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ABSTRACT

A core research question in recommender systems is to propose batches of highly
relevant and diverse items, that is, items personalized to the user’s preferences,
but which also might get the user out of their comfort zone. This diversity might
induce properties of serendipidity and novelty which might increase user engage-
ment or revenue. However, many real-life problems arise in that case: e.g., avoid-
ing to recommend distinct but too similar items to reduce the churn risk, and com-
putational cost for large item libraries, up to millions of items. First, we consider
the case when the user feedback model is perfectly observed and known in ad-
vance, and introduce an efficient algorithm called B-DivRec combining determi-
nantal point processes and a fuzzy denuding procedure to adjust the degree of item
diversity. This helps enforcing a quality-diversity trade-off throughout the user
history. Second, we propose an approach to adaptively tailor the quality-diversity
trade-off to the user, so that diversity in recommendations can be enhanced if it
leads to positive feedback, and vice-versa. Finally, we illustrate the performance
and versatility of B-DivRec in the two settings on synthetic and real-life data sets
on movie recommendation and drug repurposing.

1 INTRODUCTION

Preserving user engagement, that is, the willingness of users to query a recommender system and to
interact with recommended items, is crucial and yet a difficult task. It is well-known that, beyond
recommending merely the most popular items or those closest to the estimated user’s interests, intro-
ducing diversity in recommendation is key to avoid the churn risk, i.e., customer attrition (Poulain &
Tarissan, 2020). This topic has been widely studied under the name of “diverse/novel recommenda-
tions” or “serendipity” (Abbassi et al., 2009; Kotkov et al., 2018; Ziarani & Ravanmehr, 2021). The
rationale behind it appears in several real-life contexts: for instance, diversity might increase revenue
by keeping user engagement high in the movie streaming or music industry (Van den Oord et al.,
2013; Anderson et al., 2020); get a teenager out of their comfort zone and make them discover new
cultural goods (Ibrahim et al., 2025); evaluate the global state of a student’s knowledge on a specific
subject in education (Chavarriaga et al., 2014; Yanes et al., 2020); or discover a first-in-class drug
treatment in the pharmaceutical industry, where it has been shown that first-in-class molecules might
generate higher revenue compared to well-known classes of molecules with a therapeutic advantage
(“best-in-class”) (Schulze & Ringel, 2013; Spring et al., 2023). All in all, the goal in recommender
systems is to satisfy apparently contradictory objectives: to recommend user-personalized items
which introduce diversity in the user’s history of recommended items.

Moreover, when implementing a recommender system for real-life applications, one must also face
the problems of developing computationally tractable pipelines on large libraries of items (Cha et al.,
2018). Last but not least, the definition of diversity and quantifying the diversity in the recommended
(batch of) items is tricky by itself, as illustrated by the multiple definitions used in the literature (refer
to Appendix A for an overview). Diversity might be understood in terms of “intrabatch” (local) or
“interbatch” (global) (Bederina & Vie, 2025), respectively meaning that the batch of recommended
items at a specific round should be diverse, or the batch of recommended items should be diverse
with respect to the user’s prior history of selected items. This paper also tackles a novel problem
of the literature, that is, adaptively tuning the level of diversity in the recommendations to the user.
The tolerance to diversity might indeed vary from one user to the other, and contributes to the user
engagement in the recommender system (Xu & Matsumura, 2024). No other paper to the best of our
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knowledge has attempted to propose an automated procedure for tuning the level of diversity at an
early stage of the recommendation pipeline.

Notation. We denote N the total number of items (potentially of the order of millions) in the
universe Ω := {1, 2, . . . , N}. Recommendation rounds happen sequentially: (1) a (possibly new)
user ht queries the recommender system at each time t, (2) the recommender system returns a
fixed-size batch St ⊂ Ω of B items to present to the user, (3) user ht outputs feedback values
yt := {yt1, . . . , ytB} for each recommendation. We choose to ignore the specific identity of items
and users, and instead, respectively define them with the item embedding ϕi ∈ Rd for item i, or by
the summary of user history ht ∈ Rm at each recommendation round t. Ideally, ht captures all the
information about the items the user has previously interacted with (e.g., ht can describe how much
one of the m categories is liked). It can be hard-coded (one-hot encoding of liked item categories),
or an embedding learned over previously collected items, or the result of some dimension reduction
algorithm applied to the embeddings of positively interacted with items. We define Ht the user
history of prior recommendations to user ht up to the round t (not included). To define the similarity
between items in a flexible fashion, we select a kernel function k : Rd ×Rd 7→ R. In is the identity
matrix of size n. Finally, to make good and personalized recommendations–regardless of diversity–
we aim to learn the feedback model qΘ : Rd × Rm → R where qΘ(ϕ,h) is the expected feedback
for user h on item ϕ which should be maximized. In the case of a known and noiseless feedback
model, if ϕ is the kth recommended item to user ht at time t, then ytk = qΘ(ϕ,h

t).

