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Abstract
In long-term time series forecasting, different
variables often influence the target variable over
distinct time intervals, a challenge known as the
multi-delay issue. Traditional models typically
process all variables or time points uniformly,
which limits their ability to capture complex vari-
able relationships and obtain non-trivial time rep-
resentations. To address this issue, we propose
TimePro, an innovative Mamba-based model that
constructs variate- and time-aware hyper-states.
Unlike conventional approaches that merely trans-
fer plain states across variable or time dimensions,
TimePro preserves the fine-grained temporal fea-
tures of each variate token and adaptively selects
the focused time points to tune the plain state.
The reconstructed hyper-state can perceive both
variable relationships and salient temporal infor-
mation, which helps the model make accurate
forecasting. In experiments, TimePro performs
competitively on eight real-world long-term fore-
casting benchmarks with satisfactory linear com-
plexity.

1. Introduction
Mamba (Gu & Dao, 2024) has shown significant advan-
tages in time series forecasting (Ahamed & Cheng, 2024),
characterized by its linear computational complexity, and
efficient long-term dependency capture capability. Unlike
Transformers, which have quadratic complexity concern-
ing sequence length, Mamba achieves linear complexity,
making it highly scalable for long sequences. Mamba can
also capture long-term dependencies, which is particularly
beneficial in time series forecasting. Furthermore, it can
not only handle long series of data but also perform well
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in multivariate modeling (Liang et al., 2024; Ahamed &
Cheng, 2024; Ma et al., 2024).

Bi-Mamba+ (Liang et al., 2024) introduces a bidirectional
structure and splits time series into smaller segments to
more comprehensively model the data, incorporating a for-
getting gate to selectively integrate new features with his-
torical ones, thereby retaining historical information over
longer ranges. S-Mamba (Wang et al., 2025) marks the
time points of each variable through the autonomous lin-
ear layer, and extracts the correlation between variables
through the bidirectional Mamba layer. It also incorporates
a feedforward neural network (FNN) to learn time depen-
dence. TimeMachine (Ahamed & Cheng, 2024) combines
four Mamba modules to capture both channel-mixed and
channel-independent contexts through multi-scale contex-
tual cues. TSMamba (Ma et al., 2024) further optimizes time
series forecasting performance through channel-compressed
attention modules and a two-stage training strategy, with
experiments showing that its innovative components en-
hance forecasting accuracy while reducing computational
overhead. The mentioned methods often employ different
ways to scan features from various directions. However,
these methods overlook the fact that different variables have
different impact durations on the target variable, i.e., the
multi-delay issue, which limits their performance.

The multi-delay issue in multivariate time series forecasting
(Xu et al., 2016; Chandereng & Gitter, 2020) is defined as
the temporal discrepancy in the propagation of influence
from different predictor variables to the target variable, char-
acterized by the presence of distinct and non-uniform time
lags between the changes in predictor variables and their
corresponding effects on the target variable. However, exist-
ing mamba models process all variables or time points in a
uniform manner, making it difficult to capture critical time
points and obtain non-trivial time representations. Moreover,
this problem also occurs in transformer-based models. For
example, PatchTST (Nie et al., 2023) captures global tem-
poral dependencies in a channel-independent manner, while
treating them uniformly for all variables. iTransformer (Liu
et al., 2024b) focuses on modeling variable relationships, yet
uniformly performs a coarse linear projection for different
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Figure 1: Forecasting performance comparison of Time-
Pro with other state-of-the-art methods. Average results
(MSE) are reported following iTransformer (Liu et al.,
2024b). Visualization results show that TimePro out-
performs previous methods on the popular multivariate
long-term forecasting benchmarks.

Figure 2: Efficiency comparison of TimePro with other state-of-the-
art methods. We set the lookback window L = 96, forecast horizon
H = 720, and batch size to 16 in the Electricity dataset. The train and
inference times are measured on the Nvidia V100 GPU. Compared
to other methods, TimePro achieves satisfactory performance with
minimal parameters, FLOPs, memory consumption and competitive
training and inference speeds.

time points, making it difficult to capture complex internal
temporal variations. To address this limitation, we propose a
novel Mamba-based model called TimePro, which incorpo-
rates variable and time-aware hyper-state construction. This
innovation allows the model to dynamically adapt to the
distinct temporal characteristics of each variable, thereby
enhancing its ability to capture the complex dynamics of
multivariate time series data and effectively deal with the
multi-delay issue.

Unlike traditional approaches that merely transfer plain
states across variables, TimePro preserves the fine-grained
temporal features of each variate token and adaptively se-
lects the focused time points to tune the plain state. Specifi-
cally, we first scan the variable dimension to obtain the hid-
den state, which contains the correlation between variables.
This hidden state serves as a foundation for subsequent tem-
poral refinement. Following this, a specialized network is
employed to learn the offsets of critical time points. By
adaptively selecting these key time points, TimePro dynam-
ically updates the hidden states to reflect the most salient
temporal information. This adaptive mechanism enables the
reconstructed hyper-state to integrate both variable-specific
information and subtle temporal changes, empowering the
model to produce highly accurate forecasts.

As shown in Fig. 1 and Fig. 2, TimePro has consistently
demonstrated competitive performance across eight real-
world forecasting benchmarks. Notably, it achieves these
results while maintaining linear complexity, ensuring that
computational efficiency is not compromised. This balance
between accuracy and efficiency makes TimePro a powerful
tool for tackling complex multivariate time series forecast-

ing tasks, particularly those involving long sequences or
high-dimensional data. Our main contributions are as fol-
lows:

• We devise a novel time-tune strategy that adjusts the
variable states by adaptively selecting important time
points and uses reconstructed hyper-states to obtain
the output. The ability of the hyper-state to perceive
complex variable relationships and intra-variable time
changes facilitates accurate prediction.

