
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE QUALITY-DIVERSITY TRADE-OFFS FOR
LARGE-SCALE BATCH RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A core research question in recommender systems is to propose batches of highly
relevant and diverse items, that is, items personalized to the user’s preferences,
but which also might get the user out of their comfort zone. This diversity might
induce properties of serendipidity and novelty which might increase user engage-
ment or revenue. However, many real-life problems arise in that case: e.g., avoid-
ing to recommend distinct but too similar items to reduce the churn risk, and com-
putational cost for large item libraries, up to millions of items. First, we consider
the case when the user feedback model is perfectly observed and known in ad-
vance, and introduce an efficient algorithm called B-DivRec combining determi-
nantal point processes and a fuzzy denuding procedure to adjust the degree of item
diversity. This helps enforcing a quality-diversity trade-off throughout the user
history. Second, we propose an approach to adaptively tailor the quality-diversity
trade-off to the user, so that diversity in recommendations can be enhanced if it
leads to positive feedback, and vice-versa. Finally, we illustrate the performance
and versatility of B-DivRec in the two settings on synthetic and real-life data sets
on movie recommendation and drug repurposing.

1 INTRODUCTION

Preserving user engagement, that is, the willingness of users to query a recommender system and to
interact with recommended items, is crucial and yet a difficult task. It is well-known that, beyond
recommending merely the most popular items or those closest to the estimated user’s interests, intro-
ducing diversity in recommendation is key to avoid the churn risk, i.e., customer attrition (Poulain &
Tarissan, 2020). This topic has been widely studied under the name of “diverse/novel recommenda-
tions” or “serendipity” (Abbassi et al., 2009; Kotkov et al., 2018; Ziarani & Ravanmehr, 2021). The
rationale behind it appears in several real-life contexts: for instance, diversity might increase revenue
by keeping user engagement high in the movie streaming or music industry (Van den Oord et al.,
2013; Anderson et al., 2020); get a teenager out of their comfort zone and make them discover new
cultural goods (Ibrahim et al., 2025); evaluate the global state of a student’s knowledge on a specific
subject in education (Chavarriaga et al., 2014; Yanes et al., 2020); or discover a first-in-class drug
treatment in the pharmaceutical industry, where it has been shown that first-in-class molecules might
generate higher revenue compared to well-known classes of molecules with a therapeutic advantage
(“best-in-class”) (Schulze & Ringel, 2013; Spring et al., 2023). All in all, the goal in recommender
systems is to satisfy apparently contradictory objectives: to recommend user-personalized items
which introduce diversity in the user’s history of recommended items.

Moreover, when implementing a recommender system for real-life applications, one must also face
the problems of developing computationally tractable pipelines on large libraries of items (Cha et al.,
2018). Last but not least, the definition of diversity and quantifying the diversity in the recommended
(batch of) items is tricky by itself, as illustrated by the multiple definitions used in the literature (refer
to Appendix A for an overview). Diversity might be understood in terms of “intrabatch” (local) or
“interbatch” (global) (Bederina & Vie, 2025), respectively meaning that the batch of recommended
items at a specific round should be diverse, or the batch of recommended items should be diverse
with respect to the user’s prior history of selected items. This paper also tackles a novel problem
of the literature, that is, adaptively tuning the level of diversity in the recommendations to the user.
The tolerance to diversity might indeed vary from one user to the other, and contributes to the user
engagement in the recommender system (Xu & Matsumura, 2024). No other paper to the best of our
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knowledge has attempted to propose an automated procedure for tuning the level of diversity at an
early stage of the recommendation pipeline.

Problem setting. We denote N the total number of items (potentially of the order of millions)
in the universe Ω := {1, 2, . . . , N}. Recommendation rounds happen sequentially: (1) a (possibly
new) user ht queries the recommender system at each time t, (2) the recommender system returns
a fixed-size batch St ⊂ Ω of B items to present to the user, (3) user ht outputs feedback values
yt := {yt1, . . . , ytB} for each recommendation. We choose to ignore the specific identity of items
and users, and instead, respectively define them with the item embedding ϕi ∈ Rd for item i, or by
the summary of user history ht ∈ Rm at each recommendation round t. Ideally, ht captures all the
information about the items the user has previously interacted with (e.g., ht can describe how much
one of the m categories is liked). It can be hard-coded (one-hot encoding of liked item categories),
or an embedding learned over previously collected items, or the result of some dimension reduction
algorithm applied to the embeddings of positively interacted with items. We define Ht the user
history of prior recommendations to user ht up to the round t (not included). To define the similarity
between items in a flexible fashion, we select a kernel function k : Rd ×Rd 7→ R. In is the identity
matrix of size n. Finally, to make good and personalized recommendations–regardless of diversity–
we aim to learn the feedback model qΘ : Rd × Rm → R where qΘ(ϕ,h) is the expected feedback
for user h on item ϕ which should be maximized. In the case of a known and noiseless feedback
model, if ϕ is the kth recommended item to user ht at time t, then ytk = qΘ(ϕ,h

t).

To quantify the quality and the diversity of recommendations, we define the following pointwise
metrics for any round t > 0. We are aware that an abundant literature on both quality and diversity
in recommender systems exist, see Appendix A where they are discussed. We decided to separately
assess quality and diversity. Quality (also called relevance in this paper and denoted rel) is simply
defined by the expected click-through rate. We also consider the precision metric (denoted prec),
that is, the ratio of positively rated items (i.e., such that the feedback value is higher than a given
threshold τ > 0) over the total number of recommended items. Moreover, we define two types
of diversity: the intrabatch/local diversity (denoted divL), focusing on the diversity inside a batch
of B items; and the interbatch/global diversity (denoted divG), which looks at the diversity of the
previously and currently recommended items, meaning that it also takes into account the user history.
An intuitive idea of how diverse a set S of items is can be obtained by computing the volume of the
parallelotope induced by the rows of the kernel matrixKS ,S := (k(ϕi,ϕj))i,j∈S built from the item
embeddings in S . The volume of a set S := {i1, . . . , iB} of items is vol(S ) := (detKS ,S )

1/2. 1

∀t > 0, rel(St) := 1

B

∑
i∈St

qΘ(ϕ
i,ht) , divL(St) := vol(St) , divG(St) := vol(St ∪Ht) . (1)

To assess the performance accrued by a strategy across T recommendation rounds, we consider the
average of rel, prec, divL and divG across rounds. Moreover, we also consider a summary metric
which mixes quality and diversity at the end of T recommendation rounds. Given a threshold τ , the
effective diversity div+ contributed by positively-labeled items for a single user h after T rounds is

div+({S1, . . . ,ST },h) := vol(
{
i | i ∈

⋃
s<t

Ss, qΘ(ϕi,h) ≥ τ
}
) . (2)

The final summary metric is the average div+ across encountered users.

Contributions. Our objective is to find a principled and scalable approach to implement the
quality-diversity trade-off–in the large sense: any kernel, any feedback model, or as general as
possible–for a possibly large number of items up to millions. It means that anything beyond a time
complexity linear in the number of items N will be intractable. First, we introduce an efficient algo-
rithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to
adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the
user history when the user feedback model is known (Section 3). Second, we propose an approach
to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations
can be enhanced if it leads to positive feedback, and vice-versa (Section 4). Finally, we illustrate the
performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on

1By definition of a kernel function, this definition of volume is well-defined for any S ⊆ Ω.
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movie recommendation and drug repurposing (Section 5). We conclude the paper by discussing the
potential and the limitations of B-DivRec in Section 6.

2 RELATED WORKS

As mentioned in the introduction, the topics addressed in this paper are related to a large section of
the literature on recommendation (serendipity, avoidance of the churn risk, tractable recommender
systems). Due to the space limit, we refer the reader to Appendix A for a more comprehensive
review of the literature. We focus here on fundamental notions in DPPs and baselines in Section 5.

Determinantal Point Processes. A point process is a distribution over finite subsets of a (finite)
set Ω. A determinantal point process (DPP) is a process where the probability of sampling a subset
A is correlated to the determinant of the kernel function k applied to this subset, that is, P(S = A) ∝
det kA,A (Macchi, 1975). Here, we consider the definition of DPPs with L-ensembles, as described
in Borodin & Rains (2005), and kΩ,Ω is a positive semi-definite matrix. Intuitively, the higher
the volume formed by the item embeddings in this subset, the higher the probability. Sampling
algorithms for DPPs are naively in O(N3) (Hough et al., 2006, Theorem 7 and Algorithm 18),
but their complexity may be reduced down to O(αN · poly(B)) when sampling a subset of fixed
size B with an α-DPP (Calandriello et al., 2020) where α ≤ 1. However, one might want to
find the subset with highest probability–that is, the most diverse–instead of sampling according
to the DPP. The associated maximization problem is NP-hard (Ko et al., 1995; Grigorescu et al.,
2022), but there are greedy approximations inO(B2N) (Gillenwater et al., 2012; Chen et al., 2018)
for maximizing over subsets of size B. Finally, conditioning over another subset H of items–
that is, sampling a subset which is diverse compared to previously selected set of points–can be
described with the following distribution (Borodin & Rains, 2005) P(S = A ∪ H | S ⊇ H) ∝
det

(
kA,A − kA,Hk

−1
H,Hk

⊺
A,H

)
. This is a simple approach to integrating the user history to the

recommendation. However, conditioning has a dependency in Ω(|H|3) whereH is the user history,
and inversion of the history-related kernel matrix might be expensive. 2

To tackle the issue of recommending items with high quality/relevance and high “intrabatch”/local
diversity, Kulesza & Taskar (2010) introduced the quality-diversity (QD) decomposition of a DPP.
Given N item embeddings {ϕi}i∈Ω such that ∥ϕi∥2 = 1 for any i ∈ Ω, and positive quality
scores {qΘ(ϕi,h)}i∈Ω for each item and a given user h, the QD decomposition is the distribution
P(S = A) ∝ det(QAΦAΦ

⊺
AQA), where QA is a diagonal matrix of size B ×B which contains the

quality scores for each item i1, . . . , iB in A, and ΦA := [ϕi1 , . . . ,ϕiB ]⊺ is the row-concatenation of
all item embeddings in A. Many papers relied on this approach (Gong et al., 2014; Wilhelm et al.,
2018; Zhan et al., 2021; Svensson et al., 2025; Xuan et al., 2025). However, this decomposition
might be a bit restrictive, as the control of the quality-diversity trade-off is limited, and only linear
or RBF (Affandi et al., 2014; Wilhelm et al., 2018) kernels are considered. Affandi et al. (2012)
is closer to our objective of increasing the “interbatch” or global diversity across consecutive rec-
ommendation rounds, and introduces Markov DPPs applied to the daily recommendation of news
headlines. The main idea is to condition the subset of items sampled at round t + 1 on the subset
sampled at round t. Their construction guarantees that the DPP marginals are maintained. Finally,
the authors also study in their experiments the unknown feedback model setting, and tackle this
problem by updating empirical quality scores for each item over time in the QD decomposition.
However, their procedure is quite costly and not tractable in large data sets (see our experiments in
Section 5).

Non-DPP recommender systems for diversity. Besides DPPs, there is a plethora of other ap-
proaches, including Maximal Marginal Relevance (MMR) (Carbonell & Goldstein, 1998). The
problem originally tackled by MMR is slightly different from ours: given a library of items
Ω, an item-item similarity function sim, a relevance function rel between items, and a quality-
diversity trade-off parameter λ ∈ [0, 1], the goal is to return an item ϕt at round t which
is both relevant to the query item hquery and diverse with respect to previously selected items
i1, i2, . . . , it−1. The recommendation procedure is defined recursively. At time t, MMR se-

2We abuse notation here, as it is clear that we refer to the complexity notation Ω and not the universe of
items Ω.
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lects item it := argmaxi∈Ω

(
λ rel(ϕi,hquery)− (1− λ)maxj∈{i1,...,it−1} sim(ϕi,ϕj)

)
for each

t ∈ {1, . . . , B}, where the maximum value over ∅ is set to 0 by convention. However, it is easy
to rewrite the expression in MMR to fit the setting where a user context and history is provided as
query. Instead of a relevance function, we consider the feedback model and the kernel function as
a similarity metric. Using notation from above, with b ∈ {1, . . . , B}, at time t, MMR selects item
it+b := argmaxi∈Ω

(
λ qΘ(ϕ

i,ht)− (1− λ)maxj∈Ht∪{it,...,it+b−1} k(ϕ
i,ϕj)

)
. Yet, it would be

interesting to strengthen even further the constraint on diversity, and to leverage the literature on
DPPs to sample a whole diverse subset instead of an iterative, greedy procedure.

