
Rethinking the Role of Hyperparameter Tuning in
Optimizer Benchmarking

Yuanhao Xiong1, Xuanqing Liu1, Li-Cheng Lan1, Yang You2, Si Si3, Cho-Jui Hsieh1

1Department of Computer Science, UCLA
2Department of Computer Science, National University of Singapore

3Google Research
{yhxiong,xqliu,lclan}@cs.ucla.edu, youy@comp.nus.edu.sg

sisidaisy@google.com, chohsieh@cs.ucla.edu

Abstract

Many optimizers have been proposed for training deep neural networks, and1

they often have multiple hyperparameters, which make it tricky to benchmark2

their performance. In this work, we propose a new benchmarking protocol to3

evaluate both end-to-end efficiency (training a model from scratch without knowing4

the best hyperparameter configuration) and data-addition training efficiency (the5

previously selected hyperparameters are used for periodically re-training the model6

with newly collected data). For end-to-end efficiency, unlike previous work that7

assumes random hyperparameter tuning, which may over-emphasize the tuning8

time, we propose to evaluate with a bandit hyperparameter tuning strategy. For9

data-addition training, we design a new protocol for assessing the hyperparameter10

sensitivity to data shift. We then apply the proposed benchmarking framework11

to 7 optimizers on various tasks, including computer vision, natural language12

processing, reinforcement learning, and graph mining. Our results show that there13

is no clear winner across all the tasks.14

1 Introduction15

Due to the enormous data size and non-convexity, stochastic optimization algorithms have become16

widely used in training deep neural networks. In addition to Stochastic Gradient Descent (SGD) [27],17

many variations such as Adagrad [11], RMSprop [34] and Adam [17] have been proposed with better18

performance. Unlike classical and hyperparameter free optimizers such as gradient descent and19

Newton’s method1, stochastic optimizers often hold multiple hyperparameters including learning rate20

and momentum coefficients. Those hyperparameters are critical not only to the training speed, but21

also to the final performance, and are often hard to tune.22

It is thus non-trivial to benchmark and compare optimizers in deep neural network training. And a23

benchmarking mechanism that focuses on the performance under best hyperparameters could lead to24

a false sense of improvement when developing new optimizers without considering tuning efforts.25

In this paper, we aim to rethink the role of hyperparameter tuning in benchmarking optimizers and26

develop new benchmarking protocols to reflect their performance in practical tasks better. We then27

benchmark seven recently proposed and widely used optimizers and study their performance on a28

wide range of tasks with our proposed protocols. In the following, we will first briefly review the two29

existing benchmarking protocols, discuss their pros and cons, and then introduce our contributions.30

1The step sizes of gradient descent and Newton’s method can be automatically adjusted by a line search
procedure [24].

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

Benchmarking performance under the best hyperparameters. A majority of previous bench-31

marks and comparisons on optimizers are based on the best hyperparameters. Wilson et al. [36] and32

Shah et al. [31] made a comparison of SGD-based methods against adaptive ones under their best33

hyperparameter configurations. They found that SGD can outperform adaptive methods on several34

datasets under careful tuning. Most of the benchmarking frameworks for ML training also assume35

knowing the best hyperparameters for optimizers [29, 9, 42]. Also, the popular MLPerf benchmark36

evaluated the performance of optimizers under the best hyperparameter. It showed that ImageNet and37

BERT could be trained in 1 minute using the combination of good optimizers, good hyperparameters,38

and thousands of accelerators.39

Despite each optimizer’s peak performance being evaluated, benchmarking under the best hyper-40

parameters makes the comparison between optimizers unreliable and fails to reflect their practical41

performance. First, the assumption of knowing the best hyperparameter is unrealistic. In practice, it42

requires a lot of tuning efforts to find the best hyperparameter, and the tuning efficiency varies greatly43

for different optimizers. It is also tricky to define the “best hyperparameter”, which depends on the44

hyperparameter searching range and grids. Further, since many of these optimizers are sensitive to45

hyperparameters, some improvements reported for new optimizers may come from insufficient tuning46

for previous work.47

Benchmarking performance with random hyperparameter search. It has been pointed out in48

several papers that tuning hyperparameter needs to be considered in evaluating optimizers [29, 2],49

but having a formal evaluation protocol on this topic is non-trivial. Only recently, two papers Choi50

et al. [8] and Sivaprasad et al. [33] take hyperparameter tuning time into account when comparing51

SGD with Adam/Adagrad. However, their comparisons among optimizers are conducted on random52

hyperparameter search. We argue that these comparisons could over-emphasize the role of hyperpa-53

rameter tuning, which could lead to a pessimistic and impractical performance benchmarking for54

optimizers. This is due to the following reasons: First, in the random search comparison, each bad55

hyperparameter has to run fully (e.g., 200 epochs). In practice, a user can always stop the program56

early for bad hyperparameters if having a limited time budget. For instance, if the learning rate for57