• By combining the hyper-state reconstruction and
hardware-aware implementation, we propose an ef-
ficient multivariate long-term time series prediction
model TimePro.

• TimePro achieves competitive performance on eight
real-world datasets, significantly surpassing existing
mamba and transformer-based methods.

2. Related Work
2.1. Time Series Forecasting

In recent years, various methods have emerged in the field
of time series prediction (Nie et al., 2024a;b), including
those based on RNNs, MLPs, Transformers, and Mamba.
RNN-based methods (Hewamalage et al., 2021; Rangapu-
ram et al., 2018; Hou et al., 2025), once dominant, have
gradually been overshadowed by newer approaches due to
their limited capacity to model long-range dependencies
and their high computational complexity, which often leads
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to inefficient training and inference. The MLP-based mod-
els include DLinear (Zeng et al., 2023), LightTS (Zhang
et al., 2022) and TimeMixer (Liu et al., 2024a). The MLP
model has a small number of parameters and low compu-
tational complexity, but the ability to model long sequence
feature relationships is weak. The Transform-based method
has strong global information modeling ability and is help-
ful to capture long-term dependencies in time series (Hou
et al., 2024). For example, iTransformer (Liu et al., 2024b)
and PatchTST (Nie et al., 2023). However, the transformer
method has high computational complexity and is prone to
overfitting in time series forecasting tasks. Mamba-based
methods can model long time series relationships and have
linear complexity, so this kind of method has great advan-
tages in time series prediction tasks (Wang et al., 2025;
Ahamed & Cheng, 2024; Liang et al., 2024).

2.2. Mamba

In recent years, a series of mamba-based methods have been
proposed for time series forecasting. Bi-Mamba+ (Liang
et al., 2024) introduces a bidirectional structure and splits
time series into smaller segments to more comprehensively
model the data, incorporating a forgetting gate to selec-
tively integrate new features with historical ones, thereby
retaining historical information over longer ranges. S-
Mamba (Wang et al., 2025) marks the time points of each
variable through the autonomous linear layer, and extracts
the correlation between variables through the bidirectional
Mamba layer. In addition, S-Mamba also incorporates a
feedforward neural network (FNN) to learn time depen-
dence. TimeMachine (Ahamed & Cheng, 2024) combines
four Mamba modules to capture both channel-mixed and
channel-independent contexts through multi-scale contex-
tual cues. TSMamba (Ma et al., 2024) further optimizes time
series forecasting performance through channel-compressed
attention modules and a two-stage training strategy, with ex-
periments showing that its innovative components enhance
forecasting accuracy while reducing computational over-
head. SST (Xu et al., 2024) deals with long-range global
patterns and short-range local changes simultaneously by
Mamba and LWT, which solves the shortage of traditional
models in modeling long-term and short-term features (Liu
et al., 2023). However, the above methods ignore the dif-
ferent time lags between multivariate and prediction results,
which limits their performance.

3. Preliminaries
State Space Models (S4). State space models (SSMs)
are proposed in deep learning as common sequence mod-
els (Gu et al., 2022), which transform an input sequence
x(t) ∈ RLs×Ds into an output sequence y(t) ∈ RLs×Ds by
utilizing a learnable hidden state h(t) ∈ RNs . The process

could be denoted as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where A ∈ RNs×Ns is the evolution parameter, B,C ∈
RNs×Ds denote the learnable projection parameters, and
Ns is the state size.

Discretization. The above continuous-time SSMs are not
well compatible with deep learning algorithms. Therefore,
discretization is needed to align the model with the sampling
frequency of the input signal to improve computational ef-
ficiency (Gu et al., 2021). Following the previous work
(Gupta et al., 2022), given the sampling time scale parame-
ter ∆, the above continuous SSMs are discretized through
zero-order hold rule, thus converting the continuous-time
parameters (A, B) to their corresponding discrete counter-
parts (A, B):

A = e∆A,

B = (∆A)−1(e∆A − I) ·∆B.
(2)

Then, The discretized formulation of Eq. 1 is formulated as:

ht = Aht−1 +Bxt,

yt = Cht,
(3)

where A ∈ RNs×Ns , B ∈ RNs×Ds . In addition, the iter-
ative process described in Eq. 3 can be performed by the
parallel computing mode of global convolution (Gu & Dao,
2024) to improve the computational efficiency:

y = x⊛K,

with K = (CB,CAB, · · · ,CA
L−1

B),
(4)

where ⊛ denotes the convolution operation, and K ∈ RL

serves as the kernel of the SSMs.

Selective State Space Models (S6). Conventional SSMs
(i.e., S4) have been implemented to capture sequence con-
text under linear time complexity, despite the fact that they
are constrained by static parameterization and cannot per-
form content-based reasoning. To address this problem, the
selective state space model (i.e., Mamba (Gu & Dao, 2024))
has been proposed, which allows the model to selectively
propagate or forget information based on the latitude of the
current token along the length of the sequence by simply
setting the parameters of the SSM as a function of the inputs.
In S6, the parameters B, C, and ∆ are computed directly
from the input sequence x(t), thus enabling sequence-aware
parameterization.

