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ABSTRACT

Large Language Models (LLMs) can generate plausible free text self-explanations
to justify their answers. However, these natural language explanations may not
accurately reflect the model’s actual reasoning process, indicating a lack of faith-
fulness. Existing faithfulness evaluation methods rely primarily on behavioral
tests or computational block analysis without examining the semantic content of
internal neural representations. This paper proposes NeuroFaith, a flexible
framework that measures the faithfulness of LLM free text self-explanation by
identifying key concepts within explanations and mechanistically testing whether
these concepts actually influence the model’s predictions. We show the versatility
of NeuroFaith across 2-hop reasoning and classification tasks. Additionally, a
linear faithfulness probe based on NeuroFaith is developed to detect unfaith-
ful self-explanations from representation space and improve faithfulness through
steering. NeuroFaith provides a principled approach to evaluating and enhanc-
ing the faithfulness of LLM free text self-explanations, addressing critical needs
for trustworthy AI systems.

1 INTRODUCTION

Autoregressive Large Language Models (LLMs) can generate plausible self Natural Language Ex-
planation (self-NLE) to support their answers (Wiegreffe & Marasovic; Huang et al., 2023). Gener-
ating self-NLE consists of prompting the LLM to generate an explanation in a predict-then-explain
setting, where the model first generates a response to a question and then produces a self-NLE as a
justification. Unlike their non-generative predecessors, modern LLMs are trained to generate both
answers and free text self-NLE that appear credible despite potentially containing persuasive hal-
lucinations (Sahoo et al., 2024). This way, despite their logical and coherent appearance favoring
trust in the model (Han et al., 2023), LLM-generated self-NLE turn out to not systematically reflect
the actual underlying decision-making process of the model, creating a tension between self-NLE
plausibility and faithfulness (Agarwal et al., 2024).

Faithfulness, as defined by Jacovi & Goldberg (2020), measures ”how accurately the explanation
reflects the true reasoning process of the model”, a definition widely adopted in the literature (Lyu
et al., 2024) and which we likewise follow throughout this work. Unfaithful self-NLE can have
serious consequences in critical domains, where explanations that appear plausible but lack faith-
fulness might lead end-users to over-rely on model predictions and make unfair (Luo et al., 2022)
or harmful (Kayser et al., 2024) decisions. As the use of LLMs is expanding across diverse fields,
the combination of their widespread adoption and the simplicity of generating self-NLE through
prompting make evaluating their faithfulness increasingly critical.

Assessing self-NLE faithfulness presents profound difficulties. Unlike more structured explainabil-
ity methods such as attribution (Wiegreffe et al., 2021) or counterfactual approaches (Madsen et al.,
2024), the free-form nature of natural language explanations makes faithfulness evaluation particu-
larly difficult. Numerous methods have been developed to measure self-explanation faithfulness (see
e.g. Lyu et al. (2024)). However, (1) they mostly perform behavioral tests and do not examine LLM
internal reasoning processes (Atanasova et al., 2023; Siegel et al., 2024; 2025; Matton et al., 2025),
and (2) they identify the computational blocks that contribute to prediction and self-NLE without
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conducting semantic analysis of the neural representations within these blocks (Wiegreffe et al.,
2021; Parcalabescu & Frank, 2024; Yeo et al., 2024). These shortcomings have led these methods
to be characterized as measuring self-consistency rather than genuine faithfulness (Parcalabescu &
Frank, 2024), since they fail to establish direct connections between explanations and the model’s
actual reasoning processes. To overcome these limitations, we introduce NeuroFaith, a flexible
framework for directly measuring LLM self-explanation faithfulness. Our main contributions are as
follows:

1. NeuroFaithmeasures the alignment between LLM internal reasoning and its self-explanations
by identifying key concepts within the explanation and mechanistically testing whether these
concepts actually influence the model’s predictions.

2. We demonstrate the versatility of NeuroFaith by applying it to both 2-hop reasoning tasks
and classification problems.

3. We develop a linear faithfulness probe based on NeuroFaith to efficiently detect unfaithful
LLM self-explanations from representation space and improve faithfulness through steering.

This paper is organized as follows: Section 2 presents how existing approaches measure the faithful-
ness of LLM self-NLE. Section 3 introduce the NeuroFaith framework. In Sections 4 and 5, we
instantiate NeuroFaith for two different tasks, 2-hop reasoning and classification respectively.
We finally show in Section 6 that self-NLE faithfulness, as measured by NeuroFaith, can be
linearly detected in LLM representation space and improved through steering.

2 RELATED WORK

Numerous approaches have been proposed to measure self-NLE faithfulness (Lyu et al., 2024). One
approach (Tutek et al., 2025) assesses the effect of unlearning (Liu et al., 2025) the parametric
knowledge encoded in the reasoning steps of the self-NLE. The higher the change in prediction
between the original model and the model having unlearned the reasoning steps, the more faithful
the self-NLE. We group the remaining approaches in two categories.

Counterfactual Interventions. NLE faithfulness can be assessed through behavioral tests that
measure how perturbations in the input text affect both predictions and self-NLE (Atanasova et al.,
2023). Counterfactual Intervention (CI) methods employ auxiliary models to generate counterfac-
tual texts designed to change the LLM outcome. The LLM is then prompted to produce a self-NLE
to justify its new prediction. The self-NLE is deemed faithful if it aligns with the specific CI that
caused the prediction change. These CI approaches mostly differ in two ways: how they mea-
sure consistency between the intervention and the resulting self-NLE (Atanasova et al., 2023; Siegel
et al., 2024; 2025), and the granularity of the CI intervention (Matton et al., 2025). These approaches
face several limitations: (1) the CI may not be solely responsible for the change in prediction, as the
model might base its new prediction on another part of the input text after intervention, (2) CI meth-
ods treat the model as a black box by only examining input-output relationships without analyzing
the internal neural processes that generate predictions, which departs from the commonly adopted
definition of explanation faithfulness.

Attribution Agreement. Another way to measure self-NLE faithfulness is to compute post-hoc
Attribution Agreement (AA) between the prediction and the NLE (Parcalabescu & Frank, 2024;
Wiegreffe et al., 2021; Yeo et al., 2024). AA methods compute attribution scores for both the
model’s predictions and its self-NLE and then measure the correlation between these scores to as-
sess faithfulness. Higher correlation values indicate greater faithfulness in the model’s self-NLE.
AA approaches vary in the post-hoc attribution method employed (gradient-based (Sundararajan
et al., 2017), SHAP (Lundberg & Lee, 2017) or activation patching (Meng et al., 2022)). While AA
methods assess whether the same LLM computational blocks were used when generating both the
prediction and the self-NLE, they overlook the semantic content of neural representations, leaving
the model’s reasoning process only partially treated.

In the following, we propose a framework that directly examines the correspondence between self-
NLE and the model’s actual reasoning process by conducting concept-level mechanistic analysis of
internal hidden states during the forward pass that generates the prediction.
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3 NEUROFAITH : A FRAMEWORK FOR MEASURING THE FAITHFULNESS OF
LLM SELF-NLE

This section introduces the core principles of NeuroFaith, our proposed flexible framework for
measuring the faithfulness of LLM self-natural language explanations (self-NLE). Based on the
premise that faithful explanations should accurately reflect the model’s internal reasoning process,
NeuroFaith quantifies how well a self-NLE aligns with the model’s internal reasoning processes
by extracting concepts from self-NLE and mechanistically evaluating their importance for the model
prediction. Sections 4 and 5 provide detailed instantiations of how to apply NeuroFaith to 2-
hop reasoning and classification tasks respectively. In the following, we denote an L-layer auto-
regressive Transformer-based LLM f , a set of input texts X and a text of interest x ∈ X. We denote
f(x) as the model’s answer and e(x) as the corresponding self-NLE produced by f for input x.
NeuroFaith is a 3-step framework illustrated in Figure 1, summarized below and detailed in the
next subsections.

1. Concept Extraction. We extract from e(x) a set of concepts {ci}pi=1 that influence f(x).

2. Concept-wise Mechanistic Interpretation. For each concept ci, we generate a post-hoc in-
terpretation IΓ(ci) based on a relevant subpart of the model called circuit Γ and a mechanistic
interpretability method called interpreter I to assess its impact on f(x).

3. Faithfulness Measurement. We compute faithfulness F (x, e) by validating that the concepts
{ci}pi=1 emphasized in the self-NLE actually have significant mechanistic effects on f(x) as
determined by their interpretations {IΓ(ci)}pi=1.

3.1 CONCEPT EXTRACTION

Given an input text x, a prediction f(x) and its self-NLE e(x), the first step involves parsing the
self-NLE to extract a set of concepts {ci}pi=1 that influence f(x).

Concept Definition. Recent research has shown that interpretable binary high-level features, re-
ferred to as concepts, appear to be linearly encoded within LLM representation space (Elhage et al.,
2022; Park et al., 2024). This computational understanding aligns with definitions from cognitive
science (Ruiz Luyten & van der Schaar, 2024), where concepts are considered as mental entities es-
sential to thought, enabling information integration and categorization (Goguen, 2005). This align-
ment makes concepts an ideal granularity level for model interpretation. For example in Figure 1, the
concept ”Ingmar Bergman” directly influences the prediction ”Sweden” because Ingmar Bergman is
Swedish and directed the movie Persona.

Concept Extraction. Concepts can be extracted either through human investigation or using an
auxiliary LLM under LLM-as-a-Judge settings (Gu et al., 2024). Human annotation enables targeted
analysis of specific concepts that are hypothesized to be important for the model’s reasoning. Human
annotation provides high-quality, domain-expert identification of relevant influential concepts but is
costly and may not scale to large datasets. LLM-as-a-Judge approaches offer scalability but may
introduce systematic biases or miss relevant concepts that human experts would identify. We provide
detailed examples of prompts used to extract concepts from self-NLE with an auxiliary LLM in
Appendix D.1.