SGD is too large, a user can easily observe that SGD diverges in a few iterations and directly stops the58

current job. Therefore, the random search hypothesis will over-emphasize the role of hyperparameter59

tuning and does not align with a real user’s practical efficiency. Second, the performance of the best60

hyperparameter is crucial for many applications. For example, in many real-world applications, we61

need to re-train the model every day or every week with newly added data. So the best hyperparameter62

selected in the beginning might benefit all these re-train tasks rather than searching parameters from63

scratch. In addition, due to the expensive random search, random search based evaluation often64

focuses on the low-accuracy region2, while practically we care about the performance for getting65

reasonably good accuracy.66

Our contributions. Given that hyperparameter tuning is either under-emphasized (assuming the best67

hyperparameters) or over-emphasize (assuming random search) in existing benchmarking protocols68

and comparisons, we develop new evaluation protocols to compare optimizers to reflect the real69

use cases better. Our evaluation framework includes two protocols. First, to evaluate the end-to-end70

training efficiency for a user to train the best model from scratch, we develop an efficient evaluation71

protocol to compare the accuracy obtained under various time budgets, including the hyperparameter72

tuning time. Instead of using the random search algorithm, we adopt the Hyperband [19] algorithm73

for hyperparameter tuning since it can stop early for bad configurations and better reflect the real74

running time required by a user. Further, we also propose to evaluate the data addition training75

efficiency for a user to re-train the model with some newly added training data, with the knowledge76

of the best hyperparameter tuned in the previous training set.77

Based on the proposed evaluation protocols, we study how much progress has recently proposed78

algorithms made compared with SGD or Adam. Note that most of the recent proposed optimizers79

have shown outperforming SGD and Adam under the best hyperparameters for some particular tasks,80

but it is not clear whether the improvements are still significant when considering hyper-parameter81

tuning, and across various tasks. To this end, we conduct comprehensive experiments comparing state-82

of-the-art training algorithms, including SGD [27], Adam [17], RAdam [20], Yogi [40], LARS [37],83

LAMB [38], and Lookahead [41], on a variety of training tasks including image classification,84

generated adversarial networks (GANs), sentence classification (BERT fine-tuning), reinforcement85

learning and graph neural network training. Our main conclusions are: 1) On CIFAR-10 and CIFAR-86

2For instance, Sivaprasad et al. [33] only reaches < 50% accuracy in their CIFAR-100 comparisons.

2

100, all the optimizers including SGD are competitive. 2) Adaptive methods are generally better87

on more complex tasks (NLP, GCN, RL). 3) There is no clear winner among adaptive methods.88

Although RAdam is more stable than Adam across tasks, Adam is still a very competitive baseline89

even compared with recently proposed methods.90

2 Related Work91

Optimizers. Properties of deep learning make it natural to apply stochastic first order methods, such92

as Stochastic Gradient Descent (SGD) [27]. Several issues such as a zig-zag training trajectory and93

a uniform learning rate have been exposed, and researchers have then drawn extensive attention to94

modify the existing SGD for improvement. Along this line of work, tremendous progresses have95

been made including SGDM [25], Adagrad [11], RMSProp [34], and Adam [17]. These methods96

utilize momentums to stabilize and speed up training procedures. In particular, Adam is regarded as97

the default algorithm due to its outstanding compatibility. Then variants such as Amsgrad [26], Ad-98

abound [21], Yogi [40], and RAdam [20] have been proposed to resolve different drawbacks of Adam.99

Meanwhile, the requirement of large batch training has inspired the development of LARS [37] and100

LAMB [38]. Moreover, Zhang et al. [41] has put forward Lookahead to boost optimization perfor-101

mance by iteratively updating two sets of weights. Layer-wise adaptive moments (NovoGrad [14])102

and sharpness-aware minimization (SAM [13] and SALR [39]) have also been proposed to improve103

optimization in deep learning. With the rapid developed of optimization algorithms in deep learning,104

it is important to benchmark them with a fair protocol. DeepOBS [29] is one of a deep learning105

optimizer benchmark suite and Schmidt et al. [28] further conduct a larger scaled evaluation with106

1920 configurations of different hyperparameter settings. However, these papers only focus on the107

final performance and neglect the importance of hyperparameter tuning effort. Although Sivaprasad108

et al. [33] take hyperparameter tuning into account, random search as the HPO method might not be109

the proper choice to reflect the impact of hyperparameter tuning fairly, which is discussed in detail in110

Section 3.1.111

Hyperparameter tuning methods. Random search and grid search [4] are two basic hyperparameter112

tuning methods in the literature. However, the inefficiency of these methods stimulates the develop-113

ment of more advanced search strategies. Bayesian optimization methods including Bergstra et al. [5]114

and Hutter et al. [16] accelerate random search by fitting a black-box function of hyperparameter and115

the expected objective to adaptively guide the search direction. Results in a recent competition [35]116

have pointed out that Bayesian optimization is superior to random search in hyperparameter tuning.117