Contributions. Our objective is to find a principled and scalable approach to implement the
quality-diversity trade-off–in the large sense: any kernel, any feedback model, or as general as
possible–for a possibly large number of items up to millions. It means that anything beyond a time
complexity linear in the number of items N will be intractable. First, we introduce an efficient algo-
rithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to
adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the
user history when the user feedback model is known (Section 3). Second, we propose an approach
to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations
can be enhanced if it leads to positive feedback, and vice-versa (Section 4). Finally, we illustrate the
performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on
movie recommendation and drug repurposing (Section 5). We conclude the paper by discussing the
potential and the limitations of B-DivRec in Section 6.

Metrics. To quantify the quality and the diversity of recommendations, we define the following
pointwise metrics for any round t > 0. We are aware that an abundant literature on both quality and
diversity in recommender systems exist, see Appendix A where they are discussed. We decided to
separately assess quality and diversity. Quality (also called relevance in this paper and denoted rel)
is simply defined by the expected click-through rate. We also consider the precision metric (denoted
prec), that is, the ratio of positively rated items (i.e., such that the feedback value is higher than a
given threshold τ > 0) over the total number of recommended items. Moreover, we define two types
of diversity: the intrabatch/local diversity (denoted divL), focusing on the diversity inside a batch
of B items; and the interbatch/global diversity (denoted divG), which looks at the diversity of the
previously and currently recommended items, meaning that it also takes into account the user history.
An intuitive idea of how diverse a set S of items is can be obtained by computing the volume of the
parallelotope induced by the rows of the kernel matrixKS ,S := (k(ϕi,ϕj))i,j∈S built from the item
embeddings in S . The volume of a set S := {i1, . . . , iB} of items is vol(S ) := (detKS ,S )

1/2. 1

∀t > 0, rel(St) := 1

B

∑
i∈St

qΘ(ϕ
i,ht) , divL(St) := vol(St) , divG(St) := vol(St ∪Ht) . (1)

To assess the performance accrued by a strategy across T recommendation rounds, we consider the
average of rel, prec, divL and divG across rounds. Moreover, we also consider a summary metric
which mixes quality and diversity at the end of T recommendation rounds. Given a threshold τ , the
effective diversity div+ contributed by positively-labeled items for a single user h after T rounds is

div+({S1, . . . ,ST },h) := vol(
{
i | i ∈

⋃
s<t

Ss, qΘ(ϕi,h) ≥ τ
}
) . (2)

1By definition of a kernel function, this definition of volume is well-defined for any S ⊆ Ω.
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The final summary metric is the average div+ across encountered users.

2 RELATED WORKS

As mentioned in the introduction, the topics addressed in this paper are related to a large section of
the literature on recommendation (serendipity, avoidance of the churn risk, tractable recommender
systems). Due to the space limit, we refer the reader to Appendix A for a more comprehensive
review of the literature. We focus here on fundamental notions in DPPs and baselines in Section 5.

Determinantal Point Processes. A point process is a distribution over finite subsets of a (finite)
set Ω. A determinantal point process (DPP) is a process where the probability of sampling a subset
A is correlated to the determinant of the kernel function k applied to this subset, that is, P(S = A) ∝
det kA,A (Macchi, 1975). Here, we consider the definition of DPPs with L-ensembles, as described
in Borodin & Rains (2005), and kΩ,Ω is a positive semi-definite matrix. Intuitively, the higher
the volume formed by the item embeddings in this subset, the higher the probability. Sampling
algorithms for DPPs are naively in O(N3) (Hough et al., 2006, Theorem 7 and Algorithm 18),
but their complexity may be reduced down to O(αN · poly(B)) when sampling a subset of fixed
size B with an α-DPP (Calandriello et al., 2020) where α ≤ 1. However, one might want to
find the subset with highest probability–that is, the most diverse–instead of sampling according
to the DPP. The associated maximization problem is NP-hard (Ko et al., 1995; Grigorescu et al.,
2022), but there are greedy approximations inO(B2N) (Gillenwater et al., 2012; Chen et al., 2018)
for maximizing over subsets of size B. Finally, conditioning over another subset H of items–
that is, sampling a subset which is diverse compared to previously selected set of points–can be
described with the following distribution (Borodin & Rains, 2005) P(S = A ∪ H | S ⊇ H) ∝
det

(
kA,A − kA,Hk

−1
H,Hk

⊺
A,H

)
. This is a simple approach to integrating the user history to the

recommendation. However, conditioning has a dependency in Ω(|H|3) whereH is the user history,
and inversion of the history-related kernel matrix might be expensive. 2

To tackle the issue of recommending items with high quality/relevance and high “intrabatch”/local
diversity, Kulesza & Taskar (2010) introduced the quality-diversity (QD) decomposition of a DPP.
Given N item embeddings {ϕi}i∈Ω such that ∥ϕi∥2 = 1 for any i ∈ Ω, and positive quality
scores {qΘ(ϕi,h)}i∈Ω for each item and a given user h, the QD decomposition is the distribution
P(S = A) ∝ det(QAΦAΦ

