
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TARGETED LOW-RANK REFINEMENT: ENHANCING
SPARSE NEURAL NETWORKS WITH PRECISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning is a widely used technique for compressing large neural networks that
eliminates weights that have minimal impact on the model’s performance. Current
pruning methods, exemplified by magnitude pruning, assign an importance score
to each weight based on its magnitude and remove weights with scores below
a certain threshold. Nonetheless, these methods often create a gap between the
original dense and the pruned sparse model, potentially impairing performance.
Especially when the sparsity ratio is high, the gap becomes more pronounced. To
mitigate this issue, we introduce a method to bridge the gap left by pruning by
utilizing a low-rank approximation of the difference between the dense and sparse
matrices. Our method entails the iterative refinement of the sparse weight matrix
augmented by a low-rank adjustment. This technique captures and retains the
essential information often lost during pruning, thereby improving the performance
of the pruned model. Furthermore, we offer a comprehensive theoretical analysis of
our approach, emphasizing its convergence properties and establishing a solid basis
for its efficacy. Experimental results on LLaMa models validate its effectiveness on
large language models across various pruning techniques and sparsity levels. Our
method shows significant improvements: at 50% sparsity, it reduces perplexity by
53.9% compared to conventional magnitude pruning on LLaMa-7B. Furthermore,
to achieve a specific performance target, our approach enables an 8.6% reduction
in model parameters while maintaining a sparsity ratio of about 50%.

1 INTRODUCTION

Pruning is a crucial technique in the field of model compression, particularly for large language
models (LLMs), which have become the cornerstone of natural language processing tasks (Devlin,
2018; Brown, 2020; Hoffmann et al., 2022). Pruning involves the removal of specific weights or
parameters from the neural network that are considered to have minimal impact on the overall
performance of the model (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015b; Frankle &
Carbin, 2018; Frankle et al., 2020). This technique is especially valuable for LLMs, which often
contain billions of parameters and require substantial computational resources for both training and
inference (Han, 2017; Touvron et al., 2023; Minaee et al., 2024).

One of the most representative pruning techniques is magnitude pruning, which removes weights that
have the smallest absolute values. This method is based on the assumption that smaller weights have
less effect on the network’s overall performance (Han et al., 2015a). Furthermore, as model sizes
continue to grow, the number of redundant parameters also increases. For LLMs with billions of
parameters, even half of the layers can be dropped without significantly affecting performance (Men
et al., 2024; Fan et al., 2024). However, recent research shows that pruning can cause irreparable loss
of knowledge and performance drops, especially for difficult tasks, a phenomenon known as the Junk
DNA Hypothesis (Yin et al., 2024). This consistent degradation in performance is observed across a
spectrum of pruning methods, including magnitude pruning, SparseGPT (Frantar & Alistarh, 2023),
and Wanda (Sun et al., 2023), and applies to both unstructured pruning and structured N:M pruning.

Conventional approaches to post-pruning recovery face a three-fold challenge: (1) Computational
burden: Re-training (Frankle & Carbin, 2018; Xia et al., 2023; Kim et al., 2024a) and knowledge
distillation (Hinton, 2015; Wan et al., 2024a; Muralidharan et al., 2024) methods are computationally
expensive and time-consuming. (2) Data and model dependency: These techniques typically require

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

either extensive datasets or access to a high-performing teacher model, which may not always be
feasible. (3) Sparsity inconsistency: Recent low-rank approximation methods (Li et al., 2023;
Mozaffari et al., 2024; Zhang & Papyan, 2024) often fail to maintain a consistent sparsity pattern,
making them unsuitable for structured pruning, which is crucial for hardware efficiency.

In this study, we address the challenge of post-pruning recovery by approximating the dense matrix
as the sum of an updated sparse matrix with a maintained sparsity pattern and a low-rank matrix. We
propose an iterative refinement process that concurrently updates the sparse matrix and the low-rank
component in a data-free manner. This approach effectively recovers crucial information typically
lost during pruning. Our method features an adaptive low-rank approximation that dynamically
adjusts to complement the sparse matrix, enabling efficient information recovery. Unlike traditional
techniques that rely on large datasets or high-performing teacher models, our approach operates
directly on model weights, offering a computationally efficient and broadly applicable solution. This
approach aims to improve the performance of the pruned model without significantly increasing the
parameter count. Our method combines the advantages of both sparse and low-rank approximation,
ensuring the model maintains its efficiency while enhancing its accuracy. In addition to our empirical
findings, we provide a comprehensive theoretical analysis of the iterative refinement process, which
rigorously demonstrates the favorable convergence properties of our method.

Experimental results on the LLaMa models demonstrate the effectiveness of our approach. When
applying 50% sparsity, our method achieves a 53.9% reduction in perplexity compared to conventional
magnitude pruning. The benefits of our approach become increasingly evident as sparsity increases:
at 60% sparsity, we observe a 92.0% decrease in perplexity, while at 70% sparsity, an impressive
99.6% reduction is achieved. These findings highlight the effectiveness of our method, especially in
scenarios of high sparsity where traditional approaches typically face considerable challenges.

To summarize, the main contributions of this paper are:

• In this work, we bridge the gap between the original dense and pruned sparse model by
leveraging a low-rank component. This approach effectively fills the gap left by pruning,
enhancing the model’s performance with minimal parameter increase.

• We develop an iterative algorithm that incrementally refines the sparse weight matrix
and incorporates the low-rank approximation. By prioritizing the preservation of weight
components associated with larger singular values, our method allows for a more aggressive
reduction of less important components, leading to a more precise approximation.

• We provide a thorough theoretical analysis of our proposed method, which offers a rigorous
foundation understanding of the effectiveness, convergence, and stability of our approach.

• We validate the effectiveness of our method on LLMs across various sparsity levels, achiev-
ing substantial perplexity reductions compared to baselines. This is particularly noteworthy
at high sparsity levels, maintaining robust improvements even as high as 70% sparsity.

2 PRELIMINARY

2.1 THE GENERAL FRAMEWORK OF LAYER-WISE PRUNING

Neural network pruning is a crucial technique for model compression, aiming to reduce parameters
while preserving performance. In this section, we first present the general framework for (local)
layer-wise pruning, outlining the key steps and components involved and it is illustrated in Fig. 1(a).
Let W ∈ Rm×n represent a weight matrix, and M =M(W ,D) ∈ Rm×n denote its corresponding
importance score matrix. Here,M : Rm×n × D → Rm×n is a metric function that computes the
importance scores based on the weight matrix W and an optional datasetD. The most straightforward
approach is to use the magnitude of the weights as the importance score, i.e., Mij = |Wij |. More
sophisticated methods can be employed to capture the importance of each weight more accurately,
such as the SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023). Given a pruning
ratio p ∈ [0, 1], we set threshold h as the p-th percentile of M as the decision boundary for pruning.
Then the binary pruning mask P is obtained by Pij = I(Mij > h). The pruned sparse weight
matrix S is obtained by S = W ⊙P , where ⊙ denotes element-wise multiplication. This zeroes out
less important weights while retaining significant ones. An optional weight update procedure can be
applied to refine the pruned weights further. For example, after the pruning process, a re-training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 3 -4 1
-3 -1 1 4
3 1 5 2

0 3 4 1
3 1 1 4
3 1 5 2

0 3 -4 0
-3 0 0 4
3 0 5 0

0 ? ? 0
? 0 0 ?
? 0 ? 0

(a) The general framework of neural network pruning. (b) Refine with a low-rank patch.