3 A GENERIC APPROACH FOR THE QUALITY-DIVERSITY TRADE-OFF IN DPPS

In this section, we define our trade-off on relevance and diversity, instead of a multi-objective
task (Abbassi et al., 2009) or a multi-step process for filtering relevance or diversity (Ibrahim et al.,
2025; Yuan et al., 2016). We recall that k : Rd × Rd → R is a similarity kernel on items. To use a
quality-diversity decomposition, we need:

Assumption 3.1. Positive-definite kernel. The kernel k is a positive-definite kernel, that is, there
exists d′ ∈ N∗ and a feature map function ν : Rd → Rd′

such that, for any x,y ∈ Ω, k(x,y) =

ν(x)⊺ν(y). ν is extended to subsets of items: ν(S ) := (ν(ϕi))i∈S ∈ RB×d′
for any S ⊆ Ω.

Assumption 3.2. Positive unbounded feedback. The feedback model qΘ has values in R∗
+.

Assumption 3.3. Unit embeddings. ∥ϕ∥2 = ∥h∥2 = 1 for all user embeddings h ∈ Rm and item
embeddings ϕ ∈ Ω.

Note that those assumptions are only moderately restrictive, as adequate kernel functions (linear,
RBF, Matérn (Williams & Rasmussen, 2006; Duvenaud, 2014)) and classification or regression
models with positive values (Lee & Seung, 1999; Wood, 2017) abound in the literature, and renor-
malizing embeddings is a common procedure. Then, we assume that the feedback model is known
and perfect, and that the observed user feedback is noiseless.

Assumption 3.4. Noiseless observed feedback. At a given recommendation round t > 0 to user ht,
if ϕ is the kth recommended item, then the observed feedback value ytk from user ht for the kth item
satisfies ytk = qΘ(ϕ,h

t).

The Quality-Diversity Trade-off (QDT) family. Under these assumptions, we extend the quality-
diversity decomposition (Kulesza & Taskar, 2010) in determinantal point processes to any valid
kernel, and we allow to interpolate from only quality-focused recommendation 3 to diversity-focused
recommendation 4. The likelihood matrix for this family of DPPs, called QDT, for a given user h,
their historyH, and item subset S , is:

∀S ⊆ Ω, ∀h ∈ Rm, Lλ
f (S ;h) := (Qh,S )

2λf(k,S ,H)2(1−λ)(Qh,S )
2λ , (3)

where λ ∈ [0, 1] controls the trade-off between quality (λ = 1) and diversity (λ = 0). The presence
of λ allows us to implement continuously and explicity the trade-off between relevance and diversity.
Qh,S is a diagonal matrix containing the expected rewards {qΘ(ϕi,h)} for i ∈ S . f is a function
with values in the set of positive-definite matrices in RB×B , and depends on kernels computed on
S, Ω, H. f should incorporate all information about the desired diversity in recommended items.
Note that we completely disentangle quality and diversity in this definition.

Equation 3 offers a flexible definition of the quality-diversity trade-off, which recovers various
known DPPs described in Section 2 by defining f and λ. For instance, traditional quality-
diversity decomposition (Kulesza & Taskar, 2010) can be obtained by setting fQDDecomp(k,S ,H) :=
kS ,S with λ = 0.5, where k is the linear kernel k({ψ}, {ϕ}) = ψ⊺ϕ or, equivalently, ν :
x 7→ x. A conditional DPP (Borodin & Rains, 2005) can be described using λ = 0.5 and
fCondDPP(k,S ,H) := kS ,S − kS ,H(kH,H)−1(kS ,H)⊺. Finally, an ε-greedy approach can be ob-
tained by setting fε-greedy(k,S ,H) := IB with λ = 0.5 ε% of the rounds (greedy phase), and setting

3That is, we do not take into account the diversity described by the kernel.
4i.e., we ignore quality scores and only aim at being diverse
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Algorithm 1 Recommendation round at t > 0 with B-DivRec and an adaptive Q-D trade-off.
1: Input ht: user context,Ht: user history, qΘ: feedback model, λt: initial relevance weight
2: Parameters k: kernel function, f = fB-DivRec, A: online learner
3: Output St: B item recommendations, λt+1: updated relevance weight
4: Qht,Ω ← diag({qΘ(ϕ,ht)}ϕ∈Ω) and initialize A with λt

5: Lλt

fB-DivRec(Ω;h
t)← (Qht,Ω)

2λt

f(k,Ω,Ht)2(1−λt)(Qht,Ω)
2λt

# Likelihood matrix

6: Use SAMPLING Sample St ⊆ Ω proportionally to detLλt

f (St;ht)

7: or MAXIMIZATION Solve St ∈ argmaxS⊆Ω detLλt

f (S ;ht)

8: yt ← (yt1, y
t
2, . . . , y

t
B), update A with (1− 2λt)∇λscrλ

t

f,yt(St;ht) and select λt+1 from A
9: return St, λt+1

fε-greedy(k,S ,H) := kS ,S with λ = 0 the other (1 − ε)% of rounds (exploratory phase). We now
consider the log-determinant of Lλ

f (S ;h) as the score scr of any B-sized set S

∀S ⊆ Ω, ∀h ∈ Rm, scrλf,qΘ(S ;h) := 4(1− λ) log vol(f(k,S ,H)) + 4λ
∑
ϕ·∈S

log qΘ(ϕ,h) , (4)

with the convention scrλf,qΘ(∅) := 0, provided that the volume is well-defined–that is, f(k,Ω, ∅)
is positive-definite for any universe of items Ω. From the expression in Equation 4, the larger the
score, the better the subset S for the quality-diversity trade-off. We could stop at this point, and
simply consider a (possibly conditional) DPP to obtain diversified recommendations (Affandi et al.,
2012). Still, as discussed in the introduction, this approach might be expensive for users with long
histories. We suggest another, more tractable, approach named B-DivRec below, which leverages
the existence of kernel-associated feature maps (Assumption 3.1).

The B-DivRec DPP. B-DivRec belongs to the QDT family, and is defined with α ∈ [0, 2]

fB-DivRec(k,S ,H;α) :=
(
ν(S )− ν(g(S ;H, α))

)(
ν(S )− ν(g(S ;H, α))

)⊺
where (5)

∀i ≤ B, g(S ;H, α)i,· :=

{
ϕℓi if max

j∈H
cos(ν(ϕℓi), ν(ϕj)) ≥ 1− α

0 otherwise
∈ RB×d if S : = {ℓi}i ,

and cos(x, y) is the cosine similarity between vectors x and y. α controls in a more subtle way than
the kernel k the degree of diversity expected compared to the user history, by filtering out items too
similar to the history. We discuss the choice of hyperparameter α in Section 5. See Algorithm 1
for a pseudo-code of B-DivRec with a fixed value of λ ∈ [0, 1]. (Gartrell et al., 2017; Dupuy &
Bach, 2018) also propose a family of low-rank factorizations of L-matrices. However, Gartrell et al.
(2017) does not endorse a quality-diversity trade-off, whereas Dupuy & Bach (2018) requires two
supplementary low-rank approximations. Conversely, B-DivRec straightforwardly uses the Nyström
approximation to obtain computations in Rd′

where d′ ≪ d.

Efficiency of B-DivRec. Naively, the computation of the L-matrix in B-DivRec is in O(N3).
However, we leverage several approximations and methods to achieve a time complexity linear
in N that we describe more thoroughly in Appendix B. In practice, we learn function ν with a
Nyström approximation (Nyström, 1930; Yang et al., 2012; Liu et al., 2021) of low rank d′ to avoid
computations on potentially large matrices of size N × N . This approximation can be applied to
any kernel function k. However, one should be careful to select d′ such that N ≫ d′ ≥ B +
maxt≤T |Ht| to ensure that the interbatch/global volume of any sampled batch of B items can
be larger than 0 (see metrics in Section 1). The Nyström approximation of rank d′ on a random
selection of representative points, run once, has a time complexity of O(N(d′)2 + (d′)3) (Williams
& Seeger, 2000). The computation of g(S ;H, α) for any user h of history H and subset S using
a k-d tree leads to an average time complexity in Ω(B log |H|), where |H| ≪ N as a general
rule, and Ω(B|H|) in the worst case of unbalanced trees (Arya & Mount, 1993). Retrieving the
closest neighbor can also be computed on large sets of (feature maps of) items by considering an
approximate nearest neighbor algorithm, e.g., FAISS (Douze et al., 2024) or LSH (Dasgupta et al.,
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2011). The computation of the matrix power (in λ) can also be in linear time in N . Using the
α-DPP sampling procedure (Calandriello et al., 2020) for the SAMPLING strategy and the greedy
algorithm in (Chen et al., 2018) for the MAXIMIZATION approach, with time complexities linear
in N as described in Section 1, we confirm that B-DivRec remains tractable even when faced with
millions of items, as demonstrated in the experiments. Moreover, we delve into supplementary
details of implementation in Appendix B.

4 ADAPTIVE QUALITY-DIVERSITY (Q-D) TRADE-OFF

A frequent problem when dealing with the quality-diversity trade-off is to handle the fact that some
users might be more receptive to diverse recommendations than others. We wish for an automated
procedure for tuning the trade-off–in practice, changing the value of hyperparameter λ–which takes
into account the user’s prior reactions to diversified items. We can frame this problem as an on-
line learning game between a player–that is, the recommender system–and Nature–which is the
interaction with one user (h,Ht) querying the recommender system at time t (Auer et al., 2002;
De Rooij et al., 2014). At round t ≤ T of the game, the recommender system chooses a value of
λt ∈ [0, 1]. Then, the recommender system makes a recommendation St to user h and receives a
loss (or gain (De Rooij et al., 2014)) value related to the quality-diversity trade-off achieved, de-
pending on the vector of feedback yt from Nature. The recommender system should use this loss to
update and use λt+1 ∈ [0, 1] at the next round. The game ends after T interactions with the same
user. The quality-diversity trade-off gain is given by the function λ,S ,y 7→ scrλfB-DivRec,y(S ;h) for
all λ ∈ [0, 1], S ⊆ Ω, |S | = B, and y ∈ (R∗

+)
B . 5 The goal of the game, by selecting the λt’s,

is to maximize the cumulated quality-diversity trade-off, and alternatively, to minimize the cumula-
tive regret compared to a deterministic oracle which knows in advance the pairs batches-feedbacks
(St,yt)t≤T :

Radapt(T ;h) := max
λ∈[0,1]

∑
t≤T

scrλfB-DivRec,yt(St;h)− scrλ
t

fB-DivRec,yt(St;h) . (6)

Many online learners have been introduced to solve this type of problem, e.g., EXP3 (Auer et al.,
2002) and AdaHedge (De Rooij et al., 2014). We select AdaHedge, as it is an online learner which
is horizon T -agnostic, and does not require to know the scale of the gain function in advance. We
further go into details as regards the implementation of this procedure in Appendix C.1. Algorithm 1
(purple lines) shows how we modify the initial recommendation algorithm with B-DivRec to adap-
tively choose λ. We derive guarantees on the regret incurred by the adaptive learning procedure.
Theorem 4.1. Upper bound on the regret incurred by the adaptive diversity tuning procedure. An
upper bound on the regret Radapt(T ;h) incurred by the adaptive strategy for tuning the level of
diversity λ ∈ [0, 1] for user h over T rounds of recommendations is

Radapt(T ;h) ≤ 2δT
√
T log(2)+16δT (2+log(2)/3) , where δT := 8max

t≤T
log

(maxi≤B y
t
i)

B

vol(f(k, St, Ht))
.

The proof is shown in Appendix C.2. The upper bound has a time dependence in O(
√
T ), which is

on par with the state-of-the-art for online learners. Note that this result does not require Assump-
tion 3.4 to hold, and we experimentally test the adaptive diversity tuning procedure in settings with
noisy feedback in the next section.