⊺
AQA), where QA is a diagonal matrix of size B ×B which contains the

quality scores for each item i1, . . . , iB in A, and ΦA := [ϕi1 , . . . ,ϕiB ]⊺ is the row-concatenation of
all item embeddings in A. Many papers relied on this approach (Gong et al., 2014; Wilhelm et al.,
2018; Zhan et al., 2021; Svensson et al., 2025; Xuan et al., 2025). However, this decomposition
might be a bit restrictive, as the control of the quality-diversity trade-off is limited, and only linear
or RBF (Affandi et al., 2014; Wilhelm et al., 2018) kernels are considered. Affandi et al. (2012)
is closer to our objective of increasing the “interbatch” or global diversity across consecutive rec-
ommendation rounds, and introduces Markov DPPs applied to the daily recommendation of news
headlines. The main idea is to condition the subset of items sampled at round t + 1 on the subset
sampled at round t. Their construction guarantees that the DPP marginals are maintained. Finally,
the authors also study in their experiments the unknown feedback model setting, and tackle this
problem by updating empirical quality scores for each item over time in the QD decomposition.
However, their procedure is quite costly and not tractable in large data sets (see our experiments in
Section 5).

Non-DPP recommender systems for diversity. Besides DPPs, there is a plethora of other ap-
proaches, including Maximal Marginal Relevance (MMR) (Carbonell & Goldstein, 1998). The
problem originally tackled by MMR is slightly different from ours: given a library of items
Ω, an item-item similarity function sim, a relevance function rel between items, and a quality-
diversity trade-off parameter λ ∈ [0, 1], the goal is to return an item ϕt at round t which
is both relevant to the query item hquery and diverse with respect to previously selected items
i1, i2, . . . , it−1. The recommendation procedure is defined recursively. At time t, MMR se-
lects item it := argmaxi∈Ω

(
λ rel(ϕi,hquery)− (1− λ)maxj∈{i1,...,it−1} sim(ϕi,ϕj)

)
for each

2We abuse notation here, as it is clear that we refer to the complexity notation Ω and not the universe of
items Ω.
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t ∈ {1, . . . , B}, where the maximum value over ∅ is set to 0 by convention. However, it is easy
to rewrite the expression in MMR to fit the setting where a user context and history is provided as
query. Instead of a relevance function, we consider the feedback model and the kernel function as
a similarity metric. Using notation from above, with b ∈ {1, . . . , B}, at time t, MMR selects item
it+b := argmaxi∈Ω

(
λ qΘ(ϕ

i,ht)− (1− λ)maxj∈Ht∪{it,...,it+b−1} k(ϕ
i,ϕj)

)
. Yet, it would be

interesting to strengthen even further the constraint on diversity, and to leverage the literature on
DPPs to sample a whole diverse subset instead of an iterative, greedy procedure.

3 A GENERIC APPROACH FOR THE QUALITY-DIVERSITY TRADE-OFF IN DPPS

In this section, we define our trade-off on relevance and diversity, instead of a multi-objective
task (Abbassi et al., 2009) or a multi-step process for filtering relevance or diversity (Ibrahim et al.,
2025; Yuan et al., 2016). We recall that k : Rd × Rd → R is a similarity kernel on items. To use a
quality-diversity decomposition, we need:
Assumption 3.1. Positive-definite kernel. The kernel k is a positive-definite kernel, that is, there
exists d′ ∈ N∗ and a feature map function ν : Rd → Rd′

such that, for any x,y ∈ Ω, k(x,y) =

ν(x)⊺ν(y). ν is extended to subsets of items: ν(S ) := (ν(ϕi))i∈S ∈ RB×d′
for any S ⊆ Ω.

Assumption 3.2. Positive unbounded feedback. The feedback model qΘ has values in R∗
+.

Assumption 3.3. Unit embeddings. ∥ϕ∥2 = ∥h∥2 = 1 for all user embeddings h ∈ Rm and item
embeddings ϕ ∈ Ω.

Note that those assumptions are only moderately restrictive, as adequate kernel functions (linear,
RBF, Matérn (Williams & Rasmussen, 2006; Duvenaud, 2014)) and classification or regression
models with positive values (Lee & Seung, 1999; Wood, 2017) abound in the literature, and renor-
malizing embeddings is a common procedure. Then, we assume that the feedback model is known
and perfect, and that the observed user feedback is noiseless.
Assumption 3.4. Noiseless observed feedback. At a given recommendation round t > 0 to user ht,
if ϕ is the kth recommended item, then the observed feedback value ytk from user ht for the kth item
satisfies ytk = qΘ(ϕ,h

t).