Figure 1: (a) An overview of the general framework of (local) layer-wise pruning, where W , M ,
P , and S are the original dense weight matrix, the importance score matrix, the binary pruning
mask, and the pruned sparse weight matrix, respectively. Here we show the case of pruning using the
magnitude of the weights as the importance score. (b) Our proposed method, where S is updated and
a low-rank matrix Lk is introduced to minimize the approximation error.

phase may be implemented to fine-tune the remaining weights and recover some lost performance.
During this process, the pruning structure is maintained by enforcing the constraint S(t) = S(t) ⊙ P
at each iteration t. This ensures that the pruned weights remain zero throughout the re-training
process, preserving the sparsity achieved through pruning.

2.2 SINGULAR VALUE DECOMPOSITION

Here we briefly review the Singular Value Decomposition (SVD) of a matrix. Given a matrix
W ∈ Rm×n, its reduced SVD is given by (Olver & Shakiban, 2018):

W = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i , (1)

where U ∈ Rm×r and V ∈ Rr×n are orthogonal matrices, and Σ ∈ Rr×r is a diagonal matrix
containing the singular values of W . The i-th columns of matrices U and V are represented by ui

and vi, respectively. Additionally, we use σi to denote the i-th diagonal element of the matrix Σ.
For convenience, we extend this notation to represent functions that map W to its SVD components.
This allows us to express the decomposition as W = U(W)Σ(W)V ⊤(W), or alternatively as a
sum of outer products: W =

∑r
i=1 σi(W)ui(W)v⊤

i (W). While this slightly abuses the original
notation, it provides a concise way to refer to the SVD components of any given matrix.

3 METHOD

In this study, we focus on the local pruning method and aim to fill the gap between the original dense
weight matrix W and the pruned weight S by introducing a low-rank matrix Lk to approximate the
difference matrix ∆W = W − S. We illustrate the main idea in Fig. 1(b), where the dense matrix
W is factorized into the superposition of a low-rank matrix L and a updated sparse matrix S′:

W = S′ +L ≈ S′ +Lk. (2)

In this formulation, S′ maintains the same sparsity pattern as S, ensuring that S′ = S′ ⊙ P and
S = S ⊙ P are satisfied. It’s important to note that both S′ and L can have elements of any
magnitude without restrictions. Lk is the best rank-k approximation of W , which can be obtained
using the SVD of L as Lk = U:k(L)Σ:k(L)V ⊤

:k (L). Begin with fixed S, we have the baseline:

Baseline 1 (Zero-shot SVD) The most straightforward method to obtain the low-rank matrix Lk

is to directly perform the SVD on W − S without updating S. This can be expressed as Lk =
U:k(W − S)Σ:k(W − S)V ⊤

:k (W − S). Here, U:k(·), Σ:k(·), and V:k(·) represent the first k
columns of U(·), the top-left k × k submatrix of Σ(·), and the first k columns of V (·), respectively.

Parameter efficiency analysis. We analyze the computational efficiency of low-rank refinement by
examining its parameter count and FLOPs (floating-point operations). We compare these metrics
with the dense model and a pruned model, considering the impact of sparsity. For a weight matrix
W ∈ Rm×n, the dense model has mn parameters and requires 2mn FLOPs for a forward pass.
With pruning at sparsity ratio p, these reduce to (1 − p)mn parameters and 2(1 − p)mn FLOPs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Singular Value Index

0.0

0.5

1.0

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

Spectrum of Singular Values

S=W¯P
PCP with mask
Ours (k=64)
Ours (k=128)
Ours (k=512)

(a) Singular value distribution of L

0 100 200 300 400 500
Singular Value Index

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Energy of Li

S=W¯P
PCP with mask
Ours (k=64)
Ours (k=128)
Ours (k=512)

(b) Cumulative energy retention in Lk

Figure 2: Analysis of the residual matrix L = W − S′ and its low-rank approximation Lk using
different methods. Results are shown for zero-shot SVD, PCP baseline (T = 5000), and our proposed
method with varying k (64, 128, 512) and T = 50. (a) Singular value spectrum of L. (b) Proportion
of total energy captured by the top k singular values, calculated as

∑i
j=1 σ

2
j (Lk)/

∑r
j=1 σ

2
j (L).

Our method introduces a low-rank matrix Lk = BA, which introduces k(m+ n) parameters and
2k(m+ n) FLOPs, slightly reducing the overall sparsity ratio by k(1

m + 1
n). The choice of k and p

presents a trade-off between model size, computational complexity, and performance. In practice,
using a rank k of 128 results in only a 4.9% increase in parameters, while possibly reducing perplexity
by half on a LLaMa-7B model with both unstructured 50% sparsity and structured 4:8 sparsity.

This optimization problem is generally NP-hard and similar challenges have been addressed in the
fields of matrix completion (Chandrasekaran et al., 2011) and robust Principal Component Analysis
(PCA) (Candès et al., 2011; Peng et al., 2020) by solving a Principal Component Pursuit (PCP) as:

min
L,S′
∥L∥∗ + λ∥S′∥1, s.t. L+ S′ = W . (3)

Where ∥ · ∥∗ denotes the nuclear norm and ∥ · ∥1 denotes the ℓ1-norm, λ is a hyperparameter that
controls the trade-off between the rank of L and the sparsity of S′. The nuclear norm serves as a
convex approximation for the rank of a matrix, while the ℓ1-norm acts as a convex proxy for the
ℓ0-norm (which represents the count of non-zero elements in a matrix). In this convex optimization
problem, the ∥L∥∗ term promotes a low-rank solution for L, whereas the λ∥S′∥1 term promotes
sparsity in S′. Nevertheless, it’s important to note that the solution to Eq.(3) does not necessarily
preserve the fixed sparsity pattern of S′ that is required to match S in Eq.(2). To address this issue,
we propose to incorporate the binary mask P into the optimization process to ensure that the sparsity
pattern of S′ is fixed as S. This is achieved by rewriting Eq.(2) as follows:

W = (

S︷ ︸︸ ︷
W ⊙ P −Q⊙ P)︸ ︷︷ ︸

sparse part S′

+(W ⊙ (1− P) +Q⊙ P)︸ ︷︷ ︸
low-rank part L

. (4)

Where Q is a learnable matrix in the same shape as W .