5 EXPERIMENTAL STUDY

We consider several DPPs from the QDT family: QD decomposition, conditional DPP and the ε-
greedy approach described in Section 3, along with baselines from the literature: Deep DPP (Gartrell
et al., 2018), Markov DPP (Affandi et al., 2012), MMR (Carbonell & Goldstein, 1998), and
xQuAD (Santos et al., 2010) (see Appendix D.3). To try to get as close as possible to a realistic
online setting, we consider the following situation. At recommendation time t > 0, for a new user

5Analoguously to a feedback model, y is such that y(ϕ,h) is the (observed) feedback from the user h if
ϕ has been recommended, and otherwise is equal to 1 (meaning that it is ignored for a non-visited ϕ).
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ht with ground-truth history Ht from the initial data set, a recommender system will output a batch
of recommendations for each round t, t+ 1, . . . , t+ |Ht| with respective user context-history pairs
(ht, ∅), (ht, {i1}), (ht, {i1, i2}), . . . , (ht,Ht), where Ht := {i1, i2, . . . , iM} if |Ht| = M in the
initial data set. It means that at each round, we incrementally increase the user history with true pre-
viously recommended items, and track the relevance and diversity of novel recommendations (see all
metrics in Section 1). As the SAMPLING strategy is not deterministic, we iterate this process over
10 random seeds, and average all the metrics across those 10 iterations for each user. For pointwise
metrics such as in Equation 1, we also average these metrics along the trajectory of recommenda-
tions of length |Ht|. Since we run this setting on several users, we aggregate these metrics across
users by considering the average and the standard deviation. These are the final values shown in the
tables in this section. Top ones are in bold type, second best one are underlined. For the sake of
clarity, we only show the most relevant metrics and baselines in experiments. Runtime is the time in
seconds needed to output a single batch of recommendations. All values are rounded to the closest
2nd decimal place.

For all experiments, we consider a linear kernel function k : ϕ, ψ 7→ ϕ⊺ψ to compare fairly with
baselines for the quality-diversity trade-off. Similarly, we use as default value λ = 0.5: equal
weight for the quality and diversity tasks; ε = 0.1: frequency of the greedy phase, to get a strong
baseline for diversity; and α = 0: diversity hyperparameter for B-DivRec in Equation 5; unless
otherwise specified. We consider the following data sets in our experiments: (1) Synthetic data sets:
their names are prefixed with SYNTHETIC, followed by the number of items N . Supplementary
information can be found in Appendix D.1; (2) MovieLens data set (Harper & Konstan, 2015) for
movie recommendation, with feedback values in 1, 2, . . . , 5; Epinions data set (Leskovec et al.,
2010) in social networks and a collection of six data sets for drug repurposing (Cdataset, DNdataset,
Fdataset, Gottlieb, LRSSL, and PREDICT), with feedback values in [0, 1]. Further details about the
real-life data sets are in Appendix D.2.

Known feedback setting with fixed λ. For the sake of readability, we postpone our sensitivity
analyses on hyperparameters λ and α, and the comparison between the SAMPLING and MAXI-
MIZATION strategies to Appendix E. As expected, the larger λ is, the more weight is put on the
relevance task, and there is a global increase of the related metric when λ is larger. Also unsurpris-
ingly, a greater value of α leads to a higher global diversity divG, but might impact relevance as
well, highlighting the presence of the quality-diversity tradeoff. Moreover, we found the MAXI-
MIZATION strategy to better perform the expected quality-diversity tradeoff, and we will use this
strategy for all DPP-based approaches from now on. We also test larger values of the batch size B
in Appendix F. However, note that we considered small batch sizes as ultimately in real-life applica-
tions, the user might only be willing to grade up to 5 items at a time. Moreover, we focus our study
on real-life data sets and baselines out of the QDT family, pushing results related to synthetic data
sets and the QDT family to Appendix E.

We now display a summary of the numerical results obtained on real-life data and on methods Deep
DPP, MMR, xQuAD and B-DivRec in Tables 1-8. The full results on this benchmark can be found in
Appendix D.3. On the MovieLens data set for movie recommendation, MMR is the top contender,
whereas our contribution B-DivRec is the second best, improving significantly upon the conditional
DPP in terms of relevance. The divG values are particularly small on MovieLens due to the fact that
initial user histories are collinear: they feature similar movie embeddings, which leads to a small
volume. The same phenomenon can be observed on the Epinions data set. We discuss this issue
further in Appendix G. However, on all other data sets, B-DivRec achieves the quality-diversity
tradeoff, with relevance values close to the quality-wise top performers MMR and xQuAD, while
largely improving on the global diversity metric. This is confirmed by the fact that B-DivRec has
the best value of effective diversity div+ across all eight data sets but one.

Adaptive quality-diversity trade-off. Finally, we evaluate our adaptive procedure for tuning the
quality-diversity trade-off parameter λ ∈ [0, 1]. Note that λ is specific to one user: each online
learner is initialized and updated along a trajectory corresponding to a single user. As such, we
only consider one user, user with identifier 0, in all data sets. Then, we run B-DivRec (Equation 5)
combined with the MAXIMIZATION strategy and the adaptive approach described in Section 4.
We report the results in Table 9 for MovieLens and PREDICT. To assess the goodness of our ap-
proach, the final tuned value λfinal is compared to the best a posteriori relevance weight λ⋆. This
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Table 1: Benchmark on Cdataset (4 users, B = 3) with
MAXIMIZATION.

ALGO REL ↑ DIVG ↑ DIV+ ↑

Deep DPP 0.36 ±0.03 0.16 ±0.02 0.32 ±0.04
MMR 0.91 ±0.01 0.14 ±0.01 0.36 ±0.0
xQuAD 0.91 ±0.01 0.14 ±0.01 0.37 ±0.01
B-DivRec 0.79 ±0.01 0.22 ±0.02 0.52 ±0.02

Table 2: DNdataset (4 users, B = 3) with
MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.23 ±0.06 0.72 ±0.01 0.23 ±0.06
0.33 ±0.06 0.86 ±0.03 0.19 ±0.05
0.33 ±0.06 0.77 ±0.01 0.22 ±0.06
0.31 ±0.06 0.98 ±0.01 0.25 ±0.07

Table 3: Benchmark on Epinions (3 users, B = 3)
with MAXIMIZATION. DeepDPP could not be run
on Epinions, as the number of items is too large to
compute the likelihood function in memory.

ALGO REL ↑ DIVG ↑ DIV+ ↑

Deep DPP – – –
MMR 0.04 ±0.01 0.0 ±0.0 0.0 ±0.0
xQuAD 0.04 ±0.01 0.0 ±0.0 0.0 ±0.0
B-DivRec 0.02 ±0.01 0.0 ±0.0 0.0 ±0.0

Table 4: Fdataset (4 users, B = 3) with
MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.48 ±0.03 0.12 ±0.01 0.59 ±0.06
0.95 ±0.01 0.16 ±0.01 0.35 ±0.01
0.93 ±0.01 0.14 ±0.01 0.37 ±0.01
0.81 ±0.01 0.24 ±0.02 0.64 ±0.05

Table 5: Benchmark on Gottlieb (4 users, B = 3) with
MAXIMIZATION.

ALGO REL ↑ DIVG ↑ DIV+ ↑

Deep DPP 0.50 ±0.03 0.19 ±0.02 0.55 ±0.05
MMR 0.94 ±0.01 0.37 ±0.03 0.64 ±0.02
xQuAD 0.93 ±0.01 0.36 ±0.03 0.65 ±0.01
B-DivRec 0.82 ±0.01 0.40 ±0.02 0.78 ±0.01

Table 6: LRSSL (4 users, B = 3) with
MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.39 ±0.02 0.53 ±0.05 0.64 ±0.03
0.97 ±0.0 0.55 ±0.05 0.82 ±0.02
0.97 ±0.0 0.53 ±0.04 0.80 ±0.02
0.83 ±0.01 0.56 ±0.04 0.86 ±0.01

Table 7: Benchmark on MovieLens (4 users, B = 3)
with MAXIMIZATION. DeepDPP could not be run in
full on MovieLens (1 iteration is shown), as it is very time-
consuming: 500 seconds per iteration and user.

ALGO REL ↑ DIVG ↑ DIV+ ↑

Deep DPP 1.24 ±0.07 0.02 ±0.01 0.22 ±0.05
MMR 3.78 ±0.12 0.07 ±0.01 0.77 ±0.04
xQuAD 3.85 ±0.15 0.05 ±0.01 0.68 ±0.04
B-DivRec 3.48 ±0.13 0.06 ±0.01 0.59 ±0.05

Table 8: PREDICT (4 users, B = 3) with
MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.21 ±0.02 0.35 ±0.03 0.30 ±0.04
0.79 ±0.02 0.49 ±0.03 0.54 ±0.03
0.79 ±0.02 0.47 ±0.03 0.64 ±0.02
0.68 ±0.03 0.52 ±0.03 0.80 ±0.03
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Table 9: Benchmark with and without (“non adaptive”) the adaptive tuning procedure in Section 4,
applied to B-DivRec (Equation 5) with the MAXIMIZATION strategy for user 0, starting with
initial value λ0 = 0.5. λfinal: final relevance weight after tuning. λ⋆: best a posteriori relevance
weight. We also test the adaptive procedure with noisy/observed feedback (“noisy”, violating As-
sumption 3.4), without access to the feedback model qΘ. Further details on the noise for each data
set can be found in Appendix C.3.

DATA SET λfinal λ⋆ REL ↑ DIVG ↑ DIV+ ↑ TIME ↓

SYNTHETIC750 0.18 0.10 0.61 ±0.0 0.95 ±0.0 1.01 ±0.0 0.5 ±0.0
non adaptive – – 0.61 ±0.0 0.96 ±0.0 1.01 ±0.0 0.16 ±0.0
noisy, adaptive 0.73 0.5 1.00 ±0.0 0.16 ±0.0 0.07 ±0.02 1.50 ±0.11
noisy, non adaptive – – 1.00 ±0.0 0.16 ±0.0 0.07 ±0.02 0.06 ±0.0

MovieLens 1.00 1.00 4.49 ±0.01 0.01 ±0.0 0.77 ±0.01 158.1 ±0.84
non adaptive – – 4.38 ±0.0 0.01 ±0.0 0.78 ±0.0 29.7 ±0.82
noisy, adaptive 1.00 1.00 5.00 ±0.0 0.02 ±0.0 0.94 ±0.01 57.56 ±15.55
noisy, non adaptive – – 2.57 ±0.26 0.02 ±0.0 0.94 ±0.0 2.72 ±0.01

PREDICT 0.35 0.10 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 1.97 ±0.05
non adaptive – – 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 0.82 ±0.0
noisy, adaptive 0.97 0.99 0.41 ±0.04 0.21 ±0.03 0.54 ±0.02 7.7 ±0.17
noisy, non adaptive – – 0.28 ±0.05 0.33 ±0.03 0.83 ±0.01 1.36 ±0.08

value is computed at the end of a trajectory associated with one user by solving the maximization
problem in λ in Equation 6, and corresponds to the best deterministic action that the player could
have taken in the game with Nature explained in Section 4. First, the adaptive procedure seems to
be able to roughly retrieve the oracle value λ⋆ across data sets–albeit it is unlikely that it can always
find it, since the oracle value relies on the a posteriori knowledge of the user feedback. Second, the
computational cost of using the adaptive procedure instead of a fixed value of λ = 0.5 is moderate:
the runtime with the adaptive procedure is multiplied by 8 in average across all data sets, due to the
approximation of matrix power (see Appendix B). Third, on both MovieLens and PREDICT, adap-
tively selecting λ throughout the trajectory allows us to noticeably increase relevance while trading
off some diversity. MovieLens, since the users seem to be more biased towards popular movies com-
pared to novel recommendations–as illustrated by the low value of divG in the non-adaptive noiseless
setting–the recommender system is leaning toward making popular recommendations, leading to a
higher λ, higher relevance (rel +2.5%) to the price of some of effective diversity (div+ −1.3%).

6 DISCUSSION

In this paper, we introduced a versatile and flexible approach for diverse recommendation. We
proposed a general family of DPPs, named the QDT family, embedding the quality-diversity trade-
off which includes several well-known recommender systems. Then we introduced B-DivRec to
integrate user history in a computationally tractable fashion. We illustrated the versatility of B-
DivRec when the feedback model is known, and when the recommender system must adapt the
diversity of its recommendations to the user based on user interaction with the recommended items.

Yet, many venues for research are still unresolved in the field. Recommender systems often face a
pervasive issue related to missing feedback. How can one leverage information from the fact that
a user has not visited nor rated a recommended item? This issue is connected with overcoming
Assumption 3.4 on noiseless feedback (Radlinski et al., 2008; Zenati et al., 2022; Hikmawati et al.,
2024; Park & Jia, 2025). However, improving upon the QDT framework might be the key to solve
the issue of missing feedback while still ensuring the diversity of recommended items. A first
approach could implement the optimism principle as in multi-armed bandits (Auer et al., 2002;
Abbasi-Yadkori et al., 2011) and building confidence intervals on the expected feedback on items
in the likelihood matrix of a DPP from the QDT family. Another venue of research is to adapt the
rotting bandit framework (Levine et al., 2017) to incorporate global diversity.
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Jill-Jênn Vie, Camille Laıly, and Solene Pichereau. Mangaki: an anime/manga recommender system
with fast preference elicitation. Tech. Rep., 2015.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neu-
ral information processing systems, 33:5776–5788, 2020.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H Chi, and Jennifer Gillen-
water. Practical diversified recommendations on youtube with determinantal point processes. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, pp. 2165–2173, 2018.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
Advances in neural information processing systems, 13, 2000.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Simon N Wood. Generalized additive models: an introduction with R. chapman and hall/CRC,
2017.

