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ABSTRACT

Continual Learning (CL) is an emerging machine learning paradigm that aims
to learn from a continuous stream of tasks without forgetting knowledge learned
from the previous tasks. To avoid performance decrease caused by forgetting, prior
studies exploit episodic memory (EM), which stores a subset of the past observed
samples while learning from new non-i.i.d. data. Despite the promising results,
since CL is often assumed to execute on mobile or IoT devices, the EM size is
bounded by the small hardware memory capacity and makes it infeasible to meet
the accuracy requirements for real-world applications. Specifically, all prior CL
methods discard samples overflowed from the EM and can never retrieve them back
for subsequent training steps, incurring loss of information that would exacerbate
catastrophic forgetting. We explore a novel hierarchical EM management strategy
to address the forgetting issue. In particular, in mobile and IoT devices, real-time
data can be stored not just in high-speed RAMs but in internal storage devices
as well, which offer significantly larger capacity than the RAMs. Based on this
insight, we propose to exploit the abundant storage to preserve past experiences
and alleviate the forgetting by allowing CL to efficiently migrate samples between
memory and storage without being interfered by the slow access speed of the
storage. We call it Carousel Memory (CarM). As CarM is complementary to
existing CL methods, we conduct extensive evaluations of our method with seven
popular CL methods and show that CarM significantly improves the accuracy of
the methods across different settings by large margins in final average accuracy (up
to 28.4%) while retaining the same training efficiency.

1 INTRODUCTION

With the rising demand for realistic on-device machine learning, recent years have witnessed a novel
learning paradigm, namely continual learning (CL), for training neural networks (NN) with a stream
of non-i.i.d. data. In such a paradigm, the neural network is incrementally learned with insertions of
new tasks (e.g., a set of classes) (Rebuffi et al., 2017). The NN model is expected to continuously
learn new knowledge from new tasks over time while retaining previously learned knowledge, which
is a closer representation of how intelligent systems operate in the real world. In this learning setup,
the knowledge should be acquired not only from the new data timely but also in a computationally
efficient manner. In this regard, CL is suitable for learning on mobile and IoT devices (Hayes et al.,
2020; Wang et al., 2019).

However, CL faces significant challenges from the notorious catastrophic forgetting problem—
knowledge learned in the past fading away as the NN model continues to learn new tasks (McCloskey
& Neal, 1989). Among many prior approaches to addressing this issue, episodic memory (EM) is
one of the most effective approaches (Buzzega et al., 2020; Chaudhry et al., 2019a;b; Lopez-Paz
& Ranzato, 2017; Prabhu et al., 2020). EM is an in-memory buffer that stores old samples and
replays them periodically while training models with new samples. EM needs to have a sufficiently
large capacity to achieve a desired accuracy, and such capacity in need may vary significantly since
incoming data may contain a varying number of tasks and classes at different time slots and geo-
locations (Bang et al., 2021). However, in practice, the size of EM is often quite small, bounded by
limited on-device memory capacity. The limited EM size makes it difficult to store a large number of
samples or scale up to a large number of tasks, preventing CL models from achieving high accuracy
as training moves forward.
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To address the forgetting problem, we introduce a hierarchical EM method, which significantly
enhances the effectiveness of episodic memory. Our method is motivated by the fact that modern
mobile and IoT devices are commonly equipped with a deep memory hierarchy including small
memory with fast access (50–150 ns) and large storage with slow access (25–250 µs), which
is typically orders of magnitude larger than the memory. Provided by these different hardware
characteristics, the memory is an ideal place to access samples at high speed during training, promising
short training time. In contrast, the storage is an ideal place to store a significantly large number of
old samples and use them for greatly improving model accuracy. The design goal of our scheme,
Carousel Memory or CarM, is to combine the best of both worlds to improve the episodic memory
capacity by leveraging on-device storage but without significantly prolonging traditional memory-
based CL approaches.

CarM stores as many observed samples as possible so long as it does not exceed a given storage
capacity (rather than discarding those overflowed from EM as done in existing methods) and updates
the in-memory EM while the model is still learning with samples already in EM. One key research
question is how to manage samples across EM and storage for both system efficiency and model
accuracy. Here we propose a hierarchical memory-aware data swapping, an online process that
dynamically replaces a subset of in-memory samples used for model training with other samples
stored in storage, with an optimization goal in two aspects. (1) System efficiency. Prior single-level
memory-only training approaches promise timely model updates even in the face of real-time data
that arrives with high throughput. Therefore, we expect drawing old samples from slow storage does
not incur significant I/O overhead that affects the overall system efficiency, especially for mobile
and IoT devices. (2) Model accuracy. CarM significantly increases the effective EM size, mitigating
forgetting issues by avoiding important information from overflowing due to limited memory capacity.
As a result, we expect our approach also improves the model accuracy by exploiting data samples
preserved in the storage more effectively for training. To fulfill the competing goals, we design
CarM from two different perspectives: swapping mechanism (Section 3.1) and swapping policy
(Section 3.2). The swapping mechanism of CarM ensures that the slow speed of accessing the storage
does not become a bottleneck of continual model training by carefully hiding sample swapping
latency through asynchrony. Moreover, we propose various swapping policies to decide which and
when to swap samples and incorporate them into a single component, namely, gate function. The
gate function allows for fewer swapping samples, making CarM to march with low I/O bandwidth
storage which is common for mobile and IoT devices.

One major benefit of CarM is that it is largely complementary to existing episodic memory-based CL
methods. By exploiting the memory hierarchy, we show that CarM helps boost the accuracy of many
existing methods by up to 28.4% for Rainbow Memory (RM) (Bang et al., 2021) in Tiny-ImageNet
dataset (Section 4.1) and even allows them to retain their accuracy with much smaller EM sizes.

With CarM as a strong baseline for episodic memory-based CL methods, some well-known algo-
rithmic optimizations may need to be revisited to ensure that they are not actually at odds with data
swapping. For example, we observe that iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), and
DER++ (Buzzega et al., 2020), which strongly depend on knowledge distillation for old tasks, can
deliver higher accuracy with CarM by limiting the weight coefficient on the distillation loss as a small
value in calculating training loss. With CarM, such weight coefficient does not indeed necessarily
be high or managed complicatedly as done in prior work, because we could now leverage a large
amount of data in storage (with ground truth) to facilitate training performance.

2 RELATED WORK

Class incremental learning. The performance of CL algorithms heavily depends on scenarios
and setups, as summarized by Van de Ven et al. (van de Ven & Tolias, 2018). Among them, we
are particularly interested in class-incremental learning (CIL), where task IDs are not given during
inference (Gepperth & Hammer, 2016). Many prior proposals are broadly divided into two categories,
rehearsal-based and regularization-based. In rehearsal-based approaches, episodic memory stores a
few samples of old tasks to replay in the future (Bang et al., 2021; Castro et al., 2018; Chaudhry et al.,
2018; Rebuffi et al., 2017). On the contrary, regularization-based approaches exploit the information
of old tasks implicitly retained in the model parameters, without storing samples representing old
tasks (Kirkpatrick et al., 2017; Zenke et al., 2017; Liu et al., 2018; Li & Hoiem, 2017; Lee et al., 2017;
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Mallya et al., 2018). As rehearsal-based approaches generally have shown the better performance
in CIL (Prabhu et al., 2020), we aim to alleviate current drawbacks of the approaches (i.e., limited
memory space) by incorporating data management across the memory-storage hierarchy.