Baseline 2 (PCP with mask) By directly substituting the decomposition from Eq.(4) into the opti-
mization problem presented in Eq.(3) yields:

min
Q
∥W ⊙ (1−P)+Q⊙P ∥∗ +λ∥W ⊙P −Q⊙P ∥1, and L = W ⊙ (1−P)+Q⊙P . (5)

This equation represents a constrained optimization problem where we seek to find the optimal
matrix Q. The binary mask P plays a crucial role in maintaining the desired sparsity pattern. To
solve this optimization problem, we can employ iterative methods such as gradient descent or its
variants. Following Candès et al. (2011), we set λ = 1/

√
max(m,n). However, the nuclear norm

minimization approach has a limitation: it applies equal shrinkage to all rank components (Zha et al.,
2019). This uniform treatment may not be optimal for our objective in Eq.(2), where we aim to
approximate the residual matrix W −S using a low-rank matrix Lk with a rank lower than that of L.

To address this limitation, we propose a forward-only method that prioritizes the preservation of
low-rank components associated with larger singular values, while allowing for a more aggressive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

reduction of components with smaller singular values. This approach offers greater flexibility and
precision in low-rank approximation compared to the PCP baseline, aligning more closely with our
goal of achieving an efficient low-rank approximation. We begin by setting S(0) = W ⊙ P , and
then iteratively refine S(t+1) using the following update rule:

S(t+1) = S(t) + P ⊙

r∑

i=r(t)+1

σi

(
L(t)

)
ui

(
L(t)

)
v⊤
i

(
L(t)

) (6)

= S(t) + P ⊙
{
Ur(t):

(
L(t)

)
Σr(t):

(
L(t)

)
V ⊤
r(t):

(
L(t)

)}
. (7)

In this equation, L(t) represents the difference W − S(t), and r(t) is defined as ⌊1 + k−1
T−1 t⌋, where

T denotes the total number of iterations, k is the target rank of Lk, and t ranges from 0 to T − 1.
We summarize the above algorithm in Algorithm. 1. In each iteration, our algorithm focuses on
eliminating the least significant components from the residual matrix L(t), which are associated with
smaller singular values, while preserving those with larger singular values. This approach allows for a
progressive refinement of the sparse matrix S. As we advance through the iterations, we gradually in-
corporate more subtle details from the original dense weight matrix W into the updated sparse term S.

Algorithm 1 Iterative Weight Update

1: Inputs: Dense weight matrix W , binary mask
P , target rank k, number of iterations T

2: Initialize S(0) ←W ⊙ P
3: for t = 0 to T − 1 do
4: L(t) ←W − S(t)

5: Compute SVD: L(t) = U (t)Σ(t)V (t)⊤

6: r(t) ← ⌊1 + k−1
T−1 t⌋

7: S(t+1) ← S(t)+P⊙
{
U

(t)

r(t):
Σ

(t)

r(t):
V

(t)⊤

r(t):

}
8: end for
9: L(T) ←W − S(T)

10: Returns: S(T), L(T)

Incrementally increasing the rank r(t) from 2
to k over T iterations enables a more nuanced
exploration of the weight space. Furthermore,
the consistent application of the binary mask P
throughout this optimization process ensures the
preservation of the desired sparsity pattern.

In Figure 2, we show the singular value spec-
trum of L and the cumulative energy reten-
tion in Lk for different methods using a 512×
512 weight block extracted from a fine-tuned
LLaMa-7B model. Subfigure 2a demonstrates
that the proposed method with different target
rank values k (64, 128, and 512), consistently
produces a more pronounced decay in singular
values compared to both the zero-shot SVD and
the PCP baseline. Subfigure 2b shows that the
cumulative energy retention in L, calculated as E(i) =

∑i
j=1 σ

2
j (L)/

∑i
j=1 σ

2
j (L) or ∥Li∥2F /∥L∥2F ,

increases more rapidly with truncated rank i for the proposed method compared to the PCP baseline 2.

From Algorithm 1 and observations from Figure 2, we can summarize the technical contributions
of our proposed method as follows: (1) Iterative refinement with adaptive rank increase. Our
method iteratively refines the sparse matrix S while gradually increasing the rank r(t) from 2 to
k over T iterations. This enables progressive elimination of less significant components from the
residual matrix L(t). (2) Sparsity-preserving. Throughout the optimization process, our method
consistently applies the binary mask P , ensuring the preservation of the desired sparsity pattern.
Sparsity-preserving enables compatibility with both unstructured and structured pruning techniques,
facilitating hardware-friendly implementations, particularly for structured sparsity patterns. (3)
Efficient information capture. Our approach creates low-rank approximations that more efficiently
capture the essential information of the original weight matrix compared to zero-shot SVD.

3.1 THEORETICAL ANALYSIS

In this section, we delve into the theoretical underpinnings of our proposed method, offering a more
rigorous analysis of its properties and performance. We present key theorems that elucidate the
behavior of our algorithm, focusing on two critical aspects: sparsity preservation and convergence.

First, we demonstrate that our method maintains the desired sparsity pattern throughout the iterative
process, ensuring that the final solution adheres to the specified binary mask. This property is crucial
for applications where specific weight connections must remain zero.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1 (Sparsity Preservation) For all iterations t, the sparsity pattern of S(t) is preserved
and matches the binary mask P , i.e., S(t) = S(t) ⊙ P for all t. Refer to Proof. 5.

Second, we prove the convergence of our algorithm, showing that it approaches a well-defined
solution as the number of iterations increases. This convergence guarantee provides theoretical
justification for the stability and reliability of our method.

Theorem 2 (Convergence) For any weight matrix W ∈ Rm×n and binary mask P ∈ {0, 1}m×n,
the iterative weight update algorithm converges to a solution (S∗,L∗) as T →∞, such that W =
S∗ +L∗, S∗ = S∗⊙P . Moreover, limT→∞ ∥S(T)−S∗∥F = 0 and limT→∞ ∥L(T)−L∗∥F = 0.

