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Abstract
Graph-structured data is ubiquitous across scientific and indus-
trial domains, making tasks such as node classification, edge pre-
diction, and graph classification fundamental in modern machine
learning. Graph Neural Networks (GNNs) have emerged as the
dominant framework for these tasks, leveraging message passing
algorithms to propagate information across nodes and learn expres-
sive representations. However, performing zero-shot learning on
graphs—where the model must generalize to unseen tasks or labels
without additional training—remains highly challenging due to the
structural complexity and relational dependencies within graphs.

Recent efforts have explored using Large LanguageModels (LLMs)
for zero-shot reasoning on graphs by converting graph structures
into textual descriptions. While promising, these methods face sig-
nificant limitations due to the restricted context window of LLMs
and the risk of hallucinations, especially when processing dense or
large-scale graphs.

In this paper, we propose Large Language Model Graph Message
Passing (LLM-GMP), a novel framework designed to address the
zero-shot learning problem on graphs. Our method combines the
scalability of message passing with the reasoning capabilities of
LLMs: rather than exchanging vector embeddings as in traditional
GNNs, nodes exchange task-aware textual messages, enabling the
LLM to explore the graph level by level in a structured, interpretable
manner tailored to the downstream task.

By aligning graph explorationwith the LLM’s strengths in language-
based inference, our approach achieves strong zero-shot perfor-
mance across a range of graph-based tasks, demonstrating the
potential of LLM-driven message passing as a powerful alternative
to standard graph representation learning methods.
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Natural language processing.

Keywords
Large Language Models (LLMs), Graph Neural Networks (GNNs),
Zero-Shot Learning, Message Passing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD, MLoG-GenAI, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/08
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Md Athikul Islam and Edoardo Serra. 2025. LLM-GMP: Large Language
Model-Based Message Passing for Zero-Shot Learning on Graphs. In Pro-
ceedings of KDD 2025 Workshop on Machine Learning on Graphs in the Era
of Generative Artificial Intelligence (KDD, MLoG-GenAI). ACM, New York,
NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graphs offer a natural and powerful way to represent data with
relational and structural dependencies, making them essential in
domains such as social network analysis, biological systems, knowl-
edge graphs, and recommendation engines [3, 15, 23]. The advent
of GNNs has significantly advanced the state of the art in learning
on graph-structured data [17, 25]. By employing message-passing
mechanisms that iteratively aggregate information from neighbor-
ing nodes, GNNs enable expressive and scalable representations
for a variety of tasks, including node classification, link prediction,
and graph classification [25, 28].

However, despite these advances, zero-shot learning (ZSL) on
graphs remains a persistent challenge [16]. In the zero-shot set-
ting, models are required to generalize to previously unseen tasks
or label spaces without additional labeled training data [1]. Tradi-
tional GNNs are ill-equipped for this scenario: they typically rely
on supervised training tailored to specific tasks and lack the adapt-
ability to handle new objectives without retraining or architectural
modifications.

In parallel, LLMs have recently demonstrated impressive zero-
shot generalization across a wide range of NLP and reasoning tasks,
thanks to pretraining on massive and diverse text corpora [10, 21].
Inspired by this capability, researchers have begun exploring the
use of LLMs for graph problems, primarily by translating graph
structures into textual formats that LLMs can process [2, 21, 22].
While this approach has shown promise—especially in zero-shot
contexts—it is fundamentally limited. Flattening entire graphs into
text often exceeds the LLM’s context window, particularly for large
or densely connected graphs, and can introduce semantic ambiguity
or information loss. Moreover, these methods are prone to hallu-
cinations, where the model generates outputs that deviate from
the underlying graph structure, undermining reliability in critical
applications.

To address these limitations, we propose Large Language Model
GraphMessage Passing (LLM-GMP), a novel framework that reimag-
ines graph processing through the lens of zero-shot language-based
reasoning. Rather than representing the graph as a static text block,
LLM-GMP simulates message passing in the language domain:
nodes exchange task-aware, interpretable text messages generated
by an LLM. These messages evolve over multiple rounds of inter-
action, allowing information to propagate across the graph in a
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structured, hierarchical manner. Crucially, the LLM is aware of the
downstream task throughout this process, enabling it to synthesize
and interpret contextual information effectively.