The CIL setup usually assumes that the tasks contain disjoint set of classes (Rebuffi et al., 2017;
Castro et al., 2018; Gepperth & Hammer, 2016). More recent studies introduce methods to learn from
the blurry stream of tasks, where some samples across the tasks overlap in terms of class ID (Aljundi
et al., 2019; Prabhu et al., 2020). Moreover, prior works can be classified as either offline (Wu et al.,
2019; Rebuffi et al., 2017; Chaudhry et al., 2018; Castro et al., 2018), which allows a buffer to store
incoming samples for the current task, or online (Fini et al., 2020; Aljundi et al., 2019; Jin et al.,
2020), which has no such buffer: a few works consider both (Prabhu et al., 2020). Both online and
offline methods can take advantage of CarM as our work focuses on improving episodic memory
with a storage device.

Episodic memory management. There are numerous episodic memory management strategies
proposed in the literature (Parisi et al., 2018) such as herding selection (Welling, 2009), discriminative
sampling (Liu et al., 2020), entropy-based sampling (Chaudhry et al., 2018) and diversity-based
sampling (Kang et al., 2020; Bang et al., 2021). A number of works have been proposed to compose
the episodic memory with representative and discriminative samples. Liu et al. propose a strategy
to store samples representing the mean and boundary of each class distribution (Liu et al., 2020).
Borsos et al. propose a coreset generation method using cardinality-constrained bi-level optimiza-
tion (Borsos et al., 2020). Cong et al. propose a GAN-based memory aiming to perturb styles of
remembered samples for incremental learning (Cong et al., 2020). Bang et al. propose a strategy to
promote the diversity of samples in the episodic memory (Bang et al., 2021). These recent works
improve the quality of the samples stored in the memory at the expense of excessive computation or
difficulty (Borsos et al., 2020) involved in training a generation model for perturbation (Cong et al.,
2020; Borsos et al., 2020). Interestingly, most of strategies show marginal accuracy improvements
over the uniform random sampling despite the computational complexity (Chaudhry et al., 2018;
Castro et al., 2018; Rebuffi et al., 2017). Other than sampling, there are works to generate samples
of past tasks (Shin et al., 2017; Seff et al., 2017; Wu et al., 2018; Hu et al., 2019). Unlike these
works addressing the sampling efficiency, we focus on the systematically efficient method to manage
samples across the system memory hierarchy.

Memory over-commitment in NN training. Prior work studies using storage or slow memory
(e.g., host memory) as an extension of fast memory (e.g., GPU memory) to increase memory capacity
for NN training (Rhu et al., 2016; Wang et al., 2018; Hildebrand et al., 2020; Huang et al., 2020; Peng
et al., 2020; Jin et al., 2018; Ren et al., 2021). However, most of these works target at optimizing the
conventional offline learning scenarios by swapping optimizer states, activations, or model weights
between the fast memory and slow memory (or storage), whereas we focus on swapping samples in
between episodic memory and storage to tackle the forgetting problem in the context of continual
learning. In more general context, memory-storage caching has been studied to reduce memory and
energy consumption for various applications (Ananthanarayanan et al., 2012; Oh et al., 2012; Zaharia
et al., 2010), which is orthogonal to our work.

3 PROPOSED METHOD: CAROUSEL MEMORY

We describe how data swapping in CarM extends the current workflow of episodic memory (EM) in
Figure 1. For ease of illustration, we assume that the input stream data is organized by consecutive
tasks but CL learners do not necessarily rely on boundaries between tasks to perform training and up-
date EM. There are three common stages involved in traditional EM methods, which proceed in order:
data incoming, training, and EM updating. This workflow corresponds to many existing methods
including TinyER (Chaudhry et al., 2019b), CBRS (Chrysakis & Moens, 2020), iCaRL (Rebuffi et al.,
2017), BiC (Wu et al., 2019), and DER++ (Buzzega et al., 2020). Then, we add two additional key
stages for data swapping: storage updating and storage sample retrieving.

• Data incoming I : The episodic memory maintains a subset of samples from previous tasks
{T1, . . . , Ti−1}. When samples for a new task Ti arrive, they are first enqueued into a stream buffer
and later exercised for training. Different CL algorithms require different amounts of samples to be
enqueued for training. The task-level learning relies on task boundaries, waiting until all Ti’s samples
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Figure 1: Architecture and execution stages of the proposed Carousel Memory. Swap worker replaces
in-memory samples used for training with other samples stored in storage by leveraging gate function.

appear (Rebuffi et al., 2017; Wu et al., 2019). On the contrary, the batch-level learning initiates the
training stage as soon as a batch of Ti’s samples in a pre-defined size is available (Chaudhry et al.,
2019b; ?; Chrysakis & Moens, 2020).

• Training T : The training combines old samples in EM with new samples in a stream buffer to
compose a training bundle. The CL learner organizes the bundle into one or more mini-batches, where
each mini-batch is a mixture of old and new samples. The mini-batch size and the ratio between the
two types of samples within a mini-batch are configured by the learning algorithm. Typically, several
mini-batches are constructed in the task-level learning. Learners may go over multiple passes given a
bundle, trading off computation cost for accuracy.

• EM updating M : Once the training stage is completed, samples in the stream buffer are no longer
new and represent a past experience, requiring EM to be updated with these samples. EM may have
enough space to store all of them, but if it does not, the CL method applies a sampling strategy like
reservoir sampling (Vitter, 1985) and greedy-balancing sampling (Prabhu et al., 2020) to select a
subset of samples from EM as well as from the stream buffer to keep in EM. All prior works “discard”
the samples which are not chosen to be kept in EM.
• Storage updating S : CarM flushes the stream data onto the storage before cleaning up the stream
buffer for the next data incoming step. No loss of information occurs if the free space available in the
storage is large enough for the stream data. However, if the storage is filled due to lack of capacity,
we end up having victim samples to remove from the storage. In this case, we randomly choose
samples to evict for each class while keeping the in-storage data class-balanced.

• Storage sample retrieving R : With the large number of samples maintained in the storage, data
swapping replaces in-memory samples with in-storage samples during training to exercise abundant
information preserved in the storage regarding past experiences. CarM collects various useful signals
for each in-memory sample used in the training stage and determines whether to replace that sample
or not. This decision is made by our generic gating function that selects a subset of the samples for
replacement with effectively little runtime cost.

Since old samples for training are drawn directly from EM and a large pool of samples is always
kept in the storage ES, the training phase is forced to have a boundary of sample selection restricted
by the size of EM . The continual learning with data swapping that optimizes model parameters θ for
old and new samples x (and corresponding labels y) can hence be formulated as follows:

argmin
θ

i∑
task id=1

E(x,y)∼ES∪Ti
[L(f(x, θ), y)],where (x, y) ∈ EM. (1)

3.1 MINIMIZING DELAY TO CONTINUAL MODEL TRAINING

The primary objective in our proposed design is hiding performance interference caused by the data
swapping so that CarM incurs low latency during training. To that end, we propose two techniques
that encompass in-storage sample retrieval and EM updating stages.
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Figure 2: Training time reduction with async
sample retrieval.

Asynchronous sample retrieval. Similar to the
conventional learning practice, CarM maintains fetch
workers performing data decoding and augmentation.
As shown in Figure 1, CarM has an additional swap
worker dedicated to deciding in-memory samples to
evict and issuing I/O requests to bring new samples
from storage into memory. In the CL workflow, the
data retrieval stage R has dependency on the training
stage T since training triggers the replacement of an
in-memory sample when it is used as training input.