Zhelin Xu and Atsushi Matsumura. A serendipitous recommendation system considering user cu-
riosity. In International Conference on Information Integration and Web Intelligence, pp. 33–48.
Springer, 2024.

Yueqing Xuan, Kacper Sokol, Mark Sanderson, and Jeffrey Chan. Diverse negative sampling for
implicit collaborative filtering. arXiv preprint arXiv:2508.14468, 2025.

Nacim Yanes, Ayman Mohamed Mostafa, Mohamed Ezz, and Saleh Naif Almuayqil. A machine
learning-based recommender system for improving students learning experiences. IEEE Access,
8:201218–201235, 2020.

14

https://doi.org/10.5281/zenodo.7983090
https://doi.org/10.5281/zenodo.7983090


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström method vs
random fourier features: A theoretical and empirical comparison. Advances in neural information
processing systems, 25, 2012.

Dongjin Yu, Ting Yu, Dongjing Wang, and Sixuan Wang. Long tail service recommendation based
on cross-view and contrastive learning. Expert Systems with Applications, 238:121957, 2024.

Yuan Yuan, Xiangtao Zheng, and Xiaoqiang Lu. Discovering diverse subset for unsupervised hy-
perspectral band selection. IEEE Transactions on Image Processing, 26(1):51–64, 2016.

Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien Mairal, Matthieu Martin, and Pierre Gail-
lard. Efficient kernelized ucb for contextual bandits. In International Conference on Artificial
Intelligence and Statistics, pp. 5689–5720. PMLR, 2022.

Xueying Zhan, Qing Li, and Antoni B Chan. Multiple-criteria based active learning with fixed-size
determinantal point processes. arXiv preprint arXiv:2107.01622, 2021.

Reza Jafari Ziarani and Reza Ravanmehr. Serendipity in recommender systems: a systematic litera-
ture review. Journal of Computer Science and Technology, 36(2):375–396, 2021.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORKS (CONTINUED)

Due to space constraints in the main text, we write here a more comprehensive section than in
Section 2 about prior works on recommender systems with diversity.

A.1 SETTING OF THIS PAPER AND B-DIVREC

Figure 1: Setting of our paper.

The objective of our paper is to study and optimize the tradeoff between accuracy and different
levels of diversity (local and global) in recommendations of batches of items. B-DivRec, as all
other considered baselines, is applied directly on the (whole) library of items and outputs batches
of recommended items, hence the importance of tractable computations. Moreover, its formulation
exploits the estimated feedback values from a backbone (feedback) model. The strength of our
approach is that we can consider any backbone model qΘ for the feedback, as long as it satisfies
Assumptions 3.1-3.3 as formulated in the paper. Note that those assumptions are unrestrictive in
practice.

Moreover, as we do not have access to an online setting where we could directly interrogate users,
we had to set up an offline framework on observed ratings for real-life data sets: e.g., SVD for
MovieLens, heterogeneous graph attention network for PREDICT, trained offline on observed data,
as described in Appendix D.2.

A.2 DIVERSITY METRICS

In Section 1, we focused on a geometrically intuitive definition of diversity relying on the volume
of the parallelotope built by the columns of the kernel function applied to a given subset of items.
That definition is versatile enough that, not only could we use it to define intrabatch/local and in-
terbatch/global diversity metrics (Bederina & Vie, 2025) (see Equation 1), but it also enabled us to
produce a single metric for the quality-diversity trade-off (that is, the div+ metric in Equation 2).
These metrics hold for any feedback model and kernel function, hence they are very flexible. As
described in Section 2, prior works (Carbonell & Goldstein, 1998; Kaminskas & Bridge, 2016) also
proposed a linear or convex combination of relevance and diversity metrics, controlled by a param-
eter λ ≤ 0, or a quality-diversity trade-off induced by a matrix decomposition (Kulesza & Taskar,
2010). In our paper, we actually combine the two approaches. We discuss below other metrics
mentioned in the literature. Note that we make a distinction between metrics which are only evalu-
ated in the experimental studies (e.g., intralist average distance or category coverage (Ge et al., 2010;
Kaminskas & Bridge, 2016; Chen et al., 2018; Li et al., 2024)) from the metrics which are optimized
upon and actually used in the recommender systems. We focus on the latter in this section.

A strong competitor of our metrics are ridge leverage scores. Given the ridge hyperparameter ζ ≥
0, for a given kernel function k, Musco & Musco (2017, Definition 1) define the ridge leverage
score of item ϕi ∈ Ω := {ϕ1,ϕ2, . . . ,ϕN} as rζk(ϕ

i) := (L(L + ζIN )−1)i,i, where L := kΩ,Ω.
Alternatively, defining U ∈ RN×d such that K = UU⊺, the ridge leverage score for ϕi is the
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value of the ridge regression problem miny∈RN ∥Ui,· − yU∥22 + ζ∥y∥22 ∈ [0, 1]. In other words,
y is the mixing vector that achieves the linear combination of rows in U closest to the ith row
of U (which is the row associated with ϕi). Then the ridge leverage score is a measure of the
unicity of the vector ϕi among elements in Ω: the smaller it is, the least “unique” ϕi is. However,
computing the exact ridge leverage scores requires potentially inverting a matrix of size N × N
which itself has a time complexity of O(N3). To get a measure of diversity for a whole set of items
S , summing all leverage scores across S yields the “effective dimension”, also called “degrees of
freedom”: dζeff,k(S ) :=

∑
ϕi∈S r

ζ
k(ϕ

i) = tr(L(L + ζIN )−1) . This measure of diversity is quite

intuitive, and the time complexity is in Õ(N), where Õ hides logarithmic terms inN (Chen & Yang,
2021). Then, similarly to determinants and volumes where Cholesky decompositions on sparse
or low-rank matrices can be leveraged (see Appendix B), the time complexity of these measures
might be linear in the number of items. However, since the determinant is directly optimized (in
the MAXIMIZATION strategy) or considered (in the SAMPLING strategy) in our algorithms,
an evaluation of recommender systems by the volume might be more consistent than by leverage
scores.

As mentioned in Section 1, the topic of the quality-diversity trade-off is related to serendipity–
which is also called out-of-the-box (Abbassi et al., 2009), unexpectedness (Xu & Matsumura, 2024),
surprise (Ziarani & Ravanmehr, 2021)–where an unexpectedly good item is recommended to a user,
contrary to simply recommending items which are very different from those in the user history or
cover different categories (which would be diversity). Looking for serendipitous items allows us to
overcome the popularity bias in recommendation (Yu et al., 2024). Kaminskas & Bridge (2016);
Poulain & Tarissan (2020); Ziarani & Ravanmehr (2021); Kotkov et al. (2024) show that there is no
consensus regarding the concept of serendipity, nor a single metric. The same holds for diversity
metrics: recently, Mironov & Prokhorenkova (2024) tried to formalize the expected properties of a
good diversity metric, showed that known diversity metrics do not match them, and proposed two
matching metrics. These properties are monotonicity (the diversity of the union of two sets should
be higher than the maximum diversity for each of these sets), uniqueness (replacing an element from
a set with a copy of an already present element should decrease the diversity of the modified set), and
continuity of the diversity metric. In particular, the determinant does not satisfy the monotonicity
property. Yet the metrics that Mironov & Prokhorenkova (2024) proposed are too computationally
expensive in practice. In Yu et al. (2024), authors built a recommender system for long-tail Web
services/items likely to be queried by applications/users, which is based on linear propagation of
information on graphs of interconnected services with a LightGCN (He et al., 2020). This allows
them to learn item and user embeddings. The predicted probability of querying a service by an
application is the inner product of the corresponding embeddings. A recommender system is then
trained on those predicted scores with a pairwise Bayesian Personalized Ranking (BPR) loss, which
is appropriate with implicit and sparse feedback data. Other papers also study diversity through
random walks on graphs (Poulain & Tarissan, 2020). Contrary to our paper, most of the reported
metrics combine metrics of item unpopularity (related to relevance) and item dissimilarity (Iaquinta
et al., 2008; Abbassi et al., 2009) to be applied at a reranking stage where a subset of relevant
items has already been retrieved. However, as reported in Li et al. (2024), filtering too early for
relevant items might cut down diversity in an irreversible way. Moreover, albeit the presence of
numerous novelty-related metrics, the selection of a single metric is subjective, whereas the quality
and diversity metrics are usually straightforwardly guided by the recommendation task.

A.3 ABOUT DISTRIBUTIONS ON RANDOM SUBSETS OF POINTS

This section focuses on theoretical developments in DPPs which are relevant to our paper.

We recall that selecting B elements among N using a determinantal point process (DPP) has a time
complexity of O(NB3), after finding the eigenvalues of the likelihood matrix, which has a time
complexity of O(N3). In the case of a linear kernel on d-dimensional item embeddings, finding the
eigenvalues has a time complexity of O(Nd2). Moreover, using the dual representation of DPPs,
sampling B elements among N has a time complexity of O(NdB2 + d2B3) (Kulesza et al., 2012),
whereas the greedy approximation used for the maximization strategy (which is a NP-hard problem
otherwise) has a naive time complexity of O(B2N). However, several works (Gillenwater et al.,
2012; Han et al., 2017; Chen et al., 2018) improve upon this time complexity, by leveraging the
fact that the logarithm of the determinant of the likelihood matrix in the DPP should be maximized
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(see Equation 4) and using linear algebra approximations. log det is a submodular function but
not monotone; instead of obtaining a 1 − 1/e approximation of the exact solution (Kempe et al.,
2003), proposed approaches yield an 1/4 approximation (Gillenwater et al., 2012), and run with
a time complexity in O(NB2) (Chen et al., 2018). Moreover, Mariet et al. (2019) introduce an
approximation of a DPP–without the quality-diversity trade-off–by a deep learning model, named
DPPNet, which could also be used to further empirically speed up the sampling and maximization
of a DPP. Implementing our contributions with a DPPNet instead of a DPP might be a future venue
for enhancing their use in real-life applications.

A recent paper by Kawashima & Hino (2024) introduces a family of distributions on sets of points
which includes DPPs, called discrete kernel point processes (DKPPs), where the attraction and the
repulsion of sampled points can be controlled explicitly. Given a continuous function ψ : R+ 7→ R
and kΩ,Ω a positive-semidefinite Hermitian matrix, the probability of sampling the subset A ⊆ Ω
is given by P(S = A) ∝ exp

(
tr(ψ(kA,A))

)
. ψ controls the parametrization between positive and

negative correlations. DKPPs enable maximization, i.e., finding the subset with highest probability,
and sampling as well. However, using DPPs allows us to leverage existing implementations and
algorithms. Furthermore, positive correlations between items are not necessarily linked to relevance,
as the user information or context might also intervene in the quality score.

A.4 BASELINES FOR DIVERSIFIED RECOMMENDATIONS

This section gives an overview of the state-of-the-art on diversified recommender systems. We
focused on Determinantal Point Processes (DPPs) in our paper to leverage the literature regarding
fast implementation of sampling and maximization algorithms, and to incorporate some flexibility
in the description of item similarity thanks to the use of kernel functions. Here, we do not consider
prior works where the feedback model needs to be learned on the fly (Radlinski et al., 2008; Chao
et al., 2015; Kathuria et al., 2016; Nava et al., 2022; Hikmawati et al., 2024; Park & Jia, 2025).

As mentioned in Section 1, DPPs are popular in the field of recommender systems. Recently,
Ibrahim et al. (2025) applied two DPPs (a traditional quality-diversity decomposition, and one with
a linear kernel, without quality scores nor trade-off parameter) to output relevant and diverse rec-
ommendations of cultural goods to teenagers, again, in the sense of “intrabatch” diversity. They
reported an improved diversity (volume) in the recommendation with DPPs, to the price of a notable
part of the relevance, both in offline and online/live experiments. Wilhelm et al. (2018) (using a
quality-diversity decomposition with a RBF kernel) also applied DPPs on video recommendation.
Authors showed that DPPs, contrary to all other baselines, yielded an increase in the number of long
user sessions, which are indicative of user satisfaction with the recommendations.