More concretely, LLM-GMP defines a message passing algorithm
in which each node iteratively aggregates textual information re-
ceived from its neighbors, with the LLM generating messages tai-
lored to the specific zero-shot learning task. Over successive itera-
tions, the LLM refines each node’s understanding of its local and
global context, culminating in task-specific reasoning (e.g., clas-
sification or prediction) based on the final aggregated messages.
This paradigm harnesses the complementary strengths of message
passing and LLM-based inference, achieving both interpretability
and flexibility without retraining.

To the best of our knowledge, this is the first framework to
define such a paradigm, which can be viewed as a form of agentic
AI, where each node acts as a lightweight reasoning agent within a
collaborative, task-driven system. Preliminary experiments show
that LLM-GMP offers strong performance across a range of zero-
shot graph learning tasks, highlighting its potential as a robust
alternative to traditional graph representation learning approaches.

2 Related Work
This section reviews two major research directions relevant to our
work: traditional GNNs and the emerging field of LLMs operating
directly on graph-structured data.

2.1 Graph Neural Networks (GNNs)
GNNs have emerged as a powerful framework for learning on graph-
structured data, enabling the modeling of complex relationships
across various domains such as social networks, molecular chem-
istry, and recommendation systems. Foundational architectures in
this field include Graph Convolutional Networks (GCNs), Graph
Attention Networks (GATs), and Graph Isomorphism Networks
(GINs).

GCNs, introduced by Kipf and Welling [9], extend the concept of
convolution from grid-structured data to graph-structured data by
employing a localized first-order approximation of spectral graph
convolutions. This approach efficiently aggregates feature infor-
mation from a node’s immediate neighbors and has demonstrated
strong performance in semi-supervised learning tasks.

To address the limitations of uniform neighbor aggregation in
GCNs, Veličković et al. [20] proposed GATs, which incorporate
attention mechanisms into the aggregation process. By assigning
learnable weights to neighboring nodes, GATs enable nodes to focus
on the most relevant parts of their neighborhood, enhancing the
model’s capacity to capture complex patterns in the data.

Xu et al. [26] introduced GINs to explore the expressive power
of GNNs in distinguishing graph structures. GINs employ a sum ag-
gregation function, which, under certain conditions, is as powerful
as the Weisfeiler-Lehman graph isomorphism test in distinguishing
non-isomorphic graphs. This theoretical foundation allows GINs to
achieve superior performance in graph classification tasks.

Comprehensive surveys by Wu et al. [24] and Zhou et al. [29]
provide extensive overviews of GNNmodels, methodologies, and ap-
plications, highlighting their versatility and growing impact across
various research and application domains.

Despite their success, traditional GNN architectures are not in-
herently equipped for zero-shot learning tasks.

2.2 LLMs Operating Directly on Graphs
The integration of large language models (LLMs) into graph pro-
cessing has gained considerable traction, showcasing their capacity
to reason over complex graph-structured data. Li et al. [13] investi-
gated the structural analysis abilities of LLMs, introducing special-
ized benchmarks and datasets to support rigorous evaluation. Fan
et al. [4] demonstrated that LLMs can effectively augment tradi-
tional GNNs, enhancing their representational power and predictive
performance. Tang et al. [19] proposed GraphGPT, an instruction-
tuned framework that fuses LLMs with graph knowledge, enabling
robust generalization across diverse graph datasets.

A parallel line of work focuses on the integration of LLMs
with knowledge graphs (KGs). Ibrahim et al. [7] categorized the
landscape into three main paradigms: KG-augmented LLMs, LLM-
augmented KGs, and hybrid frameworks that combine both method-
ologies.

Community-driven initiatives, such as the “Awesome-Graph-
LLM” repository [6], have emerged to catalog ongoing research
and tools at the intersection of graphs and LLMs. Benchmarking
platforms like GraphEval36K [18]—which includes 40 graph-related
coding tasks and 36,900 test cases—provide comprehensive assess-
ments of LLMs’ reasoning capabilities in graph domains. Similarly,
GPT4Graph [5] evaluates how well LLMs understand and manipu-
late graph-structured data, shedding light on their strengths and
limitations.