To illustrate, we assume that the system has a single fetch worker to pre-process the training input
bundle and creates N mini-batch from the bundle – this pre-processing is incurred every time a
sample is fetched for training. The swap worker identifies samples in EM to be replaced from
mini-batch i training (T bi ) and then issues I/O requests to retrieve other samples from storage (Rbi ). If
we want to allow the next mini-batch training to exercise EM completely refreshed with the replaced
samples, executions of T b and Rb by definition must be serialized such that we have a sequence
of T b1 → Rb1 → T b2 → Rb2 → T b3 → Rb3, as shown in Figure 2 (Sync). However, committing to
such strict serialized executions slows down training speed significantly, e.g., the second mini-batch
training T b2 can start only after finishing up T b1 → Rb1, which takes much longer time than T b1 with no
retrieval of storage data as done in the traditional EM design. To prevent this performance degradation,
CarM adopts asynchronous sample retrieval that runs the retrieval step in parallel with the subsequent
training steps. By the asynchronous method, we keep the minimum possible dependency as shown
in Figure 2 (Async), with an arbitrary Rbi not necessarily happened before T bi+1. Apparently, this
design choice poses a delay on applying in-storage samples to EM, making it possible for the next
training steps to access some samples undergoing replacement. However, we found such accesses do
not frequently occur, and the delay does not nullify the benefit that comes from data swapping.

In addition, when the swap worker retrieves in-storage samples and writes on memory, it may
interfere with fetch workers that attempt to read samples from it for pre-processing. To mitigate
such interference, CarM could opt for EM partitioning to parallelize read/write operations over
independent partitions. With EM partitioning, only those operations that access the same partition
need coordination, achieving concurrency against operations that access other partitions.

3.2 DATA SWAPPING POLICY BY A GATE FUNCTION

The gate function in Figure 1 is a core component in CarM for adjusting I/O traffic. The gate, as
guided by its decision logic, allows us to select a certain portion of samples to swap out from those
EM samples drawn in the training stage. Having this control knob is of big practical importance as
the maximum sustainable I/O traffic differs considerably among devices due to their in-use storage
mediums with different characteristics (e.g., high-bandwidth flash drive vs low-bandwidth magnetic
drive). At the same time, the gate is required to be effective with such partial data swapping in terms
of accuracy in the subsequent training steps.

To facilitate this, we propose a sample scoring method that ranks the samples in the same mini-batch
so that the training algorithm can decide at which point along the continuum of the ranks we can
separate samples to swap from other samples to keep further in memory.

Score-based replacement. The score quantifies the relative importance of a trained sample to keep
in EM with respect to other samples in the same mini-batch. Intuitively, a higher score means that
the sample is in a higher rank, so is better “not” to be replaced if we need to reduce I/O traffic and
vice versa. To this end, we define the gate function σi for ith sample, xi, as σi = 1(s(xi) > τ),
where s(xi) is a scoring function and τ is a scoring threshold, with both s(xi) and τ between 0
and 1. The threshold is determined by the proportion of the samples that we want to replace from
the EM with samples in storage with the consideration of computational efficiency. It allows data
swapping to match with I/O bandwidth available on the storage medium, and prevents the system
from over-subscribing the bandwidth leading to I/O back-pressure and increased queueing time or
under-subscribing the bandwidth leaving storage data exploited less opportunistically.

Policies. We design several swapping policies driven by the sample scoring method in the context of
CL with data swapping for the first time. Specifically, we propose the following three policies:
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(1) Random selects random samples to replace from EM. Its scoring function assigns 0 to the τ
proportion of the samples randomly selected from a mini-batch while assigning 1 to the other samples.

(2) Entropy collects two useful signals for each sample produced during training: prediction cor-
rectness and the associated entropy. This policy prefers to replace the samples that are correctly
predicted because these samples may not be much beneficial to improve the model in the near future.
Furthermore, in this group of samples, if any specific sample has a lower entropy value than the other
samples, the prediction confidence is relatively stronger, making it a better candidate for replacement.
By contrast, for the samples that are incorrectly predicted, this policy prefers to “not” replace the
samples that exhibit lower entropy, i.e., incorrect prediction with stronger confidence, since they may
take longer to be predicted correctly. Thus, the scoring function s(xi) with a model f(·) is defined as:

s(xi) =
1

U
[g(xi)(H(f(xi))) + (1− g(xi)) (U −H(f(xi)))] , (2)

where g(xi) = 1(f(xi) = yi), H(·) is an entropy function, and U is the maximum entropy value.

(3) Dynamic combines Random and Entropy to perform the first half of training passes given a bundle
with Random and the next half of the passes with Entropy. This policy is motivated by curriculum
learning (Bengio et al., 2009), which gradually focuses on training harder samples as time elapses.

It is indeed possible to come up with a number of replacement policies, for which this paper introduces
a few concrete examples. Regardless, designing the gate logic with more effective replacement
policies is a promising research direction that we want to further explore in CarM.

4 EXPERIMENTS

As CarM is broadly applicable to a variety of EM-based CL methods, we compare the performance
with and without CarM in the methods of their own setups. We select seven methods as shown in
Table 1, to cover several aspects discussed in Section 3 such as bundle boundary of learning (i.e.,
task-level vs batch-level) and number of passes taken per bundle. We discuss detailed reproducible
settings in Section 5. For evaluation, we implement CarM in PyTorch 1.7.1 as a working prototype.

Datasets and metrics. Datasets include CIFAR subset—CIFAR10 (C10) and CIFAR100 (C100)—
, ImageNet subset—ImageNet-100 (I100), Mini-ImageNet (100 classes) (MI100), and Tiny-
ImageNet (200 classes) (TI200)—, and ImageNet-1000. We use two popular metrics, the final
accuracy and the final forgetting (Chaudhry et al., 2018) averaged over classes, to reflect the perfor-
mance of continual learning. Except for ImageNet-1000 that represents a significantly large-scale
training, the results are averaged over five runs while each method assigns an equal of classes to each
task. We also measure training speed measured from the time the training stage receives a bundle to
the time it completes training the bundle.

Baselines and architectures. On top of each CL method, we vary the amount of data swapping to
study the effectiveness of CarM in detail. Unless otherwise stated, CarM-N means that our swap
worker is configured to replace N% of EM samples drawn by the training stage. All experiments are
based on either ResNet or DenseNet neural networks, with all using the SGD optimizer as suggested
by the original works, and use the entropy-based data swapping policy (i.e., Entropy) by default.

4.1 RESULTS

We compare existing methods with two CarM versions, CarM-50 that performs partial swapping for
a half of the data and CarM-100 that performs full swapping. Table 1 presents the performance in
terms of the top-1 accuracy (Acc.) and the forgetting score (Fgt.), except for ER, iCarL, and BiC that
measure the top-5 accuracy for the ImageNet subset as done in the original works.

First, CarM-100 improves the accuracy remarkably over almost all of the methods under consideration,
advancing the state-of-the-art performances for CIFAR and ImageNet datasets. The results clearly
show the effectiveness of using the storage device in large capacity to allow CL to exploit abundant
information of the previous tasks. Among the seven methods, CarM-100 delivers relatively larger
accuracy gains for BiC (Wu et al., 2019), GDumb (Prabhu et al., 2020), DER++ (Buzzega et al.,
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Table 1: Accuracy and Forgetting of EM methods with and without proposed designs of CarM-50
(50% swapping) and CarM-100 (100% swapping). For each method, the two parenthesises show EM
sizes and datasets used for the CIFAR subset and the ImageNet subset. For the ImageNet-1000, all
methods use the EM size of 20000 and runs once due to significant training time. (↑) higher is better,
(↓) lower is better. Please refer to the ‘datasets and metrics’ paragraph for dataset name abbreviations.