Recommender systems that build upon MMR, which is a strong baseline in the field of diverse rec-
ommendations, have also been investigated in the literature. Recently, Li et al. (2024) introduced
Contextual Distillation Model (CDM), which trains a surrogate attention-based deep model of Max-
imal Marginal Relevance (MMR), for a diversity metric correlated to the scalar product of item
and user vectors. The surrogate model estimates the probability of a given item of being ranked
among the top-B items by the MMR score (see Section 2). Authors compared their contribution to
a DPP (Chen et al., 2018) and MMR, showing that the DPP had a better performance diversity-wise,
but arguing that the latter have a quadratic time complexity in the number of items N . However,
we showed in our work that, provided some approximations (see Appendix B), we can actually run
DPPs (B-DivRec and the conditional DPP) and MMR on libraries of dozens of millions of items.
Note that Li et al. (2024) only focused on what we call “intrabatch diversity”.

In addition to (Affandi et al., 2012), there are other papers regarding the improvement of the diversity
compared to a past sequence of recommended items. In addition to proposing a faster algorithm
for the MAXIMIZATION strategy for DPPs, Chen et al. (2018) also studies the case when the
diversity is only required among items in a sliding time window. They use a standard quality-
diversity decomposition for the likelihood matrix, with the MAXIMIZATION strategy, and modify
the maximization problem such that only the last ω − 1 recommended items are taken into account
in the greedy algorithm. However, their approach is suitable when a long series of interactions with
the user occurs and when we allow the recommender system to forget the oldest recommendations.
Yet, in practice, users interact only few times with the recommender system before settling on a
recommendation or dropping out (Ben-Porat et al., 2022; Gusak et al., 2025).
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Finally, few papers on the literature deal with the issue of tuning the level of diversity in the rec-
ommendations to the user. Given a notion of usefulness (i.e., relevance) and unexpectedness, which
is somewhat related to diversity (see the previous paragraph). Xu & Matsumura (2024) studies the
problem of finding the good proportions of usefulness and unexpectedness in recommendations for
each user after a step of retrieval of relevant items. The latter is closely related to the challenge of
addressing the adaptive quality–diversity trade-off in Section 4, albeit our procedure operates at any
stage of recommendation (including retrieval) and does not feature a serendipity metric. The metric
in Xu & Matsumura (2024) incorporates for each user a convex combination of long-term and short-
term preferences as the usefulness-unexpectedness trade-off (“curiosity”) parameter. In that paper,
this parameter is precomputed for each user, and cannot change anymore, unlike our approach.
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B PRACTICAL IMPLEMENTATION

We resorted to the Python package DPPy (Gautier et al., 2019; Calandriello et al., 2020) for the
implementation of the SAMPLING strategy, whereas we used the greedy algorithm in (Chen et al.,
2018) for the MAXIMIZATION approach. Please refer to the requirements.txt file in the
code for the package versions. This section is motivated by the fact that, in Algorithm 1, the step of
computation of the likelihood matrix for the DPP in Line 5 and of the recommendation set in Lines
6-7 might be expensive (at least in O(N3)) when N is large when implemented naively.

We also used sparse matrices as implemented in the Python package SciPy (Virtanen et al., 2020)
with a denuding procedure: meaning that we could make the matrix sparser by rounding up values
in matrices up to the qth decimal place to save memory. In practice, for our experiments, we did
not have to round up values. However, for even larger libraries of items, this technique might prove
useful. Below, we list the most computationally expensive parts of the code and explain the solutions
considered to get a tractable implementation.

B.1 NYSTRÖM APPROXIMATIONS OF THE KERNEL FUNCTION

One important element of the code is that a dense matrix of size N × N should never be stored in
full in the RAM. To comply with this rule, we extensively relied on the feature map ν associated
with a kernel function k (which also facilitates the computations as if k were a linear function). To
compute ν, we use a Nyström approximation (Nyström, 1930) that assumes that the rank of kΩ,Ω is
actually C ≪ N . Given a dimension d′ ≪ d, the Nyström approximation starts by subsampling a
set of C items I in Ω at random (without replacement), and then builds the eigendecomposition of
the real-valued matrix kΩ,Ω, that is, the evaluation of the kernel function on the whole universe.

kΩ,Ω = UΛU⊺ =

[
UIΛU

⊺
I UIΛU

⊺
¬I

U¬IΛU
⊺
I U¬IΛU

⊺
¬I

]
=

[
kI,I kI,¬I
k⊺I,¬I k¬I,¬I

]
,

where UI (respectively, U¬I) is the part of the orthonormal basis of the eigendecomposition as-
sociated with items in I (resp., not in I), and Λ is the diagonal matrix of eigenvalues of kΩ,Ω.
When one needs to compute kS ,S for any subset S ⊂ Ω of size B, using the fact that kS ,S =(
k⊺S ,IUIΛ

−1/2
)(
k⊺S ,IUIΛ

−1/2
)⊺

by replacing U¬I by k¬I,IUIΛ
−1. Λ−1/2 consists in simply ap-

plying the square root function to the eigenvalues of kΩ,Ω, whereas kS ,I ∈ RB×d′
where d′ ≪ N

can be explicitly evaluated. All in all, the corresponding ν function is ν(S ) = k⊺S ,IUIΛ
−1/2 for

any S ⊂ Ω.

As previously mentioned in the main text, the time complexity of the Nyström approximation is
O(N(d′)2 + (d′)3). In practice, we use the implementation of the Nyström approximation in the
Python package scikit-learn (Pedregosa et al., 2011). The computation of I, UI and Λ happens only
once before any recommendation is made. We use d′ = 100 for the rank in the Nyström approxima-
tion. We note that, while we use random elements to build the approximation, other papers suggest
to consider more representative points (Tremblay et al., 2019), for instance, those with maximum
leverage score which would be more representative of the set. However, this approach can be costly
(see Appendix A) which is why we elected to stick to random sampling.

Note that the computation of the volume (see metrics in Equation 1) also relies on the Nyström
approximation, as the full matrix kS ,S is not built. This accounts for the fact that, although As-
sumption 3.3 mentions that the item embeddings have a ℓ2-norm equal to 1, the actual computed
volumes in the experiments in Section 5 might exceed 1. The Nyström approximation does not
preserve the property on the norm of the item embeddings.

B.2 APPROXIMATE MATRIX INVERSIONS AND DETERMINANTS

For the conditional and the k-Markov (Affandi et al., 2012) DPPs, there is a step of inversion of a
positive definite matrix of potentially size N ×N , which is extremely costly in a naive implemen-
tation. As suggested by prior works (Burian et al., 2003), we resort to Cholesky decompositions
of the matrices that we wish to inverse. The Cholesky decomposition of a positive-definite matrix
M of size n is M = R⊺R where R is an upper (or lower) triangular matrix of size n. Then, as

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

M−1 = R−1(R−1)⊺, it suffices to solve RX = In in X by forward substitution, because R is a
triangular matrix, to obtain the inverse of M . To compute the (log-)determinant of M of size n,
the following relation is true: log det(M) = 2

∑n
i=1 logRi,i, because R is a triangular matrix with

positive diagonal elements (Madar, 2015) and detR = detR⊺.

In our implementation, we use the Python package Scikit-Sparse. For the conditional DPP, the
Nyström approximation of the kernel function can be leveraged on top of the Cholesky decom-
position (decomposing Ã1/2Ã1/2 ≈ A instead of A, which is less expensive due to the low-rank
assumption for Ã1/2), which is why the conditional DPP can be run on large data sets contrary to
Markov DPP. Indeed, the theoretical time complexity of the Cholesky decomposition is in O(N3)
as a general rule. However, for sparse matrices, a fill-reducing Cholesky decomposition can be com-
puted by reordering rows to restrict the creation of new nonzero elements (Duff & Uçar, 2009), and
for sparse matrices, the practical time complexity is typically much smaller than cubic in N .

B.3 APPROXIMATE MATRIX POWER

Matrix power intervenes in Equation 3 which describes the likelihood matrix for a DPP of the QDT
family for λ ̸= 1/2, where the power is possibly real-valued. The exact computation would re-
quire computing the whole set of eigenvalues and eigenvectors, which is quickly intractable as N
increases. Similarly to Appendix B.1, we make a low-rank assumption and consider the truncated
Singular Value Decomposition (SVD) of rank r ≪ N of a real-valued matrix M where M is a
square real matrix of size N . The SVD yields M = UΛV ⊺, where U, V ∈ Rr×N are orthogo-
nal matrices. Then we compute V ΛpV ⊺ as a proxy for Mp, that is, M multiplied p times where
p ∈ R+. Indeed, Mp ≈ (V ⊺ΛV )p = (V ⊺ΛV )(V ⊺ΛV ) . . . (V ⊺ΛV )︸ ︷︷ ︸

p times

= V ⊺ΛpV, since V V ⊺ = Ir

and V ⊺V = IN . This operation has a time complexity in O(Nr2) instead of the naive time com-
plexity O(N3) which is dominated by the computation of the full eigendecomposition. Moreover,
if we need to find L instead, where LL⊺ =Mp, we can output L = V

√
Λp where

√
Λp is such that√

Λp
√
Λp = Λp. Note that, for the diagonal matrix Λp,

√
Λp is the result of the square root function

applied element-wise to the diagonal elements of Λp. We choose r = N − 1 if N ≤ 1 000 and
r = 100 otherwise.

B.4 APPROXIMATE CLOSEST-NEIGHBOR FINDING ALGORITHMS

B-DivRec requires the computation of the maximum cosine distance between feature maps of items
from the current batch and the user history (see Equation 5). Obviously, computing all cosine
distances between any item and all items in the user history would be expensive since it is performed
for all items in Ω. As mentioned in Section 3, many approaches allow us to retrieve the closest
neighbor of a point in a set. Our implementation uses FAISS Douze et al. (2024), which is suitable
for large data sets. In practice, we do not even need to build a new tree for each user and each
recommendation round, but only a single tree on all items in Ω. Indeed, queries to FAISS can be
made while ignoring a subset of items when querying for the closest neighbor (in our case, ignoring
all items which are not in the current user’s history).

B.5 DIVERSITY ISSUES IN DPPS

As mentioned in Section 5, beyond a certain value of α, B-DivRec can no longer sample enough
diverse items, as α filters out most of the items. This issue is not specific to our contribution, as
Ibrahim et al. (2025) has also reported it for other conditional DPPs. It arises when the rank of the
likelihood matrix (L-matrix) of the DPP is strictly smaller than B.

Possible solutions to bypass this issue would be (1) to return a batch of recommended items of size
smaller than B (with a risk of no longer recommending any item at some point), (2) to only focus
on quality and set the matrix f(k,S ,H) ← IN , (3) to forget some of the user history, and only
preserve either the most representative points or the latest recommendations. Future work on this
topic would be of interest for practical recommender systems.
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B.6 RETRIEVING EMBEDDINGS

Finally, our implementation cannot afford to store the full item embedding matrix Φ = [ϕi, i ∈ Ω] ∈
RN×d in the RAM. First, we store the user histories in files, and update them in-place. Second, we
store, access and read the item embedding matrix by batches in memory with .csv files. Moreover,
for the largest data set of our paper (the synthetic data set SYNTHETIC15M with five millions
items), we use the .npy binary format instead of .csv for faster input/output operations.
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C ADAPTIVE QUALITY-DIVERSITY TRADE-OFF

We recall here the online learning game for the adaptive quality-diversity trade-off (see Section 4).
The player is the recommender system, and Nature is the interaction with one user (h,Ht) querying
the recommender system at time t (Auer et al., 2002; De Rooij et al., 2014). At round t ≤ T of
the game, the recommender system chooses a value of λt ∈ [0, 1]. Then, the recommender system
makes a recommendation St to user h and receives a loss value related to the quality-diversity trade-
off achieved, depending on the vector of feedback yt from Nature. The recommender system should
use this loss to update and use λt+1 ∈ [0, 1] at the next round. The game ends after T interactions
with the same user.