4. Method
Multivariate Time Series Forecasting (MTSF) deals with
time series data containing multiple variables or channels at
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Figure 3: Overview of our TimePro method. The multivariate time series is first embedded along the temporal dimension
with the patching operation to get the series representation for each variable. Then the variable correlation and time
representation of variables are captured by multiple layers of ProBlock modules. The core component of Problok is
HyperMamba, which adaptively selects important time points to regulate the plain state of the variable dimension. The
reconstructed time- and variable-aware hyper-states are then applied to obtain the output.

each time step. Given a historical value X ∈ RN×L, where
L denotes the length of the lookback window andN denotes
the number of variables, the goal of MTSF is to predict a
future value Y ∈ RN×H , where H > 0 is the forecast
horizon. In this paper, we focus on long-term forecasting
H >= 96, which is more challenging.

4.1. Overview

As shown in Fig. 3, TimePro adopts a transformer-like pure
encoder architecture (Vaswani et al., 2023), which consists
of the following components:

Reversible instance normalization Training and test data
often suffer from distributional shifts, and directly inputting
raw sequences into the model is not conducive to stable
predictions. Following previous work (Liu et al., 2024b;
Han et al., 2024), we use reversible instance normalization
(RevIN) (Kim et al., 2022) to concentrate the sequence to
zero mean and scale to unit variance before inputting the
original sequence X into the model. Then, the predicted
sequence is reverse normalized to obtain the output Y .

Time and variable preserved embedding Previous
works have either used sequential embedding (Liu et al.,
2024b; Wang et al., 2025; Han et al., 2024) or channel-
independent patch embedding (Nie et al., 2023). However,
this style of uniform processing of all variables or time
points limits the ability of models to capture complex vari-
able relationships and obtain non-trivial time representa-
tions. Therefore, we use time and variable preserved em-
beddings, which facilitate the construction of subsequent
hyper-states. Specifically, we divide each input univariate

time series Xi,: ∈ RL into overlapping patches and preserve
the dimensions of the variables,

E0 = Embedding(X), (5)

where embedding E0 ∈ RN×P×D, P and D denote the
number and feature dimensions of patches, respectively.

ProBlock We apply multiple layers of ProBlock to opti-
mize the embedding, which enables information interactions
across time and variables,

Ei+1 = ProBlock(Ei), i = 0, 1, . . . , γ − 1, (6)

where γ is the number of layers. In addition, as shown in
Fig. 3, ProBlock is composed of HyperMamba and Tim-
eFFN, which complete the information interaction between
variables and the capture of complex changes within vari-
ables respectively. We’ll describe the HyperMamba module
in the next subsection, which is the focus of this paper.

Linear projection After γ layers of ProBlock, we first
flatten the embedding of each variable, and then apply a
simple linear projection to obtain the forecast results,

Y = Projection(EL). (7)

4.2. HyperMamba Module

We propose HyperMamba to optimize the modeling of vari-
able dependencies. Existing popular methods (Liu et al.,
2024b) mainly use attention to capture this relationship.
However, they suffer from quadratic complexity with the
number of variables, which severely limits the deployment
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Figure 4: Implementation details of hardware-aware hyper-scan. We effectively apply the GPU memory hierarchy, i.e.,
perform plain state acquisition on GPU SRAM (implemented in the grey box above), and other operations on GPU HBM.
Specifically, we follow the original Mamba implementation by first scanning the embedding along the variables and acquiring
the plain state. Then, we perform a reshape on the plain state to recover the fine-grained time dimension of the embedding.
Next, we adaptively select important time points for each variable to adjust the plain state to obtain time- and variable-aware
hyper-states. Finally, the reconstructed hyper-states are applied to obtain the augmented embeddings through a gating
mechanism.

of models in real-world scenarios. Although some methods
introduce Mamba (Wang et al., 2025) or MLP (Han et al.,
2024) to extract variable dependencies, they use sequence
embedding to process each variable sequence, which is not
enough to capture complex internal time changes within
variables. In particular, in the real world, the relationship
between various physical variables is not static and tends
to fluctuate with changes in local time (Zhou et al., 2021).
Therefore, we propose a novel time tune strategy to con-
struct the variable- and time-aware hyper-state, so as to
model the information interaction between variables better.

Specifically, for input E ∈ RN×(P×D), we first get Et ∈
RN×(P×D) and Ez ∈ RN×(P×D) through two linear projec-
tions. Then, we split the Et into two parts along the channel
and input the Hyper-scan module along the opposite variable
direction to capture the global variable dependencies,

Êt1 = Hyperscan1→N (Et[:, 0 :
PD

2
]),

Êt2 = HyperscanN→1(Et[:,
PD

2
: PD]),

Êt = Concact(Êt1, Êt2).

(8)

Finally, we apply the SiLU activation function (Ramachan-
dran et al., 2017) to Ez and dot-multiply it with the aug-
mented Êt to get the output Ê ,

Ê = Êt · SiLU(Ez). (9)

HyperMamba Design The structure diagram of the Hy-
perMamba module can be seen in Fig. 3, which is slightly
modified from the original Mamba (Gu & Dao, 2024). First,
we replace the selective scan with a hardware-aware Hyper
Scan that underpins the construction of hyperstates. Com-
pared to the original selective scan module, the hyper scan
does not reduce the efficiency and achieves better perfor-
mance. In addition, we remove the depthwise convolution
before the scan and the linear projection after the scan,
which are verified as unnecessary in Sec. 5.3. In addition,
we add the scanning inception design, i.e., we split two
parts along the channel and scan in opposite variable di-
rections, thereby enhancing the model’s ability to capture
global variable dependencies.