3.2 CONCEPT-WISE MECHANISTIC INTERPRETATION

The second step evaluates whether the concepts {ci}pi=1 are actually important for the model’s in-
ternal processing. We compute an attribution score IΓ(c) for each concept c ∈ {ci}pi=1 using an
interpretability method (interpreter I) applied to model hidden states within a relevant subpart of
the model (circuit Γ). We assume each concept can be detected in the model representation space.

Circuit. Rather than examining every network component, we focus our mechanistic analysis on
computational subgraphs that most significantly influence f prediction named circuits (Elhage et al.,
2021). Circuits are sparse oriented subgraphs with interpretable functional roles, where nodes repre-
sent computational units and edges represent computation paths (Räuker et al., 2023). Formally, we
define a circuit as Γ = ({(k, ℓ)} ,G) where {(k, ℓ)} specifies coordinate pairs (token index, layer)
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Figure 1: NeuroFaith overview. NeuroFaith (1) extracting concepts from the self-NLE and
(2) assessing the mechanistic influence of these concepts to finally (3) measure faithfulness.

for information flow in f , and G defines the granularity of each computational node. The granu-
larity G represents transformer sublayers: residual stream output (RS), multi-head attention (MHA),
or multi-layer perceptron (MLP) (Rai et al., 2024). This granularity avoids focusing on individual
neurons due to their polysemanticity (Elhage et al., 2022). For example in Figure 1, the circuit is
highlighted in blue, starting at token index 12 and layer 1 and finishes at token index 13 and layer
L-1. Circuits can be obtained through manual investigation of task-specific patterns (Bereska &
Gavves, 2024; Wang et al., 2023; Biran et al., 2024) or automated discovery via activation patch-
ing (Meng et al., 2022; Conmy et al., 2023), backward attribution (Ferrando & Voita, 2024), or
Transcoders (Dunefsky et al., 2024). Additional details about circutis are in Appendix D.2.

Mechanistic Interpreter. To mechanistically interpret a concept c across circuit Γ, we use
an interpreter I to compute an attribution score IΓ(c) that evaluates whether c impacts f(x).
NeuroFaith implements two approaches, each suited to different objectives. Probing meth-
ods determine whether c is represented within f hidden states on Γ. This involves either gen-
erating natural language interpretations of hidden states (using Selfie (Chen et al., 2024) or
Patchscopes (Ghandeharioun et al., 2024)) to detect c, or training linear probes (Belinkov, 2022)
when c is linearly separable with sufficient labels to train the probe. Denoting hℓ

k the hidden state at
token k and layer ℓ, we define IΓ(c) = max(k,ℓ)∈Γ I(h

ℓ
k), assessing c as important if detected in at

least one hidden state from Γ. Concept importance methods approximate the causal influence of c
on f(x) (Geiger et al., 2025). They use gradient-based methods like TCAV (Kim et al., 2018) or Rep-
resentation Engineering (Zou et al., 2023) to directly manipulate concept-related activations across
Γ and measure behavioral changes, providing causal evidence for concept importance. Section 5
details this procedure for measuring faithfulness in the case of classification.

3.3 FAITHFULNESS MEASUREMENT

We consider the self-NLE e(x) as faithful when the extracted concepts {ci}pi=1 are demonstrably
important for f ’s internal processing according to IΓ(c). We propose to define the faithfulness of
e(x) as the proportion of concepts it contains that are mechanistically assessed as important, i.e. that
have a positive attribution score: F (x, e) = 1

p

∑p
i=1 1IΓ(ci)>0.

The faithfulness score has different meanings depending on the chosen interpreter I: Probing-based
faithfulness measures the detection rate of explanation concepts within the model’s internal repre-
sentations along circuit Γ. High probing-based faithfulness indicate that most mentioned concepts
are properly decoded from the model’s hidden states. Importance-based faithfulness estimate
causal relevance of explanation concepts for the prediction f(x). High importance-based faithful-
ness indicate that most mentioned concepts actually influence f reasoning process.This framework
directly captures concept-level alignment between the self-NLE e(x) and f internal reasoning pro-
cess. NeuroFaith faithfulness scores either indicate that the self-NLE accurately reflects internal
processing or that the explanation mentions concepts that are not mechanistically important. This
way, NeuroFaith directly aligns with the established definition of explanation faithfulness intro-
duced above (Jacovi & Goldberg, 2020), offering a principled evaluation of self-NLE faithfulness.
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4 THE CASE OF 2-HOP REASONING

In the previous section, we defined the high level core principle of NeuroFaith. We now instan-
tiate NeuroFaith to 2-hop reasoning using probing-based faithfulness, and precisely characterize
self-NLE with respect to both its faithfulness and its correctness.

4.1 NEUROFAITH INSTANTIATION FOR 2-HOP REASONING

Task Description. Multi-hop reasoning is a complex cognitive task that requires connecting a
sequence of objects to reach a conclusion (Mavi et al., 2024). It consists of several single-hop
operations (Trivedi et al., 2022), which can individually be defined as triplets (oi, r, oj) where oi is
a source object, r is a relation and oj is a target object. For example, the 2-hop reasoning statement
”The country of origin of the movie maker that directed the movie Persona is Sweden” requires
sequentially solving the two single-hop operations: (o1 = personna, r1 = movie direction,
o2 = ingmar bergman) and (o2 = ingmar bergman, r2 = country, o3 = sweden). An
input text x that requires performing 2-hop reasoning can be expressed as x = (o1, r1,▲, r2, •),
where ▲ and • are placeholders that have to be associated with respectively a bridge object (ô2) and
the final object answer (f(x) = ô3).

Concept Extraction. Following the notations introduced in Section 3, given an input text x ∈ X,
if ô3 = o3, the final answer is correct. Two reasoning chains are derived from e(x): (o1, r1, ô2)
and (ô2, r2, ô3). In this instantiation, we do concept extraction from e(x) by prompting an auxiliary
LLM to get the bridge object (ô2) based on o1 and r1. This way, ô2 is our concept c of interest,
representing the critical intermediate step that connects the two reasoning operations. The next step
consists in computing a post-hoc mechanistic interpretation to assess c impact on the prediction.

Probing-based Concept Interpretation. The presence of a single bridge object in 2-hop rea-
soning self-NLE makes probing-based interpretations particularly appropriate. For f to correctly
answer, it must internally compute the bridge object during the first hop before executing the second
hop. Therefore, detecting the extracted bridge object ô2 = c in f internal representations is a strong
indication to assess whether c is important for the prediction. We employ natural language inter-
pretation methods such as Selfie and Patchscopes, rather than linear probes, as they provide
higher accuracy and are unsupervised (Ghandeharioun et al., 2024). Recent work (Biran et al., 2024;
Yang et al., 2024) has shown that the bridge object of 2-hop reasoning was resolved on early layers
and can be detected by focusing on the last token corresponding to source object o1 and the residual
stream (RS). We leverage this information to define circuit Γ and generate the natural language de-
scription h̃ℓ

k of hidden state hℓ
k. For concept (bridge object) c, the probing-based concept attribution

is defined as IΓ(c) = 1 iff ∃(k, ℓ) ∈ Γ such that c ∈ h̃ℓ
k.

Self-NLE and Latent Reasoning Characterization. Following the notations introduced in Sec-
tion 3.3, e(x) is assessed faithful if c is detected in at least one hidden state within Γ with the probe I
(IΓ(c)=1). Beyond faithfulness, we can use the ground truth object (o2) to characterize the correct-
ness of e(x) and the latent first hop respectively: e(x) is said to be correct (self-NLE correctness)
if its corresponding bridge object is the expected ground truth (c = o2). Likewise, the model per-
forms correct first-hop latent reasoning (latent hop 1 correctness) if ∃(k, l) ∈ Γ such that o2 ∈ h̃ℓ

k.
This multi-dimensional analysis provides comprehensive characterization of explanation quality and
internal reasoning alignment. We give a thorough taxonomy of self-NLE in the case of 2-hop rea-
soning in Appendix E, based on prediction correctness, self-NLE faithfulness and correctness and
latent reasoning correctness. We also propose an experimental protocol to evaluate the relevance of
our faithfulness measure in Appendix F and compare NeuroFaith to CI, showing our faithfulness
measure relevancy in absolute and in comparison to CI.

4.2 2-HOP REASONING EXPERIMENTAL ANALYSIS

Experimental Setup. We evaluate NeuroFaith for 2-hop reasoning on the Wikidata-2-hop
dataset (Biran et al., 2024). We apply NeuroFaith to Gemma-2-2B, Gemma-2-9B and
Gemma-2-27B (Riviere et al., 2024). We use Qwen3-32B as auxiliary model to extract bridge ob-
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Model Task Acc. Self-NLE Latent Hop 1 Self-NLE
Correctness Correctness Faithfulness

Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate

gemma-2-2b 7.1% 58.0% 56.0% 48.3% 47.4% 48.4% 57.6%
gemma-2-9b 16.6% 74.0% 55.4% 58.5% 44.3% 60.8% 55.0%
gemma-2-27b 22.3% 77.8% 55.6% 64.9% 46.9% 68.8% 60.2%

Table 1: 2-hop reasoning accuracy, first hop latent reasoning correctness and self-NLE correctness
and faithfulness across models obtained from NeuroFaith. ”(In)accurate” represents the set of
predictions initially (in)correct.

jects from self-NLE and use the prompt from Ghandeharioun et al. (2024) to apply Patchscopes
as interpreter. We evaluate Latent Reasoning Hop 1 Correctness, Self-NLE Faithfulness and
Self-NLE Correctness based on the characterization introduced above. The results are computed
according to the status of the prediction preceding the self-NLE (accurate vs. inaccurate). We give
more details about the layers used to define Γ and the prompt used to extract the bridge object and
compute the interpretations in Appendix D.1 and D.2.