C.1 IMPLEMENTATION OF THE ADAPTIVE DIVERSITY-TUNING PROCEDURE

Applying the AdaHedge algorithm (De Rooij et al., 2014) to our problem, we consider two experts.
One favors diversity, whereas the other prefers quality. We denote the posterior weight vector asso-
ciated with those two experts λt := [1 − λt, λt] at time t. In our case, we consider a gain instead
of a loss function–since the optimization problem in Equation 6 is a maximization problem. The
function (to maximize) at time t with λt is

scrλ
t

f,yt(St;ht) = 4(1− λt) log vol(f(k,St,Ht)) + 4λt log det
(
diag({ytk}k≤B)

)
(7)

= 4(1− λt) log vol(f(k,St,Ht)) + 4λt
∑
k≤B

log ytk ,

where f = fB-DivRec (note however that this approach straightforwardly works for any DPP of the
QDT family as described in Equation 3). Now, since scrλ

t

f,yt(St;ht) is clearly linear in λt (hence
concave), we can apply the gradient trick as follows

Radapt(T ;h) := max
λ∈[0,1]

∑
t≤T

scrλf,yt(St;h)− scrλ
t

f,yt(St;h)

≤ max
λ∈[0,1]

∑
t≤T

(λ− λt)∇λscrλ
t

f,yt(St;h) .

The gradient ∇λscrλf,yt(St;h) with respect to λ ∈ [0, 1] is straightforward to compute

∇λscrλf,yt(St;ht) := −4 log vol(f(k,St,Ht)) + 4
∑
k≤B

log ytk . (8)

Then, we obtained an upper bound on the quantity that we want to optimize in the form of a inner
product. This is the motivation for using as a gain function at time t

gt : λ ∈ △2 7→ [−∇λscrλf,yt(St;ht),∇λscrλf,yt(St;ht)] ,

where △2 is the simplex of dimension 2. Note that the first coordinate of gt gt(λ)1 is actually the
gradient of scrλf,yt(St;h) with respect to 1 − λ (proven with a change of variable). Then in the
AdaHedge learner, at time t, we update the posterior weight with

−⟨λt, gt(λ)⟩ = −
(
(1−λt)(−gt(λ)2)+λtgt(λ)2

)
= (1−2λt)gt(λ)2 = (1−2λt)∇λscrλf,yt(St;ht),

which corresponds to Line 8 in Algorithm 1. Then, we obtain a new value λt+1 ∈ △2, from which
we extract the second coordinate λt+1 for the next round.

C.2 UPPER BOUND ON THE REGRET

Theorem C.1. Upper bound on the regret incurred by the adaptive diversity tuning procedure (The-
orem 4.1 in the main text). An upper bound on the regretRadapt(T ;h) (Equation 6) incurred by the
adaptive strategy for tuning the level of diversity λ ∈ [0, 1] for user h over T rounds of recommen-
dations is

Radapt(T ;h) ≤ 2δT
√
T log(2) + 16δT (2 + log(2)/3) ,

where δT := 8maxt≤T log
MB

t

at
, at := vol(f(k, St, Ht)) and Mt := maxi≤B y

t
i .
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Proof. We defined the regretRadapt(T ;h) for user h at time T in Equation equation 6, with the gain
function Gt : λ ∈ [0, 1] 7→ scrλfB-DivRec,yt(St;h) for any t ≤ T . Gt is defined in Equation 4 and is
linear (and then concave) in λ for all t ≤ T . Moreover, remember that we applied AdaHedge with
the gain function gt at time t in Line 8 in Algorithm 1, where

∀λ ∈ [0, 1] , gt(λ) := (1− 2λ)

−4 log(vol(f(k, St, Ht))) + 4
∑
i≤B

log yti


︸ ︷︷ ︸

=Ct

.

by using the computation from Subsection C.1. We denote λ := [1 − λ, λ]⊺ ∈ △2, where △2

is defined as the simplex of dimension 2 {p ∈ [0, 1]2 | p1 + p2 = 1}. Then we can rewrite the
expression of gt as

∀λ ∈ [0, 1] , gt(λ) = −⟨λ, [Ct,−Ct]
⊺⟩ .

Then, combining the concavity of Gt in λ, the fact that Ct is constant in λ, and the definition of gt,

∀λ ∈ [0, 1] ,
∑
t≤T

Gt(λ)−Gt(λ
t) ≤

∑
t≤T

⟨λ− λt, [Ct,−Ct]
⊺⟩

=⇒ Radapt(T ;h) ≤ max
λ∈[0,1]

∑
t≤T

gt(λ)− gt(λt) .

Then, we apply (De Rooij et al., 2014, Theorem 8 and Corollary 17) to the loss function −gt, using
the fact that λ ∈ [0, 1],

Radapt(T ;h) ≤ 2δT
√
T log(2) + 16δT (2 + log(2)/3) , where δT := 2max

t≤T
max(Ct,−Ct) .

What remains is to evaluate δT . According to Assumptions 3.1-3.3, there are two positive constants
mt and Mt ≥ 1 such that 0 < mt ≤ yti ≤ Mt, and 0 < at := vol(f(k, St, Ht)) ≤ 1. Using the
computations in Subsection C.1, the following inequalities hold

∀t ≤ T , −4 log at + 4B logmt ≤ Ct ≤ −4 log at + 4B logMt

4 log(mB
t /at) ≤ Ct ≤ 4 log(MB

t /at) .

This means that δT ≤ 8maxt≤T log(max(mt,Mt)
B/at) = 8maxt≤T log

MB
t

at
.

Note that Assumption 3.2 can be replaced by an assumption on the positiveness of observed feedback
values, hence this result still hold true when we do not have access to a feedback model.

C.3 EXPERIMENTS WITH NOISY FEEDBACK

We discuss in Section 5 in the main text our testing approach. This section focuses on testing the
adaptive procedure under noisy feedback, hence violating Assumption 3.4. We also add results
obtained on SYNTHETIC30k (under noiseless feedback). We replace estimated feedback values by
model qΘ with observed–positive, due to Assumption 3.2–feedback.

We first add noise in the synthetic data set. The recommender system no longer receives the exact
feedback score qΘ(ϕi,ht) at time t, but a binary outcome in {1, 2} determined by a Bernouilli law
of probability p := min(1,max(0, qΘ(ϕ

i,ht))). Note that 1 is drawn with probability 1 − p, and
2 with probability p. This setting simulates the case where we only receive clicks, and no longer
probabilities of clicks. We report below the results compared to B-DivRec applied to the same data
set without adaptive tuning of λ, starting from λ0 = 0.5. As the relevance is already close to the
maximum (which is 2) in this case, there is no observable improvement when running the adaptive
procedure.

We also consider the setting where the recommender system only has access to the outcomes of
clinical trials (3: successful, 2: not tested, 1: unsuccessful) from the PREDICT data set, or to
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Table 10: Benchmark with and without (“non adaptive”) the adaptive tuning procedure in Section 4,
applied to B-DivRec (Equation 5) with the MAXIMIZATION strategy for user 0, starting with ini-
tial value λ0 = 0.5. λfinal: final relevance weight after tuning. λ⋆: best a posteriori relevance weight.
We also test the adaptive procedure with noisy feedback (“noisy”, violating Assumption 3.4). We
renormalize the average feedback values to match the ones from the original feedback model: re-
moving 1 to feedback values in SYNTHETIC750 and MovieLens, substracting 2 to feedback values
in PREDICT.

DATA SET λfinal λ⋆ REL ↑ DIVG ↑ DIV+ ↑ TIME ↓

SYNTHETIC750 0.18 0.10 0.61 ±0.0 0.95 ±0.0 1.01 ±0.0 0.5 ±0.0
(non adaptive) – – 0.61 ±0.0 0.96 ±0.0 1.01 ±0.0 0.16 ±0.0
(noisy, adaptive) 0.73 0.5 1.00 ±0.0 0.16 ±0.0 0.07 ±0.02 1.50 ±0.11
(noisy, non adaptive) – – 1.00 ±0.0 0.16 ±0.0 0.07 ±0.02 0.06 ±0.0

SYNTHETIC30k 0.19 0.10 0.65 ±0.0 0.96 ±0.0 1.0 ±0.0 29.8 ±0.06
(non adaptive) – – 0.56 ±0.0 0.96 ±0.0 1.01 ±0.0 1.34 ±0.02

MovieLens 1.0 1.0 4.49 ±0.01 0.01 ±0.0 0.77 ±0.01 158.1 ±0.84
(non adaptive) – – 4.38 ±0.0 0.01 ±0.0 0.78 ±0.0 29.7 ±0.82
(noisy, adaptive) 0.997 0.997 5.00 ±0.0 0.02 ±0.0 0.94 ±0.01 57.56 ±15.55
(noisy, non adaptive) – – 2.57 ±0.26 0.02 ±0.0 0.94 ±0.0 2.72 ±0.01

PREDICT 0.35 0.10 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 1.97 ±0.05
(non adaptive) – – 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 0.82 ±0.0
(noisy, adaptive) 0.974 0.993 0.41 ±0.04 0.21 ±0.03 0.54 ±0.02 7.7 ±0.17
(noisy, non adaptive) – – 0.28 ±0.05 0.33 ±0.03 0.83 ±0.01 1.36 ±0.08

the movie ratings from 1 (not seen), 2 (rated 1 star) to 6 (five stars) from the MovieLens data set.
In both PREDICT and MovieLens, similarly to what we described in the paper, we observe an
improvement of the relevance (to the price of some of the diversity values) when using the adaptive
tuning procedure, and the procedure is able to almost retrieve the best a posteriori value λ⋆ from the
starting value λ0 = 0.5. In particular, in MovieLens, the algorithm almost always returns top-rated
movies in the successive 233 batches of 3 recommended items for user 0.

As a general rule, considering noisy feedback expectedly decreases the relevance values, but this
effect can be mitigated when using the adaptive procedure, which is another argument in favor of
this approach in real-life settings. These experiments validate our findings even when we only have
access to observable feedback (and not to the estimated feedback values by a proxy model). The
adaptive procedure allows us to improve on the relevance, when possible. When the relevance cannot
be improved further, the relevance-wise and diversity-wise performance remains the same as in the
non-adaptive setting.
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D SUPPLEMENTARY MATERIAL ON THE EXPERIMENTAL STUDY

All experiments have been run on a remote server (configuration: processor Intel Xeon Processor
(Skylake, IBRS), 12 cores @2.4GHz, RAM 23GB).

D.1 GENERATION OF SYNTHETIC DATA SETS

The synthetic data sets aim at providing an easy approach to test the scalability of the algo-
rithms and the diversity in recommendations. The key idea is that d-dimensional item embeddings
(ϕ1, . . . ,ϕN ) and user contexts (h1, . . . ,hNu ) are sampled at random (hence m = d), and the
feedback value for the item-user pair (ϕ,h) is ((ϕ)⊺h + 1)/2 ∈ [0, 1]. We actually generate B
groups of items, with the expectation that, when outputting a batch of B recommendations, a good
recommender system for diversity would sample elements from each group.

Given a desired number of itemsN and a batch sizeB, we first sample at random and independently
⌈N/B⌉ × d values from N (0, 2) to build a first matrix of ℓ2-normalized item embeddings Φ1 :=
[ϕ1,ϕ2, . . . ,ϕ⌈N/B⌉] ∈ R⌈N/B⌉×d. Then, for the ℓth group, ℓ = 2, . . . , B, we construct the matrix
Φℓ := Φi + 0.01ℓ1⌈N/B⌉×d, where 1n×d is the matrix of size n × d which coefficients are ones.
Finally, we concatenate all (renormalized) matrices Φ1,Φ2, . . . ,ΦB to obtain Φ ∈ RN×d. For users,
given a maximum number of users Nu, Nu × d values are sampled from N (0, 1) to build the user
contexts, after ℓ2-normalization.

D.2 TRAINING ON REAL-LIFE DATA SETS

In this section, we delve more into detail concerning the two real-life data sets for movie recom-
mendation and drug repurposing. In both cases, the important part is to learn the feedback model
qΘ based on prior user-item interactions (e.g., previously rated movies or terminated clinical trials,
collected offline by browsing clinical trial registries). The feedback model is then used in the com-
putation of the likelihood matrix in Line 5 in Algorithm 1. See the README.md file for instructions
to download the files related to those data sets.

Movie recommendation: MovieLens. The MovieLens data set (Harper & Konstan, 2015) that
we considered has 9,725 items, 610 users and 100,837 nonzero ratings in {1, 2, . . . , 5}. The higher
the rating, the more the user liked the movie. Metadata about the items/movies are the movie title,
year of release, and the genre tags (e.g., comedy, action). First, 512-dimensional item embeddings
of norm 1 are built by applying Universal Sentence Encoder (Cer et al., 2018) to the movie metadata,
using Python package Tensorflow Hub (Abadi et al., 2016). Second, we split the list of item-user
pairs with nonzero ratings into a training set (75%) and a testing set (25%) at random. We fit a SVD
model on the training set using the Python package Mangaki (Vie et al., 2015), which fills the zeroes
in the ratings matrix of MovieLens. We computed the Root Mean Squared Error on the testing set,
yielding RMSE= 0.96. Knowing that the ratings are in {1, 2, . . . , 5}, it means that, in average, the
mistake made by the SVD model on the predicted rating is not enough to accidentally classify a very
bad movie as a good one. We considered a classification threshold at τ = 2.5.