Parallel to this line of work, Hyperband [19] focuses on reducing evaluation cost for each configu-118

ration and early terminates relatively worse trials. Falkner et al. [12] proposes BOHB to combine119

the benefits of both Bayesian Optimization and Hyperband. All these methods still require huge120

computation resources. A recent work [22] has tried to obtain a list of potential hyperparameters121

by meta-learning from thousands of representative tasks. We strike a balance between effectiveness122

and computing cost and leverage Hyperband in our evaluation protocol to compare a wider range of123

optimizers.124

3 Proposed Evaluation Protocols125

In this section, we introduce the proposed evaluation framework for optimizers. We consider two126

evaluation protocols, each corresponding to an important training scenario:127

• Scenario I (End-to-end training): This is the general training scenario, where a user is given an128

unfamiliar optimizer and task, the goal is to achieve the best validation performance after several129

trials and errors. In this case, the evaluation needs to include hyperparameter tuning time. We130

develop an efficiency evaluation protocol to compare various optimizers in terms of CPE and peak131

performance.132

• Scenario II (Data-addition training): This is another useful scenario encountered in many appli-133

cations, where the same model needs to be retrained regularly after collecting some fresh data. In134

this case, a naive solution is to reuse the previously optimal hyperparameters and retrain the model.135

However, since the distribution is shifted, the result depends on the sensitivity to that shift.136

We describe the detailed evaluation protocol for each setting in the following subsections.137

3

3.1 End-to-end Training Evaluation Protocol138

Before introducing our evaluation protocol for Scenario I, we first formally define the concept of139

optimizer and its hyperparameters.140

Definition 1. An optimizer is employed to solve a minimization problem minθ L(θ) and can be141

defined by a tuple o ∈ O = (U ,Ω), where O contains all types of optimizers. U is a specific update142

rule and Ω = (ω1, . . . , ωN) ∈ RN represents a vector of N hyperparameters. Search space of these143

hyperparameters is denoted by F . Given an initial parameter value θ0, together with a trajectory of144

optimization procedure Ht = {θs,L(θs),∇L(θs)}, the optimizer updates θ by145

θt+1 = U(Ht,Ω).

We aim to evaluate the end-to-end time for a user to get the best model, including the hyperparameter146

tuning time. A recent work [33] assumes that a user conducts random search for finding the best147

hyperparameter setting. Still, we argue that the random search procedure will over-emphasize the148

importance of hyperparameters when tuning is considered — it assumes a user never stops the training149

even if they observe divergence or bad results in the initial training phase, which is unrealistic.150

Figure 1 illustrates why random search might not lead to a fair comparison of optimizers. In Figure 1,151

we are given two optimizers, A and B, and their corresponding loss w.r.t. hyperparameter. According152

to Sivaprasad et al. [33], optimizer B is considered better than optimizer A under a constrained153

budget since most regions of the hyperparameter space of B outperforms A. For instance, suppose we154

randomly sample the same hyperparamter setting for A and B. The final config ω∗
r (B) found under155

this strategy can have a lower expected loss than that of ω∗
r (A), as shown in Figure 1a. However, there156

exists a more practical search strategy which can invalidate this statement with the assumption of a157

limited searching budget: a user can early terminate a configuration trial when trapped in bad results158

or diverging. Hence, we can observe in Figure 1b that for optimizer A, this strategy early-stops many159

configurations and only allow a limited number of trials to explore to the deeper stage. Therefore,160

the bad hyperparameters will not affect the overall efficiency of optimizer A too much. In contrast,161

for optimizer B, performances of different hyperparameters are relatively satisfactory and hard to162

distinguish, resulting in similar and long termination time for each trial. Therefore, it may be easier163

for a practical search strategy p to find the best configuration ω∗
p(A) of optimizer A than ω∗

p(B),164

given the same constrained budget.165

Hyperparameter

Ex
pe

ct
ed

 lo
ss Optimizer A

Optimizer B*
r (A)

*
p (A)

*
r (B) *

p (B)

(a)

Hyperparameter

Te
rm

in
at

io
n

tim
e

Optimizer A

Optimizer B

(b)

Figure 1: An illustration example showing that different hyperparamter tuning methods are likely to
affect comparison of optimizers. Optimizer A is more sensitive to hyperparamters than optimizers B,
but it may be prefered if bad hyperparameters can be terminated in the early stage.

This example suggests that random search may over-emphasize the parameter sensitivity when166

benchmarking optimizers. To better reflect a practical hyperparameter tuning scenario, our evaluation167

assumes a user applies Hyperband [19], a simple but effective hyperparameter tuning scheme to get168

the best model. Hyperband formulates hyperparameter optimization as a unique bandit problem. It169

accelerates random search through adaptive resource allocation and early-stopping, as demonstrated170

in Figure 1b. Compared with its more complicated counterparts such as BOHB [12], Hyperband171

requires less computing resources and performs similarly within a constrained budget. The algorithm172

is presented in Appendix A.173

To validate the effectiveness of Hyperband, we make a comparison among different HPO algorithms.174

In detail, we conduct hyperparameter tuning for image classification on CIFAR10, given 10 learning175

rate configurations of SGD in the grid [1.0× 10−8, 1.0× 10−7, 1.0× 10−6, . . . , 10]. The budget for176

each configuration is 200 epochs. We consider following HPO methods: Hyperband, random search,177

4

30 300 600
Epoch

0.60
0.65
0.70
0.75
0.80
0.85
0.90

Ac
cu

ra
cy

Hyperband
Random
Hyperband with ES
Random with ES

Figure 2: Hyperband tuning used in our evaluation protocol outperforms random search consistently.

random search with an early stopping (ES) strategy in Sivaprasad et al. [33], and Hyperband with ES.178

In Figure 2, we plot corresponding performance for these methods. We find that Hyperband outper-179

forms random search consistently, while random search tends to trap in suboptimal configurations180

even though early stopping can mitigate this issue to some extent. This finding shows the advantage181

of Hyperband over random search regardless of early stopping, and justifies the use of Hyperband in182

optimizer benchmarking.