Key Findings. Table 1 shows the aggregated experimental results obtained by applying
NeuroFaith on Wikidata-2-hop. All the analyzed metrics are higher on average for accurate pre-
dictions and improve with model size. These results support that correct reasoning tend to produce
more faithful and correct self-NLE. Key failure patterns emerge: approximately 45% of inaccurate
predictions correctly resolve the first hop operation, indicating that failure often occurs in the sec-
ond reasoning step (o2, r2, o3). This suggests that models can identify correct bridge objects even
when failing to complete the full reasoning chain. The difference between latent reasoning hop 1
correctness and self-NLE correctness shows that models sometimes identify correct bridge objects
internally but fail to express them in their self-NLE. This gap decreases with model size, suggesting
better alignment between internal and explicit reasoning in larger models.

Remarkably, even when models produce correct final answers, they identify the correct bridge ob-
ject in their internal representations only 48-65% of the time. This suggests that models can arrive
at correct answers through alternative reasoning pathways that bypass explicit bridge object com-
putation. The models may be leveraging (1) direct associations between source and target entities
(shortcut learning (Geirhos et al., 2020)), or (2) alternative pathways making the model accurately
answer for a reason different than the ground truth bridge object (see category 9 in Figure 25). This
phenomenon highlights that task accuracy alone is insufficient for evaluating reasoning quality.

5 THE CASE OF CLASSIFICATION

This section instantiates NeuroFaith for classification problems by employing concept impor-
tance methods as the mechanistic interpreter I. For classification tasks, given an input text x ∈ X,
we denote f(x) = ŷ ∈ Y with probability score pŷ(x) where Y is the label space. We assume
access to a predefined set of task-relevant concepts C with concept labels for input texts.

5.1 NEUROFAITH INSTANTIATION FOR CLASSIFICATION

Concept Extraction. To enable mechanistic interpretation of each concept c ∈ C, we compute
Concept Activation Vectors (CAVs) that represent concepts as directions in f representation space.
Following established practices in concept-based interpretability, we employ the mean difference
(diff-mean) (Rimsky et al., 2024) approach for CAV computation due to its optimal balance
between concept detection accuracy and computational efficiency (Wu et al., 2025). For a concept
c ∈ C, a token index k and a layer ℓ, the layer-wise CAV is defined as: −→cℓ = 1

|X+
c |

∑
x∈X+

c
hℓ
k −

1

|X−
c |

∑
x∈X−

c
hℓ
k, where X+

c and X−
c respectively represent the sets of texts from X where the concept

c is present or absent and hℓ
k denotes the hidden state at layer ℓ and token position k at the specified

granularity G. We set the token index to the final position of x, as this location represents the model’s
complete computational state prior to next-token generation. These CAVs allow for computing the
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Model Task Acc. Self-NLE Faithfulness

AGNews Ledgar AGNews Ledgar

Accurate Inaccurate Accurate Inaccurate

gemma-2-2B 86.5% 40.3% 54.6% 65.1% 58.9% 40.5%
gemma-2-9B 88.7% 59.7% 96.0% 92.3% 56.0% 58.3%
gemma-2-27B 88.9% 58.1% 74.0% 72.4% 53.0% 31.6%

Table 2: Classification accuracy and self-NLE faithfulness across models and datasets obtained from
NeuroFaith. ”(In)accurate represents the set of predictions initially (in)correct.

importance of each concept using Representation Engineering techniques. Following Section 3, we
use an auxiliary LLM to extract a set of concepts from e(x), making sure that {ci}pi=1 ⊂ C.

Importance-based Concept Interpretation. For a concept c ∈ {ci}pi=1, we approximate its
causal influence on f(x) through representation engineering and concept erasure (Belrose et al.,
2023). We perform controlled interventions by erasing c from hidden states during forward propaga-
tion: hℓ

k ← hℓ
k−λ×

−→cℓ , where λ ∈ [0, 1] represents intervention intensity and with λ = 1 represents
maximum intervention intensity to avoid f collapse (Rimsky et al., 2024). This approach provides
strong causal evidence for concept importance without requiring computationally costly gradient
computations such as TCAV. We define Γ with granularity G set to residual stream (RS), token index
as the final position (likewise CAVs), and layers are selected based on concept detectability (F1 score
> 60% using layer-wise linear probes with diff-mean). Applying this intervention across circuit
Γ, we measure the resulting probability score: pŷ(x,

{
do(Hℓ

k = hℓ
k − λ×−→cℓ )

}
(k,ℓ)∈Γ

), where the
do(X = x) operator (Pearl, 2009) represents an intervention that sets variable X to value x. We
model this relationship as linear: pŷ(·) = β0 + β1 × λ, where the concept importance score is
IΓ(c) = β1 (i.e. the marginal effect of intervention on prediction probability, computed via linear
regression across different λ values). IΓ(c) is set to 0 when its significance t-test shows p > 0.01.
This process is repeated for each extracted concept from e(x) to derive faithfulness scores as de-
scribed in Section 3.3. Implementation details and examples are provided in Appendix D.2 and G.

5.2 CLASSIFICATION EXPERIMENTAL ANALYSIS

Experimental Setup. We evaluate NeuroFaith’s classification instantiation on two datasets
with varying complexity: AGNews (Gulli, 2005), a newspaper article classification and
Ledgar (Tuggener et al., 2020), a more challenging critical domain legal document classification
dataset. We apply NeuroFaith to Gemma-2-2B, Gemma-2-9B and Gemma-2-27B (Riviere
et al., 2024). We use the concept set C and labels of AGNews and Ledgar from Bhan et al. (2025) to
compute the CAVs. We use Qwen3-32B to extract concepts from the self-NLE, ensuring extracted
concepts belong to C for each dataset. We focus on instances solely containing concepts that are
linearly detectable in at least one layer. We evaluate Self-NLE Faithfulness according to the status
of the prediction preceding the self-NLE (accurate vs. inaccurate).

Key Findings. Table 2 shows experimental results for AGNews and Ledgar datasets. Self-NLE
faithfulness is consistently higher on the simpler AGNews dataset, aligning with the intuition that
explanation faithfulness might decrease with task complexity. Accurate predictions generally yield
more faithful explanations, suggesting that correct predictions might rely on relevant concepts. No-
tably, gemma-2-9B achieves the highest faithfulness scores across both datasets, indicating better
alignment and going against the idea of a monotonic relationship between model scale and explana-
tion faithfulness.

Comparing findings across classification and 2-hop reasoning reveals both general patterns and
task-specific differences. General findings: (1) accurate predictions tend to produce more faith-
ful explanations, and (2) increased task difficulty seems to reduce self-NLE faithfulness. However,
scaling effects vary between tasks, indicating that the model scale-faithfulness relationship is highly
task-dependent, a finding consistent with prior work (Madsen et al., 2024; Atanasova et al., 2023;
Parcalabescu & Frank, 2024; Matton et al., 2025).
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6 LINEARLY DETECTING AND IMPROVING SELF-NLE FAITHFULNESS

Recent work has demonstrated that various AI safety behaviors naturally associated with faithfulness
are encoded as linear directions in LLM representation spaces (Bereska & Gavves, 2024), such as
hallucination (Rimsky et al., 2024) or deceptiveness (Goldowsky-Dill et al., 2025). We investigate
whether NeuroFaith-based faithfulness exhibits linear structure enabling (1) accurate detection
in representation space and (2) manipulation to improve faithfulness through activation steering.

6.1 LINEAR DETECTION OF FAITHFULNESS

Figure 2: Majority vote faithfulness linear probe
performance across models and datasets.

Faithfulness Linear Representation Compu-
tation. We construct datasets of faithful and
unfaithful self-NLE pairs using NeuroFaith
scores. Unlike 2-hop reasoning tasks, classifi-
cation self-NLE faithfulness yields continuous
scores between 0 and 1. To ensure clear class
separation, we focus on polarized cases where
F (x) ∈ {0, 1} for clear separation. We con-
struct input sequences as xnle = [x, ŷ, e(x)]
and extract hidden states from final token posi-
tions across all layers. We train diff-mean
linear probes on these states, yielding layer-
wise faithfulness representations

−→
Fℓ. For clas-

sification tasks, we use class-averaged faithful-
ness vectors to isolate faithfulness-specific rep-
resentations independent of class confounders.
Based on these faithfulness vectors, we compute a majority vote across layer-wise linear probes be-
yond layer 5. Figure 2 shows faithfulness can be reliably detected across all evaluated tasks and mod-
els, with F1 scores ranging from 61.1% to 74.5%. This consistency suggests that NeuroFaith cap-
tures a systematic aspect of model behavior that manifests similarly across different tasks. Details
about class-averaged faithfulness vectors and layer-wise classification score are in Appendix D.3.