Theorem 3 (Asymptotic Convergence) There exists a time step T0 such that for all t > T0, the
Frobenius norm of the error decreases monotonically, i.e., for some∥∥∥W −

(
S(t+1) +L

(t+1)
k

)∥∥∥
F
≤

∥∥∥W −
(
S(t) +L

(t)
k

)∥∥∥
F
. (8)

A corollary of Theorem. 3 is that if we choose to fix the r(t) to be k for all t, the Frobenius norm of the
error decreases monotonically. Because in this case, the term ∥P ⊙L

(t)

r(t):k
∥2F vanishes, and Eq.(43)

becomes
∥∥E(t+1)

∥∥2
F
≤

∥∥E(t)
∥∥2
F
−
∥∥P ⊙E(t)

∥∥2
F

. Formally, we have the following corollary:

Corollary 1 (Monotonic Improvement) If we choose to fix the r(t) to be k for all t, the Frobenius
norm of the error decreases monotonically, i.e.,∥∥∥E(t+1)

∥∥∥
F
−
∥∥∥E(t)

∥∥∥
F
≤ −

∥∥∥P ⊙E(t)
∥∥∥
F
≤ 0, (9)

the equality holds if and only if E(t) = 0.

However, our empirical observations suggest that fixing r(t) to be k throughout the process is not
optimal in practice, and gradually increasing r(t) as the iterations progress leads to faster convergence.

Theorem 4 (Error Bound) At each iteration t, the Frobenius norm of the difference between the
original weight matrix W and its approximation S(t) +L

(t)
k is bounded by:

∥∥∥W −
(
S(t) +L

(t)
k

)∥∥∥
F
=

√√√√ r∑
i=k+1

σ2
i

(
L(t)

)
≤

√
(r − k)σk+1

(
L(t)

)
, (10)

where σi

(
L(t)

)
are the singular values of L(t) = W − S(t), and r = rank

(
L(t)

)
.

For a more comprehensive treatment, including detailed proofs of these theorems and additional
supporting lemmas, we direct the reader to Appendix A. This appendix contains the full mathematical
derivations and supplementary results that underpin our theoretical analysis.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conducted our experiments using LLaMa models, evaluating their performance on the WikiText-2.
Our primary metric for assessment was perplexity, where lower values indicate better performance.
We tested various sparsity levels, including unstructured sparsity and structured N:M sparsity.

4.2 EFFECTIVENESS OF LOW-RANK REFINEMENT

First, we examine the benefits of low-rank refinement on the LLaMa-7B model by evaluating the
WikiText-2 validation perplexity. Figure 3 illustrates the perplexity evaluation for various sparsity
levels using magnitude pruning and low-rank refinement methods, with the target rank k set to
128. In subfigure 3a, we compare the perplexity of sparsity-only pruning and zero-shot SVD

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6
Relative Parameter Reduction

101

102

103

104

Pe
rp

le
xi

ty
 (P

PL
)

8.6%

LLaMA-7B Magnitude Pruning

Sparse Only
w/ Zero-shot SVD

(a) Low-rank refinement advantage.

0.2 0.3 0.4 0.5 0.6 0.7
Sparsity Level

101

102

103

Pe
rp

le
xi

ty
 (P

PL
)

14.5%

£
12

.6

LLaMA-7B Magnitude Pruning

Sparse Only
w/ Zero-shot SVD
w/ PCP with mask
w/ Ours

(b) Method comparison.

Figure 3: Perplexity evaluation for different sparsity levels and methods, k = 128 for low-rank
refinement. (a) Low-rank refinement advantage over sparsity-only pruning. (b) Comparison of our
proposed iterative weight update method with other baseline methods.

Table 1: Comparison of WikiText validation perplexity (↓ is better) across various sparsity levels on
LLaMa-7B. All methods and sparsity levels use a target rank of k = 128 (4.9% more parameters).

SPARSITY LEVEL (LLaMa-7B)
METHOD 50% 60% 70% 4:8 2:4

Dense 5.68

Magnitude 17.29 (0%) 152.36 (0%) 48427.85 (0%) 16.83 (0%) 42.53 (0%)
w/ Zero-shot SVD 8.06 (-53.4%) 13.59 (-91.1%) 283.74 (-99.4%) 9.29 (-44.8%) 12.72 (-70.0%)
w/ PCP with mask 8.70 (-49.7%) 16.67 (-89.1%) 727.54 (-98.5%) 10.60 (-37.0%) 16.62 (-60.9%)
w/ Ours 7.97 (-53.9%) 12.14 (-92.0%) 200.09 (-99.6%) 8.86 (-47.4%) 10.74 (-74.7%)
Wanda 7.26 (0%) 10.69 (0%) 84.69 (0%) 8.57 (0%) 11.53 (0%)
w/ Zero-shot SVD 7.09 (-2.3%) 9.60 (-10.2%) 35.65 (-57.9%) 8.14 (-5.0%) 10.48 (-9.1%)
w/ PCP with mask 7.28 (+0.3%) 10.19 (-4.7%) 47.11 (-44.4%) 8.63 (-0.7%) 11.22 (-2.7%)
w/ Ours 6.92 (-4.7%) 8.97 (-16.1%) 32.90 (-61.2%) 7.74 (-9.7%) 9.18 (-20.4%)

refinement to highlight the benefits of the low-rank refinement strategy. By incorporating a low-
rank structure into the pruned weights, the parameter count increases, so the x-axis represents the
parameter reduction relative to the dense model, and we use a dashed black arrow to indicate the
correspondence between the pruned model and the model with refinement. The results indicate that
we gain 8.6% parameter reduction at approximately 50% sparsity, highlighting the superiority of
low-rank refinement compared to sparsity-only pruning techniques. In subfigure 3b, we compare our
proposed method with other baseline methods. Our proposed method consistently outperforms the
other two baseline methods, with the benefits becoming more pronounced at higher sparsity levels. It
is evident that PCP with mask underperforms compared to zero-shot SVD and our iterative weight
update method, although it still surpasses sparsity-only pruning. This can be attributed to PCP’s
uniform shrinkage of all singular values, including smaller ones, along with our choice of a very low
target rank k = 128. As illustrated in Figure 4a, PCP also yields larger singular values for indices
ranging from 102 to nearly 103, demonstrating its less discriminative approach to value reduction.

To further analyze the performance of low-rank refinement with different sparsity types and levels,
we provide a more detailed comparison of WikiText-2 validation perplexity across various sparsity
levels and pruning methods in Tables 1 and 2. The tables include results for different sparsity levels,
ranging from 50% to 70%, as well as structured sparsity patterns like 4:8 and 2:4. For each sparsity
level, we compare the performance of low-rank refinement incorporated with magnitude pruning
and Wanda pruning (Sun et al., 2023). At 50% sparsity, our method reduces perplexity by 53.9%
compared to sparse-only magnitude pruning. This improvement becomes more significant at higher
sparsity levels, reaching a 92.0% reduction at 60% sparsity and a 99.6% reduction at 70% sparsity.
Our proposed method consistently achieves lower perplexity values across all sparsity levels. This
detailed comparison highlights the effectiveness of our method in maintaining low perplexity even at
higher sparsity levels, demonstrating its robustness and superiority over other baseline methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of WikiText validation perplexity (↓ is better) across various sparsity levels on
LLaMa-13B. All methods and sparsity levels use a target rank of k = 128 (3.8% more parameters).