Metric
Method ER iCaRL TinyER BiC GDumb DER++ RM

(EM Sizes) (2000/2000) (2000/2000) (300/500) (2000/2000) (500/4500) (500/500) (500/4500)
(Datasets) (C100/I100) (C100/I100) (C100/MI100) (C100/I100) (C10/TI200) (C10/TI200) (C10/TI200)

C
IF

A
R

Su
bs

et Acc. (↑)
Original 33.66±0.42 47.04±0.25 54.11±2.52 48.62±0.37 47.29±0.54 72.17±1.11 52.15±1.42

CarM-50 54.00±0.49 48.39±0.41 59.99±2.12 62.40±0.40 52.64±1.64 90.05±0.38 66.66±0.75
CarM-100 54.93±0.46 49.48±0.53 61.83±2.50 63.07±0.48 53.72±1.06 90.58±0.30 67.81±0.51

Fgt. (↓)
Original 57.60±0.54 22.38±0.30 16.04±2.91 20.21±0.65 22.14±0.83 24.45±1.81 23.03±2.86

CarM-50 32.13±0.72 17.18±0.53 11.9±1.13 13.40±0.86 20.92±1.63 3.38±0.22 9.63±0.40
CarM-100 32.28±0.55 16.73±0.65 9.44±1.96 12.16±0.69 21.18±1.49 2.78±0.55 11.03±2.28

Im
ag

eN
et

Su
bs

et Acc. (↑)
Original 65.62±1.48 79.95±1.12 56.91±2.32 83.05±0.66 42.25±0.44 19.38±1.41 21.84±0.54

CarM-50 82.21±0.43 79.15±0.40 65.43±2.83 88.03±0.39 55.67±0.21 47.74±0.84 45.49±0.32
CarM-100 83.56±0.36 80.15±1.07 68.70±0.59 87.63±0.34 56.11±0.47 45.12±1.39 46.70±0.16

Fgt. (↓)
Original 55.30±0.28 17.10±0.68 15.30±2.29 15.81±0.34 11.06±0.75 66.83±0.93 16.89±0.51

CarM-50 40.12±0.55 14.65±0.27 7.64±4.08 7.96±0.58 9.47±0.23 20.69±1.52 9.43±0.39
CarM-100 39.25±0.29 14.28±0.20 9.76±2.48 8.27±0.28 8.01±1.84 23.81±1.68 8.81±0.21

Im
ag

eN
et

-1
00

0 Acc. (↑)
Original 40.47 56.69 46.41 77.04 38.14 12.11 24.08

CarM-50 42.64 55.72 48.93 80.66 48.86 35.90 43.69
CarM-100 44.21 55.45 50.30 80.84 49.56 36.89 44.36

Fgt. (↓)
Original 70.67 39.41 10.37 21.38 31.56 54.78 12.3

CarM-50 65.60 40.37 8.79 18.81 25.12 24.31 7.31
CarM-100 64.79 39.02 7.20 18.30 23.86 21.77 7.16

2020), and RM (Bang et al., 2021) that take multi-passes on each training input. We believe that
as long as old samples in EM are exercised more frequently for a new bundle to train (i.e., new
samples plus old samples), data swapping can subsequently bring in more diverse samples from
storage to take advantage of them. Regardless, although TinyER (Chaudhry et al., 2019b) is designed
to take a single pass over new samples and thus exercise EM less aggressively, as applied with our
techniques, it improves the accuracy by 7.72%, 11.79%, and 3.89% for CIFAR-100, Mini-ImageNet,
and ImageNet-1000, respectively.

In comparison to CarM-100, CarM-50 obtains slightly lower accuracy across the models. We argue
that such a small sacrifice in accuracy is indeed worthwhile when storage I/O bandwidth is the
primary constraint. In CarM-50, with 50% lower I/O traffic caused by data swapping, the accuracy
as compared to CarM-100 diminishes only by 1%, 0.6%, and 0.7% on average for CIFAR subset,
ImageNet subset, and ImageNet-1000, respectively, providing an ability to trade-off small accuracy
loss for substantial I/O traffic reduction. Similarly to the accuracy, our data swapping approaches
considerably reduce forgetting scores over the majority of the original methods. Perhaps, one method
that shows less promising results in Table 1 would be iCaRL (Rebuffi et al., 2017), where CarM
makes the accuracy occasionally worse.

From the in-depth investigation of iCaRL in Appendix A.4.1, we observe that using data swapping
and knowledge distillation at the same time cannot not deliver great accuracy. That is, as knowledge
distillation may not be much compatible with data swapping, we revisit distillation-based CL methods
(i.e., iCaRL, BiC, and DER++) when they are used along with data swapping in detail.

Knowledge distillation on CarM. Note that the ways to distill the knowledge of old data in iCaRL,
BiC, and DER++ are all different (see Appendix A.4.1). Briefly speaking, in calculating loss for
old data, iCaRL uses only soft labels obtained from an old classifier, whereas BiC and DER++
use both hard labels (i.e., ground truth) as well as soft labels. To investigate the effect of using
these two types of loss, we first modify the loss function of iCaRL similarly to that of BiC, i.e.,
α× soft label loss+ (1−α)× hard label loss, and then show accuracy over varying α values for
all three distillation-based methods in Figure 3. For each method, we also include accuracy when α
increases incrementally over time as done in BiC.

The results show that distillation-based methods with CarM significantly improve accuracy when
the α is very small. For iCaRL, compared to α = 1.0 (i.e., no hard label loss as iCaRL does), we
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Table 2: Comparison of accuracy for data swapping policies for CarM-50 on ImageNet subset.

Method ER iCaRL TinyER BiC GDumb DER++ RM

Random 82.07±0.28 79.31±0.30 65.04±2.75 87.81±0.87 55.57±0.28 47.37±0.91 45.46±0.46
Entropy 82.21±0.43 79.15±0.40 65.43±2.83 88.03±0.93 55.67±0.21 47.74±0.84 45.49±0.32
Dynamic 82.94±0.43 79.14±0.31 65.04±2.75 87.79±0.88 55.51±0.74 47.53±2.09 45.80±0.25

Figure 3: Accuracy of distillation-based methods with CarM-50 on ImageNet subset while varying
coefficient (α) values on the distillation loss in calculating training loss.

obtain 5.4 higher accuracy when α = 0.0 (i.e., no distillation) and 5.7 higher accuracy when α = 0.1,
which is the best result. Similarly, for BiC and DER++ with CarM, we found that the coefficient α to
be applied on the soft label loss does not necessarily be high (i.e., iCaRL) or managed complicatedly
(i.e., BiC) to achieve higher accuracy. Please refer to Figure 6 for the CIFAR subset results.

Our best interpretation for the reason behind is as follows. The key assumption of knowledge
distillation is that once the model is trained with a new task, the knowledge newly learned is supposed
to generalize the task well and can be effectively transferable to subsequent task training. However,
if the model is not sufficiently generalized for old tasks, using distillation losses extensively might
be adverse—Data swapping attempts to correct decision boundaries driven by abundant in-storage
samples to further generalize old tasks, but interfered by the knowledge distilled by the old models.