The Quality-Diversity Trade-off (QDT) family. Under these assumptions, we extend the quality-
diversity decomposition (Kulesza & Taskar, 2010) in determinantal point processes to any valid
kernel, and we allow to interpolate from only quality-focused recommendation 3 to diversity-focused
recommendation 4. The likelihood matrix for this family of DPPs, called QDT, for a given user h,
their historyH, and item subset S , is:

∀S ⊆ Ω, ∀h ∈ Rm, Lλ
f (S ;h) := (Qh,S )

2λf(k,S ,H)2(1−λ)(Qh,S )
2λ , (3)

where λ ∈ [0, 1] controls the trade-off between quality (λ = 1) and diversity (λ = 0). The presence
of λ allows us to implement continuously and explicity the trade-off between relevance and diversity.
Qh,S is a diagonal matrix containing the expected rewards {qΘ(ϕi,h)} for i ∈ S . f is a function
with values in the set of positive-definite matrices in RB×B , and depends on kernels computed on
S, Ω, H. f should incorporate all information about the desired diversity in recommended items.
Note that we completely disentangle quality and diversity in this definition.

Equation 3 offers a flexible definition of the quality-diversity trade-off, which recovers various
known DPPs described in Section 2 by defining f and λ. For instance, traditional quality-
diversity decomposition (Kulesza & Taskar, 2010) can be obtained by setting fQDDecomp(k,S ,H) :=
kS ,S with λ = 0.5, where k is the linear kernel k({ψ}, {ϕ}) = ψ⊺ϕ or, equivalently, ν :
x 7→ x. A conditional DPP (Borodin & Rains, 2005) can be described using λ = 0.5 and
fCondDPP(k,S ,H) := kS ,S − kS ,H(kH,H)−1(kS ,H)⊺. Finally, an ε-greedy approach can be ob-
tained by setting fε-greedy(k,S ,H) := IB with λ = 0.5 ε% of the rounds (greedy phase), and setting
fε-greedy(k,S ,H) := kS ,S with λ = 0 the other (1 − ε)% of rounds (exploratory phase). We now
consider the log-determinant of Lλ

f (S ;h) as the score scr of any B-sized set S

∀S ⊆ Ω, ∀h ∈ Rm, scrλf,qΘ(S ;h) := 4(1− λ) log vol(f(k,S ,H)) + 4λ
∑
ϕ·∈S

log qΘ(ϕ,h) , (4)

3That is, we do not take into account the diversity described by the kernel.
4i.e., we ignore quality scores and only aim at being diverse
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Algorithm 1 Recommendation round at t > 0 with B-DivRec and an adaptive Q-D trade-off.
1: Input ht: user context,Ht: user history, qΘ: feedback model, λt: initial relevance weight
2: Parameters k: kernel function, f = fB-DivRec, A: online learner
3: Output St: B item recommendations, λt+1: updated relevance weight
4: Qht,Ω ← diag({qΘ(ϕ,ht)}ϕ∈Ω) and initialize A with λt

5: Lλt

fB-DivRec(Ω;h
t)← (Qht,Ω)

2λt

f(k,Ω,Ht)2(1−λt)(Qht,Ω)
2λt

# Likelihood matrix

6: Use SAMPLING Sample St ⊆ Ω proportionally to detLλt

f (St;ht)

7: or MAXIMIZATION Solve St ∈ argmaxS⊆Ω detLλt

f (S ;ht)

8: yt ← (yt1, y
t
2, . . . , y

t
B), update A with (1− 2λt)∇λscrλ

t

f,yt(St;ht) and select λt+1 from A
9: return St, λt+1

with the convention scrλf,qΘ(∅) := 0, provided that the volume is well-defined–that is, f(k,Ω, ∅)
is positive-definite for any universe of items Ω. From the expression in Equation 4, the larger the
score, the better the subset S for the quality-diversity trade-off. We could stop at this point, and
simply consider a (possibly conditional) DPP to obtain diversified recommendations (Affandi et al.,
2012). Still, as discussed in the introduction, this approach might be expensive for users with long
histories. We suggest another, more tractable, approach named B-DivRec below, which leverages
the existence of kernel-associated feature maps (Assumption 3.1).

The B-DivRec DPP. B-DivRec belongs to the QDT family, and is defined with α ∈ [0, 2]

fB-DivRec(k,S ,H;α) :=
(
ν(S )− ν(g(S ;H, α))

)(
ν(S )− ν(g(S ;H, α))

)⊺
where (5)

∀i ≤ B, g(S ;H, α)i,· :=

{
ϕℓi if max

j∈H
cos(ν(ϕℓi), ν(ϕj)) ≥ 1− α

0 otherwise
∈ RB×d if S : = {ℓi}i ,

and cos(x, y) is the cosine similarity between vectors x and y. α controls in a more subtle way than
the kernel k the degree of diversity expected compared to the user history, by filtering out items too
similar to the history. We discuss the choice of hyperparameter α in Section 5. See Algorithm 1
for a pseudo-code of B-DivRec with a fixed value of λ ∈ [0, 1]. (Gartrell et al., 2017; Dupuy &
Bach, 2018) also propose a family of low-rank factorizations of L-matrices. However, Gartrell et al.
(2017) does not endorse a quality-diversity trade-off, whereas Dupuy & Bach (2018) requires two
supplementary low-rank approximations. Conversely, B-DivRec straightforwardly uses the Nyström
approximation to obtain computations in Rd′

where d′ ≪ d.