SPARSITY LEVEL (LLaMa-13B)
METHOD 50% 60% 70% 4:8 2:4

Dense 4.57

Magnitude 5.98 (0%) 9.91 (0%) 408.75 (0%) 6.76 (0%) 8.32 (0%)
w/ Zero-shot SVD 5.73 (-4.2%) 8.83 (-10.9%) 163.96 (-59.9%) 6.58 (-2.7%) 8.86 (-6.5%)
w/ Ours 5.65 (-5.5%) 8.83 (-10.9%) 99.27 (-75.7%) 6.40 (-5.3%) 7.76 (-6.7%)

Table 3: Performance comparison on LLaMa models across several benchmark datasets (k = 128).

METHOD TruthfulQA GSM8K ARC-c MMLU AVG.

7B

Dense 34.1 10.3 44.7 32.1 30.3 (0%)

Magnitude 50% 35.3 1.0 33.5 24.6 23.6 (-22.1%)
w/ Zero-shot SVD 34.3 1.5 36.9 26.0 24.7 (-18.5%)
w/ Ours 34.2 3.4 41.5 26.0 26.3 (-13.2%)

13B

Dense 36.9 23.4 49.1 52.1 40.4 (0%)

Magnitude 2:4 38.4 1.7 34.9 27.8 25.7 (-36.4%)
w/ Zero-shot SVD 37.6 1.8 32.2 27.0 24.7 (-38.9%)
w/ Ours 36.9 9.4 36.7 41.9 31.2 (-22.8%)

In Table 3, we evaluate the performance of our method on several benchmark datasets. We compare
the performance of our method with that of dense models, sparsity-only pruned models, and low-rank
refined using zero-shot SVD. Our method consistently outperforms both magnitude pruning and
zero-shot SVD across most tasks and model sizes. For the 7B model, it achieves a 13.2% reduction
in average performance compared to 22.1% for magnitude pruning and 18.5% for zero-shot SVD.

4.3 ITERATIVE WEIGHT UPDATE ANALYSIS

Here we analyze the behavior of our proposed iterative weight update algorithm (Algorithm 1). Our
goal is to empirically validate the theoretical properties established in Section 3, specifically regarding
convergence, error reduction, and emperically investigate the lower bound of rank(L).

Convergence and Error Analysis. In Figure 4, we visualize several key properties of the residual
matrix L = W − S′ and its low-rank approximation Lk, we use a log scale for the x-axis to better
visualize the decay of singular values at low ranks. Throughout the analysis, we use magnitude
pruning with a sparsity level of 50%. (a) Singular Value Spectrum. We first visualize the singular
value spectrum of L for different methods and hyperparameter configurations for our method. It is
clear that the iterative weight update method exhibits a more pronounced decay in singular values
compared to both zero-shot SVD and the PCP baseline. (b) Energy Retention. Here we show
the cumulative energy retention of L, calculated as

∑i
j=1 σ

2
j (Lk)/

∑r
j=1 σ

2
j (L) = ∥Li∥2F /∥L∥2F .

Across various target rank values, our method captures a higher proportion of energy within the
top k singular values, suggesting that our low-rank approximations preserve more information from
the original matrix, thereby enhancing performance. (c) Error Analysis. This subfigure presents
the Frobenius norm of the error Ei = W − (S(t) + L

(t)
i), noting that Ei = L− Li as well. It is

observed that at the desired target rank, our method achieves a lower Frobenius norm error than both
zero-shot SVD and the PCP baseline. (d) Convergence Analysis. We illustrate how the approximation
error between the dense matrix W and the combined approximation S(t) + L

(t)
k diminishes over

iterations, as predicted by Theorem 2 and Theorem 3. Specifically, it shows the Frobenius norm
∥E(t)

i ∥F = ∥L(t) −L
(t)
i ∥F at various iterations for k = 512 and T = 50.

Investigating the Lower Bound of rank(L) An intriguing question arises: Is it possible to fully
compress the information contained in W ⊙ (1− P) into S′? In other words, does the rank of L

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100 101 102 103

Singular Value Index

0

5

10

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

Spectrum of Singular Values

S=W¯P
PCP with mask
Ours (k=64)
Ours (k=128)
Ours (k=512)

(a) Singular values distribution of L.

100 101 102 103

Singular Value Index

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Energy of Li

(b) Cumulative energy retention of L.

100 101 102 103

Singular Value Index

0

20

40

60

Fr
ob

en
iu

s N
or

m

Frobenius norm of kL ¡ LikF

(c) Frobenius norm of ∥Ei∥F = ∥L−Li∥F .

100 101 102 103

Singular Value Index

0

20

40

60

Fr
ob

en
iu

s N
or

m

Frobenius norm of kL ¡ LikF

S=W¯P
Ours (t=10)
Ours (t=20)
Ours (t=30)
Ours (t=40)
Ours (t=50)

(d) ∥E(t)
i ∥F at different time steps t (k = 512).

Figure 4: Analysis of the residual matrix L = W − S′ and its low-rank approximation Lk using
different methods. Results are shown for zero-shot SVD, PCP baseline (T = 100), and our proposed
method with varying k (64, 128, 512) and T = 50. We show the x-axis in log scale and vertical
dashed lines at i = 64, 128, 512 for better visualization. Subfigures (a), (b), and (c) have a shared
legend. (a) Singular value spectrum of L. (b) Proportion of total energy captured by the top k

singular values, calculated as
∑k

i=1 σ
2
i (Lk)/

∑r
i=1 σ

2
i (L). (c) Frobenius norm of the dropped matrix

∥L−Li∥F . (d) ∥L−Li∥F at different number of iterations t. Here T = 50 and k = 512 and the
vertical dashed line at i = 512 indicates the target rank.

0 100 200 300 400 500
Singular Value Index

0

100

200

300

400

500

600

700

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de i
=
25
6

Spectrum of Singular Values

rank(W)
64
128
256
512
Method
S=W¯P
Ours

(a) Spectrum of L across various ranks of W .

0 100 200 300 400 500
Singular Value Index

0

200

400

600

800

Si
ng

ul
ar

 V
al

ue
 M

ag
ni

tu
de

i
=
0:
3r

i
=
0:
5r

i
=
0:
7r

Spectrum of Singular Values

Sparsity Ratio
0.3
0.5
0.7
Method
S=W¯P
Ours

(b) Spectrum of L across various sparsity levels.