1 250 500 750 1000

Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

Learning rate range sensitivity

Random-A

Hyperband-A

Random-B

Hyperband-B

Random-C

Hyperband-C

Figure 3: Sensitivity to search space range.

183

Besides, the adaptive terminating strategy makes Hyperband less sensitive to the range of search space184

than other hyperparameter tuning methods like random search. We use Hyperband and random search185

to tune learning rate of SGD for a classification problem on CIFAR10 with three different search186

spaces: [10−3, 10−1](A), [10−4, 100](B), and [10−5, 101](C). We sample 50 configurations based187

on log-uniform distribution within each range. As shown in Figure 3, random search suffers great188

performance degradation when the range becomes larger from A to C, while Hyperband performs189

consistently well on three ranges.190

With Hyperband incorporated in end-to-end training, we assume that each configuration is run191

sequentially and record the best performance obtained at time step t as Pt. Specifically, Pt represents192

the evaluation metric for each task, e.g., accuracy for image classification and return for reinforcement193

learning. {Pt}Tt=1 forms a trajectory for plotting learning curves on test set like Figure 5. Although it194

is intuitive to observe the performance of different optimizers according to such figures, summarizing195

a learning curve into a quantifiable, scalar value can be more insightful for evaluation. Thus, as shown196

in Eq. 1, we use λ-tunability defined in [33] to further measure the performance of optimizers:197

λ-tunability =

T∑
t=1

λt · Pt(
∑

t
λt = 1 and ∀tλt > 0). (1)

One intuitive way is to set λt = 1t=T with λT = 1 and λt = 0 for the rest to determine which198

optimizer can reach the best performance after the whole training procedure. However, merely199

considering the peak performance is not a good guidance on the choice of optimizers. In practice, we200

tend to take into account the complete trajectory and exert more emphasis on the early stage. Thus,201

we employ the Cumulative Performance-Early weighting scheme where λt ∝ (T − i), to compute202

λ-tunablity instead of the extreme assignment λt = 1t=T . The value obtained is termed as CPE.203

We present our evaluation protocol in Algorithm 1. As we can see, end-to-end training with hyperpa-204

rameter optimization is conducted for various optimizers on the given task. The trajectory {Pt}Tt=1 is205

recorded to compute the peak performance as well as CPE value. Note that the procedure is repeated206

M times to obtain a reliable result. We use M = 3 in all experiments.207

5

Algorithm 1 End-to-End Efficiency Evaluation Protocol
Input: A set of optimizers O = {o : o = (U ,Ω)}, task a ∈ A, feasible search space F

1: for o ∈ O do
2: for i = 1 to M do
3: Conduct hyperparameter search in F with the optimizer o using HyperBand on a
4: Record the performance trajectory {Pt}Tt=1 explored by HyperBand
5: Calculate the peak performance and CPE by Eq. 1
6: end for
7: Average peak and CPE values over M repetitions for the optimizer o
8: end for
9: Evaluate optimizers based on their peak and CPE values

Moreover, we can further accelerate our evaluation protocol. The basic idea is to keep a library208

of trajectories for different hyperparameter settings. We first sample a list of configurations to209

be evaluated. In each repetition, we sample required configurations from the list to conduct one210

Hyperband running. During the simulation of Hyperband, we just retrieve the value if the desired211

epoch of current configuration is contained in the library. Otherwise, we run this configuration based212

on Hyperband, and store the piece of the trajectory to the library. More details of the algorithm can213

be found in Appendix D.214

3.2 Data-addition Training Evaluation Protocol215

In Scenario II, we assume that there’s a service (e.g., a search or recommendation engine) which is216

being re-trained periodically with some newly added training data. One may argue that an online217

learning algorithm should be used in this case, but in practice online learning is unstable and industries218

still prefer this periodically retraining scheme which is more stable.219

In this scenario, once the best hyperparameters were chosen in the beginning, we can reuse them220

for every training, so no hyperparameter tuning is required and the performance (including both221

efficiency and test accuracy) under the best hyperparameter becomes important. However, an implicit222

assumption made in this process is that “the best hyperparameter will still work when the training223

task slightly changes”. This can be viewed as transferability of hyperparameters for a particular224

optimizer, and our second evaluation protocol aims to evaluate this practical scenario.225