Efficiency of B-DivRec. Naively, the computation of the L-matrix in B-DivRec is in O(N3).
However, we leverage several approximations and methods to achieve a time complexity linear
in N that we describe more thoroughly in Appendix B. In practice, we learn function ν with a
Nyström approximation (Nyström, 1930; Yang et al., 2012; Liu et al., 2021) of low rank d′ to avoid
computations on potentially large matrices of size N × N . This approximation can be applied to
any kernel function k. However, one should be careful to select d′ such that N ≫ d′ ≥ B +
maxt≤T |Ht| to ensure that the interbatch/global volume of any sampled batch of B items can
be larger than 0 (see metrics in Section 1). The Nyström approximation of rank d′ on a random
selection of representative points, run once, has a time complexity of O(N(d′)2 + (d′)3) (Williams
& Seeger, 2000). The computation of g(S ;H, α) for any user h of history H and subset S using
a k-d tree leads to an average time complexity in Ω(B log |H|), where |H| ≪ N as a general
rule, and Ω(B|H|) in the worst case of unbalanced trees (Arya & Mount, 1993). Retrieving the
closest neighbor can also be computed on large sets of (feature maps of) items by considering an
approximate nearest neighbor algorithm, e.g., FAISS (Douze et al., 2024) or LSH (Dasgupta et al.,
2011). The computation of the matrix power (in λ) can also be in linear time in N . Using the
α-DPP sampling procedure (Calandriello et al., 2020) for the SAMPLING strategy and the greedy
algorithm in (Chen et al., 2018) for the MAXIMIZATION approach, with time complexities linear
in N as described in Section 1, we confirm that B-DivRec remains tractable even when faced with
millions of items, as demonstrated in the experiments. Moreover, we delve into supplementary
details of implementation in Appendix B.
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4 ADAPTIVE QUALITY-DIVERSITY (Q-D) TRADE-OFF

A frequent problem when dealing with the quality-diversity trade-off is to handle the fact that some
users might be more receptive to diverse recommendations than others. We wish for an automated
procedure for tuning the trade-off–in practice, changing the value of hyperparameter λ–which takes
into account the user’s prior reactions to diversified items. We can frame this problem as an on-
line learning game between a player–that is, the recommender system–and Nature–which is the
interaction with one user (h,Ht) querying the recommender system at time t (Auer et al., 2002;
De Rooij et al., 2014). At round t ≤ T of the game, the recommender system chooses a value of
λt ∈ [0, 1]. Then, the recommender system makes a recommendation St to user h and receives a
loss (or gain (De Rooij et al., 2014)) value related to the quality-diversity trade-off achieved, de-
pending on the vector of feedback yt from Nature. The recommender system should use this loss to
update and use λt+1 ∈ [0, 1] at the next round. The game ends after T interactions with the same
user.

The quality-diversity trade-off gain is given by the function λ,S ,y 7→ scrλfB-DivRec,y(S ;h) for all
λ ∈ [0, 1], S ⊆ Ω, |S | = B, and y ∈ (R∗

+)
B . 5 The goal of the game, by selecting the λt’s, is

to maximize the cumulated quality-diversity trade-off, and alternatively, to minimize the cumula-
tive regret compared to a deterministic oracle which knows in advance the pairs batches-feedbacks
(St,yt)t≤T :

Radapt(T ;h) := max
λ∈[0,1]

∑
t≤T

scrλfB-DivRec,yt(St;h)− scrλ
t

fB-DivRec,yt(St;h) . (6)

Many online learners have been introduced to solve this type of problem, e.g., EXP3 (Auer et al.,
2002) and AdaHedge (De Rooij et al., 2014). We select AdaHedge, as it is an online learner which
is horizon T -agnostic, and does not require to know the scale of the gain function in advance. We
further go into details as regards the implementation of this procedure in Appendix C. Algorithm 1
(purple lines) shows how we modify the initial recommendation algorithm with B-DivRec to adap-
tively choose λ.

5 EXPERIMENTAL STUDY

We consider several DPPs from the QDT family: QD decomposition, conditional DPP and the ε-
greedy approach described in Section 3, along with baselines from the literature: Markov DPP (Af-
fandi et al., 2012), MMR (Carbonell & Goldstein, 1998). To try to get as close as possible to a
realistic online setting, we consider the following situation. At recommendation time t > 0, for a
new user ht with ground-truth history Ht from the initial data set, a recommender system will output
a batch of recommendations for each round t, t+1, . . . , t+|Ht|with respective user context-history
pairs (ht, ∅), (ht, {i1}), (ht, {i1, i2}), . . . , (ht,Ht), where Ht := {i1, i2, . . . , iM} if |Ht| = M
in the initial data set. It means that at each round, we incrementally increase the user history with
true previously recommended items, and track the relevance and diversity of novel recommenda-
tions (see all metrics in Section 1). As the SAMPLING strategy is not deterministic, we iterate this
process over 10 random seeds, and average all the metrics across those 10 iterations for each user.
For pointwise metrics such as in Equation 1, we also average these metrics along the trajectory of
recommendations of length |Ht|. Finally, since we run this setting on several users, we aggregate
these metrics across users by considering the average and the standard deviation. These are the final
values shown in the tables in this section. Top ones are in bold type, second best one are underlined.
For the sake of clarity, we only show the most relevant metrics and baselines in experiments. The
full numerical results for each experiment can be found in Appendix E. Runtime is the time in sec-
onds needed to output a single batch of recommendations. All values are rounded to the closest 2nd

decimal place.