Figure 5: Singular value spectrum analysis of L across different conditions. We compare our method
with the zero-shot SVD method L = W ⊙ (1 − P). (a) This subfigure shows the spectrum of L
across different ranks of the original weight matrix W (64, 128, 256, 512). (b) This subfigure shows
the spectrum of L across different sparsity levels (0.3, 0.5, 0.7) of magnitude pruning.

have a lower bound? To address this, we conduct an empirical investigation by applying our method
to various target ranks k, using both synthetic matrices and real-world weight matrices extracted
from the LLaMa-7B model. We first construct a series of synthetic matrices W of known rank r
by multiplying two Gaussian random matrices: U ∈ Rm×r and V ∈ Rn×r, such that W = UV T .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Here, m = n = 512. We subsequently apply our method along with zero-shot SVD to W , varying
the rank r and sparsity level p, and visualize the spectrum of L = W − S′ in Figure 5.

In both subfigures in Figure 5, the solid lines represent the zero-shot SVD method (L = W⊙(1−P)),
while the dashed lines represent the proposed method. The proposed method consistently shows a
steeper decay in singular values compared to the zero-shot SVD method, indicating better compression
of information. In subfigure 5a, we observe that for diverse ranks of W and a constant sparsity level
p = 0.5, the rank of L remains invariant. Conversely, subfigure 5b shows that fixing the rank of W
at r = 512 and varying the sparsity level p from 0.3 to 0.7, reveals a positive correlation between
the rank of L and increasing sparsity. More specifically, the rank of L is around p × min(m,n).
Empirically, we come to the conclusion that the rank of L is independent of rank(W) but dependent
on the sparsity level p. This is consistent with the intuitive explanation that as the sparsity level
increases, the pruned matrix contains more information, and thus the rank of L is higher. Similar
observations can be made in the LLaMa-7B model, as shown in Figure 2.

5 RELATED WORK

LLM Compression. LLMs have become essential in natural language processing tasks, but their
substantial size poses challenges in terms of computational resources and efficiency. Various tech-
niques have been proposed to compress these models while maintaining their performance, including
pruning, low-rank compression, quantization, and knowledge distillation (Cheng et al., 2017; Choud-
hary et al., 2020; Haroush et al., 2020). In this study, we focus on the pruning technique, and the
low-rank approximations are utilized to recover the lost performance. Pruning LLMs with billions of
parameters differs significantly from pruning smaller models (Gale et al., 2019; Frankle et al., 2020;
Kurtic & Alistarh, 2022), as current pruning techniques often necessitate extensive re-training after
the pruning process, which is prohibitively costly for LLMs (Komatsuzaki et al., 2022; Chung et al.,
2024; Snell et al., 2024). Pruning methods are often categorized into unstructured and structured
pruning (Liu et al., 2017; Fan et al., 2019; He & Xiao, 2023). Structured pruning techniques, including
layer pruning (Chen & Zhao, 2018; Kim et al., 2024b), channel pruning (He et al., 2017; Zhuang et al.,
2018), and N:M pruning (Sun et al., 2021), focus on eliminating entire neurons, layers, or N out of M
elements in a regular pattern. Unstructured pruning removes individual weights without considering
the underlying structure, which can often lead to better performance but is less hardware-friendly.
Low-rank compression reduces the dimensions of the weight matrix by focusing on larger singular
values in both the column and row spaces (Cheng et al., 2005; Idelbayev & Carreira-Perpinán, 2020).
While quantization (Xiao et al., 2023; Lin et al., 2024) and knowledge distillation (Wan et al., 2024b)
have been used to compress LLMs, they are orthogonal to our approach.

Post-Pruning Performance Recovery. To recover the performance after pruning step, several
post-pruning recovery techniques have been explored such as re-training the pruned model and using
knowledge distillation (Muralidharan et al., 2024). However, these approaches can be computationally
expensive and time-consuming. Recent research has focused on incorporating low-rank approxi-
mations to recover the lost performance. By adding a low-rank component to the pruned model,
it is possible to approximate the original dense model more closely with minimal computational
overhead (Li et al., 2023; Mozaffari et al., 2024; Zhang & Papyan, 2024).

6 CONCLUSION
In this work, we present an iterative weight update algorithm for low-rank refinement of sparse-
pruned models. Our approach aims to bridge the performance gap between dense and pruned sparse
models in large language models. The proposed method offers a computationally efficient solution
that does not rely on extensive datasets or high-performing teacher models, making it a practical
choice for improving sparse model performance. A notable advantage of our method is its sparsity-
preserving property, which allows for the concurrent update of the sparse matrix while maintaining its
sparsity pattern and incorporating a low-rank component. This approach effectively recovers crucial
information lost during pruning, leading to performance recovery, especially at high sparsity ratios.

These experimental results highlight the potential of combining low-rank and sparsity in LLMs.
Future work could explore methods for automatically determining the optimal rank for the low-rank
component based on the specific characteristics of each layer or the overall model architecture.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature repre-
sentations. IEEE transactions on pattern analysis and machine intelligence, 41(12):3048–3056,
2018.

Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. On the
compression of low rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. A comprehensive
survey on model compression and acceleration. Artificial Intelligence Review, 53:5113–5155,
2020.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Song Han. Efficient methods and hardware for deep learning. PhD thesis, Stanford University, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for
data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8494–8502, 2020.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8049–8059, 2020.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024a.

Jinuk Kim, Marwa El Halabi, Mingi Ji, and Hyun Oh Song. Layermerge: Neural network depth
compression through layer pruning and merging. arXiv preprint arXiv:2406.12837, 2024b.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua
Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-
experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022.

Eldar Kurtic and Dan Alistarh. Gmp*: Well-tuned gradual magnitude pruning can outperform most
bert-pruning methods. arXiv preprint arXiv:2210.06384, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. Slope:
Double-pruned sparse plus lazy low-rank adapter pretraining of llms. arXiv preprint
arXiv:2405.16325, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter J. Olver and Chehrzad Shakiban. Applied Linear Algebra. Undergraduate Texts in Mathematics.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-91040-6 978-3-319-91041-
3. doi: 10.1007/978-3-319-91041-3. URL http://link.springer.com/10.1007/
978-3-319-91041-3.

Chong Peng, Yongyong Chen, Zhao Kang, Chenglizhao Chen, and Qiang Cheng. Robust principal
component analysis: A factorization-based approach with linear complexity. Information Sciences,
513:581–599, 2020.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural networks.
Advances in neural information processing systems, 34:20721–20732, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. arXiv preprint arXiv:2401.10491, 2024a.

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun Quan, Xinting Huang, and Wei Bi. Fusechat:
Knowledge fusion of chat models. arXiv preprint arXiv:2402.16107, 2024b.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Lu Yin, Ajay Kumar Jaiswal, Shiwei Liu, Souvik Kundu, and Zhangyang Wang. Junk DNA
hypothesis: Pruning small pre-trained weights irreversibly and monotonically impairs "difficult"
downstream tasks in llms. In Forty-first International Conference on Machine Learning, 2024.