Hyper-scan The Vanilla Mamba transfers the state inde-
pendently along each dimension of the embedding and gets
the output through the parameter C. Therefore, when we
apply the original selective scanning module to scan along
the variable dimension, the state contains only variable in-
formation. It is not conducive to capturing accurate variable
dependencies, which fluctuate with time changes within the
variable. Therefore, we introduce a time tune strategy to
adjust the initial state adaptively according to the time points
intra-variable.

The process of Hyper-scan is shown in Fig. 4. For the
input Et ∈ RN×(P×D), it is first scanned along the variable

5



TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state

dimension and the initial state h ∈ RN×(P×D) is obtained.
This step is implemented in SRAM to reduce the repeated
read and write of HBM memory. We then reshape the
dimensions of state h and obtain an initial shift δh through
a convolution,

δh = Conv(h). (10)

Next, we add the reference point to the learnable offset to
get the sample point, which serves as the final coordinate for
extracting the important time point from the state. In prac-
tice, we follow (Xiong et al., 2024) by linear interpolation
ψ to make the sampling process differentiable,

hsamp = href + δh, (11)

ĥ = href + ψ(h;hsamp), (12)

where ĥ ∈ RN×P×D×M and M is the number of sampling
time points. Then, a linear mapping is used to fuse the sam-
pled time points to obtain the hyperstate ho ∈ RN×P×D,

ho = Linear(ĥ). (13)

Finally, the reconstructed hyper-state is multiplied with the
parameter matrix C in Mamba to get the output.

4.3. Complexity Analysis

We analyze the complexity of the core component Hyper-
Mamba from patch number P , feature dimension D, vari-
able number N , and sampling point M . First, the input
passes through two linear projections with a complexity of
O(NP 2D2). Then, we get the parameter matrix A,B,C
by linear mapping and structured operation respectively,
which has a complexity of O(NPD) since we set the num-
ber of states in each dimension to 1. During the scanning
process, the initial state is O(NPD) complex because only
needs to be scanned independently along the variable di-
mension. The time tune process involves the generation of
offsets (i.e., convolution) and linear projection, requires a
complexity of O(NPMD). Given that D is a relatively
small constant and M is also a constant (i.e., 9), these two
terms can be ignored. In addition, P is affected by the
length of the series L, so the complexity of the entire hy-
perMamba is O(NL). As shown in Table 1, two classical
comparison models, such as iTransformer and PatchTST,
require significantly more complexity than TimePro.

Table 1: Complexity comparison between popular time
series forecasters concerning series length L, number of
variables N . TimePro achieves only linear complexity.

TimePro (ours) iTransformer PatchTST Transformer
Complexity O(NL) O(N2 +NL) O(NL2) O(NL+ L2)

5. Experiments
5.1. Datasets and Implementation Details

In order to comprehensively evaluate the performance of
the proposed TimePro, we conduct extensive experiments
on five widely used real datasets, including ETT (4 subsets),
Exchange, Electricity, Weather (Zhou et al., 2021; Wu et al.,
2021), and Solar-Energy (Lai et al., 2018). All experiments
are implemented on four Tesla V100 GPUs and follow the
common training settings in (Liu et al., 2024b). A detailed
description can be found in Appendix A.

5.2. Main Results

As shown in Table 2, TimePro achieved state-of-the-art per-
formance on multiple datasets, with the first place marked
in red and the second place marked in blue. TimePro scored
12 firsts and 2 seconds out of 16 metrics. With the exception
of the Solar-Energy dataset, our approach outperforms the
state-of-the-art methods SOFTS and iTransformer. On the
weather dataset, the MSE of our method is 2.0% lower than
that of SOFTS and 3% lower than that of iTransformer. On
the weather dataset, the MSE of our method is reduced by
2% compared with that of SOFTS and 3.1% compared with
that of iTransformer. Compared with SOTFS and iTrans-
former on the ETTm1 dataset, TimePro reduces mae by
1.2% and 2.9%, respectively. On most data sets, Time-
Pro outperforms past advanced methods such as TimesNet,
PatchTST and Dlinear. This is because these methods deal
with the time dimension in a unified manner, and there is no
way to capture complex time relationships.

Fig. 2 also provides a detailed comparison of efficiency met-
rics including parameters, FLOPs, training time and infer-
ence time. It can be observed that TimePro possesses better
computational efficiency than previous methods. Specifi-
cally, TimePro has a training time and inference time similar
to S-Mamba and significantly outperforms other convolu-
tional or transformer-based methods. For example, TimePro
obtains lower prediction errors with 2.7 and 14.4 times
the inference speed of PatchTST and TimesNet, respec-
tively. Moreover, TimePro has the minimal parameters,
FLOPs, and memory consumption. For example, Time-
Pro requires only 67% parameters and 78% GFLOPs of
S-Mamba. In addition to satisfactory efficiency, TimePro
also outperforms recent advanced models including iTrans-
former and S-Mamba in forecasting performance. These
results demonstrate TimePro’s lightweight and suitability
for deployment in a variety of real-world scenarios where
resources are constrained.

To further validate the robustness of our approach, we con-
duct a comparative analysis of various models across dif-
ferent lookback window lengths. As depicted in Figure 7,
TimePro consistently achieves the lowest MAE across all
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Table 2: Multivariate long-term forecasting results with horizon H ∈ {96, 192, 336, 720} and fixed lookback window length
L = 96. Results are averaged from all prediction horizons.