For all experiments, we consider a linear kernel function k : ϕ, ψ 7→ ϕ⊺ψ to compare fairly with
baselines for the quality-diversity trade-off. Similarly, we use as default value λ = 0.5: equal
weight for the quality and diversity tasks; ε = 0.1: frequency of the greedy phase, to get a strong

5Analoguously to a feedback model, y is such that y(ϕ,h) is the (observed) feedback from the user h if
ϕ has been recommended, and otherwise is equal to 1 (meaning that it is ignored for a non-visited ϕ).
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baseline for diversity; and α = 0: diversity hyperparameter for B-DivRec in Equation 5; unless
otherwise specified. We consider the following data sets in our experiments: (1) Synthetic data
sets of different sizes: their names are prefixed with SYNTHETIC, followed by the number of
items N . Item and user embeddings are sampled at random from Gaussian distributions and the
feedback model is qΘ : ϕ,h 7→ ((ϕ)⊺h + 1)/2 ∈ [0, 1]. Supplementary information can be found
in Appendix D.1; (2) MovieLens data set (Harper & Konstan, 2015) for movie recommendation.
Universal Sentence Encoder (Cer et al., 2018) was applied to each movie metadata, and a SVD
model (Vie et al., 2015) has been trained on the existing ratings to yield a feedback model with
values in 1, 2, . . . , 5. Finally, (3) PREDICT data set (Réda, 2023) for drug repurposing: the item
(drug) and user (disease) embeddings are provided, and the feedback model has been fit with a
Heterogeneous Attention Network (HAN) (Wang et al., 2019) on known Phase 2 and 3 clinical
trials, yielding rewards in [0, 1]. Further details about the real-life data sets are in Appendix D.2.

Figure 1: Sensitivity analysis for λ on SYN-
THETIC750 (6 users, B = 3, τ = 0.5), with
the MAXIMIZATION strategy.

Table 1: Sensitivity analysis for α on SYN-
THETIC750 (6 users, B = 3, τ = 0.5), with
the MAXIMIZATION strategy.

α REL ↑ PREC ↑ DIVG ↑

0 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.1 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.5 0.61 ±0.0 1.0 ±0.0 0.95 ±0.0
0.8 0.61 ±0.0 1.0 ±0.0 0.96 ±0.0
0.90 0.6 ±0.0 1.0 ±0.0 0.97 ±0.0
0.95 0.58 ±0.0 1.0 ±0.0 0.97 ±0.0
0.98 0.57 ±0.0 0.97 ±0.0 0.97 ±0.0
1 0.56 ±0.0 0.92 ±0.01 0.96 ±0.0

Known feedback setting with fixed λ. First, we perform a sensitivity analysis on hyperparam-
eters λ ∈ [0, 1] across the QDT family and baselines with the MAXIMIZATION strategy on the
SYNTHETIC750 data set, and α ∈ [0, 2] for B-DivRec (Equation 5). The trends for relevance and
diversity depending on λ and α are shown respectively in Figure 1 and Table 1. As expected, across
all recommender systems, as λ increases, relevance increases, whereas (local or global) diversity
globally decreases. The higher the area under the curve (AUC), the better the recommender system.
Visually, the top two recommender systems are our contribution B-DivRec and MMR. Computing
explicitly the areas under the curve for each metric (rounding to the closest third decimal place)
shows that B-DivRec outperforms MMR on all metrics except for the global diversity (see Table 9
in Appendix). Overall, members of the QDT family outperform non-DPP baselines such as MMR
and Markov DPP, especially for precision and relevance. Regarding α in B-DivRec, unsurprisingly,
the higher α, the more (globally) diverse the recommendations, to the price of a loss in relevance
and precision. Beyond a certain value of α (for this data set, α = 1), the DPP can no longer sample
enough diverse items, as α filters out most of the items. We discuss this issue and potential solutions
in Appendix B.