Zhiyuan Zha, Bihan Wen, Jiachao Zhang, Jiantao Zhou, and Ce Zhu. A comparative study for the
nuclear norms minimization methods. In 2019 IEEE International Conference on Image Processing
(ICIP), pp. 2050–2054. IEEE, 2019.

Stephen Zhang and Vardan Papyan. OATS: Outlier-Aware Pruning Through Sparse and Low
Rank Decomposition, September 2024. URL http://arxiv.org/abs/2409.13652.
arXiv:2409.13652 [cs].

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. Advances in
neural information processing systems, 31, 2018.

13

http://link.springer.com/10.1007/978-3-319-91041-3
http://link.springer.com/10.1007/978-3-319-91041-3
http://arxiv.org/abs/2409.13652

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The appendix is organized into multiple sections, with each section offering additional details.

A Theoretical Analysis 14

A.1 Additional Lemmas . 14

A.2 Proofs of Theorems . 15

A THEORETICAL ANALYSIS

In this section, we provide the proofs for the theorems presented in the main text and additional
lemmas.

A.1 ADDITIONAL LEMMAS

In this subsection, we present additional lemmas that are useful for the proofs of the theorems in the
main text.

Lemma 1 (Mask Norm Inequality I) For any matrix M ∈ Rm×n and binary mask P ∈
{0, 1}m×n, the following inequality holds:

∥P ⊙M∥F ≤ ∥M∥F (11)

Proof 1 (Proof of Lemma 1) Let mij and pij be the elements of M and P respectively. By defini-
tion of the Frobenius norm and element-wise multiplication:

∥P ⊙M∥2F =

m∑
i=1

n∑
j=1

(pijmij)
2 =

m∑
i=1

n∑
j=1

p2ijm
2
ij (12)

Since P is a binary mask, pij ∈ {0, 1}, which means p2ij = pij . Therefore:

∥P ⊙M∥2F =

m∑
i=1

n∑
j=1

pijm
2
ij ≤

m∑
i=1

n∑
j=1

m2
ij = ∥M∥2F (13)

Taking the square root of both sides preserves the inequality:
∥P ⊙M∥F ≤ ∥M∥F (14)

□

Proof 2 (Proof of Lemma 2) Let mij and pij be the elements of M and P respectively. By defini-
tion of the Frobenius inner product and element-wise multiplication:

⟨M ,P ⊙M⟩F =

m∑
i=1

n∑
j=1

mij(pijmij) =

m∑
i=1

n∑
j=1

pijm
2
ij ≤

m∑
i=1

n∑
j=1

m2
ij = ⟨M ,M⟩F (15)

□

Lemma 2 (Mask Norm Inequality II) For any matrix M ∈ Rm×n and binary mask P ∈
{0, 1}m×n, the following inequality holds:

⟨M ,P ⊙M⟩F ≤ ⟨M ,M⟩F (16)

Lemma 3 (Mask Norm Equality I) For any matrix M ∈ Rm×n and binary mask P ∈ {0, 1}m×n,
the following equality holds:

⟨M ,P ⊙M⟩F = ∥P ⊙M∥2F (17)

Proof 3 (Proof of Lemma 3) Because P is a binary mask, we have p2ij = pij . Therefore, we can
rewrite the Frobenius inner product as:

⟨M ,P ⊙M⟩F =

m∑
i=1

n∑
j=1

mij(pijmij) =

m∑
i=1

n∑
j=1

p2ijm
2
ij = ∥P ⊙M∥2F (18)

□

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 4 (Mask Norm Equality II) For any matrix A,B ∈ Rm×n and binary mask P ∈
{0, 1}m×n, the following equality holds:

⟨P ⊙A,P ⊙B⟩F = ⟨A,P ⊙B⟩F = ⟨P ⊙A,B⟩F (19)

Proof 4 (Proof of Lemma 4) By definitions of Frobenius inner product and element-wise multipli-
cation, we have:

⟨P ⊙A,P ⊙B⟩F =

m∑
i=1

n∑
j=1

(pijaij)(pijbij) =

m∑
i=1

n∑
j=1

p2ijaijbij (20)

⟨A,P ⊙B⟩F =

m∑
i=1

n∑
j=1

aij(pijbij) =

m∑
i=1

n∑
j=1

pijaijbij (21)

⟨P ⊙A,B⟩F =

m∑
i=1

n∑
j=1

(pijaij)bij =

m∑
i=1

n∑
j=1

pijaijbij (22)

For binary mask, p2ij = pij , so the three expressions are equivalent. □

A.2 PROOFS OF THEOREMS

Proof 5 (Proof of Theorem 1) We prove this by induction. For t = 0, S(0) = W ⊙ P , so the
property holds. Assume the property holds for iteration t, i.e., S(t) = S(t) ⊙ P . We need to prove
that it holds for iteration t+ 1, i.e., S(t+1) = S(t+1) ⊙ P . Therefore, we have:

S(t+1) = S(t) + P ⊙
{
Ur(t):

(
L(t)

)
Σr(t):

(
L(t)

)
V ⊤
r(t):

(
L(t)

)}
= (S(t) ⊙ P) + P ⊙ (SVD terms) (applying induction hypothesis)

= P ⊙ (S(t) + SVD terms) = P ⊙ S(t+1)

Thus, we have shown that if the property holds for t, it also holds for t+ 1. Combined with the base
case, this completes the induction proof, showing that S(t) = S(t) ⊙ P for all t. □

Proof 6 (Proof of Theorem 2) Let S∗ and L∗ be the limits of S(T) and L(T) as T → ∞, respec-
tively. We will show that these limits exist and satisfy the stated properties. First, note that for any t,
S(t) = S(t) ⊙ P by construction of the algorithm. Let ϵt = ∥S(t+1) − S(t)∥F . We need to show
that limT→∞ ϵT−1 = 0. At each iteration t, we have:

S(t+1) = S(t) + P ⊙
{
Ur(t):

(
L(t)

)
Σr(t):

(
L(t)

)
V ⊤
r(t):

(
L(t)

)}
(23)

= S(t) + P ⊙
(
W − S(t)

)
r(t):

(24)

where (·)r(t): denotes the truncated SVD reconstruction from r(t) onwards. From the properties of
SVD, we can express the difference between the truncated SVDs as:(

W − S(t)
)
r(t):
−
(
W − S(t)