Comparison for data swapping policies. We compare the performance of the three data swapping
policies proposed in Section 3.2 under CarM-50. As shown in Table 2, both Entropy and Dynamic
outperform Random by 0.16% on average for ImageNet subset (see Table 10 for CIFAR subset).
We highlight that our major contribution for gating mechanism is computational efficiency while
matching with I/O bandwidth available on the storage medium, and the primary objective of exploring
data swapping policies is establishing a good baseline for the gating mechanism. In this regard, we
found that all three policies can serve as good baselines.

Impact on training speed. Delay optimization techniques in Section 3.1 are intended to incur
insignificant delay on training. To confirm this, we examine how training speed in CarM-50 changes
over the original memory-only methods, measured as the percentage of wall-clock time (i.e., actual
time taken) increase as applied with asynchronous (Async) vs synchronous sample retrieval (Sync).
To consider the most challenging scenario, we make data entered into the stream buffer at a rate
enough to keep training always busy with new mini-batches. As shown in Table 3, regardless of
EM methods, the asynchronous version of CarM does not dramatically affect training speeds for
both CIFAR and ImageNet subsets. By contrast, the synchronous version slows down training time
up to 71.6% for CIFAR subset and 62.0% for ImageNet subset. Regardless of the version in use,
in-memory samples undergoing data swapping are rarely drawn in the subsequent training steps
since the size of an episodic memory size is typically much larger than the size of a training batch.
Therefore, no difference in accuracy is observed between the two version.

4.2 ABLATION STUDY

We present an ablation study using four methods (TinyER, BiC, DER++, and RM) that represent the
state-of-the-art in each type of EM methodologies, using the CIFAR subset.

Size of EM. To confirm performance benefits over using different memory sizes, we empirically
evaluate CarM-50 over varying EM sizes and show the average accuracy in Figure 4(a). In all
cases, CarM-50 outperforms the existing methods, with BiC, DER++, and RM having relatively
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Table 3: Training speed with data swapping for CarM-50. (+) training time increases, (-) training time
decreases. Each field includes the results as a pair for the CIFAR subset and the ImageNet subset.

Method ER iCaRL TinyER BiC GDumb DER++ RM

Async +0.7%/+2.9% +0.5%/-2.7% +3.3%/+5.5% -0.3%/+1.7% +3.3%/+0.1% +0.3%/+2.4% +2.3%/-0.9%
Sync +30.2%/+21.3% +70.5%/+62.0% +11.3%/+10.7% +20.0%/+33.8% +52.1%/+7.6% +71.6%/+38.8% +25.9%/+2.6%

Figure 4: Accuracy over varying (a) EM sizes, (b) data swapping ratios, and (c) storage capacities,
and for (d) learning 50 tasks. For (a), larger and smaller EMs are chosen by referring to Table 1.

higher accuracy increases. Moreover, we observe that data swapping delivers better accuracy over
conventional memory-only approaches using much smaller memory. For example, CarM-50 with
DER++ on EM size 300 shows higher accuracy than pure DER++ on EM size 1000, and CarM-50
with TinyER on EM size 300 shows higher accuracy than pure TinyEM on EM size 500. Therefore,
it turns out that data swapping could help reduce the EM size without hurting the accuracy of existing
methods in both the multi-pass method and single-pass method.

Data swapping ratio. We present results with different swapping ratios to show that our gate model
indeed brings out meaningful benefits over using different I/O bandwidths. To that end, Figure 4(b)
shows the change in accuracy when our gating policy decreases the swapping ratio down to 20%
(CarM-20) or increases it up to 80% (CarM-80). Obviously, at CarM-80 in high swapping ratio, the
accuracy across the four EM methods gets very close to the accuracy obtained in full swapping. A
surprising result is that even at CarM-20 in 20% data swapping, the accuracy is very comparable to
when we allow higher data swapping ratios. The results indicate that our method would be effective
even when applied to the system with low-bandwidth storage.

Size of storage. As local storage cannot store all the past data, the system must discard some old
samples once the storage is fully occupied. Figure 4(c) shows accuracy degradation in CarM-50 when
storage capacity is limited to 1.5–10× of the EM size. The results show that data swapping improves
performance over traditional approaches even with using 50% larger capacity for the storage.

Large number of tasks. One pressing issue on CL is learning a large number of tasks as it
is required to keep the knowledge learned in the remote past. To evaluate this aspect, we split
CIFAR-100 (100 classes) into 50 tasks and run with the four methods. As Figure 4(d) shows, CarM
significantly outperforms the baselines, showing the potential for long-term continual model training.

5 CONCLUSION

We alleviate catastrophic forgetting by integrating traditional episodic memory-based continual
learning methods with device-internal data storage, named CarM. We design data swapping strategies
to improve model accuracy by dynamically utilizing a large amount of the past data available in the
storage. Our swapping mechanism addresses the cumbersome performance hurdle incurred by slow
storage access, and hence continual model training is not dramatically affected by data transfers
between memory and storage. We show the effectiveness of CarM using seven well-known methods
on standard datasets, over varying memory sizes, storage sizes, and data swapping ratios.
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REPRODUCIBILITY STATEMENT

We take the reproducibility of the research very seriously. Appendix hence includes detailed informa-
tion necessary for reproducing all the experiments performed in this work, as follows:

• Appendix A.1 describes the implementation details of building CarM.
• Appendix A.2 specifies dataset information used in the experiments (e.g., the number of tasks and
the number of classes per task).
• Appendix A.3 provides experimental details (e.g., metrics and hyper-parameters).
• Appendix A.3.4 presents detailed specification of machines (e.g., GPU model) used in the experi-
ments.

Our source code is available at https://anonymous.4open.science/r/CarM, where we
include running environments and configuration files for all the experiments that make it possible to
reproduce the results reported in this paper with minimal effort.

ETHICS STATEMENT

All continual learning (CL) methods including the proposed one would adapt and extend the already
trained AI model to recognize better with the streamed data. The CL methods will expedite the
deployment of AI systems to help humans by its versatility of adapting to a new environment out of
the factory or research labs. As all CL methods, however, would suffer from adversarial streamed
data as well as data bias, which may cause ethnic, gender or biased gender issues, the proposed
method would not be an exception. Although the proposed method has no intention to allow such
problematic cases, the method may be exposed to such threats. Relentless efforts should be made to
develop mechanisms to prevent such usage cases in order to make the continuously updating machine
learning models safer and enjoyable to be used by humans.
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Zalán Borsos, Mojmír Mutnỳ, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. In NIPS, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDERARA.
Dark experience for general continual learning: a strong, simple baseline. In NIPS, 2020.

10

https://anonymous.4open.science/r/CarM
https://docs.python.org/3.8/library/asyncio.html
https://docs.python.org/3.8/library/multiprocessing.html#managers
https://docs.python.org/3.8/library/multiprocessing.html#managers
https://docs.python.org/3.8/library/multiprocessing.html
https://docs.python.org/3.8/library/multiprocessing.html
 https://docs.python.org/3.8/library/multiprocessing.shared_memory.html 
 https://docs.python.org/3.8/library/multiprocessing.shared_memory.html 


Under review as a conference paper at ICLR 2022

Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In ECCV, 2018.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In ICLR, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. 2019b.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
In ICML, volume 119, pp. 1952–1961. PMLR, 2020.

Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. GAN memory with no
forgetting. In NIPS, 2020.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled
outputs distillation for small-tasks incremental learning. In ECCV, 2020.