Now, we apply both the SAMPLING and MAXIMIZATION strategies for all recommender sys-
tems on the SYNTHETIC750 data set in Tables 2 and 3. The values of relevance for SAMPLING
and of precision for MAXIMIZATION are not reported because they are similar across all algo-
rithms but MMR (respectively, rel = 0.51, and prec = 1.0 for all algorithms except for Markov DPP,
where prec = 0.94, see Table 11 in Appendix). These results confirm that, for the quality-diversity
trade-off, B-DivRec with the MAXIMIZATION strategy and MMR are the top contenders. More-
over, they show that the SAMPLING indeed encourages (global) diversity as evidenced by the divG

values and as reported in prior work (Kathuria et al., 2016). However, it results in a large loss in
precision (prec) and relevance (rel), it is more time-consuming (see Appendix E), and does not quite
achieve the best quality-diversity trade-off (div+). The SAMPLING strategy might be useful in the
case when the recommender system must not recommend the same batch for users with the same
embeddings and history, and when we are willing to recommend possibly irrelevant items. However,
when the focus is on the optimization of the quality-diversity trade-off and computational efficiency,
the MAXIMIZATION strategy might be more suitable.
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Table 2: Benchmark on SYNTHETIC750 (6 users, B =
3, τ = 0.5) with SAMPLING.

ALGO PREC ↑ DIVG ↑ DIV+ ↑

QDDec. 0.61 ±0.01 0.95 ±0.0 1.01 ±0.0
CondDPP 0.64 ±0.01 0.94 ±0.01 0.97 ±0.01
ε-Greedy 0.61 ±0.01 0.95 ±0.0 1.01 ±0.0
Markov 0.59 ±0.01 0.17 ±0.0 0.91 ±0.01
MMR 1.0 ±0.0 0.96 ±0.0 1.01 ±0.0
B-DivRec 0.63 ±0.01 0.95 ±0.0 0.98 ±0.01

Table 3: SYNTHETIC750 (6 users,B = 3,
τ = 0.5) with MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.61 ±0.0 0.9 ±0.01 1.01 ±0.0
0.6 ±0.0 0.89 ±0.01 1.01 ±0.0
0.61 ±0.0 0.9 ±0.01 1.01 ±0.0
0.58 ±0.0 0.17 ±0.0 0.98 ±0.01
0.6 ±0.0 0.96 ±0.0 1.01 ±0.0
0.61 ±0.0 0.95 ±0.0 1.01 ±0.0

Table 4: Benchmark on SYNTHETIC3M (4 users,
B = 3) with MAXIMIZATION.

ALGO REL ↑ DIVG ↑ DIV+ ↑

CondDPP 0.55 ±0.0 0.97 ±0.0 1.01 ±0.0
MMR 0.73 ±0.0 0.0 ±0.0 0.02 ±0.0
B-DivRec 0.55 ±0.0 0.97 ±0.0 1.01 ±0.0

Table 5: SYNTHETIC15M (2 users,
B = 5) with MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.53 ±0.0 0.94 ±0.0 1.01 ±0.0
0.73 ±0.0 0.0 ±0.0 0.0 ±0.0
0.53 ±0.0 0.94 ±0.0 1.01 ±0.0

We also ran the same type of experiments on SYNTHETIC3M and SYNTHETIC15M in Tables 4
and 5. Beyond 5 000 items, MarkovDPP (Affandi et al., 2012) is actually computationally intractable
to run, hence we left it out of the benchmark for larger data sets. The observations made on SYN-
THETIC750 (superiority of the MAXIMIZATION strategy over the SAMPLING one in terms of
relevance) from those experiments are confirmed on larger synthetic data sets. Moreover, even if
MMR might have better results on relevance-related metrics (rel, prec), this baseline clearly fails for
diversity metrics (divG, div+), especially on larger data sets. As the number of items N increases,
the difference in performance between algorithms from the QDT family decreases. This might be
due to the fact that the more items there are, the less important is the impact of user history on the
selection of items. We also applied recommender systems to MovieLens in Table 6, and PREDICT
in Table 7. We only show in these tables the results with the MAXIMIZATION strategy, on ac-
count of the observations on the synthetic data sets. The full results can be found in Appendix E. On
the MovieLens data set for movie recommendation, MMR is the top contender, whereas our contri-
bution B-DivRec is the second best, improving significantly upon the conditional DPP in terms of
relevance. The divG values are particularly small on MovieLens due to the fact that initial user histo-
ries are collinear: they feature similar movie embeddings, which leads to a small volume. However,
on the PREDICT data set for drug repurposing, MMR is one of the worst recommender systems
for all metrics, whereas B-DivRec succeeds in achieving a very good trade-off between quality and
diversity, with a div+ value larger than 1.

Adaptive quality-diversity trade-off. Finally, we evaluate our adaptive procedure for tuning the
quality-diversity trade-off parameter λ ∈ [0, 1]. Note that λ is specific to one user: each online
learner is initialized and updated along a trajectory corresponding to a single user. As such, we
only consider one user, user with identifier 0, in all data sets. Then, we run B-DivRec (Equation 5)
combined with the MAXIMIZATION strategy and the adaptive approach described in Section 4.
We report the results in Table 8 for SYNTHETIC30k, MovieLens and PREDICT. To assess the
goodness of our approach, the final tuned value λfinal is compared to the best a posteriori relevance

Table 6: Benchmark on MovieLens (4 users, B = 3) with
MAXIMIZATION.