TimePro S-Mamba SOFTS iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet Stationary
Models

ours (2025) (2024) (2024b) (2023) (2023) (2023) (2023) (2023) (2022) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.169 0.262 0.170 0.265 0.174 0.264 0.178 0.270 0.189 0.276 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.193 0.296

Exchange 0.352 0.399 0.367 0.408 0.361 0.402 0.360 0.403 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.461 0.454

Weather 0.251 0.276 0.251 0.276 0.255 0.278 0.258 0.278 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.288 0.314

Solar-Energy 0.232 0.266 0.240 0.273 0.229 0.256 0.233 0.262 0.236 0.266 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.261 0.381

ETTm1 0.391 0.400 0.398 0.405 0.393 0.403 0.407 0.410 0.396 0.406 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.481 0.456

ETTm2 0.281 0.326 0.288 0.332 0.287 0.330 0.288 0.332 0.287 0.330 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.306 0.347

ETTh1 0.438 0.438 0.455 0.450 0.449 0.442 0.454 0.447 0.453 0.446 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.570 0.537

ETTh2 0.377 0.403 0.381 0.405 0.373 0.400 0.383 0.407 0.385 0.410 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.526 0.516

tested lookback windows. Specifically, when the lookback
window is set to 48, our method demonstrates a signifi-
cantly lower MAE compared to SOFTS. This is attributed
to TimePro’s capability to effectively capture crucial tempo-
ral information, enabling it to maintain strong performance
even with limited data. Notably, on the ETTm2 and Ex-
change datasets, we observe a substantial reduction in MAE
when the lookback window is extended to 336. While it is
generally expected that a larger lookback window would
provide more information and thus lead to more consistent
model performance, our model’s ability to excel under such
conditions is noteworthy. This is largely due to TimePro’s
dynamic feature selection mechanism, which allows it to
identify and focus on key temporal features, thereby pre-
venting the relevant information from being overwhelmed
by the sheer volume of time series data.

5.3. Ablation study

We conduct a series of ablation experiments to investigate
the effect of different hyperparameters and the effectiveness
of the model structure design.

Effect on multi-delay issue We first add a visualization
experiment to further validate the validity and interpretabil-
ity of TimePro for the multi-delay issue, as shown in Fig.
5. We choose test sequences from the ETTm1 and ETTh1
datasets as examples. Specially, we first calculate the cor-
relation of label sequences (i.e., groundtruth) by Pearson
correlation coefficient,

rxy =

∑L
i=1 (xi − x̄) (yi − ȳ)√∑L

i=1 (xi − x̄)
2 ·

∑L
i=1 (yi − ȳ)

2
, (14)

where xi, yi ∈ R run through all time points of the paired
variates to be correlated. We then visualize the correlation
between the variable features before and after HyperMamba.
Fig. 5 shows that TimePro selects important time points
through the time-tune strategy, which drives the learned
multivariate correlations closer to the label sequences. This

suggests that TimePro effectively mitigates the detrimental
effects of the multi-delay issue on accurate variable relation-
ship modeling.

Ablation of the feature dimensions We first explore the
effect of feature dimensions on forecasting performance, as
shown in Fig. 6. For most datasets, once the feature dimen-
sion increases to a certain point (such as 48 or 64), further
increasing the feature dimension may not significantly im-
prove model performance, and can sometimes even lead to a
decrease in performance. For example, the impact of feature
dimensions on the Solar dataset is complex, with an initial
increase in MAE (from 32 to 48), but a subsequent decrease
in MAE when the dimensions are further increased (from
48 to 96). Therefore, selecting a moderate feature dimen-
sion is a better strategy. Moreover, TimePro achieves the
best performance on most of the datasets when the feature
dimension is 48. The small feature dimension ensures that
TimePro is efficient.

Ablation of the number of encoder layers Regarding
the number of encoder layers in Fig. 6, for the ECL dataset,
increasing the number of encoder layers significantly im-
proves performance, with the MAE gradually decreasing as
the number of layers increases. For the Exchange dataset,
increasing the number of layers significantly improves per-
formance, but the improvement becomes smaller when the
number of layers exceeds 2, eventually stabilizing at 3 and
4 layers. For the Weather dataset, increasing the number of
layers has little impact on MAE, indicating that this dataset
has a lower demand for the number of layers. For the Solar
dataset, increasing the number of layers significantly im-
proves MAE, especially when increasing from 1 to 3 layers,
with a noticeable performance boost, but a slight increase
at 4 layers. In summary, increasing the number of encoder
layers generally improves model performance, but this im-
provement tends to level off or slow down after a certain
point. For most datasets, an encoder layer count between
2 to 4 is likely to be a good choice, as it balances model
complexity and performance.
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Figure 5: Visualization for multivariate correlation analysis on ETTm1 (upper) and ETTh1(bottom) dataset. The visualization
is implemented based on the Pearson Correlation Coefficient. The GT Correlations denote the correlation between the
variables of the forecast sequence (groundtruth). The two columns on the right denote the correlation between the variables
before and after the HyperMamba module, respectively. It shows that TimePro drives the learned multivariate correlations
closer to the forecast sequence through the HyperMamba module.

Ablation of the patch length Fig. 6 shows that the im-
pact of patch length on model performance also varies from
one dataset to another. For some datasets, increasing the
patch length can significantly improve performance, while
for others, the effect may be less pronounced. For the ECL
dataset, increasing the patch length (from 8 to 32) reduces
the MAE, with significant performance improvement due
to patch length. For the Exchange dataset, the impact of
patch length on MAE is relatively small, with only minor
performance changes, indicating that this dataset has a lower
demand for patch length. For the Weather dataset, the im-
pact of patch length is more complex, with an initial increase
in MAE (from 8 to 16), but a subsequent decrease in MAE
when the patch length is further increased (from 16 to 32).
For the Solar dataset, increasing the patch length from 8 to
32 significantly reduces the MAE, with clear performance
improvement due to patch length. Overall, a moderate patch
length (such as 16 to 32) may be a good starting point,
as it can capture sufficient temporal sequence information
without excessively increasing model complexity.