Trust network: Epinions. The Epinions data set (Leskovec et al., 2010) contains users’ ratings
(from 1 to 5) on items. We use the same approach as for MovieLens to define the feedback model.
To make it run smoothly across all baselines, we only kept users with at least 50 ratings, and items
with at least 100 ratings, and used as item embedding matrix the first factor of the SVD, for a total
of 160,417 items.

Drug repurposing: , Cdataset (Luo et al., 2016), DNdataset (Martinez et al., 2015),
Fdataset (Gottlieb et al., 2011), Gottlieb (Gao et al., 2022), LRSSL (Liang et al., 2017), and
PREDICT (Réda, 2023). Those data sets comprise information about drugs and diseases, along
with the status of Phase 2 or 3 clinical trials involving each drug-disease pair: 0 means that the pair
has not been tested in a Phase 2 or 3 clinical trial, 1 means that the clinical trial was successful in
showing that the drug has a therapeutic effect on the disease, and -1 means that the clinical trial failed
(e.g., low accrual, emergence of adverse side effects). There are six types of drug features and five
types of disease features across all data sets, corresponding to the similarity of a drug (respectively,
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Table 11: Datasets in the benchmark. They correspond to the number of drugs and diseases in-
volved in at least one nonzero drug-disease association. The rating matrix in the Fdataset comes
from Gottlieb et al. (2011), whereas the drug and disease features are from Luo et al. (2016).

NAME. N d #USERS m #ONES #MINUS ONES

Cdataset 663 663 409 409 2,532 0
DNdataset 550 1,490 360 4,516 1,008 0
Fdataset 593 593 313 313 1,933 0
Gottlieb 593 1,779 313 313 1,933 0
LRSSL 763 2,049 681 681 3,051 0
PREDICT 1,014 1,642 941 1,490 4,627 132

a disease) to another drug (resp., disease) in the data set with respect to each type of feature. We give
the description and relevant metrics regarding each drug repurposing data set in Table 11. We fitted
the Heterogeneous Attention Network (HAN) algorithm (Wang et al., 2019) as feedback model to
those data sets, using the Python package stanscofi Réda et al. (2024), splitting nonzero ratings at
random into training (80%) and testing (20%) sets. The Area Under the Curve on the testing set for
the PREDICT data set (the richest data set in terms of features) was 0.92.

D.3 BENCHMARK ON XQUAD AND DEEP DPP

xQuAD (Santos et al., 2010) relies on the definition of subqueries in the ranking score for items.
This ranking score is similar to the one for MMR (Carbonell & Goldstein, 1998), except for not
usng any diversity metrics, but considering relevance scores for items fitting each subquery. This
means in particular that xQuAD only explicitly relies on the feedback model qΘ. To make the
comparison fairer with other baselines relying on the diversity metrics, we consider as sub-query
generation procedure the selection of the items in the history with a cosine similarity higher than α
(similarly to what was defined for our algorithm B-DivRec). To implement this, we resort to FAISS
trees as described in Equation 5. Then, the main difference between xQuAD and BDivRec is that
xQuAD only considers the relevance scores of items and similar items in the history in its ranking
score.

Deep DPP (Gartrell et al., 2018) learns a low-rank factor V of the likelihood matrix for a DPP,
meaning that the final likelihood matrix is L = V V ⊺. This learning is based on sets of observed
subsets of items, and backpropagation of the likelihood function. In our benchmark, we define the
observed subsets needed for learning the likelihood matrix as batches of items of at most B in the
user history. Contrary to B-DivRec, Deep DPP does not include the estimated feedback values nor
the diversity values in the ranking score. Moreover, if the user history is empty, we set the likelihood
matrix to the identity matrix.

We perform tests on a synthetic data set with 1,500 items (SYNTHETIC1500), the Epinions data
set (Leskovec et al., 2010), and on all drug repurposing data sets in Appendix D.2. Those results
are respectively displayed in Tables 12-19. The results are somewhat expected, as xQuAD do not
take into account explicitly the similarity scores between items and the corresponding algorithm
has almost the same structure as MMR. Deep DPP leverages the power of DPPs to perform well
(local) diversity-wise, but is worst at relevance. BDivRec clearly improves upon all baselines either
in terms of diversity (xQuAD) or relevance (Deep DPP), highlighting the quality-diversity tradeoff
we aimed for. However, note that xQuAD and Deep DPP were not developed for the optimization
of the quality-global diversity tradeoff.
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Table 12: Benchmark on SYNTHETIC1500 (4 users, B = 5). REL: relevance. PREC: precision
with τ = 0.5. DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective
diversity. TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.50 ±0.0 0.47 ±0.01 1.00 ±0.0 0.32 ±0.0 0.98 ±0.0 0.70 ±0.01
B-DivRec 0.53 ±0.0 0.82 ±0.02 1.00 ±0.0 0.94 ±0.00 1.01 ±0.00 0.06 ±0.00

NO DPP

MMR 0.65 ±0.0 1.00 ±0.0 0.00 ±0.0 0.00 ±0.0 0.00 ±0.0 0.03 ±0.00
xQuAD 0.65 ±0.0 1.00 ±0.0 0.00 ±0.0 0.00 ±0.0 0.00 ±0.0 0.76 ±0.01

Table 13: Benchmark on Epinions (3 users,B = 3). REL: relevance. PREC: precision with τ = 0.5.
DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective diversity.
TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

B-DivRec 0.02 ±0.01 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 17.15 ±0.56

NO DPP

MMR 0.04 ±0.01 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 3.01 ±0.15
xQuAD 0.04 ±0.01 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 51.94 ±3.11

E COMPLEMENTARY EXPERIMENTS

We report and describe here the sensitivity analyses on hyperparameters λ and α, and the comparison
between the SAMPLING and MAXIMIZATION strategies.

First, we perform a sensitivity analysis on hyperparameters λ ∈ [0, 1] across the QDT family and
baselines with the MAXIMIZATION strategy on the SYNTHETIC750 data set, and α ∈ [0, 2] for
B-DivRec (Equation 5). The trends for relevance and diversity depending on λ and α are shown
respectively in Figure 2 and Table 21. As expected, across all recommender systems, as λ increases,
relevance increases, whereas (local or global) diversity globally decreases. The higher the area under
the curve (AUC), the better the recommender system. Visually, the top two recommender systems
are our contribution B-DivRec and MMR. Computing explicitly the areas under the curve for each
metric (rounding to the closest third decimal place) shows that B-DivRec outperforms MMR on all
metrics except for the global diversity. Overall, members of the QDT family outperform non-DPP
baselines such as MMR and Markov DPP, especially for precision and relevance. Regarding α in
B-DivRec, unsurprisingly, the higher α, the more (globally) diverse the recommendations, to the
price of a loss in relevance and precision. Beyond a certain value of α (for this data set, α = 1), the
DPP can no longer sample enough diverse items, as α filters out most of the items. We discuss this
issue and potential solutions in Appendix B.

Next, we apply both the SAMPLING and MAXIMIZATION strategies for all recommender sys-
tems on the SYNTHETIC750 data set in Tables 22-23. The values of relevance for SAMPLING
and of precision for MAXIMIZATION are not reported because they are similar across all algo-
rithms but MMR (respectively, rel = 0.51, and prec = 1.0 for all algorithms except for Markov
DPP, where prec = 0.94, see the full results in Table 20). These results confirm that, for the
quality-diversity trade-off, B-DivRec with the MAXIMIZATION strategy and MMR are the top
contenders. Moreover, they show that the SAMPLING indeed encourages (global) diversity as ev-
idenced by the divG values and as reported in prior work (Kathuria et al., 2016). However, it results
in a large loss in precision (prec) and relevance (rel), it is more time-consuming, and does not quite
achieve the best quality-diversity trade-off (div+). The SAMPLING strategy might be useful in the

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 14: Benchmark on Cdataset (4 users,B = 3). REL: relevance. PREC: precision with τ = 0.5.
DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective diversity.
TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.36 ±0.03 0.35 ±0.05 0.48 ±0.01 0.16 ±0.02 0.32 ±0.04 0.37 ±0.02
B-DivRec 0.79 ±0.01 0.98 ±0.0 0.50 ±0.02 0.22 ±0.02 0.52 ±0.02 0.25 ±0.0

NO DPP

MMR 0.91 ±0.01 1.00 ±0.0 0.36 ±0.0 0.14 ±0.01 0.36 ±0.0 0.35 ±0.01
xQuAD 0.91 ±0.01 1.00 ±0.0 0.37 ±0.01 0.14 ±0.01 0.37 ±0.01 0.54 ±0.02

Table 15: Benchmark on DNdataset (4 users, B = 3). REL: relevance. PREC: precision with
τ = 0.5. DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective
diversity. TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.23 ±0.06 0.24 ±0.06 0.81 ±0.01 0.72 ±0.01 0.23 ±0.06 1.58 ±0.08
B-DivRec 0.31 ±0.06 0.25 ±0.07 1.01 ±0.0 0.98 ±0.01 0.25 ±0.07 1.37 ±0.04

NO DPP

MMR 0.33 ±0.06 0.25 ±0.07 0.89 ±0.03 0.86 ±0.03 0.19 ±0.05 1.57 ±0.07
xQuAD 0.33 ±0.06 0.25 ±0.07 0.82 ±0.01 0.77 ±0.01 0.22 ±0.06 1.61 ±0.07

case when the recommender system must not recommend the same batch for users with the same
embeddings and history, and when we are willing to recommend possibly irrelevant items. However,
when the focus is on the optimization of the quality-diversity trade-off and computational efficiency,
the MAXIMIZATION strategy might be more suitable.

We also ran the same type of experiments on SYNTHETIC3M and SYNTHETIC15M in Tables 24
and 25. Beyond 5 000 items, MarkovDPP (Affandi et al., 2012) is actually computationally in-
tractable to run, hence we left it out of the benchmark for larger data sets. The observations made
on SYNTHETIC750 (superiority of the MAXIMIZATION strategy over the SAMPLING one in
terms of relevance) from those experiments are confirmed on larger synthetic data sets. Moreover,
even if MMR might have better results on relevance-related metrics (rel, prec), this baseline clearly
fails for diversity metrics (divG, div+), especially on larger data sets. As the number of items N
increases, the difference in performance between algorithms from the QDT family decreases. This
might be due to the fact that the more items there are, the less important is the impact of user history
on the selection of items. We also applied recommender systems to MovieLens in Table 7, and PRE-
DICT in Table 8. We only show in these tables the results with the MAXIMIZATION strategy, on
account of the observations on the synthetic data sets.
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Table 16: Benchmark on Fdataset (4 users, B = 3). REL: relevance. PREC: precision with τ = 0.5.
DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective diversity.
TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.48 ±0.03 0.55 ±0.05 0.47 ±0.01 0.12 ±0.01 0.59 ±0.06 0.28 ±0.01
B-DivRec 0.81 ±0.01 1.0 ±0.0 0.64 ±0.05 0.24 ±0.02 0.64 ±0.05 0.19 ±0.01

NO DPP

MMR 0.95 ±0.01 1.0 ±0.0 0.35 ±0.01 0.16 ±0.01 0.35 ±0.01 0.27 ±0.01
xQuAD 0.93 ±0.01 1.0 ±0.0 0.37 ±0.01 0.14 ±0.01 0.37 ±0.01 0.44 ±0.01

Table 17: Benchmark on Gottlieb (4 users, B = 3). REL: relevance. PREC: precision with τ = 0.5.
DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective diversity.
TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.50 ±0.03 0.58 ±0.06 0.64 ±0.01 0.19 ±0.02 0.55 ±0.05 0.44 ±0.01
B-DivRec 0.82 ±0.01 0.97 ±0.02 0.76 ±0.01 0.40 ±0.02 0.78 ±0.01 0.44 ±0.01

NO DPP

MMR 0.94 ±0.01 1.00 ±0.0 0.64 ±0.02 0.37 ±0.03 0.64 ±0.02 0.72 ±0.02
xQuAD 0.93 ±0.01 0.99 ±0.0 0.65 ±0.01 0.36 ±0.03 0.65 ±0.01 0.88 ±0.02

Figure 2: Sensitivity analysis for λ on SYN-
THETIC750 (6 users, B = 3, τ = 0.5), with
the MAXIMIZATION strategy.