ALGO REL ↑ DIVG ↑ DIV+ ↑

CondDPP 3.02 ±0.18 0.06 ±0.01 0.64 ±0.05
MMR 3.78 ±0.12 0.07 ±0.01 0.77 ±0.04
B-DivRec 3.48 ±0.13 0.06 ±0.01 0.59 ±0.05

Table 7: PREDICT (9 diseases/users, B =
3) with MAXIMIZATION.

REL ↑ DIVG ↑ DIV+ ↑

0.75 ±0.02 0.63 ±0.02 0.88 ±0.01
0.66 ±0.02 0.6 ±0.02 0.7 ±0.02
0.76 ±0.02 0.57 ±0.02 1.02 ±0.02
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Table 8: Benchmark with and without (“non adaptive”) the adaptive tuning procedure in Section 4,
applied to B-DivRec (Equation 5) with the MAXIMIZATION strategy for user 0, starting with
initial value λ0 = 0.5. λfinal: final relevance weight after tuning. λ⋆: best a posteriori relevance
weight.

DATA SET λfinal λ⋆ REL ↑ DIVG ↑ DIV+ ↑ TIME ↓

SYNTHETIC750 0.18 0.10 0.61 ±0.0 0.95 ±0.0 1.01 ±0.0 0.5 ±0.0
(non adaptive) – – 0.61 ±0.0 0.96 ±0.0 1.01 ±0.0 0.16 ±0.0
SYNTHETIC30k 0.19 0.10 0.65 ±0.0 0.96 ±0.0 1.0 ±0.0 29.8 ±0.06
(non adaptive) – – 0.56 ±0.0 0.96 ±0.0 1.01 ±0.0 1.34 ±0.02
MovieLens 1.0 1.0 4.49 ±0.01 0.01 ±0.0 0.77 ±0.01 158.1 ±0.84
(non adaptive) – – 4.38 ±0.0 0.01 ±0.0 0.78 ±0.0 29.7 ±0.82
PREDICT 0.35 0.10 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 1.97 ±0.05
(non adaptive) – – 0.79 ±0.01 0.49 ±0.0 0.72 ±0.01 0.82 ±0.0

weight λ⋆. This value is computed at the end of a trajectory associated with one user by solving the
maximization problem in λ in Equation 6, and corresponds to the best deterministic action that the
player could have taken in the game with Nature explained in Section 4. First, the adaptive procedure
seems to be able to roughly retrieve the oracle value λ⋆ across data sets–albeit it is unlikely that it
can always find it, since the oracle value relies on the a posteriori knowledge of the user feedback.
Second, the computational cost of using the adaptive procedure instead of a fixed value of λ = 0.5
is moderate: the runtime with the adaptive procedure is multiplied by 8 in average across all data
sets, due to the approximation of matrix power (see Appendix B). Third, on SYNTHETIC30k,
adaptively selecting λ throughout the trajectory allows us to noticeably increase relevance while
trading off some diversity. On SYNTHETIC750 and PREDICT, the diversity and relevance metrics
remain globally unchanged after the adaptive procedure. On MovieLens, since the users seem to
be more biased towards popular movies compared to novel recommendations–as illustrated by the
low value of divG in the non-adaptive setting–the recommender system is leaning toward making
popular recommendations, leading to a higher λ, higher relevance (rel +2.5%) to the price of some
of effective diversity (div+ −1.3%).

6 DISCUSSION

In this paper, we introduced a versatile and flexible approach for diverse recommendation. We pro-
posed a general family of DPPs, named the QDT family, embedding the quality-diversity trade-off
which includes several well-known recommender systems. Building on this family, we introduced
B-DivRec which is a novel approach to integrating the user history in a computationally tractable
fashion. We illustrated the versatility of our contributions by applying them in several settings: when
the feedback model is known, and when the recommender system must adapt the diversity of its rec-
ommendations to the user based on user interaction with the recommended items. Our approach has
been tested on both synthetic and real-life data sets for movie recommendation and drug repurpos-
ing, and performs consistently well across settings and data sets. We released as open source our
algorithm and code for the experiments (see supplementary material).

Yet, many venues for research are still unresolved in the field. Recommender systems often face a
pervasive issue related to missing feedback. How can one leverage information from the fact that
a user has not visited nor rated a recommended item (also known as the cold-start problem (Briand
et al., 2021; Wang et al., 2025) in the literature)? This issue is connected with many topics, e.g., when
the feedback needs to be learned on the fly (Radlinski et al., 2008; Zenati et al., 2022; Hikmawati
et al., 2024; Park & Jia, 2025). However, as we have been able to successfully extend the QDT
family to solve the problem of adaptively tuning the quality-diversity trade-off, improving upon this
framework might be the key to solve the issue of missing feedback while still ensuring the diversity
of recommended items. A first approach could implement the optimism principle as in multi-armed
bandits (Auer et al., 2002; Abbasi-Yadkori et al., 2011) and building confidence intervals on the
expected feedback on items in the likelihood matrix of a DPP from the QDT family.
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