Notably, the most effective zero-shot approaches for graph tasks
are those that translate graph structures into textual representa-
tions, making them directly accessible to LLMs. However, these
methods are constrained by the limited context window of cur-
rent models and are susceptible to hallucinations, which may affect
reliability in critical applications.

3 Methodology
The methodology comprises LLM-Guided Message Passing, incor-
porating Batch-wise Aggregation and tailored LLM Prompt Design
to enable effective graph-level reasoning.

3.1 LLM-Guided Message Passing with
Batch-wise Aggregation

We formulate our task as a node classification problem, where the
goal is to predict the class label of each document node in a graph.
Inspired by the message passing paradigm in GNNs, we reimagine
node communication using LLMs, which offer semantically rich
and adaptive reasoning capabilities. Instead of applying static ag-
gregation functions across all neighbors, we introduce a batch-wise
strategy that decomposes message passing into iterative, linguisti-
cally grounded updates.

3.1.1 Batch-wise Aggregation Strategy. Conventional GNNs ag-
gregate information from all neighboring nodes simultaneously,
typically using mathematical operations such as summation, av-
eraging, or attention mechanisms. While effective for numerical
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features, such approaches often struggle to capture nuanced se-
mantic interactions when applied to textual graphs. To address this
limitation, we propose a batch-wise aggregation strategy guided
by an LLM, in which each node’s representation is refined itera-
tively by interacting with small, contextually focused subsets of its
neighbors.

Let 𝑣𝑖 be a node in the document graph with neighborhood
N(𝑖) = {𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑘 }. Rather than aggregating information from
the entire neighborhood in a single pass, we partition N(𝑖) into
consecutive mini-batches of size 𝑏. At each aggregation step 𝑡 , a
batch 𝐵𝑡 ⊆ N(𝑖) is selected, and the LLM is prompted with three
components: the original text of 𝑣𝑖 , the current state ℎ

(𝑡−1)
𝑖

, and
the texts of neighbors in 𝐵𝑡 . The inclusion of the original text at
every iteration ensures that the node’s core semantic identity is
preserved across updates, serving as a stable anchor throughout
the aggregation process.

Formally, the updated representation at iteration 𝑡 is computed
as

ℎ
(𝑡 )
𝑖

= LLM
(
Prompt(ℎ (𝑡−1)

𝑖
,OriginalText(𝑣𝑖 ), {ℎ (𝑡−1)𝑗

| 𝑣 𝑗 ∈ 𝐵𝑡 })
)
,

where Prompt(·) constructs a task-specific natural language prompt
for the LLM. This iterative procedure continues until all neighbors
have been aggregated. The final representation ℎ

(𝑇 )
𝑖

, after 𝑇 =

⌈|N (𝑖) |/𝑏⌉ iterations, is then used for downstream prediction tasks.
The incremental nature of this strategy offers several advantages.

First, it reduces prompt complexity and token length at each LLM
call, allowing the model to focus on a small, contextually coherent
subset of the graph. Second, it introduces a degree of semantic mod-
ularity: each batch-specific aggregation contributes interpretable
and traceable updates to the node’s evolving representation. Third,
by maintaining access to both the original and intermediate node
states, the LLM can reason over a richer contextual spectrum, bal-
ancing local fidelity and neighbor influence in a structured manner.

The full procedure is outlined in Algorithm 1, which details the
initialization of node states, batch scheduling, prompt construc-
tion, and representation refinement via LLM-based aggregation.
This algorithmic formulation ensures clarity, reproducibility, and
seamless integration with transformer-based language models in
graph-centric tasks.

3.2 LLM Prompt Design
The effectiveness of our message passing framework depends crit-
ically on the design of natural language prompts used to guide
the LLM. We construct two distinct prompts: one for intermedi-
ate message aggregation steps and one for final node classification.
These prompts are designed to be informative, modular, and context-
aware, allowing the LLM to process localized information while
remaining grounded in the global task objective.

Unlike classical GNNs, where feature aggregation is handled
numerically, our approach relies on carefully constructed text in-
structions to stimulate semantic reasoning in the LLM. To this end,
each prompt explicitly encodes the task type, iteration context, and
relevant input segments, such as the original document text, the
current semantic state, and the texts of neighboring nodes. This
structure enables the LLM to both preserve semantic grounding
and extract contextual signals from the neighborhood.