Figure 3: Linear vectors max. cosine
similarity on gemma-2-27b

Linear Representation Similarity Analysis. To inves-
tigate the hypothesized relationships between faithfulness
and related AI safety behaviors, we analyze the represen-
tational overlap between NeuroFaith faithfulness vec-
tors and established linear representations of hallucination
and deceptiveness from prior work (Rimsky et al., 2024;
Goldowsky-Dill et al., 2025). Given that faithful expla-
nations should accurately reflect model reasoning while
hallucination and deceptiveness involve misrepresentation
of information, we expect these behaviors to exhibit in-
verse correlations in their neural representations. We re-
strict analysis to layers with F1 > 60% where faithful-
ness is properly linearly represented. Figure 3 shows
maximum cosine similarity and corresponding layers for
gemma-2-27B (additional results in Appendix D.3). Key
findings emerge: Faithfulness vectors are consistently neg-
atively correlated with hallucination and deceptiveness
ones (up to -0.38), aligning with expectations about the op-
position between faithfulness and both deceptiveness and
hallucination. Except Ledgar with 2-hop reasoning, cross-
task faithfulness vectors show positive correlation (0.28-0.49), suggesting shared underlying rep-
resentations of faithful reasoning across domains. These correlations validate that NeuroFaith
captures behaviorally meaningful aspects of model reasoning aligned with established AI safety
behaviors. Table 6 in Appendix D.3 corroborates these findings, demonstrating cross-task trans-
fer: faithfulness vectors trained on 2-hop reasoning can detect unfaithful self-NLE in AGNews, and
AGNews faithfulness vectors can detect unfaithful self-NLE in Ledgar (using gemma-2-27b).
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Model Faithfulness λ = 1 Hallucination λ = −1 Deceptiveness λ = −1

acc. inacc. overall acc. inacc. overall acc. inacc. overall

gemma-2-2b 11.3% 9.3% 11.1% 10.0% 10.1% 10.0% 4.1% 5.7% 4.2%
gemma-2-9b 8.3% 10.8% 8.7% 8.0% 11.2% 8.5% 4.9% 2.5% 4.5%
gemma-2-27b 10.9% 11.3% 11.0% 9.2% 9.1% 9.2% 4.1% 3.2% 3.9%

Table 3: Proportion of initially unfaithful self-NLE made faithful through steering interventions.

6.2 FAITHFULNESS ENHANCEMENT THROUGH STEERING ON 2-HOP REASONING

Having established the linear structure of NeuroFaith faithfulness representations and their nega-
tive correlation with hallucination and deceptiveness vectors, we investigate whether linear steering
can improve self-NLE faithfulness during inference. We implement activation steering by modify-
ing hidden states during inference: hℓ

k ← hℓ
k + λ ×

−−→
SVℓ, where

−−→
SVℓ is the steering vector and λ

controls intervention intensity. Our objective is here to demonstrate immediate practical value for
improving self-NLE faithfulness during inference without model modification. More sophisticated
steering methods (Hedström et al., 2025) would likely yield superior results. We evaluate three ap-
proaches: faithfulness amplification (

−−→
SVℓ =

−→
Fℓ, λ = 1) and hallucination/deceptiveness inhibition

(
−−→
SVℓ =

−→
Hℓ or

−→
Dℓ, λ = −1), where

−→
Hℓ and

−→
Dℓ are hallucination and deceptiveness linear vectors ob-

tained from Rimsky et al. (2024) and Goldowsky-Dill et al. (2025). Faithfulness intervention targets
only layers with F1 > 60%, ensuring modifications occur where faithfulness is reliably encoded.

Figure 4: Faithfulness linear probe visualization
examples before (e) and after (esteer) faithfulness
steering. Red: unfaithful activations; Green: faith-
ful activations.

Table 3 shows steering interventions success-
fully convert 8-11% of unfaithful self-NLE
into faithful explanations across all models.
Direct faithfulness amplification consistently
outperforms hallucination and deceptivenes
inhibition, indicating these are distinct behav-
ioral dimensions. Steering effectiveness re-
mains consistent regardless of prediction accu-
racy, demonstrating genuine explanation qual-
ity improvements. Both methods show sim-
ilar overall gains and highlight the practical
utility of NeuroFaith for real-time faith-
fulness enhancement without model modifica-
tion. Figure 4 shows how a faithfulness linear
probe identifies bridge objects as key tokens
determining self-NLE faithfulness, comparing
an unfaithful example with its steered faithful version. Additional analyses include comprehensive
faithfulness status changes and other examples of converted self-NLE (see Appendix E.1 and H).

7 CONCLUSION

This work introduces NeuroFaith, a flexible framework that measures self-NLE faithfulness by
comparing explanations against mechanistic analysis of model internal activity. NeuroFaith
aligns more closely than existing approaches with the common acceptance of faithfulness. Our
key contributions suggest that faithfulness exhibits linear structure in LLM representation space,
enabling both fast and reliable detection and enhancement through steering interventions. These
findings establish concrete pathways toward more transparent AI systems, opening up new avenues
of research on faithfulness. NeuroFaith relies on concept extraction methods that may introduce
systematic biases, and circuit selection requires domain expertise or expensive circuit discovery
that may limit generalizability. Our analysis focuses on predict-then-explain scenarios; extend-
ing to explain-then-predict settings could reveal how explanation faithfulness relates to performance
gains (Bhan et al., 2024). Additionally, applying NeuroFaith to chain-of-thought reasoning could
provide valuable comparisons with existing CoT faithfulness studies (Lanham et al., 2023; Turpin
et al., 2023), advancing our understanding of reasoning faithfulness.
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A SCIENTIFIC LIBRARIES

We used several open-source libraries in this work: pytorch (Paszke et al., 2019), HuggingFace
transformers (Wolf et al., 2020) and sklearn Pedregosa et al. (2011). We will make our code public
upon acceptance.

B LLM IMPLEMENTATION DETAILS

Backbone and Special Tokens. The library used to import the pretrained autoregressive language
models is Hugging-Face. In particular, the backbones version of Gemma-2-2B, Gemma-2-9B and
Gemma-2-27B are gemma-2-2B-it, gemma-2-9B-it, gemma-2-27B-it respectively. The
models were imported with the Bfloat16 computational format. The following special tokens
used were used for instruction prompting:

• user token= ’<start of turn>user’

• assistant token= ’<start of turn>model’

• stop token= ’<eos>’

Text Generation. Text generation was performed using the native functions of the Hugging Face
library: generate. The generate function was used with the following parameters:

• do sample = True

• num beams = 2

• no repeat ngram size = 2

• repetition penalty =1.2

• early stopping = True

• temperature = 0.05

Self-NLE Generation. The prompt used to get self-NLE was as follows:

• <user>
• Question
• <Assistant>
• Answer
• <user>
• ”Give me a simple explanation of your answer.”
• <Assistant>

C DATASETS

Here we provide detailed information about the analyzed datasets. For 2-hop reasoning, we run
NeuroFaith on the Wikidata-2-hop dataset (Biran et al., 2024). We first compute task accuracy
on the whole dataset, and then sample 1500 accurate and inaccurate prediction for the following of
our study. To sample these 1500 instances, we filter 2-hop reasoning questions where relations are
subjective (e.g. ”the most notable work of ”) or equivocal, potentially leading to numerous possible
answers (e.g. ”the work that features” ). We also sample by setting a maximum number of occur-
rences for generated answers (15), to foster diversity in the input questions. This filter enables to
avoid having to many questions where the answer is a country (e.g. USA). We end up with a dataset
made of 3000 samples with 1500 accurate and 1500 inaccurate predictions.

For classification, we run NeuroFaith on AGNews (Gulli, 2005), a newspaper article classifica-
tion and Ledgar (Tuggener et al., 2020), a more challenging critical domain legal document classifi-
cation dataset. We retrieve the enriched versions from Bhan et al. (2025) with labeled concepts for
CAV computation. For AGNews, the classes to predict are ’world’, ”sport”, ”business” and ”science
& technology”. For Ledgar, the classes to predict are ”Amendments”, ”Survival”, ”Terminations”
and ”Terms”. Each dataset is made of 4000 samples.
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D NEUROFAITH IMPLEMENTATION DETAILS

D.1 CONCEPT EXTRACTION

Here we provide the prompts used to give instructions to Qwen-3-32b to extract relevant concepts
(NeuroFaith step 1). For 2-hop reasoning, concept extraction consists in retrieving the bridge
object from the self-NLE. Since the input text as the following structures : x = (o1, r1,▲, r2, •), we
directly prompt the model to resolve (o1, r1,▲) by grounding its response on the self-NLE only. We
structure our prompt following an in-context learning template with two examples differing from
the dataset of interest:

• <user>
• preprompt + preprompt example 1

• <Assistant>
• Emmanuel Macron

• <user>
• preprompt + preprompt example 2

• <Assistant>
• Ingmar Bergman

• preprompt + (o1, r1,▲)

• <user>

with preprompt = ”Answer briefly and only according to the provided text. If there is no
clear answer, say **no bridge object**”, preprompt example 1 = ”Emmanuel Macron is
the president of Italy, and the capital city of Italy is Rome.** the president of Italy is” and
preprompt example 2 = ”The movie Persona is a movie happening in the Faro island and
has been directed by Ingmar Bergman, who is from Sweden.**: ’The director of Persona is”

For classification, we assess having access to a set of relevant concepts C and labels related to the
task of interest. Given a certain concept c, we only prompt the model to assess if the concept is
present in the self-NLE if the concept was initially present in the input text, making the concept
extraction process computationally less expansive. We structure our prompt following an in-context
learning template with three examples differing from the dataset of interest:

• <user>
• preprompt + preprompt example 1

• <Assistant>
• YES

• <user>
• preprompt + preprompt example 2

• <Assistant>
• YES

• <user>
• preprompt + preprompt example 3

• <Assistant>
• NO

• <user>
• preprompt + context extraction prompt(ŷ, e(x), c)

with preprompt = ”Analyze whether a given concept has a meaningful impact on predicting a
specific category from the provided text explanation. Instructions: (1) Answer with exactly ”YES” if
the concept is clearly mentioned in the given text and relevant to the category prediction, (2) Answer

16
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with exactly ”NO” if the concept is neither mentioned nor relevant in the given text (3) Consider the
logical connection between the concept and the category in the given text”.