Enrico Fini, Stéphane Lathuilière, Enver Sangineto, Moin Nabi, and Elisa Ricci. Online continual
learning under extreme memory constraints. In ECCV, 2020.

Alexander Gepperth and Barbara Hammer. Incremental learning algorithms and applications. In
ESANN, 2016.

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind your
neural network to prevent catastrophic forgetting. In ECCV, 2020.

Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh Akella. Autotm:
Automatic tensor movement in heterogeneous memory systems using integer linear programming.
In ASPLOS, pp. 875–890. ACM, 2020.

Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao, and
Rui Yan. Overcoming catastrophic forgetting via model adaptation. In ICLR, 2019.

Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond the gpu
memory limit via smart swapping. In ASPLOS, pp. 1341–1355. ACM, 2020.

Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He, and Shaofeng Zhao. Layer-
centric memory reuse and data migration for extreme-scale deep learning on many-core architec-
tures. In ACM Transactions on Architecture and Code Optimization (TACO), volume 15, pp. 1–26,
2018.

Xisen Jin, Junyi Du, and Xiang Ren. Gradient based memory editing for task-free continual learning.
arXiv preprint arXiv:2006.15294, 2020.

Dongmin Kang, Yeonsik Jo, Yeongwoo Nam, and Jonghyun Choi. Confidence calibration for
incremental learning. In IEEE Access, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. 2017.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In NIPS, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In IEEE Trans. PAMI, 2017.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
ICPR, 2018.

11



Under review as a conference paper at ICLR 2022

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-class
incremental learning without forgetting. In CVPR, pp. 12245–12254. Computer Vision Foundation
/ IEEE, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NIPS, volume 30, pp. 6467–6476, 2017.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In ECCV, 2018.

M. McCloskey and Neal. Catastrophic interference in connectionist networks: The sequential learning
problem. volume 24, pp. 109–165, 1989.

Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. Caching less for better performance:
balancing cache size and update cost of flash memory cache in hybrid storage systems. In USENIX
FAST, volume 12, pp. 25. USENIX Association, 2012.

German Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. In Neural Networks, 2018.

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai Qian.
Capuchin: Tensor-based gpu memory management for deep learning. In ASPLOS, pp. 891–905.
ACM, 2020.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A simple approach that questions
our progress in continual learning. In ECCV, 2020.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. In Psychological Review, volume 97, pp. 285–308, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. In CVPR, 2017.

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. Sentinel: Efficient tensor
migration and allocation on heterogeneous memory systems for deep learning. In IEEE HPCA, pp.
598–611. IEEE, 2021.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. vdnn:
Virtualized deep neural networks for scalable, memory-efficient neural network design. In MICRO,
pp. 1–13. IEEE Computer Society, 2016.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.
In CoRR, volume abs/1705.08395, 2017.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NIPS, 2017.

Gido M van de Ven and Andreas S Tolias. Three continual learning scenarios and a case for generative
replay. In NIPS Workshop on Continual Learning, 2018.

Jeffrey S Vitter. Random sampling with a reservoir. volume 11, pp. 37–57. ACM, 1985.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu, and
Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural networks.
In PPoPP, pp. 41–53. ACM, 2018.

Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and Zhangyang Wang.
E2-train: Training state-of-the-art cnns with over 80% energy savings. In NIPS, pp. 5139–5151.
Curran Associates, Inc., 2019.

Max Welling. Herding dynamical weights to learn. In ICML, pp. 1121–1128, 2009.

Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost Van de Weijer, and Bogdan Raducanu.
Memory Replay GANs: learning to generate images from new categories without forgetting. In
NIPS, 2018.

12



Under review as a conference paper at ICLR 2022

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, 2019.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion Stoica, et al. Spark:
Cluster computing with working sets. In USENIX Workshop on HotCloud, pp. 95. USENIX
Association, 2010.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

13



Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 IMPLEMENTATION DETAILS

First, we describe implementation details about the two components of the proposed method: swap
worker and episodic memory. Then, we describe the details about PyTorch integration of our
implementation for ease of use.

Swap worker. CarM implements the swap worker through multiprocessing (pyt) in popular Python
standard library so that data swapping is running in parallel with PyTorch’s default fetch workers
dedicated to data decoding and augmentation. The swap worker uses asyncio (asy) to asynchronously
load samples from storage to memory, effectively overlapping high-latency I/O operations with
other CarM-related operations, such as image decoding, sample replacement on EM, and entropy
calculation. The swap worker issues multiple data swapping requests without spinning on or being
blocked by I/O. As a result, it is sufficient to have only one swap worker for CarM in the system.

Episodic memory. There are various ways to implement EM to be shared between fetch work-
ers and the swap worker. The current system favors flexibility over performance, so we opt for
implementing EM as a shared object provided by Manager (man) in the Python standard library
(multiprocessing.managers), which is based on message passing in the server-client semantics. In
terms of flexibility, the Manager does not require the clients (i.e., fetch workers and swap workers) to
define the exact data layout in the EM address space or coordinate for potential memory resizing to
accommodate raw samples of different sizes (e.g., image resolutions). Hence, it is sufficient for the
client workers to perform reads and writes on EM using indexes on the EM samples. An alternative yet
obviously higher-performance implementation would be using multiprocessing.shared_memory (sha),
which enables direct reads and writes on EM by exposing a common region of memory to the
processes. Despite good performance, this method is less flexible as all processes should be aware
of the data layout in a designated EM address range precisely at runtime, thus requiring additional
coordination for sample lookups and EM resizing. As our system evolves, we ultimately want to
combine the best of both methods to promise both flexibility and performance.

A.2 DATASETS

Each baseline is evaluated on its own dataset used in the original work. The first rows of Table 4
and Table 5 show datasets used in the CIFAR subset and the ImageNet subset, respectively, for all
baselines. ImageNet-100 is a ImageNet ILSVRC2012 subset used in iCaRL, which contains images
in the same resolution as those in the original ImageNet ILSVRC2012. Other datasets used as the
ImageNet subset have smaller image resolution than the original one (e.g., 64×64 for Tiny-ImageNet,
84×84 for Mini-ImageNet). In addition, we trained all baselines on ImageNet-1000 to verify the
effectiveness of CarM on a large-scale dataset. We note that only ER, iCaRL, and BiC have been
compared using the ImageNet-1000 dataset in the literature (Wu et al., 2019).

Datasets are split as done in the original work. The second and third rows of Table 4 and Table 5
show the detailed information on the splitting strategy. For all baselines, the ImageNet-1000 dataset
is split into 10 tasks, each with 100 classes. Note that all datasets are non-blurry, meaning that each
task consists of its own set of classes and samples belonging to a previous task never appear in the
next tasks. Since the experimental results are highly sensitive to the class order in the continuous
tasks to train, we follow the same class order used in the original works.

A.3 EXPERIMENTAL DETAILS

We present the effectiveness of the proposed CarM using seven CL methods of their own setups. This
section discusses detailed settings for each method so that the results are reproducible by our source
code. We first describe the metrics used for the evaluations.

A.3.1 METRICS

Final accuracy. Final accuracy is an average accuracy over all classes observed after the last task
training is done.
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Table 4: Dataset formation of CIFAR subset.

ER iCaRL TinyER BiC GDumb DER++ RM

Dataset CIFAR-100 CIFAR-100 CIFAR-100 CIFAR-100 CIFAR-10 CIFAR-10 CIFAR-10
# of Tasks 10 10 20 10 5 5 5
# of Classes per Task 10 10 5 10 2 2 2

Table 5: Dataset formation of ImageNet subset.