Ablation of the time tune design We next perform a
further ablation analysis of the time tune strategy, as shown

Table 3: Ablation experiment of the time tune design on the
Exchange and ETTh1 dataset. Results are averaged with
horizon H ∈ {96, 192, 336, 720}.

Exchange ETTh1Variant MSE MAE MSE MAE
Non-Adaptive 0.360 0.402 0.451 0.441
Adaptive 0.352 0.399 0.438 0.438

in Table 3. An optional strategy is to integrate the variables
states along the time dimension using a linear projection, i.e.,
non-adaptive. The results show that the non-adaptive variant
obtains MSEs of 0.360 and 0.351 on Exchange and ETTh1,
respectively. TimePro achieves smaller MSEs and MAEs on
Exchange and ETTh1 compared to the non-adaptive variant.
These experimental results validate that the introduction of
an adaptive strategy can better tune the state of the variables
and improve the prediction performance.

Ablation of the HyperMamba structure In addition, we
also carry out an ablation analysis of HyperMamba’s struc-
ture. Compared to the original Mamba, we remove two
components, the depth-wise convolution before scanning

8
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Figure 6: Influence of the hidden dimension of features D, Layer of encoder L and length of patches. We select ECL,
Exchange, Weather and Solar-energy for visualization.

Figure 7: Influence of lookback window length L ∈ 48, 96, 192, 336 on ETTm2, ECL and Exchange dataset. TimePro
performs almost consistently better than other models under different lookback window lengths.

Table 4: Ablation experiment of the HyperMamba structure
on the Exchange and ETTh1 dataset. Results are averaged
with horizon H ∈ {96, 192, 336, 720}.

Exchange ETTh1Variant MSE MAE MSE MAE
Mamba + Hyper-Scan 0.358 0.403 0.449 0.439
- DWConv 0.358 0.402 0.447 0.440
- Linear 0.356 0.401 0.447 0.441
HyperMamba 0.352 0.399 0.438 0.438

and the linear projection after scanning. As shown in Table
4, we replace the selective scanning module of the original
Mamba with the Hyper-Scan and use it as the baseline, i.e.,
Mamba+Hyper-Scan. It can be observed that the forecast-
ing performance is slightly improved after the removal of
both components. We believe that the possible reason for
this is that there is no localization between the variables
and therefore depth-wise convolution is not necessary. In
addition, the output linear within the original Mamba mod-
ule is also redundant due to our introduction of TimeFFN.
Therefore, we remove these two components, which could
also improve the efficiency of TimePro.

6. Conclusion
In this paper, we begin by examining previous work on time
series forecasting. These works tend to treat all variables or
time points uniformly, which limits their ability to simulta-
neously capture complex variable relationships and obtain
nontrivial temporal representations. Inspired by the recent
popularity of state-space models (i.e., Mamba), we propose
an efficient multivariate long-term time series forecasting
model TimePro. In contrast to state transfer only in the vari-
able dimension, TimePro adjusts the variable states through
a time-tune strategy and uses the reconstructed hyper-states
to obtain the output. The prediction performance is im-
proved due to the ability of the hyperstates to perceive both
complex variable relationships and intra-variable time vari-
ations. More remarkably, TimePro also absorbs the advan-
tages of hardware awareness and linear complexity of the
original mamba, thus ensuring high efficiency. Comprehen-
sive experiments verify the effectiveness of TimePro. In
future work, we plan to build a large time series prediction
foundation model based on TimePro, thus providing the
community with more directions to explore.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Dataset
We conduct experiments on eight real-world datasets. (1) ETT datasets: ETT (Zhou et al., 2021) (Electricity Transformer
Temperature) comprises data on load and oil temperature, collected from electricity transformers over the period from
July 2016 to July 2018. It contains four subsets, ETTm1, ETTm2, ETTh1 and ETTh2. ETTh1 and ETTh2 are recorded
every hour, and ETTm1 and ETTm2 are recorded every 15 minutes. In addition, ETT datasets have few varieties and weak
regularity. (2) Exchange (Wu et al., 2021) collects the panel data of daily exchange rates from 8 countries from 1990 to
2016. (3) Weather includes 21 indicators of weather, such as air temperature, and humidity. Its data is recorded every 10
min for 2020 in Germany. (4) Solar-Energy (Lai et al., 2018) records the solar power production of 137 PV plants in 2006,
which is sampled every 10 minutes. (5) ECL (Wu et al., 2021) records the hourly electricity consumption data of 321 clients.
The details of datasets are also provided in Table 5.

Table 5: Detailed dataset descriptions. Channels denotes the number of channels in each dataset. Dataset Split denotes the
total number of time points in (Train, Validation, Test) split respectively. Prediction Length denotes the future time points to
be predicted and four prediction settings are included in each dataset. Granularity denotes the sampling interval of time
points.

Dataset Channels Prediction Length Dataset Split Granularity Domain
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

B. Implementation Details
B.1. Details of time and variable preserved embedding

Following PatchTST (Nie et al., 2023), we divide each input univariate time series Xi,: ∈ RL into patches that can overlap.
Let the patch length be Pl and the stride between two consecutive patches be Sl. The patching process generates a sequence
of patchesXp

i,: ∈ RP×D , where P is the number of patches and P = ⌊L−Pl

Sl
⌋+ 2. Here, we fill the last value of Xi,: ∈ RL

with the number of Sl repetitions to the end of the original sequence and then patch it. By using patching, the number of
input tokens can be reduced from L to approximately L

Sl
. This means that TimePro’s memory usage and computational

complexity are reduced by a factor of Sl.