We simulate data-addition training with all classification tasks, and the evaluation protocol works226

as follows: 1) Extract a subset Dδ containing partial training data from the original full dataset D227

with a small ratio δ; 2) Conduct a hyperparameter search on Dδ to find the best setting under this228

scenario; 3) Use these hyperparameters to train the model on the complete dataset; 4) Observe the229

potential change of the ranking of various optimizers before and after data addition. For step 4)230

when comparing different optimizers, we will plot the training curve in the full-data training stage231

in Section 4, and also summarize the training curve using the CPE value. The detailed evaluation232

protocol is described in Algorithm 2.233

Algorithm 2 Data-Addition Training Evaluation Protocol
Input: A set of optimizers O = {o : o = (U ,Ω)}, task a ∈ A with a full dataset D, a split ratio δ

1: for o ∈ O do
2: for i = 1 to M do
3: Conduct hyperparameter search with the optimizer o using Hyperband on a with a partial

dataset Dδ , and record the best hyperparameter setting Ωpartial found under this scenario
4: Apply the optimizer with Ωpartial on Dδ and D, then save the training curves
5: end for
6: Average training curves of o over M repetitions to compute CPE
7: end for
8: Compare performance of different optimizers under data-addition training

6

4 Experimental Results234

Optimizers to be evaluated. As shown in Table 1, we consider 7 optimizers including non-adaptive235

methods using only the first-order momentum, and adaptive methods considering both first-order and236

second-order momentum. We also provide lists of tunable hyperparameters for different optimizers237

in Table 1. Moreover, we consider following two combinations of tunable hyperparameters to better238

investigate the performance of different optimizers: a) only tuning initial learning rate with the239

others set to default values and b) tuning a full list of hyperparameters. A detailed description of240

optimizers as well as default values and search range of these hyperparameters can be found in241

Appendix D. We adopt a unified search space for a fair comparison following Metz et al. [22], to242

eliminate biases of specific ranges for different optimizers. The tuning budget of Hyperband is243

determined by three items: maximum resource (in this paper we use epoch) per configuration R,244

reduction factor η, and number of configurations nc. According to Li et al. [19], a single Hyperband245

execution contains ns = blogη(R)c+ 1 of SuccessiveHalving, each referred to as a bracket. These246

brackets take strategies from least to most aggressive early-stopping, and each one is designed to247

use approximately B = R · ns resources, leading to a finite total budget. The number of randomly248

sampled configurations in one Hyperband run is also fixed and grows with R. Then given R and249

η, nc determines the repetition times of Hyperband. We set η = 3 as this default value performs250

consistently well, and R to a value which each task usually takes for a complete run. For nc, it251

is assigned as what is required for a single Hyperband execution for all tasks, except for BERT252

fine-tuning, where a larger number of configurations is necessary due to a relatively small R. In253

Appendix D, we give assigned values of R, η, and nc for each task.254

Table 1: Optimizers to be evaluated with their tunable hyperparameters. Specifically, α0 represents
the initial learning rate. µ is the decay factor of the first-order momentum for non-adaptive methods
while β1 and β2 are coefficients to compute the running averages of first-order and second-order
momentums. ε is a small scalar used to prevent division by 0.

Optimizer Hyperparameter

Non-adaptive SGD α0, µ
LARS α0, µ, ε

Adaptive Adam, RAdam, Yogi
Lookahead, LAMB α0, β1, β2, ε

Table 2: Tasks for benchmarking optimizers. Details are provided in Appendix C.
Domain Task Metric Model Dataset

Computer Vision

Image
Classification Accuracy ResNet-50 CIFAR10

CIFAR100
VAE NLL CNN Autoencoder CelebA
GAN FID SNGAN network CIFAR10

NLP GLUE benchmark Accuracy RoBERTa-base MRPC

Graph network training Node labeling F1 score Cluster-GCN PPI

Reinforcement Learning Walker2d-v3 Return PPO ×

Table 3: CPE for different optimizers on benchmarking tasks. The best performance is highlighted in
bold and blue and results within the 1% range of the best are emphasized in bold only.

Optimizer CIFAR10 (%) ↑ CIFAR100 (%) ↑ CelebA ↓ MRPC (%) ↑ PPI ↑ Walker2d-v3 ↑
(classification) (classification) (VAE) (NLP) (GCN) (RL)

Tune learning rate only:
SGD 88.87 ± 0.23 66.85 ± 0.12 0.1430 ± 0.0038 69.90 ± 0.69 76.77 ± 0.08 2795 ± 275
Adam 90.42 ± 0.10 65.88 ± 0.23 0.1356 ± 0.0001 84.90 ± 0.72 95.08 ± 0.01 3822 ± 78

RAdam 90.29 ± 0.11 66.41 ± 0.15 0.1362 ± 0.0001 85.41 ± 1.45 94.10 ± 0.04 3879 ± 201
Yogi 90.42 ± 0.04 67.37 ± 0.50 0.1371 ± 0.0004 70.19 ± 0.90 93.39 ± 0.02 4132 ± 205

LARS 90.25 ± 0.07 67.48 ± 0.04 0.1367 ± 0.0002 69.97 ± 0.54 93.79 ± 0.01 2986 ± 105
LAMB 90.19 ± 0.08 65.08 ± 0.06 0.1358 ± 0.0003 82.23 ± 1.49 87.79 ± 0.07 3401 ± 235

