βb+ r)
.

This difference is positive if both the denominator and numerator are positive for k ≥ 0. The
denominator’s positivity follows from b, c, r, β ≥ 0. The numerator is positive for all k ≥ 0
provided

1− r − cβ ≥ 0,

since the choice of c guarantees b(1 − r − cβ) − cr = 0. In fact, the positivity of this expression
also holds for our choice of c.

Hence, S (ak)− ak+1 ≥ 0. Then, using (10),

ψβ,r

(
1

ak

)
=

1

S (ak)
≤ 1

ak+1
=

1

c(k + 1) + b
,
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and the lemma follows.

Lemma 4 We have the following lower bound on the step size,

γt =
1

L
· ∥∇f(xt)∥2

∥∇f(xt)∥2 + Eξ∥∇f(xt)−∇f(xt, ξt)∥2
≥ 1

L
· 1

1 + σ2

µ2 (∥xt − x⋆∥2)−1
(13)

Proof

γt =
1

L
· ∥∇f(xt)∥2

∥∇f(xt)∥2 + Eξ∥∇f(xt)−∇f(xt, ξt)∥2
(10)
≥ 1

L
· ∥∇f(xt)∥2

∥∇f(xt)∥2 + σ2

=
1

L
· 1

1 + σ2

∥∇f(xt)∥2

(9)
≥ 1

L
· 1

1 + σ2

µ2 (∥xt − x⋆∥2)−1

Proof [Proof of Theorem 2] Here we prove the theorem by using induction. Let’s assume:

E ∥xt − x⋆∥2 ≤ 1

αt+ (∥x0 − x⋆∥2)−1
(14)

where
α =

µ
Lσ2

µ2 + (L− µ) ∥x0 − x⋆∥2
(15)
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Eξt ∥xt+1 − x⋆∥2 = ∥xt − x⋆∥2 + Eξt

[
∇f(xt, ξt)

T (xt − x⋆)
]
+ γ2t Eξt ∥∇f(xt, ξt)∥2

(9)
≤ (1− µγt) ∥xt − x⋆∥2 − 2γt(f(xt)− f(x⋆)) + γ2t Eξt ∥∇f(xt, ξt)∥2

(3)
≤ (1− µγt) ∥xt − x⋆∥2 + γt

(
−2(f(xt)− f(x⋆)) +

1

L
∥∇f(xt)∥2

)
(8)
≤ (1− µγt) ∥xt − x⋆∥2 + γt

(
−2( 1

2L
∥∇f(xt)∥2) +

1

L
∥∇f(xt)∥2

)
= (1− µγt) ∥xt − x⋆∥2

(13)
≤ (1− µ

L
· 1

1 + σ2

µ2∥xt−x⋆∥2
) ∥xt − x⋆∥2

= (
1 + σ2

µ2∥xt−x⋆∥2 −
µ
L

1 + σ2

µ2∥xt−x⋆∥2
) ∥xt − x⋆∥2

=
(1− µ

L) ∥xt − x⋆∥2 + σ2

µ2

∥xt − x⋆∥2 + σ2

µ2

∥xt − x⋆∥2

(11)
= ψσ2

µ2
,(1− µ

L
)

(
∥xt − x⋆∥2

)
(14)
≤ ψσ2

µ2
,(1− µ

L
)

(
1

αt+ (∥x0 − x⋆∥2)−1

)
(according to monotonicity of ψ)

(12)
≤ 1

α(t+ 1) + (∥x0 − x⋆∥2)−1

which concludes the induction.

Appendix B. Comparison to related works

Equation (3) bears similarities to some of the previously discussed related works in this research
domain. For instance, for one-dimensional quadratic functions with identical Hessians (h) but dif-
ferent argminx fi(x) := x⋆i , equation (3) simplifies to:

1

h
· ∥xt − x⋆∥2

∥xt − x⋆∥2 + σ2

Here, σ2 represents the variance of x⋆i . For multi-dimensional quadratic functions with identical
diagonal Hessian matrices (H) but different argminx fi(x) := x⋆

i , we define Σ as the covariance
of x⋆

i . Assuming Σ is diagonal, the equation (3) can be expressed as:

1

∥H∥
· ∥H(xt − x⋆)∥2

∥H(xt − x⋆)∥2 + Ej

∥∥∥H(x⋆
j − x⋆)

∥∥∥2 =
1

∥H∥
·

∑n−1
i=0 h

2
i (x

(i)
t − (x⋆)(i))2∑n−1

i=0 h
2
i (x

(i)
t − (x⋆)(i))2 +

∑n−1
i=0 h

2
iσ

2
i
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Here, we define hi = Hi,i and σ2i = Σi,i. Notably, all of these results align with the proposed
findings in [11]. Therefore, it can be asserted that their proposed adaptive step size is a special case
of our proposed step size.