Table 21: Sensitivity analysis for α on SYN-
THETIC750 (6 users, B = 3, τ = 0.5), with
the MAXIMIZATION strategy.

α REL ↑ PREC ↑ DIVG ↑

0 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.1 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.5 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.8 0.61 ±0.0 1.0 ±0.0 0.96 ±0.0
0.90 0.6 ±0.0 1.0 ±0.0 0.97 ±0.0
0.95 0.58 ±0.0 1.0 ±0.0 0.97 ±0.0
0.98 0.57 ±0.0 0.97 ±0.0 0.97 ±0.0
1 0.56 ±0.0 0.92 ±0.01 0.96 ±0.0

Table 22: Benchmark on SYNTHETIC750 (6 users, B =
3, τ = 0.5) with SAMPLING.

ALGO PREC ↑ DIVG ↑ DIV+ ↑

QDDec. 0.61 ±0.01 0.95 ±0.0 1.01 ±0.0
CondDPP 0.64 ±0.01 0.94 ±0.01 0.97 ±0.01
ε-Greedy 0.61 ±0.01 0.95 ±0.0 1.01 ±0.0
Markov 0.59 ±0.01 0.17 ±0.0 0.91 ±0.01
MMR 1.0 ±0.0 0.96 ±0.0 1.01 ±0.0
B-DivRec 0.63 ±0.01 0.95 ±0.0 0.98 ±0.01

Table 23: SYNTHETIC750 (6 users, B =
3, τ = 0.5) with MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.61 ±0.0 0.9 ±0.01 1.01 ±0.0
0.6 ±0.0 0.89 ±0.01 1.01 ±0.0
0.61 ±0.0 0.9 ±0.01 1.01 ±0.0
0.58 ±0.0 0.17 ±0.0 0.98 ±0.01
0.6 ±0.0 0.96 ±0.0 1.01 ±0.0
0.61 ±0.0 0.95 ±0.0 1.01 ±0.0
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Table 18: Benchmark on LRSSL (4 users, B = 3). REL: relevance. PREC: precision with τ = 0.5.
DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective diversity.
TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.39 ±0.02 0.40 ±0.03 0.90 ±0.01 0.53 ±0.05 0.64 ±0.03 0.48 ±0.02
B-DivRec 0.83 ±0.01 1.00 ±0.0 0.86 ±0.01 0.56 ±0.04 0.86 ±0.01 0.36 ±0.01

NO DPP

MMR 0.97 ±0.0 1.00 ±0.0 0.82 ±0.02 0.55 ±0.05 0.82 ±0.02 0.53 ±0.02
xQuAD 0.97 ±0.0 1.00 ±0.0 0.80 ±0.02 0.53 ±0.04 0.80 ±0.02 0.71 ±0.02

Table 19: Benchmark on PREDICT (4 users, B = 3). REL: relevance. PREC: precision with
τ = 0.5. DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective
diversity. TIME: runtime.

MAXIMIZ. REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

Deep DPP 0.21 ±0.02 0.17 ±0.03 0.64 ±0.03 0.35 ±0.03 0.30 ±0.04 0.73 ±0.03
B-DivRec 0.68 ±0.03 0.78 ±0.04 0.86 ±0.03 0.52 ±0.03 0.80 ±0.03 0.50 ±0.02

NO DPP

MMR 0.79 ±0.02 0.92 ±0.02 0.56 ±0.03 0.49 ±0.03 0.54 ±0.03 0.76 ±0.04
xQuAD 0.79 ±0.02 0.92 ±0.02 0.66 ±0.03 0.47 ±0.03 0.64 ±0.02 1.00 ±0.06

F VARYING BATCH SIZE AND COMPUTATIONAL RUNTIME

We also performed supplementary experiments to test our setting. Note that we considered small
batch sizes (e.g.,B = 3, B = 5 for SYNTHETIC15M) as ultimately in real-life applications, the
user might only be willing to grade up to 5 items at a time. However, we run an experiment with B-
DivRecand MMR on SYNTHETIC1500, with varying batch sizes. We report the average execution
time in seconds over 10 iterations in Table 26. Albeit MMR is slightly faster for smaller values of
batches, it becomes ×12 slower as the batch size increases.

Table 24: Benchmark on SYNTHETIC3M (4 users,
B = 3) with MAXIMIZATION.

ALGO REL ↑ DIVG ↑ DIV+ ↑

CondDPP 0.55 ±0.0 0.97 ±0.0 1.01 ±0.0
MMR 0.73 ±0.0 0.0 ±0.0 0.02 ±0.0
B-DivRec 0.55 ±0.0 0.97 ±0.0 1.01 ±0.0

Table 25: SYNTHETIC15M (2 users,
B = 5) with MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.53 ±0.0 0.94 ±0.0 1.01 ±0.0
0.73 ±0.0 0.0 ±0.0 0.0 ±0.0
0.53 ±0.0 0.94 ±0.0 1.01 ±0.0
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Table 20: Benchmark on SYNTHETIC750 (6 users, B = 3). REL: relevance. PREC: precision
with τ = 0.5. DIVL: intrabatch/local diversity. DIVG: interbatch/global diversity. DIV+: effective
diversity. TIME: runtime.

SAMPLING REL ↑ PREC ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

QDDecomp. 0.51 ±0.0 0.61 ±0.01 1.01 ±0.0 0.95 ±0.0 1.01 ±0.0 0.06 ±0.0
CondDPP 0.51 ±0.0 0.64 ±0.01 1.0 ±0.0 0.94 ±0.01 0.97 ±0.01 0.07 ±0.0
ε-Greedy 0.51 ±0.0 0.61 ±0.01 1.01 ±0.0 0.95 ±0.0 1.01 ±0.0 0.06 ±0.0
MarkovDPP 0.51 ±0.0 0.59 ±0.01 1.0 ±0.0 0.17 ±0.0 0.91 ±0.01 0.08 ±0.0
B-DivRec 0.51 ±0.0 0.63 ±0.01 1.01 ±0.0 0.95 ±0.0 0.98 ±0.01 0.14 ±0.0

MAXIMIZ.

QDDecomp. 0.61 ±0.0 1.0 ±0.0 1.01 ±0.0 0.9 ±0.01 1.01 ±0.0 0.03 ±0.0
CondDPP 0.6 ±0.0 1.0 ±0.0 1.01 ±0.0 0.89 ±0.01 1.01 ±0.0 0.04 ±0.0
ε-Greedy 0.61 ±0.0 1.0 ±0.0 1.01 ±0.0 0.9 ±0.01 1.01 ±0.0 0.03 ±0.0
MarkovDPP 0.58 ±0.0 0.94 ±0.01 1.01 ±0.0 0.17 ±0.0 0.98 ±0.01 0.06 ±0.0
B-DivRec 0.61 ±0.0 1.0 ±0.0 1.01 ±0.0 0.95 ±0.0 1.01 ±0.0 0.12 ±0.0

NO DPP

MMR 0.6 ±0.0 1.0 ±0.0 1.01 ±0.0 0.96 ±0.0 1.01 ±0.0 0.08 ±0.0

Table 26: Execution time benchmark (runtime in seconds) on SYNTHETIC1500 (4 users, τ = 0.5)
with MAXIMIZATION.

BATCH SIZE B B=5 B=50 B=500 B=900

MMR 0.03 ±0.0 0.19 ±0.0 2.05 ±0.01 4.16 ±0.13
B-DivRec 0.07 ±0.0 0.08 ±0.0 0.21 ±0.0 0.32 ±0.0
Ratio MMR/B-DivRec 0.46 2.38 9.89 12.91

G ABOUT MOVIELENS AND DIVERSITY

To propose a more quantitative analysis of the performance of B-DivRec and MMR on the Movie-
Lens data set, we compute several metrics on all tested real-life data sets in Table 27. For each
metric, we also report the ratio of the metric value for our contribution B-DivRec over the metric
value for MMR. For instance, using the values from Table 7, we obtain a REL ratio of 3.48

3.78 = 0.92,
where 3.78 is the relevance value achieved by MMR and 3.48 is the relevance value achieved by
B-DivRec. We denote in bold type the cases where the ratio is greater or equal to 1, meaning similar
performance or superiority of B-DivRec over MMR.

As a proxy for the implicit feedback bias, we compute the sparsity number, meaning the percentage
of observed feedback (that is, usually the number of non-zero values in the user-item rating matrix).
The smaller the sparsity number, the greater the bias, as the feedback model is then trained on a
smaller number of observed values.

We measure the popularity bias by the Gini coefficient (Braun et al., 2023), denoted Gini in the
table, that quantifies inequality in the distributions of item popularity scores. The score is in the
range [0,1], where 0 represents no bias, and the larger, the more popularity bias is present.

We also compute metrics regarding the diversity of the user history and data set. History-wise
diversity (Hist-Div) represents the global diversity across items in the user history, averaged across
users, that is, the collinearity of embeddings of items in the history. History-wise diversity for a
given user is DIVG computed when St = ∅ in Equation 1. Intrinsic diversity (Diversity) is the
volume across all items in the data set. We choose to set the volume of an empty set to 0, when the
user history is empty.
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We also tested new, richer embeddings of movies in MovieLens using the MiniLM 384 model (Wang
et al., 2020) instead of the Universal Sentence Encoder model (Cer et al., 2018) to generate embed-
dings from the movie title and keywords. We name the corresponding data set RicherMovieLens,
and we run it with the same parameters as MovieLens in the main text.

Note that Fdataset and Gottlieb have the same rating matrix, but features in Gottlieb are richer
(as evidenced by the history-wise diversity value). As mentioned in the paper, in MovieLens, the
history-wise diversity is close to 0, meaning that there are at least two embeddings in the history of
almost each user which are collinear. This impairs the computation of the score (Equation 2) for B-
DivRec, whereas this effect is lessened in MMR, as MMR only relies on the maximum of pairwise
diversity scores (Section 2). However, as illustrated by the performance ratios, taking into account
diversity over sets incurs a higher diversity in recommendations.

Our assumption is that the poor history-wise diversity metrics on MovieLens are mostly due to
collinear item embeddings, where extremely similar movies (like successive entries in a series) have
almost the same embedding, collapsing the volume-based diversity metric. A possible solution to
mitigate this issue is to consider a ”representative” set of items in the user history, instead of the
whole history which might contain collinear item embeddings. In Section A, we discuss at length
(ridge) leverage scores, which can be used to determine representative points in a set. Representative
points are points which are the most ”unique”, that is, decorrelated from other points.

Table 27: Metrics related to known bias in recommender systems on real-life data sets, and relative
performance of B-DivReccompared to MMR.

DATA SET MovieLens PREDICT Epinions Gottlieb Fdataset

Sparsity (%) 1.50 0.50 0.17 1.18 1.18
Gini 0.94 0.96 0.35 0.96 0.96
Hist-Div 0.0 0.61 0.03 0.42 0.28
Diversity 0.0 0.0 0.0 0.0 0.0
REL ratio 0.92 1.15 0.61 0.87 0.86
DIVL ratio 1.09 1.48 1.00 1.19 1.82
DIVG ratio 0.86 0.95 1.00 1.09 1.52
DIV+ ratio 0.77 1.46 1.00 1.21 1.82

DATA SET Cdataset DNdataset LRSSL RicherMovieLens

Sparsity 1.09 0.03 0.72 1.36
Gini 0.96 1.00 0.97 0.94
Hist-Div 0.29 0.25 0.53 0.0
Diversity 0.0 0.0 0.0 0.0
REL ratio 0.87 0.94 0.86 0.94
DIVL ratio 1.39 1.13 1.05 1.13
DIVG ratio 1.54 1.13 1.01 0.98
DIV+ ratio 1.42 1.13 1.05 0.97

Table 28: RicherMovieLens and MovieLens (4 users, B = 3, τ = 2.5) with MAXIMIZATION.
The results for MovieLens are the same as in Table 7.

MovieLens ↑ REL ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

MMR 3.78 ±0.12 0.74 ±0.03 0.07 ±0.01 0.77 ±0.04 26.93 ±0.56
B-DivRec 3.48 ±0.13 0.81 ±0.01 0.06 ±0.01 0.59 ±0.05 26.65 ±0.54

RicherMovieLens ↑ REL ↑ DIVL ↑ DIVG ↑ DIV+ ↑ TIME ↓

MMR 3.91 ±0.07 0.72 ±0.02 0.05 ±0.0 0.76 ±0.02 19.00 ±0.01
B-DivRec 3.68 ±0.06 0.81 ±0.0 0.05 ±0.0 0.73 ±0.03 19.31 ±0.03
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