)
k:
=

k∑
i=r(t)+1

σ
(t)
i u

(t)
i v

(t)
i

⊤
, (25)

where σ(t)
i , u(t)

i , and v
(t)
i are the i-th singular value and corresponding left and right singular vectors

of W − S(t). The Frobenius norm of this difference is:∥∥∥∥∥∥
k∑

i=r(t)+1

σ
(t)
i u

(t)
i v

(t)
i

⊤

∥∥∥∥∥∥
2

F

=

k∑
i=r(t)+1

σ
(t)
i

2
. (26)

While we cannot directly guarantee that this sum approaches zero as t increases, we can bound it as:

k∑
i=r(t)+1

σ
(t)
i

2
≤

(
k − r(t)

)(
σ
(t)

r(t)+1

)2

. (27)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

As t → T − 1, r(t) → k, so k − r(t) → 0. Thus, for any ϵ > 0, there exists a T0 such that for all

t > T0, we have
(
k − r(t)

) (
σ
(t)

r(t)+1

)2

< ϵ2. Now, considering the effect of the binary mask P ,
according to Lemma. 1, we have:∥∥∥P ⊙ ((

W − S(t)
)
r(t):
−
(
W − S(t)

)
k:

)∥∥∥
F
≤

∥∥∥(W − S(t)
)
r(t):
−

(
W − S(t)

)
k:

∥∥∥
F
< ϵ

(28)
Setting δ = ϵ, we have shown that for any δ > 0, there exists a T0 such that for all t > T0:∥∥∥P ⊙ (

W − S(t)
)
r(t):
− P ⊙

(
W − S(t)

)
k:

∥∥∥
F
< δ (29)

This implies that for t > T0:
ϵt = ∥S(t+1) − S(t)∥F < δ (30)

Since δ can be arbitrarily small, we conclude that limT→∞ ϵT−1 = 0. This shows that the sequence
{S(T)} is Cauchy and therefore converges to some limit S∗. Since W = S(t) + L(t) for all t,
and S(T) converges to S∗, it follows that L(T) must converge to L∗ = W − S∗. Finally, since
S(t) = S(t) ⊙ P for all t, we have S∗ = S∗ ⊙ P . Thus, the algorithm converges to the solution
(S∗,L∗) as T →∞, satisfying all the stated properties. □

Proof 7 (Proof of Theorem 3) Let E(t) = W −
(
S(t) +L

(t)
k

)
=

(
L(t)

)
k:

be the error at iteration
t. From the update rule in Eq.(7), we have:

E(t+1) = W −
(
S(t+1) +L

(t+1)
k

)
(31)

= W −
(
S(t) + P ⊙

(
L(t)

)
r(t):

+L
(t+1)
k

)
(32)

= L(t) − P ⊙
(
L(t)

)
r(t):
−L

(t+1)
k (33)

Let’s denote A = P ⊙
(
L(t)

)
r(t):

. Then E(t+1) = (L(t) −A)−L
(t+1)
k . By construction, L(t+1)

k is
the best rank-k approximation of L(t+1) = L(t) −A. Therefore:∥∥∥E(t+1)

∥∥∥
F
=

∥∥∥(L(t) −A
)
−L

(t+1)
k

∥∥∥
F
≤

∥∥∥(L(t) −A
)
−L

(t)
k

∥∥∥
F

(34)

Now, L(t) −L
(t)
k = E(t), so we have:∥∥∥E(t+1)

∥∥∥2
F
≤

∥∥∥(L(t) −A
)
−L

(t)
k

∥∥∥2
F
=

∥∥∥(L(t) −L
(t)
k)−A

∥∥∥2
F

(35)

=
∥∥∥E(t) −A

∥∥∥2
F
=

∥∥∥E(t)
∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),A

〉
F

(36)

According to Lemma 2 and A = P ⊙
(
L

(t)

r(t):k
+E(t)

)
, we have:〈

E(t),A
〉
F
=

〈
E(t),P ⊙

(
L

(t)

r(t):k
+E(t)

)〉
F

(37)

=
〈
E(t),P ⊙L

(t)

r(t):k

〉
F
+

〈
E(t),P ⊙E(t)

〉
F

(38)

=
〈
E(t),P ⊙L

(t)

r(t):k

〉
F
+

∥∥∥P ⊙E(t)
∥∥∥2
F

(39)

The last equality follows from Lemma 3. Substituting this back into our earlier inequality Eq.(36):∥∥∥E(t+1)
∥∥∥2
F
≤

∥∥∥E(t)
∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),A

〉
F

(40)

≤
∥∥∥E(t)

∥∥∥2
F
+ ∥A∥2F − 2

〈
E(t),P ⊙L

(t)

r(t):k

〉
F
− 2

∥∥∥P ⊙E(t)
∥∥∥2
F

(41)

=
∥∥∥E(t)

∥∥∥2
F
+
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
+

∥∥∥P ⊙E(t)
∥∥∥2
F
+
hhhhhhhhhhhh
2
〈
P ⊙L

(t)

r(t):k
,P ⊙E(t)

〉
F

hhhhhhhhhhh
−2

〈
E(t),P ⊙L

(t)

r(t):k

〉
F
− 2

∥∥∥P ⊙E(t)
∥∥∥2
F

(by Lemma. 4) (42)

=
∥∥∥E(t)

∥∥∥2
F
+
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
−

∥∥∥P ⊙E(t)
∥∥∥2
F

(43)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

As t→ T − 1, r(t) → k, so
∥∥∥P ⊙L

(t)

r(t):k

∥∥∥2
F
→ 0. Therefore, there exists a time step T0 such that

for all t > T0,
∥∥E(t+1)

∥∥2
F
−
∥∥E(t)

∥∥2
F
≤ −

∥∥P ⊙E(t)
∥∥2
F
≤ 0. □

Proof 8 (Proof of Theorem 4) At iteration t, we have W = S(t) + L(t) by construction. Let
L(t) = UΣV ⊤ be the SVD of L(t). Then L

(t)
k = U:kΣ:kV

⊤
:k is the best rank-k approximation of

L(t). The error can be expressed as:∥∥∥W −
(
S(t) +L

(t)
k

)∥∥∥
F
=

∥∥∥(S(t) +L(t)
)
−
(
S(t) +L

(t)
k

)∥∥∥
F

(44)

=
∥∥∥L(t) −L

(t)
k

∥∥∥
F
= ∥Uk:Σk:V

⊤
k: ∥F (45)

=

√√√√ r∑
i=k+1

σ2
i

(
L(t)

)
≤

√
(r − k)σk+1

(
L(t)

)
(46)

□

17

	Introduction
	Preliminary
	The General Framework of Layer-Wise Pruning
	Singular Value Decomposition

	Method
	Theoretical Analysis

	Experiment
	Experimental Setup
	Effectiveness of Low-Rank Refinement
	Iterative Weight Update Analysis

	Related Work
	Conclusion
	Theoretical Analysis
	Additional Lemmas
	Proofs of Theorems