Lookahead 90.60 ± 0.06 65.60 ± 0.07 0.1358 ± 0.0004 72.99 ± 1.33 94.69 ± 0.02 4141 ± 264
Tune every hyperparameter:

SGD 90.20 ± 0.16 67.36 ± 0.10 0.1407 ± 0.0011 71.53 ± 1.21 94.64 ± 0.01 2978 ± 91
Adam 89.27 ± 1.40 67.57 ± 0.23 0.1389 ± 0.0002 85.23 ± 1.44 92.62 ± 0.04 4080 ± 459

RAdam 90.14 ± 0.44 66.90 ± 0.05 0.1366 ± 0.0006 84.32 ± 1.91 93.05 ± 0.04 3813 ± 103
Yogi 89.83 ± 0.21 67.65 ± 0.08 0.1401 ± 0.0019 68.42 ± 1.02 88.94 ± 0.11 3778 ± 249

LARS 90.42 ± 0.20 67.78 ± 0.28 0.1375 ± 0.0005 77.40 ± 3.09 96.34 ± 0.01 2728 ± 136
LAMB 90.27 ± 0.40 65.59 ± 0.03 0.1382 ± 0.0001 84.66 ± 2.61 93.18 ± 0.05 2935 ± 57

Lookahead 90.44 ± 0.11 66.46 ± 0.45 0.1360 ± 0.0005 79.05 ± 2.99 94.30 ± 0.04 3786 ± 137

7

1.00 1.05 1.10 1.15 1.20 1.25 1.30

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

ρ(τ)

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(a) Tune learning rate only.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

ρ(τ)

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(b) Tune all hyperparameters.

Figure 4: Performance profile in the range [1.0, 1.3].

Tasks for benchmarking. For a comprehensive and reliable assessment of optimizers, we consider255

a wide range of tasks in different domains. When evaluating end-to-end training efficiency, we256

implement our protocol on tasks covering several popular and promising applications in Table 2.257

Apart from common tasks in computer vision and natural language processing, we introduce two extra258

tasks in graph neural network training and reinforcement learning. For simplicity, we will use the259

dataset to represent each task in our subsequent tables of experimental results. (For the reinforcement260

learning task, we just use the environment name.) The detailed settings and parameters for each task261

can be found in Appendix C.262

4.1 End-to-end efficiency (Secnario I)263

Table 4: CPE of different optimizers computed under curves trained with Ωpartial on four full datasets.

Optimizer CIFAR10 (%)↑ CIFAR100 (%)↑ MRPC (%)↑ PPI↑
SGD 90.04 ± 0.16 67.91 ± 0.23 66.62 ± 3.47 66.830 ± 0.010
Adam 90.52 ± 0.03 67.04 ± 0.27 73.13 ± 1.16 70.420 ± 0.007

RAdam 90.30 ± 0.14 67.06 ± 0.17 79.01 ± 3.10 70.840 ± 0.010
Yogi 89.63 ± 0.39 67.58 ± 0.19 68.40 ± 1.68 67.990 ± 0.003

LARS 90.17 ± 0.13 67.29 ± 0.14 64.43 ± 2.72 68.400 ± 0.005
LAMB 90.51 ± 0.07 66.13 ± 0.02 78.94 ± 1.25 70.110 ± 0.008

Lookahead 88.36 ± 0.06 67.10 ± 0.31 68.81 ± 1.22 69.710 ± 0.003

To evaluate end-to-end training efficiency, we adopt the protocol in Algorithm 1. Specifically, we264

record the average training trajectory with Hyperband {Pt}Tt=1 for each optimizer on benchmarking265

tasks, where Pt is the evaluation metric for each task (e.g., accuracy, return). We visualize these266

trajectories in Figure 5a and 5b for CIFAR100, and calculate CPE in Table 3. Complete results of267

trajectories and peak performances for all tasks can be found in Appendix E. Besides, in Eq. 2 we268

compute performance ratio ro,a for each optimizer and each task, and then utilize the distribution269

function of a performance metric called performance profile ρo(τ) to summarize the performance of270

different optimizers over all the tasks.271

ro,a =
max{CPEo,a : o ∈ O}

CPEo,a
ρo(τ) = size

{
a ∈ A : ro,a ≤ τ

}
/|A|.

(2)

For tasks where a lower CPE is better, we just use ro,a = CPEo,a/min{CPE o,a} instead to guarantee272

ro,a ≥ 1. The function ρo(τ) for all optimizers is presented in Figure 4. Based on the definition of273

performance profile [10], the optimizers with large probability ρo(τ) are to be preferred. In particular,274

the value of ρo(1) is the probability that one optimizer will win over the rest and can be a reference275

for selecting the proper optimizer for an unknown task. We also provided a probabilistic performance276

profile to summarize different optimizers in Figure 2 in Appendix E.277

Our findings are summarized below:278

• It should be emphasized from Table 3, that under our protocol based on Hyperband, SGD performs279

similarly to Adam in terms of efficiency, and can even surpass it in some cases like training on280

8

1 10 100 1000

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

CIFAR100 (tune learning rate only)

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(a) End-to-end, tune learning rate only

1 10 100 1000

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

CIFAR100 (tune every hyperparamter)

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(b) End-to-end, tune all hyperparameters

0 25 50 75 100 125 150 175 200

Epoch

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

A
cc

u
ra

cy

Training on partial CIFAR100

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(c) Data-addition, partial dataset

0 25 50 75 100 125 150 175 200

Epoch

0.66

0.68

0.70

0.72

0.74

A
cc

u
ra

cy

Training on full CIFAR100

SGD

Adam

RAdam

Yogi

LARS

LAMB

Lookahead

(d) Data-addition, full dataset

Figure 5: End-to-end and data-addition training curves with Hyperband on CIFAR100.