3.2.1 Prompt for Message Passing Aggregation. The message pass-
ing prompt is issued iteratively during the batch-wise aggregation
process. It instructs the LLM to enhance the node’s semantic rep-
resentation using its own textual content and a small batch of
neighboring documents. The prompt is formatted as follows:

LLM Aggregation Prompt (per iteration)

You are assisting with a document classification task
on a graph. Each node is a document. You are refining
the representation of one document based on its own
content and a small batch of neighboring documents.

Task: Enhance the representation of the target document
using its own content and its neighbors’ content. This
enriched representation will be passed to the next iteration
and used for final classification.

Batch Information: You are currently processing batch
#{BATCH_ID} out of {TOTAL_BATCHES}.

Original Document (always include):
{ORIGINAL_TEXT}

Current Document Representation (from previous
steps):
{CURRENT_STATE}

Neighbor Documents in this batch:
{NEIGHBOR_TEXT_1}
{NEIGHBOR_TEXT_2}

Output: Return a semantically enriched version of the
document that integrates both the original text and infor-
mative content from the neighbors, suitable for further
message passing and eventual classification.

3.2.2 Prompt for Node Classification. Once message passing has
concluded and the final representation of each node is computed,
we issue a classification prompt to the LLM (or optionally a light-
weight classifier). This prompt provides the LLM with the enriched
semantic representation of the node and instructs it to output a
predicted class label:

LLM Node Classification Prompt

You are performing node classification in a graph of
documents. Each document belongs to a topic cate-
gory.

Task: Based on the enriched representation of the docu-
ment (after message passing), predict the most likely topic.

Available Classes: [“sci.space”, “rec.sport.hockey”,
“talk.politics.mideast”, ..., “misc.forsale”]

Final Representation of Document:
{ENRICHED_DOCUMENT_TEXT}

Output: Return only the predicted class label for this doc-
ument.
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Algorithm 1 LLM-Guided Message Passing with Batch-wise Aggregation

Require: Graph 𝐺 = (𝑉 , 𝐸), LLM model LLM, batch size 𝑏, number of message steps 𝑇
1: for all node 𝑣𝑖 ∈ 𝑉 do
2: ℎ

(0)
𝑖
← OriginalText(𝑣𝑖 )

3: 𝑁𝑖 ← ShuffleNeighbors(N (𝑖))
4: for each batch 𝐵𝑡 = {𝑣 𝑗1 , . . . , 𝑣 𝑗𝑏 } ⊆ 𝑁𝑖 (non-overlapping) do
5: prompt𝑡 ← ConstructPrompt(𝑣𝑖 , ℎ (𝑡−1)𝑖

,OriginalText(𝑣𝑖 ), {ℎ (𝑡−1)𝑗
| 𝑣 𝑗 ∈ 𝐵𝑡 })

6: ℎ
(𝑡 )
𝑖
← LLM(prompt𝑡 )

7: end for
8: 𝑦𝑖 ← LLM or Classifier(ℎ (𝑇 )

𝑖
)

9: end for
10: return Predicted labels {𝑦𝑖 }𝑖∈𝑉

3.2.3 Prompt Awareness and Semantic Traceability. Each prompt
is designed to explicitly convey the current step of computation
and the role of the output. In the case of message passing, the
prompt informs the LLM that the enriched representation will be
passed to subsequent iterations and ultimately used for classifica-
tion, encouraging the model to preserve both semantic fidelity and
task relevance. The use of batch indicators (e.g., {BATCH_ID}) fur-
ther helps disambiguate iterative stages in the aggregation process.
Meanwhile, the classification prompt omits structural information,
focusing instead on prediction fidelity from the final node embed-
ding.

Together, these prompt designs enable modular, interpretable,
and semantically grounded reasoning over graph-structured textual
data, forming the linguistic backbone of our LLM-guided message
passing framework.

4 Experiments
We organize our experiments into four components: implementa-
tion settings, baselines, datasets, and preliminary results.