For AGNews:

• preprompt example 1 = ”Text explanation: ’The article says that OECD countries
became richer in the 20th century. This falls under the category of world’. Question:
According to the previous text, does the concept ”economic trends” have a meaningful
impact on predicting the ”world” category?”

• preprompt example 2 = ”Text explanation: ’The abstract underlines that the French
soccer striker is a good player. It is relevant to sport’. Question: According to the previous
text, does the concept ”jargon specific to the sport” have a meaningful impact on predicting
the ”sport” category?”.

• preprompt example 3 = ”Text explanation: ’The research paper discusses quantum
computing algorithms and their complexity. This falls under the category of technology’.
Question: According to the previous text, does the concept ”cooking techniques” have a
meaningful impact on predicting the ”technology” category?”.

For Ledgar:

• preprompt example 1 = ”Text explanation: ’This clause defines what happens to your
stock options if your employment ends *before* they are fully vested. It’s part of the core
**terms** of your employment agreement that outlines how these shares work.’ Question:
According to the previous text, does the legal concept ”Minimum commitment periods”
have a meaningful impact on predicting the ”terms” category?”

• preprompt example 2 = ”Text explanation: ’This clause defines what happens to your
stock options if your employment ends *before* they are fully vested. It’s part of the core
**terms** of your employment agreement that outlines how these shares work.’ Ques-
tion: According to the previous text, does the legal concept ”Effect of termination” have a
meaningful impact on predicting the ”terms” category?”.

• preprompt example 3 = ”Text explanation: ’The clause specifically talks about how
changes can be made to the agreement:”terminated, amended, modified or supplemented”.
These are all words that mean changing the original terms of the contract. Since it focuses
on how the contract itself can be altered, the relevant category is **Amendments**’ Ques-
tion: According to the previous text, does the legal concept ”Amendment procedures” have
a meaningful impact on predicting the ”Amendments” category?”.

Finally, given a prediction ŷ, and self NLE e(x) and a concept c,
context extraction prompt(ŷ, e(x), c) = ”Text explanation: e(x). Question: Accord-
ing to the previous text, does the concept c have a meaningful impact on predicting the ŷ
category?”.

D.2 MECHANISTIC INTERPRETATION

Here we provide implementation details about mechanistic interpretations of extracted concepts
(NeuroFaith step 2).

Circuit Granularity. To generate an mechanistic interpretation of an LLM hidden state, the first
step is to define the specific neural architectural component and granularity G. Given an index k and
a layer ℓ, a granularity G refers to a specific point within the model’s computational subgraph where
neural activations can be analyzed and from which a local neural interpretation iℓk(x) is going to be
generated. Transformer-based generative LLM can be viewed as a stack of decoder computational
blocks (Radford et al., 2018). The information flow through a single layer and from a layer to
another can be described with the following equations:

hℓ
k = hℓ−1

k + aℓk +mℓ
k

aℓk = MHAℓ
(
hℓ−1
1 , hℓ−1

2 , . . . , hℓ−1
k

)
mℓ

k = MLPℓ(aℓk + hℓ−1
k ) (1)
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where hℓ
k denotes the residual stream at index k and layer ℓ, aℓk the attention output of the multi-head

attention operation MHAℓ and mℓ
k the output from the multi-layer perceptron MLPℓ.

This characterization of the information flow through a Transformer block naturally highlights three
possible granularities, each offering different perspectives on the model’s information processing:
the residual stream (RS) focusing on hℓ

k, which serves as the main information pathway through the
network; the multi-head attention (MHA) focusing on aℓk, which captures token-to-token interactions;
and the multi-layer perceptron (MLP) focusing on mℓ

k and performing non-linear transformations of
the information (Elhage et al., 2021; Rai et al., 2024). These computational blocks offer a relevant
granularity to decode the internal activity of an LLM, since focusing on neurons alone can rarely be
done due to their polysemanticity (Elhage et al., 2022). Thus, a hidden state granularity is defined
such as G ∈ {RS, MHA, MLP}.

Interpreter. For the 2-hop reasoning instantiation, the interpreter used to decode f hidden states{
hℓ
k

}
is Patchscopes Ghandeharioun et al. (2024). We use the prompt ”What is the follow-

ing? Answer briefly [X,X]” to generate the interpretation where X is a token placeholder to be
replaced in the latent space by the hidden state to be interpreted. We replace the placeholder tokens
at layers 3 and 4 to get two interpretations per hidden state to decode. The layers to be inter-
preted by Patchscopes vary depending on the assessed model. We set the index token k as
the last one related to o1 and focus on the late early layers as in Biran et al. (2024). This way,
ℓ ∈ {5, 6, 7, 8, 9, 10, 11} for gemma-2-2B, ℓ ∈ {8, 9, 10, 11, 12, 13, 14} for gemma-2-9B and
ℓ ∈ {11, 12, 13, 14, 15, 16, 17} for gemma-2-27B.

For the classification instantiation and given a concept c, concept importance IΓ(c) is based on the
linear representation of the concept called CAV and denoted −→c . Concepts are selected based on the
identifiability of each concept on f representation space based on IΓ(c). Below are examples of
selected concepts from Ledgar and AGNews for gemma-2-27b with F1 score > 60%:

Concept Layer F1 Score (%)
Players 36 0.758
Political developments 43 0.842
Scores 10 0.626
Financial markets 35 0.758
Companies 36 0.805
Industry-specific terminology and jargon 34 0.745
Global issues 45 0.812
Sports events 45 0.854
Industry analysis 38 0.610
Economic trends 36 0.798
Industries 36 0.776
International events 36 0.847
Global politics 36 0.809
International relations 36 0.776
Foreign affairs 43 0.795
News about wars, conflicts 43 0.694
Athletic competitions 45 0.855
Teams 45 0.679
Game summaries 34 0.780
Jargon specific to the sport 45 0.854
Charts, graphs, and financial data 38 0.658
Advancements in computing 41 0.607
Technological trends 43 0.769

Table 4: Ledgar concept max. F1 scores (> 60%) with related layer for gemma-2-27b.
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Concept Layer F1 Score (%)
Modification rights 34 0.838
Amendment procedures 39 0.803
Notice requirements 20 0.743
Approval mechanisms 28 0.816
Integration with original agreement 23 0.729
Format requirements 26 0.768
Severability of amendments 37 0.812
Retroactive application 27 0.638
Waiver limitations 30 0.793
Amendment thresholds 42 0.753
Amendment restrictions 36 0.730
Prior versions validity 45 0.759
Amendment documentation 24 0.759
Version control mechanisms 37 0.738
Material change provisions 33 0.754
Post-termination obligations 28 0.798
Duration of surviving terms 28 0.885
Identification of specific clauses 11 0.785
Indemnification continuation 40 0.862
Payment obligations survival 21 0.776
Non-compete/non-solicitation persistence 30 0.631
Representations/warranties survival 21 0.767
Remedies availability post-termination 42 0.845
Perpetual rights 40 0.815
Legal compliance requirements 34 0.721
Duration specifications 42 0.885
Commencement date 36 0.638
Expiration conditions 37 0.910
Renewal mechanisms 44 0.654
Term length 26 0.798
Condition precedents 28 0.798
Milestone-based periods 36 0.739
Initial term vs. renewal term distinctions 44 0.789
Evergreen provisions 13 0.768
Term modification triggers 28 0.728
Minimum commitment periods 34 0.777
Maximum term limitations 36 0.785
Regulatory term constraints 41 0.769
Term acceleration provisions 30 0.738
Rolling term provisions 29 0.823
Termination rights 28 0.888
Notice periods 45 0.726
Termination for convenience 44 0.677
Effect of termination 28 0.912
Wind-down procedures 28 0.865
Early termination penalties 36 0.682
Mutual termination provisions 27 0.854
Partial termination rights 37 0.833
Change of control provisions 29 0.729
Performance-based termination 44 0.719
Regulatory/legal change termination 15 0.776
Termination certification requirements 27 0.774
Post-termination restrictions 13 0.747
Transition obligations 28 0.856

Table 5: Ledgar concept max. F1 scores (> 60%) with related layer for gemma-2-27b.
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The concept importance IΓ(c) can be either computer through representation engineering and con-
cept erasure or gradient-based approaches such as TCAV. We perform concept erasure for λ ∈ [0, 1]
with a step size of 0.1. Table 4 and 5 show the F1 scores of the properly detected concepts in
gemma-2-27b representation space. We estimate the attribution of c given circuit Γ as the β1 pa-
rameter of the following regression: pŷ(x,

{
do(Hℓ

k = hℓ
k − λ×−→cℓ )

}
(k,ℓ)∈Γ

) = β0 + β1 × λ. The

t-test for β1 significancy is expressed as follows:t = β̂1

SE(β̂1)
= β̂1√

MSE∑n
i=1

(λi−λ̄)2

, where λi is the i real-

ization of λ and λ̄ is the average λ on the analyzed sample. Figures 11 and 12 show the faithfulness
distributions of NeuroFaith for AGNews and Ledgar for gemma-2-27b.