CIFAR100. Under Hyperband, the best configuration of SGD is less tedious to find than random281

search because Hyperband can early-stop bad runs and thus they will affect less to the search282

efficiency and final performance.283

• For image classification tasks all the methods are competitive, while adaptive methods tend to284

perform better in more complicated tasks (NLP, GCN, RL).285

• There is no significant distinction among adaptive variants. Performance of adaptive optimizers286

tends to fall in the range within 1% of the best result.287

• According to performance profile in Figure 4, RAdam achieves probability 1 with the smallest τ ,288

and Adam is the second method achieving that. This indicates that RAdam and Adam are achieving289

relatively stable and consistent performance among these tasks.290

4.2 Data-addition Training (Scenario II)291

We then conduct evaluation on data-addition training based on the protocol in Algorithm 2. We292

choose four classification problems on CIFAR10, CIFAR100, MRPC and PPI since this data-addition293

training does not apply to RL. We first search the best hyperparameter configuration, denoted by294

Ωpartial, under the sub training set with the ratio δ = 0.3. Here we tune all hyperparameters. Then we295

directly apply Ωpartial on the full dataset for a complete training process. Training curves are shown in296

Figure 5c and 5d. We summarize them with CPE by Eq. 1 in Table 4. We have the following findings:297

• There is no clear winner in data-addition training. RAdam is outperforming other optimizers in 2/4298

tasks so is slightly preferred, but other optimizers except Lookahead are also competitive (within299

1% range) on at least 2/4 tasks.300

• To investigate whether the optimizer’s ranking will change when adding 70% data, we compare the301

training curve on the original 30% data versus the training curve on the full 100% data in Figure 5c302

and 5d. We observe that the ranking of optimizers slightly changes after data addition.303

5 Conclusions and Discussions304

In conclusion, we found there is no strong evidence that newly proposed optimizers selected in305

our paper consistently outperform Adam, while each of them may be good for some particular306

tasks. When deciding the choice of the optimizer for a specific task, people can refer to results in307

Table 3. If the task is contained in Table 2, he/she can directly choose the one with the best CPE or308

9

best peak performance based on his/her goal of the task (easiness to tune or high final performance).309

On the other hand, even though the desired task is not covered, people can also gain some insights310

from the results of the most similar task in Table 2, or refer to the performance profile in Figure 4 to311

pick adaptive methods like Adam. Besides choosing a suitable optimizer, our benchmarking protocol312

also contributes to designing a new optimizer. Using our protocol to evaluate a new optimizer can313

show whether it has obvious improvement over existing ones, and can serve as a routine to judge the314

performance of the optimizer thoroughly.315

In addition to the proposed two evaluation criteria, there could be other factors that affect the practical316

performance of an optimizer. First, the memory consumption is becoming important for training317

large DNN models. For instance, although Lookahead performs well in certain tasks, it requires318

more memory than other optimizers, restricting their practical use in some memory constrained319

applications. Another essential criterion is the scalability of optimizers. When training with a320

massively distributed system, optimizing the performance of a large batch regime (e.g., 32K batch321

size for ImageNet) is of vital significance. In fact, LARS and LAMB algorithms included in our322

study are developed for large batch training and thus we believe scalability is an important metric323

worth studying in the future.324

References325

[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning, 2018.326

[2] Hilal Asi and John C Duchi. The importance of better models in stochastic optimization.327

Proceedings of the National Academy of Sciences, 116(46):22924–22930, 2019.328

[3] André MS Barreto, Heder S Bernardino, and Helio JC Barbosa. Probabilistic performance329

profiles for the experimental evaluation of stochastic algorithms. In Proceedings of the 12th330

annual conference on Genetic and evolutionary computation, pages 751–758, 2010.331

[4] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The332

Journal of Machine Learning Research, 13(1):281–305, 2012.333

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-334

parameter optimization. In Advances in neural information processing systems, pages 2546–335

2554, 2011.336

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,337

and Wojciech Zaremba. Openai gym, 2016.338

[7] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:339

An efficient algorithm for training deep and large graph convolutional networks. In Proceedings340