ER iCaRL TinyER BiC GDumb DER++ RM

Dataset ImageNet-100 ImageNet-100 Mini-ImageNet ImageNet-100 Tiny-ImageNet Tiny-ImageNet Tiny-ImageNet
# of Tasks 10 10 20 10 10 10 10
# of Classes per Task 10 10 5 10 20 20 20

Final forgetting. Forgetting indicates how much each task has been forgotten while training new
tasks (Chaudhry et al., 2018). Forgetting for a task is calculated by comparing the best accuracy
observed over task insertions to the final accuracy of the task when training is over. Final forgetting
is an average forgetting across all tasks when training is over.

A.3.2 BASELINE DETAILS

• ER (Ratcliff, 1990) combines all samples in the current stream buffer and the current EM,
and passes them over to the model as a training set, i.e., training bundle. There is no
algorithmic optimization applied to the model itself. We manage EM as a ring buffer that
assigns EM space equally over all classes observed so far. We use the same hyper-parameters
and loss function (binary cross-entropy loss) as used in iCaRL.

• iCaRL (Rebuffi et al., 2017) uses three algorithmic optimizations: distillation loss, herding,
and nearest-mean-of-exemplar classification. To transfer the information of old tasks, iCaRL
leverages the distillation loss using logits obtained from the most recently trained model for
old classes: this loss information is considered as the ground truth for old classes. Herding
is its own EM management method, which populates the samples whose feature vectors are
the closest to the average feature vector overall stream data for each class. iCaRL allocates
EM space equally overall observed classes.

• TinyER (Chaudhry et al., 2019b) explores four EM management strategies named reservoir,
ring buffer, k-means, and mean of features. We adopt the reservoir in the experiments
because it shows overall the highest performance in the original paper. Similar to ER,
TinyER retrieves old samples from EM without other optimizations on the model itself.
TinyER is batch-level learning and focuses on an extremely online setup that takes a single
pass for every streamed batch.

• BiC (Wu et al., 2019) runs bias correction on the last layer of the neural network, structured
as fully connected layer, to mitigate data imbalance problem between old samples and new
samples. The data imbalance is an inherent problem due to the limited size of EM, and it
gets worse as we have a larger number of consecutive classes to train. Similar to iCaRL,
BiC opts for distillation loss, but its entire loss function is a mixture of distillation loss and
cross-entropy loss that is directly calculated from some reserved samples for old classes.

• GDumb (Prabhu et al., 2020) is a simple rehearsal-based method that uses only the memory
to train the model. The memory management is done via greedy balanced sampling, where
GDumb tries to keep each class balanced by evicting data categorized into the majority class
out of EM. Unlike other methods, the model is trained from scratch for inference and then
discarded every time the memory is updated. GDumb uses cosine annealing learning-rate
scheduler and cross-entropy loss for gradient descend.

• DER++ (Buzzega et al., 2020) is one of rehearsal-based methods with knowledge distillation.
Unlike other methods, this approach retains logits (along with samples) in EM for knowledge
distillation. For knowledge distillation, DER++ calculates euclidean distance between the
logits stored in EM and the logits generated by the current network. To enable data swapping
on DER++, we store the logits in the storage along with samples.

• RM (Bang et al., 2021) uses the same backbone as GDumb, but it improves memory update
policy and training method over GDumb. For memory management, RM calculates the
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uncertainty of each sample and tries to fill the memory with samples in a wide spectrum that
ranges from robust samples with low uncertainity to fragile samples with high uncertainity
while keeping the classes balanced. In addition, data augmentation (DA) is proposed to
advance the original RM implementation. We use RM without DA to apply data swapping
in our work, but we include some results of RM with DA in Section A.4.4.

Reproduction. We use reported numbers from the original paper for DER++ on Tiny-
ImageNet (Buzzega et al., 2020). For iCaRL, we believe we faithfully implement its details, but could
not reach the accuracy reported in the paper. As far as we know, there is no PyTorch source code
that reproduces iCaRL on both CIFAR-100 and ImageNet-100 datasets. In our implementation for
iCaRL, we refer to a PyTorch version written by the PodNet authors (Douillard et al., 2020) as they
achieve the most comparable results. We use the results obtained from the referred version rather
than the reported results, because compared to the reported accuracy, the obtained accuracy is nearly
the same for CIFAR-100 and higher for ImageNet-100.

Table 6: Hyper-parameters of Table 1 in the main paper for CIFAR subset.

ER iCaRL TinyER BiC GDumb DER++ RM

Learning Level Task Task Batch Task Task Task Task
Model ResNet32 ResNet32 ReducedResNet18 ResNet32 ResNet18 ResNet18 ResNet18
# Passes per Bundle 70 70 1 250 256 50 256
EM Size 2000 2000 300 2000 500 500 500
Batch Size 128 128 10 128 16 32 16
Learning Rate 2.0 2.0 0.1 0.1 0.05 0.03 0.05
Weight Decay 1e-5 1e-5 0 2e-4 1e-6 0 1e-6
TI / CI CI CI TI CI CI CI CI

Table 7: Hyper-parameters of Table 1 in the main paper for ImageNet subset.

ER iCaRL TinyER BiC GDumb DER++ RM

Learning Level Task Task Batch Task Task Task Task
Model ResNet18 ResNet18 ResNet18 ResNet18 DenseNet100 ResNet18 DenseNet100
# Passes per Bundle 60 60 1 100 128 100 128
EM Size 2000 2000 500 2000 4500 500 4500
Batch Size 128 128 10 256 16 32 16
Learning Rate 2.0 2.0 0.1 0.1 0.05 0.03 0.05
Weight Decay 1e-5 1e-5 0 1e-4 1e-6 0 1e-6
TI / CI CI CI TI CI TI CI CI

Table 8: Hyper-parameters of Table 1 in the main paper for ImageNet-1000.

ER iCaRL TinyER BiC GDumb DER++ RM

Learning Level Task Task Batch Task Task Task Task
Model ResNet18 ResNet18 ResNet18 ResNet18 DenseNet100 ResNet18 DenseNet100
# Passes per Bundle 60 140 1 100 128 100 128
EM Size 20000 20000 20000 20000 20000 20000 20000
Batch Size 128 128 32 256 16 16 16
Learning Rate 2.0 2.0 0.1 0.1 0.05 0.03 0.05
Weight Decay 1e-5 1e-5 0 1e-4 1e-6 0 1e-6
TI / CI CI CI TI CI TI CI CI

A.3.3 HYPER-PARAMETERS

We follow hyper-parameters presented in the original works: we did not perform hyper-parameter
search for the baselines. Table 6, Table 7, and Table 8 present all the details on the hyper-parameters.

Although DER++ updates EM in batch-level and does not consider task boundary, for a larger dataset
than MNIST, the original paper chooses to takes multiple passes per bundle. So, we deem DER++
to be a task-level learning method as long as we use CIFAR-100 and Tiny ImageNet as its training
dataset. Here, TI and CI denote task-incremental learning and class-incremental learning, respectively.
TI is an easy and simplified scenario, where the task ID is given at both training and inference. In
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TI setting, the model can classify the input among the classes that belong to the provided task ID.
On the contrary, CI is the setting where the task ID is unknown during inference, which is a more
realistic case than TI.

A.3.4 DETAILED SPECIFICATION OF MACHINES

Our experiments are performed on machines with HW specification as presented in Table 9. These
machines are also used in measuring the impact on training speed with data swapping.

Table 9: Machine Specfication.