The concept importance IΓ(c) can also be computed with gradients-based approaches such as TCAV.
It can be formally expressed based on the previously computed CAV −→c . IΓ(c) is calculated by
aggregating the local importance measures related to the hidden states along circuit Γ:

IΓ(c) =
⊙

(k,ℓ)∈Γ

⟨−→c ,∇f ℓ
ŷ,k(h

ℓ
k)⟩ (2)

where f ℓ
ŷ,k is the sub-function from f taking hℓ

k as input and generating the output pŷ and
⊙

an
aggregation operator. The

⊙
operator represents the aggregation operator chosen according to the

expected desired level of strictness to measure faithfulness. Among the many aggregation operators
(see e.g. Grabisch et al. (2009)),

⊙
can be conjunctive (e.g. defined as the min function), disjunctive

(e.g. the max function) or the average measure.

Faithfulness is finally calculated based on concept importance as follows: F (x, e) =
1
p

∑p
i=1 1IΓ(ci)>0. Below are two distributions of faithfulness for classification of self-NLE gen-

erated for AGnews and Ledgar from gemma-2-27b.

In Figure 5, 6, 7, 8, 9, and 10 we plot the concepts sorted by frequency for faithful and unfaithful
self-NLE for AGNews and Ledgar for gemma-2-2b and gemma-2-9b for several class predic-
tions. These figures enable to highlight concepts related to either faithful or unfaithful self-NLE.
For example, Figure 8 highlights the concept of ”companies” to the class world, which seems to be
counterintuitive.

Figure 5: Concepts related to faithful self-NLE and the prediction ”business”, sorted by frequency
for AGNews for gemma-2-2b.
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Figure 6: Concepts related to unfaithful self-NLE and the prediction ”business”, sorted by frequency
for AGNews for gemma-2-2b.

Figure 7: Concepts related to faithful self-NLE and the prediction ”world”, sorted by frequency for
AGNews for gemma-2-2b.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: Concepts related to unfaithful self-NLE and the prediction ”world”, sorted by frequency
for AGNews for gemma-2-2b.

Figure 9: Concepts related to faithful self-NLE and the prediction ”amendments”, sorted by fre-
quency for Ledgar for gemma-2-9b.
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Figure 10: Concepts related to unfaithful self-NLE and the prediction ”amendments”, sorted by
frequency for Ledgar for gemma-2-9b.

We also plot the density of faithfulness for AGNews and Ledgar for gemma-2-27b in Figure 11
and 12.

Figure 11: NeuroFaith faithfulness distribution for AGNews for gemma-2-27b.
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Figure 12: NeuroFaith faithfulness distribution for Ledgar for gemma-2-27b.

D.3 LINEAR LATENT FAITHFULNESS DETECTION.

Here we provide additional information about layer-wise linear probe performance and similarity
between faithfulness vectors and with other AI safety linear vectors. Figures13, 14, 15, 16, 17, 18,
19, 20, 21 show the layer-wise performance of the faithfulness linear probes for 2-hop reasoning,
AGNews and Ledgar. As shown in Figure 30, 23 and 31, cosine similarity between task-specific
linear faithfulness and AI safety behaviors vectors becomes more pronounced with the size of the
model.

Figure 13: Linear faithfulness probe classification performance for 2-hop reasoning, gemma-2-2B.

Figure 14: Linear faithfulness probe classification performance for 2-hop reasoning, gemma-2-9B.
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Figure 15: Linear faithfulness probe classification performance for 2-hop reasoning,
gemma-2-27B.

Figure 16: Linear faithfulness probe classification performance for AGNews classification,
gemma-2-2B.

Figure 17: Linear faithfulness probe classification performance for AGNews classification,
gemma-2-9B.
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Figure 18: Linear faithfulness probe classification performance for AGNews classification,
gemma-2-27B.

Figure 19: Linear faithfulness probe classification performance for Ledgar classification,
gemma-2-2B.

Figure 20: Linear faithfulness probe classification performance for Ledgar classification,
gemma-2-9B.
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Figure 21: Linear faithfulness probe classification performance for Ledgar classification,
gemma-2-27B.

(a) Mean operator (b) Max operator

Figure 22: Linear vectors cosine similarity analysis on gemma-2-2b

(a) Mean operator (b) Max operator

Figure 23: Linear vectors cosine similarity analysis on gemma-2-9b
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(a) Mean operator (b) Max operator

Figure 24: Linear vectors cosine similarity analysis on gemma-2-27b

Table 6 shows the F1 score for faithfulness linear detection by using the linear representation from
one task (e.g. 2-hop reasoning) to predict self-NLE faithfulness from other tasks (e.g. Ledgar
and AGNews). These results corroborate the cosine similarity analysis, highlighting that the 2-
hop reasoning/AGNews and AGNews/Ledgar pairs are moderately correlated with gemma-2-27b,
enabling to properly detect faithfulness (approximately 62%). This phenomenon does not appear on
smaller models.

gemma-2b gemma-9b gemma-27b

Base/Target Agnews Ledgar Agnews Ledgar Agnews Ledgar

2-hop reasoning 52.2% 56.1% 47.2% 40.0% 61.3% 36.1%
AGNews – 45.3% – 42.2% – 63.1%

Table 6: Faithfulness detection by transfer, from a base to a target faithfulness linear vector.

E DETAILED TAXONOMY OF SELF-NLE IN TWO-HOP REASONING

Taxonomy Definition. The correctness of the prediction combined with both the faithfulness and
the correctness of the self-NLE and the correctness of the first hop of the latent reasoning enables
to precisely characterize e(x). In this subsection, we focus on ten disjoint cases of interest to char-
acterize the behavior of f with respect to e(x). They are illustrated in Figure 25. Given a ground
truth 2-hop reasoning trace (o1, r1, o2, r2, o3) and the actual reasoning trace obtained from both the
model answer and self-NLE: (o1, r1, ô2, r2, ô3):
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Figure 25: Detailed taxonomy of f behavior in two-hop reasoning, based on the status of the pre-
diction, the self-NLE and the latent reasoning.

• (C1) Complete reasoning failure. If ô3 ̸= o3, F (x, e) = 0, ô2 ̸= o2 and ∀(k, ℓ) ∈ Γ, o2 /∈
h̃ℓ
k. Observation: Wrong prediction, incorrect unfaithful explanation, ground-truth bridge object

undetected in circuit Γ. Interpretation: Evidence suggests failure in first-hop reasoning, with
neither explanation nor internal representations containing the expected bridge object.

• (C2) Internal-external reasoning mismatch. If ô3 ̸= o3, F (x, e) = 0, ô2 ̸= o2 and
∃(k, ℓ) ∈ Γ, o2 ∈ h̃ℓ

k. Observation: Wrong prediction, incorrect unfaithful explanation, but
ground-truth bridge object detected in circuit Γ. Interpretation: Model appears to have cor-
rect internal knowledge but generates inconsistent explanations, indicating potential reasoning-
explanation dissociation because of either deceptiveness or hallucination.

• (C3) Explanation-prediction association. If ô3 ̸= o3, F (x, e) = 0 and ô2 = o2. Observation:
Wrong prediction with unfaithful but correct explanation. Interpretation: Model associates cor-
rect bridge object with incorrect prediction during explanation generation, suggesting superficial
pattern matching without genuinely resolving the first hop of the 2-hop reasoning.

• (C4) First-hop reasoning failure. If ô3 ̸= o3, F (x, e) = 1 and ô2 ̸= o2. Observation: Wrong
prediction with faithful but incorrect explanation. Interpretation: Model consistently follows
incorrect reasoning pathway, indicating systematic error in first-hop reasoning or concept misun-
derstanding.

• (C5) Second-hop reasoning failure. If ô3 ̸= o3, F (x, e) = 1 and ô2 = o2. Observation:
Wrong prediction with faithful and correct explanation. Interpretation: Model correctly identifies
bridge object but fails in second reasoning step, suggesting error occurs after successful first-hop
completion.

• (C6) Shortcut learning. If ô3 = o3, F (x, e) = 0, ô2 ̸= o2 and ∀(k, ℓ) ∈ Γ, o2 /∈ h̃ℓ
k. Ob-

servation: Correct prediction with unfaithful incorrect explanation, ground-truth bridge object
undetected. Interpretation: Evidence suggests direct o1 → o3 association, consistent with short-
cut learning behavior that bypasses intermediate reasoning steps.

• (C7) Deceptiveness or hallucination. If ô3 = o3, F (x, e) = 0, ô2 ̸= o2 and ∃(k, ℓ) ∈ Γ, o2 ∈ h̃ℓ
k.

Observation: Correct prediction with unfaithful incorrect explanation, but ground-truth bridge ob-
ject detected internally. Interpretation: Model possesses correct internal knowledge but generates
deceptive (or hallucinated) explanations, suggesting reasoning-explanation dissociation or alter-
native reasoning pathways. This case is expected to be rare, otherwise highlighting a case where
f is not honest in its self-NLE while ”knowing” the ground truth bridge object, raising a problem
in f alignment.

• (C8) Explainer parrot. If ô3 = o3, F (x, e) = 0 and ô2 = o2. Observation: Correct prediction
with unfaithful but correct explanation. Interpretation: Model generates expected explanations
without corresponding detectable internal reasoning, suggesting post-hoc explanation generation
(i.e. ”explainer parrot” behavior).

• (C9) Alternative reasoning pathway. If ô3 = o3, F (x, e) = 1 and ô2 ̸= o2. Observation: Cor-
rect prediction with faithful but incorrect explanation. Interpretation: Model uses consistent but
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Incorrect Predictions

Model C1 C2 C3 C4 C5
Complete Internal-external Explanation- First-hop Second-hop

reasoning failure reasoning mismatch prediction assoc. reasoning failure reasoning failure

gemma-2-2b 23.8% 4.2% 14.4% 16.0% 41.6%
gemma-2-9b 26.1% 4.5% 14.5% 14.1% 40.9%
gemma-2-27b 22.8% 4.4% 12.5% 17.1% 43.1%

Table 7: Distribution of categories for incorrect predictions across model sizes.