4.1 Implementation Settings
We use an NVIDIA GeForce RTX 4090 GPU for our experiments.
For all LLM-based operations, we utilize the LLaMA-3.1 model ac-
cessed via the open-source library Ollama1. To support graph-based
reasoning, we construct a 𝑘-nearest neighbors (k-NN) document
graph, where each node represents a document and is initialized
with an LLM-derived embedding. Edges are formed by connecting
each node to its top-𝑘 most semantically similar neighbors based
on cosine similarity of the embeddings.

4.2 Baselines
We compare our Large Language Model Graph Message Passing
against one CNN-based model, one RNN-based model, and one
GNN-based baselines.
• CNN: A convolutional neural network model for text classi-
fication based on the architecture proposed by [8]. We evalu-
ate two settings: CNN-rand, which uses randomly initialized
word embeddings, and CNN-non-static, which incorporates
pre-trained embeddings that are fine-tuned during training.

1https://ollama.com/

• LSTM: A long short-term memory network adapted from
[14], where the final hidden state represents the entire in-
put sequence. We assess both randomly initialized and pre-
trained word embedding variants.
• GCN: A graph convolutional network that operates on a
heterogeneous document-word graph, learning document-
level representations by propagating signals through graph
structure, as introduced in [27].

4.3 Datasets
We evaluate our approach on two widely used benchmark datasets:
8 Newsgroups (8NG) [11] and R8 [12]. The 8NG dataset is a subset of
the original 20 Newsgroups collection, containing 18,846 documents
filtered to include only 8 categories, making it suitable for multi-
class text classification tasks. The R8 dataset, a subset of the Reuters-
21578 corpus, includes documents from 8 categories, with 5,485
samples designated for training and 2,189 for testing. A summary
of the key statistics for both datasets is provided in Table 1.

Table 1: Statistics of Datasets.

Dataset Training Set Test Set Average Length # of Classes
8NG 2,857 894 221 8
R8 5,485 2,189 66 8

4.4 Preliminary Results
Table 2 reports the classification accuracy on the 8NG and R8
datasets across several baseline models and our proposed approach.
The results are divided into two groups: Supervised Category and
Unsupervised Category.

As expected, supervised models such as CNN, LSTM, and GCN
achieve strong performance, with GCN performing best overall—
achieving 90.27% on 8NG and 98.36% on R8. These models ben-
efit from access to labeled data during training, which enables
them to learn task-specific representations effectively. In contrast,
our proposed LLM-GMP is trained in a completely unsupervised
setting—without any access to class labels. While the accuracy is
lower (76.06% on 8NG and 79.17% on R8), the model demonstrates
a meaningful ability to separate categories using only semantic in-
formation derived from LLM-guided message passing on document
graphs. This highlights the potential of our method in low-resource

https://ollama.com/
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or label-scarce scenarios, where collecting annotated data is costly
or impractical.

Overall, these results show that our LLM-based approach pro-
vides a promising direction for unsupervised text classification,
particularly in applications where labeled data is unavailable or
limited.

Table 2: Preliminary classification accuracy (%) of LLM-GMP
on 8NG and R8 datasets.

Model / Dataset 8NG R8

Supervised Category
CNN-rand 78.86 96.53
LSTM 69.69 93.10
GCN 90.27 98.36

Unsupervised Category
LLM-GMP 76.06 79.17

5 Conclusion
We presented Large Language Model Graph Message Pass-
ing (LLM-GMP), a novel framework for zero-shot graph learning
that leverages LLMs to perform message passing via task-aware
textual communication between nodes. Unlike traditional GNNs,
our method enables interpretable and flexible reasoning without
task-specific training, while also overcoming limitations specific
to LLM-based graph-to-text methods, such as restricted context
windows and hallucinations—by structuring inference as iterative
message passing.

Preliminary results show that LLM-GMP performs well across
various zero-shot tasks, highlighting the potential of integrating
language-based inference with structured graph exploration. By
treating nodes as lightweight reasoning agents, our approach opens
new avenues at the intersection of GNNs, LLMs, and agentic AI.

Importantly, this framework naturally supports parallel and dis-
tributed computation, making it a promising direction for scalable
graph reasoning. We anticipate this work will spur further research
into efficient, large-scale LLM inference systems tailored to struc-
tured data.
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