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,341

pages 257–266, 2019.342

[8] Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and343

George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint344

arXiv:1910.05446, 2019.345

[9] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter346

Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end deep learning347

benchmark and competition. Training, 100(101):102, 2017.348

[10] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance349

profiles. Mathematical programming, 91(2):201–213, 2002.350

[11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning351

and stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.352

[12] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter353

optimization at scale. arXiv preprint arXiv:1807.01774, 2018.354

[13] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-355

mization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.356

10

[14] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin,357

Ryan Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Stochastic gradient358

methods with layer-wise adaptive moments for training of deep networks. arXiv preprint359

arXiv:1905.11286, 2019.360

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image361

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,362

pages 770–778, 2016.363

[16] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization364

for general algorithm configuration. In International conference on learning and intelligent365

optimization, pages 507–523. Springer, 2011.366

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint367

arXiv:1412.6980, 2014.368

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint369

arXiv:1312.6114, 2013.370

[19] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-371

band: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine372

Learning Research, 18(1):6765–6816, 2017.373

[20] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,374

and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint375

arXiv:1908.03265, 2019.376

[21] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic377

bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.378

[22] Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha379

Sohl-Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies.380

arXiv preprint arXiv:2002.11887, 2020.381

[23] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization382

for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.383

[24] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business384

Media, 2006.385

[25] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,386

12(1):145–151, 1999.387

[26] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.388

arXiv preprint arXiv:1904.09237, 2019.389

[27] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of390

mathematical statistics, pages 400–407, 1951.391

[28] Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-392

benchmarking deep learning optimizers. In International Conference on Machine Learning,393

pages 9367–9376. PMLR, 2021.394

[29] Frank Schneider, Lukas Balles, and Philipp Hennig. Deepobs: A deep learning optimizer395

benchmark suite. arXiv preprint arXiv:1903.05499, 2019.396

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal397

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.398

[31] Vatsal Shah, Anastasios Kyrillidis, and Sujay Sanghavi. Minimum weight norm models do not399

always generalize well for over-parameterized problems. arXiv preprint arXiv:1811.07055,400

2018.401

[32] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and402

George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv403

preprint arXiv:1811.03600, 2018.404

11

[33] Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and Francois Fleuret. Opti-405

mizer benchmarking needs to account for hyperparameter tuning. In Proceedings of the 37th406

International Conference on Machine Learning, 2020.407

[34] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running408

average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):409

26–31, 2012.410

[35] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and411

Isabelle Guyon. Bayesian optimization is superior to random search for machine learning412

hyperparameter tuning: Analysis of the black-box optimization challenge 2020. arXiv preprint413

arXiv:2104.10201, 2021.414

[36] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The415

marginal value of adaptive gradient methods in machine learning. In Advances in neural416

information processing systems, pages 4148–4158, 2017.417

[37] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.418

arXiv preprint arXiv:1708.03888, 2017.419

[38] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,420

Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for421

deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.422

[39] Xubo Yue, Maher Nouiehed, and Raed Al Kontar. Salr: Sharpness-aware learning rates for423

improved generalization. arXiv preprint arXiv:2011.05348, 2020.424

[40] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive425

methods for nonconvex optimization. In Advances in neural information processing systems,426

pages 9793–9803, 2018.427

[41] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps428

forward, 1 step back. In Advances in Neural Information Processing Systems, pages 9597–9608,429

2019.430

[42] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee, Bianca431

Schroeder, and Gennady Pekhimenko. Tbd: Benchmarking and analyzing deep neural network432

training. arXiv preprint arXiv:1803.06905, 2018.433

Checklist434

1. For all authors...435

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s436

contributions and scope? [Yes]437

(b) Did you describe the limitations of your work? [Yes]438

(c) Did you discuss any potential negative societal impacts of your work? [N/A]439

(d) Have you read the ethics review guidelines and ensured that your paper conforms to440

them? [Yes]441

2. If you are including theoretical results...442

(a) Did you state the full set of assumptions of all theoretical results? [N/A]443

(b) Did you include complete proofs of all theoretical results? [N/A]444

3. If you ran experiments...445

(a) Did you include the code, data, and instructions needed to reproduce the main experi-446

mental results (either in the supplemental material or as a URL)? [Yes]447

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they448

were chosen)? [Yes] See Section 4 and Appendix D.449

(c) Did you report error bars (e.g., with respect to the random seed after running experi-450

ments multiple times)? [Yes]451

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type452

of GPUs, internal cluster, or cloud provider)? [Yes]453

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...454

(a) If your work uses existing assets, did you cite the creators? [Yes]455

(b) Did you mention the license of the assets? [N/A]456

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]457

(d) Did you discuss whether and how consent was obtained from people whose data you’re458

using/curating? [N/A]459

(e) Did you discuss whether the data you are using/curating contains personally identifiable460

information or offensive content? [N/A]461

5. If you used crowdsourcing or conducted research with human subjects...462

(a) Did you include the full text of instructions given to participants and screenshots, if463

applicable? [N/A]464

(b) Did you describe any potential participant risks, with links to Institutional Review465

Board (IRB) approvals, if applicable? [N/A]466

(c) Did you include the estimated hourly wage paid to participants and the total amount467

spent on participant compensation? [N/A]468

13

	Introduction
	Related Work
	Proposed Evaluation Protocols
	End-to-end Training Evaluation Protocol
	Data-addition Training Evaluation Protocol

	Experimental Results
	End-to-end efficiency (Secnario I)
	Data-addition Training (Scenario II)

	Conclusions and Discussions