Correct Predictions

Model C6 C7 C8 C9 C10
Shortcut Deceptiveness or Explainer Alternative Reliable
learning hallucination parrot reasoning pathway oracle

gemma-2-2b 27.8% 6.1% 17.7% 8.1% 40.3%
gemma-2-9b 14.9% 4.2% 20.0% 6.8% 54.0%
gemma-2-27b 12.8% 3.1% 15.3% 6.4% 62.4%

Table 8: Distribution of categories for correct predictions across model sizes.

non-canonical reasoning pathways, indicating systematic bias or alternative reasoning mechanism
that leads to correct outcomes through unexpected intermediate steps.

• (C10) Reliable oracle. If ô3 = o3, F (x, e) = 1 and ô2 = o2. Observation: Correct prediction
with faithful and correct explanation. Interpretation: Strong evidence for expected canonical
reasoning pathway, representing the most interpretable and reliable case for knowledge extraction
and model understanding.

While this taxonomy relies on the interpreter ability to decode the model’s internal activity, the
systematic patterns observed across different models and tasks provide convergent evidence for these
behavioral categories. We give examples of thix taxonomy in Appendix H

E.1 2-HOP REASONING DETAILED RESULTS.

Here we detail the results outlined in Section 4 and 6 by breaking down the results at the category-
level as introduced above.

Taxonomy Descriptive Analysis. Table 7 highlights that the categories C1 (complete reasoning
failure) and C5 (second-hop reasoning failure) are the most represented across the models. The
distributions are overall highly stable for incorrect predictions whereas the category C10 (reliable
oracle) increases with the model size for accurate predictions. The category C7 (deceptiveness or
hallucination) tends to decrease with model size, but still represents a non negligible part of the
self-NLE.

Taxonomy Faithfulness Enhancement Analysis. Table 9,10 and 11 respectively show the de-
tailed impact of hallucination inhibition, linear faithfulness amplification and deceptiveness inhibi-
tion steering on self-NLE faithfulness. Categories C2 and C7 are the most prone to be turned into
faithful self-NLE overall. Hallucination and faithfulness steering lead to significantly better results
as compared to deceptiveness steering overall. Linear faithfulness amplification gives slightly bet-
ter results than hallucination inhibition. Hallucination inhibition obtains slightly better results than
linear faithfulness amplification for C1 and C6.
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New Faithfulness After Steering Through Hallucination Inhibition (%)

Model C1 C2 C3 C6 C7 C8
Complete Internal-external Explanation- Shortcut Deceptiveness or Explainer

reasoning failure reasoning mismatch prediction assoc. learning hallucination parrot

gemma-2-2b 10.8% 33.3% 5.6% 7.4% 36.2% 3.0%
gemma-2-9b 9.2% 13.4% 5.1% 16.1% 35.9% 1.6%
gemma-2-27b 12.0% 22.7% 4.8% 12.5% 48.9% 2.6%

Table 9: Percentage of initially unfaithful explanations that become faithful after hallucination steer-
ing interventions, by category and model size.

New Faithfulness After Steering Through Linear Faithfulness Amplification (%)

Model C1 C2 C3 C6 C7 C8
Complete Internal-external Explanation- Shortcut Deceptiveness or Explainer

reasoning failure reasoning mismatch prediction assoc. learning hallucination parrot

gemma-2-2b 8.1% 38.0% 5.1% 9.3% 39.5% 1.1%
gemma-2-9b 6.9% 28.4% 3.7% 10.3% 57.8% 2.0%
gemma-2-27b 9.3% 19.7% 5.3% 10.9% 40.4% 1.3%

Table 10: Percentage of initially unfaithful explanations that become faithful after linear faithfulness
steering interventions, by category and model size.

New Faithfulness After Steering Through Deceptiveness Inhibition (%)

Model C1 C2 C3 C6 C7 C8
Complete Internal-external Explanation- Shortcut Deceptiveness or Explainer

reasoning failure reasoning mismatch prediction assoc. learning hallucination parrot

gemma-2-2b 5.1% 3.2% 2.7% 4.7% 13.8% 6.0%
gemma-2-9b 6.1% 11.7% 0.6% 8.0% 18.7% 1.4%
gemma-2-27b 5.0% 6.3% 1.7% 2.7% 9.1% 3.3%

Table 11: Percentage of initially unfaithful explanations that become faithful after deceptiveness
steering interventions, by category and model size (third experimental condition).

As shown in Figures 27, 28, and 29, we observe consistent transition patterns when steering makes
unfaithful explanations faithful. For initially incorrect predictions, category C1 (complete reasoning
failure) consistently transitions to C4 (first-hop reasoning failure), achieving faithfulness approx-
imately 10% of the time under NeuroFaith linear faithfulness amplification and hallucination
inhibition. Category C2 (internal-external reasoning mismatch) predominantly transitions to C5
(second-hop reasoning failure) when steering succeeds. Category C3 (explanation-prediction asso-
ciation) exclusively leads to C5 (second-hop reasoning failure) upon becoming faithful.

Initially accurate predictions follow similar patterns. Category C6 (shortcut learning) transitions
to C9 (alternative reasoning pathway) when made faithful, while category C8 (explainer parrot)
becomes C10 (reliable oracle). Category C7 (deceptiveness or hallucination) can transition to either
C9 or C10, though it more commonly becomes a reliable oracle (C10). We give several examples of
unfaithful self-NLE made faithful in Appendi H.
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(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 26: Detailed taxonomy transition state analysis, before and after NeuroFaith linear faith-
fulness steering on gemma-2-2b on 2-hop reasoning.

(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 27: Detailed taxonomy transition state analysis, before and after hallucination inhibition on
gemma-2-2b on 2-hop reasoning.

(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 28: Detailed taxonomy transition state analysis, before and after NeuroFaith linear faith-
fulness steering on gemma-2-9b on 2-hop reasoning.
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(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 29: Detailed taxonomy transition state analysis, before and after hallucination inhibition on
gemma-2-27b on 2-hop reasoning.

(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 30: Detailed taxonomy transition state analysis, before and after NeuroFaith linear faith-
fulness steering on gemma-2-27b on 2-hop reasoning.

(a) Initially inaccurate predictions. (b) Initially accurate predictions.

Figure 31: Detailed taxonomy transition state analysis, before and after hallucination inhibition on
gemma-2-2b on 2-hop reasoning.
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Figure 32: Qualitative comparison between NeuroFaith and CI faithfulness.

F NEUROFAITH FAITHFULNESS MEASURE COMPARISON

In this section we examine how faithfulness as measured by NeuroFaith compares to exist-
ing Counterfactual Intervention (CI) Atanasova et al. (2023) and Attribution Agreement (AA) ap-
proaches Parcalabescu & Frank (2024) for evaluating LLM self-NLE faithfulness. We focus on 2-
hop reasoning and begin with a qualitative comparison that illustrates potential differences between
these approaches, followed by a quantitative analysis that provides evidence for these observations.

F.1 2-HOP REASONING FAITHFULNESS QUALITATIVE COMPARISON.

To illustrate the critical differences between existing faithfulness evaluation approaches and
NeuroFaith, we examine a concrete 2-hop reasoning example (see Figure 32) that illusrrates
fundamental limitations in current methods (CI and AA). Given input text x, prediction f(x), and
self-generated explanation e(x), we compare how different faithfulness approaches evaluate the
same case. The Example Setup:

• Original input: x = ”The father of Carol Chomsky is”

• Original prediction: f(x) = ”Harry Abraham Schatz”

• Counterfactual Intervention: xcf = ”The father of the spouse of Carol Chomsky is”

• Counterfactual prediction: f(xcf ) = ”William Chomsky”

Counterfactual Intervention (CI) would assess the self-NLE e(xcf ) as faithfulness. This evaluation
is based solely on the presence of the intervention term ”spouse” within e(xcf ), establishing consis-
tency between the input modification and explanation content. Moreover, Attribution Analysis (AA)
methods consists in comparing attribution scores (e.g., using SHAP) to highlight important tokens
(e.g. ”father”, ”spouse”, ”Carol”, ”Chomsky”) for the prediction and the self-NLE. High correlation
coefficients between the attribution vectors for prediction and self-NLE would similarly classify the
self-NLE as faithful.

However, NeuroFaith rejects e(xcf ) as unfaithful because the bridge object (”Morris Halle”) is
not contained in the decoded hidden states ({h̃ℓ

k}). This mismatch between internal computation and
self-NLE content reveals unfaithfulness. The steered self-NLE obtained with linear faithful steer-
ing (see Section 6) is evaluated as faithful by NeuroFaith, due to shared bridge object (”Noam
Chomsky”) between the new self-NLE and the decoded hidden states.

This qualitative example illustrates that both CI and AA approaches may employ more lenient eval-
uation standards compared to NeuroFaith and can miss unfaithful self-NLE. This observation is
corroborated by our analysis in the next paragraph.
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Figure 33: Simplified taxonomy of f behavior in two-hop reasoning, based on the status of the
prediction and the self-NLE.

F.2 2-HOP REASONING FAITHFULNESS QUANTITATIVE COMPARISON.

We propose an experimental protocol to evaluate the practical utility of different faithfulness mea-
sures for model analysis. The protocol is motivated by two common applications of explanations
in AI systems: (1) troubleshooting models by identifying the source of errors in wrong predic-
tions Biecek & Samek (2024), and (2) detecting potential biases or shortcuts in correct predictions
to ensure they align with expected reasoning processes Ribeiro et al. (2016).