B.2. Experiment Details

All experiments are performed on 4 NVIDIA Tesla V100 GPUs with 32G VRAM. The model is optimized using the Mean
Squared Error (MSE) loss function. The performance of the different methods is compared based on two main evaluation
metrics: the Mean Squared Error (MSE) and the Mean Absolute Error (MAE). We use the ADAM optimizer (Kingma & Ba,
2017) with an initial learning rate of 5 × 10-4. This rate is modulated by a cosine learning rate scheduler. We study the layer
of Problocks γ within the set {1,2,3,4} and the dimension of the embedding D within {32,48,64,96}.

C. Full Results
Table 6 shows the full results of the prediction benchmarks. We conduct experiments using eight widely used real-
world datasets and compare our method to ten previous state-of-the-art models. The comparison models use a variety of
architectures including convolution, transformer, mlp, and mamba. In these tests, our TimePro exhibits strong performance.
Specifically, TimePro achieves the best performance on most of the datasets. Both at different prediction lengths and on
average, TimePro possesses smaller MSE and MAE.

In addition, we implement visualizations on the ETTh2 and ECL dataset to further validate the predictive effect of TimePro.
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As shown in Fig. 8 and 9, compared to iTransformer and S-Mamba, TimePro’s prediction curves are closer to the
groundtruth, and the curve distances are smaller at the inflection point locations. The visualization analysis further validates
the effectiveness of TimePro.

Table 6: Multivariate long-term forecasting results with prediction lengths H ∈ {96, 192, 336, 720} and fixed lookback
window length L = 96. The results are are taken from iTransformer (Liu et al., 2024b) and S-Mamba (Wang et al., 2025).

TimePro S-Mamba SOFTS iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet StationaryModels ours (2025) (2024) (2024b) (2023) (2023) (2023) (2023) (2023) (2022) (2022)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.326 0.364 0.333 0.368 0.325 0.361 0.334 0.368 0.329 0.365 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.386 0.398
192 0.367 0.383 0.376 0.390 0.375 0.389 0.377 0.391 0.380 0.394 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.459 0.444
336 0.402 0.409 0.408 0.413 0.405 0.412 0.426 0.420 0.400 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.495 0.464
720 0.469 0.446 0.475 0.448 0.466 0.447 0.491 0.459 0.475 0.453 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.585 0.516

Avg 0.391 0.400 0.398 0.405 0.393 0.403 0.407 0.410 0.396 0.406 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.481 0.456

E
T

T
m

2

96 0.178 0.260 0.179 0.263 0.180 0.261 0.180 0.264 0.184 0.264 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.192 0.274
192 0.242 0.303 0.250 0.309 0.246 0.306 0.250 0.309 0.246 0.306 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.280 0.339
336 0.303 0.342 0.312 0.349 0.319 0.352 0.311 0.348 0.308 0.346 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.334 0.361
720 0.400 0.399 0.411 0.406 0.405 0.401 0.412 0.407 0.409 0.402 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.417 0.413

Avg 0.281 0.326 0.288 0.332 0.287 0.330 0.288 0.332 0.287 0.330 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.306 0.347

E
T

T
h1

96 0.375 0.398 0.386 0.405 0.381 0.399 0.386 0.405 0.394 0.406 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.513 0.491
192 0.427 0.429 0.443 0.437 0.435 0.431 0.441 0.436 0.440 0.435 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.534 0.504
336 0.472 0.450 0.489 0.468 0.480 0.452 0.487 0.458 0.491 0.462 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.588 0.535
720 0.476 0.474 0.502 0.489 0.499 0.488 0.503 0.491 0.487 0.479 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.643 0.616

Avg 0.438 0.438 0.455 0.450 0.449 0.442 0.454 0.447 0.453 0.446 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.570 0.537

E
T

T
h2

96 0.293 0.345 0.296 0.348 0.297 0.347 0.297 0.349 0.288 0.340 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.476 0.458
192 0.367 0.394 0.376 0.396 0.373 0.394 0.380 0.400 0.376 0.395 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.512 0.493
336 0.419 0.431 0.424 0.431 0.410 0.426 0.428 0.432 0.440 0.451 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.552 0.551
720 0.427 0.445 0.426 0.444 0.411 0.433 0.427 0.445 0.436 0.453 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.562 0.560

Avg 0.377 0.403 0.381 0.405 0.373 0.400 0.383 0.407 0.385 0.410 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.526 0.516

E
C

L

96 0.139 0.234 0.139 0.235 0.143 0.233 0.148 0.240 0.164 0.251 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.169 0.273
192 0.156 0.249 0.159 0.255 0.158 0.248 0.162 0.253 0.173 0.262 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.182 0.286
336 0.172 0.267 0.176 0.272 0.178 0.269 0.178 0.269 0.190 0.279 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.200 0.304
720 0.209 0.299 0.204 0.298 0.218 0.305 0.225 0.317 0.230 0.313 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.222 0.321

Avg 0.169 0.262 0.170 0.265 0.174 0.264 0.178 0.270 0.189 0.276 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.193 0.296

E
xc

ha
ng

e 96 0.085 0.204 0.086 0.207 0.091 0.209 0.086 0.206 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.111 0.237
192 0.178 0.299 0.182 0.304 0.176 0.303 0.177 0.299 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.219 0.335
336 0.328 0.414 0.332 0.418 0.329 0.416 0.331 0.417 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.421 0.476
720 0.817 0.679 0.867 0.703 0.848 0.680 0.847 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.092 0.769