In comparison to the work proposed in [13], there are notable similarities. To represent the
Diversity of gradient norm at xt, we will use Dt. The authors in [13] suggest that the optimal batch
size for running the SGD algorithm should be proportional to diversity. In other words, they propose
a method that scales Eξ∥∇f(xt) −∇f(xt, ξt)∥2 with 1

Dt
. By considering this, we can rewrite the

decrease lemma for nonconvex functions as follows:

Eξt [f(xt+1)] ≤ f(xt)−
γ

2
∥∇f(xt)∥2 +

γ2L

2
·
Eξ∥∇f(xt)−∇f(xt, ξt)∥2

Dt

On the other hand, our proposed method suggests that the step size in each iteration should
be proportional to the inverse of diversity. In other words, we define our adaptive step size as
γt :=

1
LDt

. With this assumption, we have:

Eξt [f(xt+1)] ≤ f(xt)−
1

2LDt
∥∇f(xt)∥2 +

1

2L
·
Eξ∥∇f(xt)−∇f(xt, ξt)∥2

D2
t

Clearly, both methods use the diversity measure to determine the strength with which they
should reduce the present noise in the gradient. To be more precise, we can say that our proposed
method employs the diversity measure to address the existing trade-off between the last two terms
in the decrease lemma.

In comparison to the approach introduced in [6], although both step sizes leverage the norm of
the stochastic gradient to adjust the step size, the underlying motivations differ significantly. While
the adaptive step size in DoG is inspired by the theoretical results presented in [2], our proposed
method is primarily motivated by the concept that an adaptive step size for SGD should be capable
of adjusting to the current noise levels in the gradient.

Appendix C. Methods for Approximating DSGD

In this section assume we are optimizing a finite sum problem where

f(xt) =
n∑

i=1

fi(xt)

Finite sum problems are a special case of 3. Many machine learning problems can be represented in
the finite-sum formulation. Many machine learning problems can be represented in the finite-sum
formulation. Therefore, we present the approximate algorithms with the assumption that they will
be used to solve these types of problems, making them more compatible with the problems’ settings
in practice.

C.1. Using a Hash Table

As we mentioned earlier, computing the exact value of our proposed adaptive step size is not prac-
tical and it is only feasible for very limited problems. Therefore here we propose a method for
approximating the diversity measure. This method uses a hash table to keep track of the last C
stochastic gradients, where C is the length of the table. In the ideal case, we would C should be
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equal to the length of the data set. In this case, we could keep a record of the most recently eval-
uated stochastic gradient (∇fi(x) for the ith data ) for each data point in the data set. However, it
is obvious that we can not do that for large datasets. So instead of a full memory, here we use a
hash table to address this problem. Using a hash table ensures that available space for memorizing
past gradients is distributed evenly between all data points. We use Hj notation to represent the jth
entry of our hash table.

Algorithm 1 DSGD with Hash Table
Parameters: smoothness coefficient, L ; hash table size, C; the total number of iterations, T ; the
period of evaluation of the full gradient, K
Initialize: x0 ∈ Rd

for t = 0, 1, 2, ..., T do
if t ≡ 0 (modK) then

for i = 0, 1, ..., C do
Sample i uniformly at random from {1, 2, ..., n}
j ≡ i (mod C)
Hj = ∇fi(x0)

end
end
Sample i uniformly at random from {1, 2, ..., n}
j ≡ i (mod C)
Hj = ∇fi(xt)

dt =
1
n

∑n
j=1 ∥Hj∥2

∥ 1
n

∑n
j=1 Hj∥2

γt =
1

L.dt
xt+1 = xt − γt∇fi(xt)

end
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C.2. Stochastic Updates

Here we suggest another method to approximate the diversity measure. We propose an algorithm
where we sometimes skip updating the step size and retain the last computed value. We believe that
significant changes in the step size are uncommon. Thus, we introduce the following algorithm:
the adaptive step size is updated only with a probability of p. It’s important to note that, despite
its reduced memory usage and faster execution compared to Algorithm 1, this algorithm does not
approximate the diversity measure as precisely.

Algorithm 2 DSGD with Stochastic Updates
Parameters: smoothness coefficient, L ; hash table size, C; the total number of iterations, T ; the
probability of updating the stepsize, p
Initialize: x0 ∈ Rd

w0 ← x0

for i = 0, 1, ..., T do
Sample kt at random from the distribution Ber(p)

wt =

{
xt if kt = 1

wt−1 if kt = 0

D̃t =
1
n

∑n
i ∥∇fi(wt)∥2

∥ 1
n

∑n
i ∇fi(wt)∥2

Sample i uniformly at random from {1, 2, ..., n}
xt+1 = xt − 1

L·dt∇fi(xt)

end
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