We test whether faithful explanations, as identified by NeuroFaith and CI methods, provide
better diagnostic information for these purposes. The key hypothesis is that if a faithfulness measure
accurately captures the model’s internal reasoning, then explanations deemed faithful should better
localize reasoning failures and identify non-canonical reasoning pathways.

Experimental Framework. Given an input text x = (o1, r1,▲, r2, •) requiring 2-hop reasoning
and the model’s reasoning trace (o1, r1, ô2, r2, ô3), we categorize model behavior using a simplified
taxonomy (see Figure 33) based on prediction correctness and bridge object accuracy:

• Category A: Wrong prediction (ô3 ̸= o3), wrong bridge object (ô2 ̸= o2)→ likely first-hop
failure

• Category B: Wrong prediction (ô3 ̸= o3), correct bridge object (ô2 = o2)→ likely second-
hop failure

• Category C: Correct prediction (ô3 = o3), wrong bridge object (ô2 ̸= o2) → alternative
reasoning pathway

• Category D: Correct prediction (ô3 = o3), correct bridge object (ô2 = o2) → canonical
reasoning

Each category can be further subdivided with respect to faithfulness, enabling comparison between
faithful and unfaithful self-NLE within each reasoning pattern. In the following we propose 3 met-
rics based on these 4 categories and assess if faithful self-NLE lead to better model debugging and
bias targeting than unfaithful self-NLE.

First Hop Hint. We test whether faithful self-NLE better identify first-hop reasoning failures
through a targeted intervention. For each input x having led to a wrong prediction (ô3 ̸= o3), we
create a modified version xhint1 = (o1, r1, o2, x) that explicitly provides the correct bridge object.
For example:

• x = ”The country of origin of the movie maker that directed Persona is”

• xhint1 = ”The movie maker that directed Persona is Ingmar Bergman. The country of
origin of the movie maker that directed Persona is”
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If faithful self-NLE accurately reflect internal reasoning, then providing first-hop hints should dif-
ferentially improve performance for Category A (first-hop failures) versus Category B (second-hop
failures), and this difference should be stronger for faithful self-NLE. We define the performance
ratio under first-hop hints as:

PR(A,B, hint1) =
ACC(A, hint1)

ACC(B, hint1)
(3)

where ACC(A, hint1) represents the accuracy of Category A examples when given first-hop hints.
We compute separate ratios for faithful and unfaithful explanations:

PR(A,B, hint1, faithful) =
ACC(A, hint1, faithful)

ACC(B, hint1, faithful)
(4)

Finally, the Compound Accuracy Score (CAS) quantifies whether faithful explanations provide bet-
ter error localization:

CAS(A,B, hint1) = log
( PR(A,B, hint1, faithful)

PR(A,B, hint1, unfaithful)

)
(5)

A positive CAS indicates that faithful self-NLE better identify first-hop failures.

Quality Metric gemma-2-2b gemma-2-9b gemma-2-27b

NeuroFaith CI NeuroFaith CI NeuroFaith CI

hint1 0.04 -0.07 0.06 -1.10 0.75 -0.99
hint2 -0.44 -0.55 0.28 -0.03 -0.35 1.25
r2 → r′2 0.09 -2.62 0.17 -0.32 0.31 -0.26

Table 12: NeuroFaith comparison to CI (higher is better) across models on 352 CI-compatible
samples on 2-hop reasoning.

Quality Metric gemma-2-2b gemma-2-9b gemma-2-27b

hint1 0.48 0.14 0.22
hint2 0.03 0.33 0.88
r2 → r′2 -0.04 1.18 0.40

Table 13: NeuroFaith evaluation across models on the overall 2-hop reasoning dataset.

Table 14: Correlation analysis between NeuroFaith and CI.

Second Hop Hint. We now test whether faithful self-NLE better identify second-hop reasoning
failures through a targeted intervention. Following the logic introduced above, for each input x
having led to a wrong prediction (ô3 ̸= o3), we create a modified version xhint2 = (o2, r2, o3, x)
that explicitly provides the second part of the 2-hop reasoning. For example:

• x = ”The country of origin of the movie maker that directed Persona is”
• xhint2 = ”The country of origin of Ingmar Bergman is Sweden. The country of origin of

the movie maker that directed Persona is”

If faithful self-NLE accurately reflect internal reasoning, then providing second-hop hints should
differentially improve performance for Category B (second-hop failures) versus Category A (first-
hop failures), and this difference should be stronger for faithful self-NLE. We build our second
metric following the notations introduced above, based on the Compound Accuracy Score:

CAS(B,A, hint2) = log
( PR(B,A, hint2, faithful)

PR(B,A, hint2, unfaithful)

)
(6)

Here, a positive CAS indicates that faithful self-NLE better identify second-hop failures.
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Second Relation Modification. We test whether faithful self-NLE better identify non-canonical
reasoning pathways through the modification of the second step of the reasoning trace (r2). Intu-
itively, a non-canonical reasoning pathways is more prone to lead to false reasoning when chaning
one step of the 2-hop reasoning. For each input x having led to a good prediction (ô3 = o3), we
create a modified version xr2→r′2

= (o1, r1,▲, r′2, •) that change the second relation of the 2-hop
reasoning input. For example:

• x = ”The country of origin of the movie maker that directed Persona is”

• xr2→r′2
= ”The father of the movie maker that directed Persona is”

If faithful self-NLE accurately reflect internal reasoning, then changing r2 should differentially de-
crease performance for Category C (alternative reasoning pathway) versus Category D (canonical
reasoning), and this difference should be stronger for faithful self-NLE. We build our third metric
following the notations introduced above, based on the Compound Accuracy Score:

CAS(D,C, r2 → r′2) = log
( PR(D,C, r2 → r′2, faithful)

PR(D,C, r2 → r′2, unfaithful)

)
(7)

A positive CAS indicates that faithful self-NLE better identify non-canonical reasoning pathways.

Experimental Results. We evaluate our three faithfulness indicators using both NeuroFaith
and Counterfactual Intervention (CI). The Wikidata-2-hop dataset provides natural support for com-
puting xr2→r′2

instances, as it contains multiple reasoning chains involving similar objects. Ad-
ditionally, the dataset includes counterfactual interventions through variations in reasoning chains,
enabling straightforward CI computation across multiple instances.

Our evaluation reveals three key findings. First, Table 12 shows that NeuroFaith consis-
tently outperforms CI on the subset of CI-compatible samples. Second, Table 13 presents
NeuroFaith results on the complete dataset, showing positive metric values across all models
except gemma-2-2b.

G CLASSIFICATION EXAMPLES

In this section we give two examples of instances characterized as either faithful or unfaithful in
classification case.

Figure 34: Example from the AGNews dataset where we detect ”sport event” and ”athletic compe-
tition” as relevant concepts from the explanation. These two concepts are assessed as important for
the prediction, making this explanation faithful (F (x, e) = 1).
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Figure 35: Example from the Ledgar dataset where we detect ”post-termination obligations”, ”du-
ration of surviving terms” and ”payment obligations survival” as relevant concepts from the expla-
nation. Two concepts over three are assessed as important, giving an explanation faithfulness score
at 0.67.

H 2-HOP REASONING TAXONOMY EXAMPLES

In this section we give examples of characterized instances based on the taxonomy introduced in
Appendix E. We also give examples of unfaithful self-NLE made faithful, characterized by the same
taxonomy.

Figure 36: Example from the Wikidata-2-hop dataset where we observe an internal-external reason-
ing mismach. The model incorrectly answers ”Jobete Music” and provides a self-NLE referencing
to the bridge object ”Sam Cooke”. This bridge object is false and does not appear in the set of
natural language interpretations of f latent states. However, the ground truth bridge object ”Louis
Armstrong” is decoded at token index 11 and layers 13 and 14.
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Figure 37: Example from the Wikidata-2-hop dataset where we observe shortcut learning. The
model correctly answers ”France” and provides a self-NLE referencing to ”Alain Resnais”. This
bridge object is incorrect and does not appear in the set of natural language interpretations of f
latent states.

Figure 38: Example from the Wikidata-2-hop dataset where we observe shortcut learning. The
model correctly answers ”Germany” without providing any bridge object in its self-NLE. The ex-
pected bridge object ”The Lost Honour of Katharina Blum” is however decoded from the represen-
tation space.
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Figure 39: Example from the Wikidata-2-hop dataset where we observe an explainer parrot case.
The model correctly answers ”Germany” and provides a self-NLE referencing to ”Wim Wenders”.
This bridge object is correct but does not appear in the set of natural language interpretations of f
latent states.

Figure 40: Example from the Wikidata-2-hop dataset where we observe an alternative reasoning
pathway. The model correctly answers ”Japan” and provides a self-NLE referencing to ”Square
Enix”. This bridge object is incorrect and also appears in the set of natural language interpretations
of f latent states.

Figure 41: Example from the Wikidata-2-hop dataset where we observe an alternative reasoning
pathway. The model correctly answers ”USA” and provides a self-NLE referencing to ”Pierre Omid-
yar”. This bridge object is correct and also appears in the set of natural language interpretations of
f latent states.
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Figure 42: Example from the Wikidata-2-hop dataset where we start from an incorrect unfaithful
explanation and go to a correct and faithful explanation through NeuroFaith linear faithfulness
steering.

Figure 43: Example from the Wikidata-2-hop dataset where we start from an incorrect unfaithful
explanation and go to a correct and faithful explanation through NeuroFaith linear faithfulness
steering.
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Figure 44: Example from the Wikidata-2-hop dataset where we start from an incorrect unfaithful
explanation and go to a still incorrect but faithful explanation through NeuroFaith linear faith-
fulness steering.
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