Avg 0.352 0.399 0.367 0.408 0.361 0.402 0.360 0.403 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.461 0.454

W
ea

th
er

96 0.166 0.207 0.165 0.210 0.166 0.208 0.174 0.214 0.176 0.217 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.173 0.223
192 0.216 0.254 0.214 0.252 0.217 0.253 0.221 0.254 0.221 0.256 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.245 0.285
336 0.273 0.296 0.274 0.297 0.282 0.300 0.278 0.296 0.275 0.296 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.321 0.338
720 0.351 0.346 0.350 0.345 0.356 0.351 0.358 0.347 0.352 0.346 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.414 0.410

Avg 0.251 0.276 0.251 0.276 0.255 0.278 0.258 0.278 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.288 0.314

So
la

r-
E

ne
rg

y 96 0.196 0.237 0.205 0.244 0.200 0.230 0.203 0.237 0.205 0.246 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.215 0.249
192 0.231 0.263 0.237 0.270 0.229 0.253 0.233 0.261 0.237 0.267 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.254 0.272
336 0.250 0.281 0.258 0.288 0.243 0.269 0.248 0.273 0.250 0.276 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.290 0.296
720 0.253 0.285 0.260 0.288 0.245 0.272 0.249 0.275 0.252 0.275 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.285 0.200

Avg 0.232 0.266 0.240 0.273 0.229 0.256 0.233 0.262 0.236 0.266 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.261 0.381

D. More ablation results
Ablation of the Hyper-Scan We explore the effectiveness of hyper-scan as shown in Table 7. Specifically, we remove
the HyperMamba module as the baseline and set up several variants, including scanning in the variable dimension only
(Var only), scanning in the time dimension only (Time only), and scanning in the variable dimension first and then in the
time dimension (Time & Var). The results show that both time only and var only improve the prediction performance of
the baseline, which is also attributed to the powerful global dependency capture of the original Mamba. In addition, the
combination of the two further reduces the MSE and MAE of the prediction. However, this structure does not model the
relationship between time and variables in a single module, and thus performance is limited. In addition, it can lead to
large computational costs that impair the efficiency of the model. In contrast, TimePro models more accurate variable
dependencies through an efficient time tune strategy, requires only linear computational complexity, and achieves the best
prediction performance.

We also provide some visualization results to validate the effectiveness of Hyper-Scan, as shown in Fig. 10. It can be
observed that suboptimal results are obtained for the prediction curves of models that scan only in the time dimension or the
variable dimension. Specifically, when scanning only in the variable dimension (Fig. a), the model’s prediction curves are
smoother, with a poorer fit at the extremes. We attribute this to the model’s lack of ability to capture the details of local
changes within variables. When scanning in the time dimension only (Fig. b), the model’s prediction ability for the extremes
improves, but the average accuracy remains poor. This is due to the lack of capturing complex variable relationships. And
when we use non-adaptive hyper-scanning (Fig. c), the model’s average accuracy and predictive ability for extreme values
are improved, but the performance is still unsatisfactory. And when we apply the adaptive hyper-scan, i.e., TimePro (Fig.
d), the model can perceive both variable relationships and significant temporal information, resulting in a more accurate
prediction performance.
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Table 7: Ablation experiment of the Hyper-Scan on the Exchange and ETTh1 dataset. Results are averaged with horizon
H ∈ {96, 192, 336, 720}.

Exchange ETTh1Variant MSE MAE MSE MAE
Baseline 0.374 0.418 0.467 0.452
Time only 0.367 0.414 0.459 0.447
Var only 0.367 0.410 0.454 0.443
Time & Var 0.360 0.404 0.450 0.439
TimePro 0.352 0.399 0.438 0.438
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Figure 8: Comparison of forecasts between TimePro, S-Mamba and iTransformer on ETTh2 dataset when the input length
is 96 and the forecast length is 96. The blue line represents the ground truth and the orange line represents the forecast.

Efficiency effect of variable channels We further explore the efficiency of TimePro with different variable channels
in Fig. 11, which can be seen as a complement to Table 1. It can be observed that as the number of variable channels
increases, iTransformer shows a quadratic increase in both the memory and inference time, which severely compromises
the efficiency of the model and limits practical applications. In addition, PatchTST has unsatisfactory efficiency under all
variable channels. In contrast, the linear scaling ability compared to variable channels, small memory consumption and high
inference speed validate TimePro’s efficiency.
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Figure 9: Comparison of forecasts between TimePro, S-Mamba and iTransformer on ECL dataset when the input length is
96 and the forecast length is 96. The blue line represents the ground truth and the orange line represents the forecast.
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Figure 10: Visual comparison of different Hyper-scan designs on ETTh2 dataset when the input length is 96 and the forecast
length is 96. Var only and Time only denote we only apply the scanning in the variable and time dimension, respectively.
Non-Adaptive Hyper-Scan denote we integrate the variables states along the time dimension using a linear projection, i.e.,
non-adaptive. The better prediction curves of TimePro prove the validity of Hyper-Scan’s structure.
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Figure 11: Memory and inference time of different methods. We set the lookback window L = 96, forecast horizon H =
720 in a synthetic dataset we conduct. We set the batch size to 4 due to the limited GPU memory. The inference times
are measured on Nvidia V100 GPU. It reveals that TimePro scales to large number of channels more effectively than
Transformer-based models (i.e., iTransformer and PatchTST).
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