Machine Specs

CPU Intel(R) Xeon(R) Gold 6226 CPU @ 2.70 GHz × 2
GPU NVIDIA Geforce RTX 2080Ti (11 GB) × 4
RAM 128 GB, 2666 MHz
SSD Intel SSD D3 Series 480 GB
HDD Western Digital Ultrastar DC HC310 4 TB

A.4 ADDITIONAL RESULTS

A.4.1 DISTILLATION ANALYSIS

Effectiveness of features of iCaRL on CarM. We explore iCaRL by measuring accuracy for all
possible 32 combinations based on its algorithmic features, i.e., knowledge distillation (D), herding
(H), and nearest-mean-of-exemplars (N), along with our CarM-100 (F) or CarM-50 (P). In Figure 5,
we show eight combinations that are sufficient to support the three interesting findings. First, data
swapping without distillation (orange bars) outperforms the other combinations including pure iCaRL
(blue and green bars). Second, for combinations with distillation, applying data swapping does not
deliver great accuracy (D/H/N vs the other two in blue bars). Finally, data swapping does not seem
to necessitate sophisticated algorithmic features (F&H vs D/H/N), inferring a model simplification
potential for episodic memory.
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Figure 5: Accuracy of eight combinations driven by algorithmic features in iCaRL and CarM.

Knowledge distillation on CarM. Figure 6 show accuracy for CIFAR subset while varying α values
in α× soft label loss+ (1− α)× hard label loss for iCaRL, BiC, and DER++. We can make the
same conclusions as discussed in the ‘Knowledge distillation on CarM’ paragraph of Section 4.1.
Below, we describe how each distillation-based method can be transformed into the presented model
for loss calculation.

The original loss function of iCaRL (Rebuffi et al., 2017) is defined as:

Licarl(xi) = −[
t∑

y=s

{δy=yi log gy(xi) + δy 6=yi log(1− gy(xi))}

+

s−1∑
y=1

{qyi log gy(xi) + (1− qyi ) log(1− gy(xi))}]

(3)
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where qyi is the output of the old model, gy(xi) is the output of the current model, {1, 2, .., s− 1} is
a set of old classes and {s, ..., t} is the set of new classes.

For distillation, it uses a soft target from the previous model for old classes of all current training
set. As a result, training the current model heavily relies on the performance of the previous model.
Especially, when data that belongs to old classes replays, since the target of loss is only soft output
from the previous model, it is likely that the similar soft output from the old model is repeatedly
distilled without the correct hard label. Due to such aggressive distillation, iCaRL cannot take an
advantage of CarM of data swapping, which enables to replay and train abundant old data, hindering
positive decision boundary corrections. That is, the wrongly predicted samples from the old model
will be predicted wrongly also in the future even if they are replayed several times by CarM. BiC
and DER++ use distillation loss, however, unlike iCaRL, they provide a loss term of which target
for old classes is ground truth, the correct hard label. As result, BiC and DER++ could get higher
accuracies with CarM. To evaluate Figure 3 and Figure 6, we modified the loss function of iCaRL,
adding another binary cross entropy that uses ground truth as a target, which is referred to hard label
loss, as following:

Lmodified(xi) = αLicarl(xi)− (1− α)
t∑

y=1

{δy=yi log gy(xi) + δy 6=yi log(1− gy(xi))} (4)

BiC and DER++ already have its own hard label loss, we did not modify loss function. Note that
when α is set to 1.0 in BiC, since it is unable to train any new data, which is unrealistic situation, we
excluded the result of α = 1.0.

Figure 6: Accuracy of distillation-based methods with CarM-50 on CIFAR subset while varying
coefficient (α) values on the distillation loss in calculating training loss.

Table 10: Comparison of accuracy for data swapping policies for CarM-50 on CIFAR subset.

Method ER iCaRL TinyER BiC GDumb DER++ RM

Random 54.08±0.50 48.27±0.51 59.64±1.91 62.53±0.25 52.39±1.80 89.82±0.11 66.91±0.81
Entropy 54.00±0.49 48.39±0.41 59.99±2.12 62.40±0.40 52.64±1.64 90.05±0.38 66.66±0.78
Dynamic 54.16±0.37 48.39±0.57 59.62±0.93 62.32±0.24 52.92±2.09 89.92±0.22 66.61±0.73

A.4.2 INCREMENTAL ACCURACY OF TABLE 1 IN THE MAIN PAPER

Incremental accuracy. We here report incremental accuracy as an additional performance metric.
Incremental accuracy is a set of average accuracy over classes observed so far after training each task.

Figure 11 and Figure 11 show the incremental accuracy of Table 1 in the main paper. We also
mark the accuracy from original paper of iCaRL on CIFAR-100, iCaRL on ImageNet-100, BiC on
ImageNet-100 and DER++ on Tiny-ImageNet. In general, the more tasks (classes) come, the larger
gap of accuracy between original and CarM. This implies that running on CarM could better mitigate
the catastrophic forgetting for long-term training.
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A.4.3 ABLATION STUDY ON ER, ICARL, AND GDUMB

We report the results for an ablation study on ER, iCaRL, and GDumb, which were not presented
in the main paper. Figure 7 shows accuracy over varying EM sizes, Figure 8 shows accuracy over
varying swapping ratios, Figure 9 shows accuracy over varying storage capacity, and Figure 10
shows accuracy with learning 50 tasks. In general, we found the similar observations as discussed in
Section 4.2.
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Figure 7: Accuracy over varying EM sizes.
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ing data swapping ratios.
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A.4.4 RESULTS OF RM WITH DATA AUGMENTATION

We implement RM with data augmentation and show the results in Table 11 using CIFAR-10 dataset.
Both CarM and CarM-50 improves accuracy significantly over the baseline method.

Table 11: Accuracy improvement of using CarM w.r.t. RM with Data Augmentation on CIFAR-10.

Original CarM-50 CarM-100

Final Accuracy 68.07±1.57 84.07±0.83 84.85±0.42
Final Forgetting 15.09±1.72 5.12±0.89 4.36±0.95

A.4.5 CARM ON EMBEDDED DEVICE

We evaluate CarM using a NVIDIA Jetson TX2 to show its efficacy when running on a representative
embedded AI computing device. Table 12 shows all baselines with CarM-50 and CarM-100 on
CIFAR subset. We see accuracy improvements with CarM as similarly observed in the main paper.

A.5 DISCUSSIONS

We have taken early steps towards leveraging both memory and storage to overcome the forgetting
problem in CL while preserving the same training efficiency, which we find to be effective for the
hardware we tested. However, as the characteristics between the memory and storage may vary
significantly, the storage access latency may still become a significant bottleneck unless carefully
exploited. Ideally, given the specs of a hardware configuration (e.g., computation, memory, and
available I/O bandwidth), the swapping mechanism could decide an optimal policy to increase the
memory capacity without adding additional latency. We leave this as an area of future work, which
would make CarM more robust and resilient to variations in different hardware settings.
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Figure 11: Incremental accuracy on CIFAR subset.
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Figure 12: Incremental accuracy on ImageNet subset.

21



Under review as a conference paper at ICLR 2022

Table 12: CarM using a NVIDIA Jetson TX2

Method ER iCaRL TinyER BiC GDumb DER++ RM

Original 33.87 46.54 55.18 49.44 47.41 71.79 51.87
CarM-50 53.80 48.29 58.45 62.30 52.68 89.98 67.11
CarM-100 55.38 49.11 59.79 63.21 52.91 90.28 67.24
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