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ABSTRACT

This paper considers unsupervised threshold learning, a practical yet under-
researched module of anomaly detection (AD) for image data. AD comprises
two separate modules: score generation and threshold learning. Most existing
studies are more curious about the first part. It is often assumed that if the scoring
module is good, estimating an accurate threshold is within easy reach. However, we
argue that in the context of computer vision, some challenges in high-dimensional
space lead threshold estimation be a non-trivial problem. In this paper, we leverage
the inherent difference between normal instances and anomalies by ranking their
anomaly score, which shows a phenomenon that involves two distinct trends. We
term it as the "L"-trend prior. With that finding, we utilize an adaptive polyno-
mial regression model to determine the threshold. Unlike the classic threshold
learners which rely on enough training samples or statistical assumptions, this
method is plug-and-play that can be implemented into different anomaly score
function among various datasets. Also, the evaluation results demonstrate an
obvious improvement.
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Figure 1: Comparison with classic statistical methods: MAD and "three"-sigma rule. For
STL-10, (a) refers to normal+ID-anomaly and (b), (c) refers to combining normal and two OOD
anomalies respectively. Obviously, the statistical methods tend to predict a loose threshold with lower
Precision while our predicted threshold can maintain the trade-off between Precision and Recall.

1 INTRODUCTION

Visual anomaly detection may be the key to numerous vision problems like defect detection (Li et al.,
2021; Bergmann et al., 2019), disease diagnosis (Ukil et al., 2016; Lenning et al., 2017), and automatic
driving (Luo et al., 2021). Interestingly, while our ability to quantify anomalousness has improved
significantly, (Lai et al., 2019; Li et al., 2022; Lin et al., 2022), there are few examples of anomaly
detectors being deployed on the real-world problems. Our paper argues that it is insufficient to merely
quantify anomalousness. To be effective, the anomaly detector must also determine a threshold
between normal and anomalous instances. This is trivial in many applications but surprisingly
difficult in visual anomaly detection.

Threshold learning performs like a classifier on a series of continuous or discrete variables. It is a
crucial module in segmentation (Bergmann et al., 2019); Re-ID (Wang et al., 2020); face verification
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(Wang et al., 2022; Gera et al., 2022). To our best knowledge, little attention has been paid to visual
anomaly detection. We believe the thresholding problem arises because within-class variations are
especially large in computer vision problems, making anomalies only slightly more different from
the normal instance, than normal instances are from each other. For example, the variation among
cats is so large that the difference between a dog and a cat, is only slightly greater than the difference
between two breeds of cats, making it hard to define a threshold for what constitutes “too anomalous”.

Within anomaly detection, thresholding can be considered as a subsequent technique after score
generation. With the rapid progress of deep neural networks, which gives us more discriminative
feature embedding, recent anomaly detectors have reached faithful score functions. However, it is
still challenging to exploit the threshold since the boundary between normal instances and anomalies
is ambiguous. In many cases, thresholds are so badly estimated that Precision or Recall is almost
zero. As the anomaly ratio is usually less than 0.01 (Berg et al., 2019), there is an implication that the
learned threshold may mistakenly involve many normal instances.

We address this problem by understanding the inherent distinctiveness of anomalous instances. It
is troublesome that cover the given score function Z(·) into mathematics. For example, the "three-
sigma" rule (Leys et al., 2013; Bakar et al., 2006) assume the normality is Standard Gaussian
Distribution, usually fails in realistic scenarios (Li et al., 2022), illustrated in Figure 1. However,
children can easily recognize anomalies from the contaminated dataset, even if they are not taught
before. We wonder this because human cognition can detect something distinct in a complex scene,
which provides us with a novel perspective that an anomalous instance is not only different from
normal observations but varies from other anomalies. Most previous works (Schölkopf et al., 2001;
Liu et al., 2008; Lin et al., 2021) only focus on the first cue while we will concentrate on both of
them. Thus, threshold learning can be quite easy.

How to view the score function is crucial. We first propose a sort transformation, which projects
the anomaly score into a two-dimensional (x-y) space. The y-component is the instance’s anomaly
score while the x-component refers to its ranking index. Given an accurate scoring module Z(·),
the anomalies A will have higher value: Z(A) > Z(N ). Besides, anomalies have higher variation:
var(Z(A)) > var(Z(N )) and much lower density: |A| ≪ |N |. By leveraging two natural
properties, we observe: sorted Z(N ) varies slightly on y-component and varies exceedingly on
x-component while sorted Z(A) performs on the contrary. If this empirical hypothesis is correct,
the sort transform will cause a "L"-trend. As the normal data N form a long quasi-horizontal line,
which is the base of the "L". And A will create a vertical branch of the "L".

"L"-trend prior describes there exist two disparate patterns on the contaminated data, which inspires
us to fit a naive polynomial regressor to the normal pattern. However, the polynomial degree is
uncertain. To automatically learn it without tuning any hyperparameter, we propose a constrained
optimizer. The objective is predicting the anomalous set contains a smaller number of instances but
with higher variation. Our proposed method achieves state-of-the-art performance, moreover, it is a
novel perspective for analyzing unsupervised data distribution. We hope it can contribute to further
research domains like meta-learning. The main contributions of this paper are summarised as follows:

• We first suggest threshold learning be an important module for unsupervised visual AD.
• We introduce a new perspective: "L"-trend prior, for a better understanding of the anomalous

procedure, making the further methods close to real application domains.
• We propose a data-adaptive regressor to fit any anomaly score function, then learn the threshold. It

shows an obvious increase compared with previous threshold learners.

2 RELATED WORK

2.1 UNSUPERVISED VISUAL ANOMALY DETECTOR

Unsupervised visual anomaly detectors can be categorized into two approaches: classical models
and deep learners. Classical anomaly detection models are mostly manifold-based approaches that
attempt to describe the underlying normal pattern within the data through some form of statistical
technique. OC-SVM (Schölkopf et al., 2001) which estimates a hypersphere containing most of the
normal samples in the input space with kernel tricks and Local Outlier Factor (LOF) (Breunig et al.,
2000) which determines anomalies via a distance to a local neighborhood of instances are popular
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example of a classical model approach. The distance-based approach (Lin et al., 2022) leverages
the fact that normal instances tend to be close together, while anomalies are far apart even from
their closest neighbors with respect to some distance metric. With the rapid progress of deep neural
networks, a series of representation-based methods have also been proposed. They tend to learn
the discriminative features in the hidden space with auto-encoder such as DRAE (Xia et al., 2015);
RDAE (Zhou & Paffenroth, 2017) and RSRAE (Lai et al., 2019).

2.2 THRESHOLD LEARNER

Threshold Learning is an important module of various computer vision fields such as segmentation
(Bergmann et al., 2019), Re-ID (Wang et al., 2020) and face verification (Wang et al., 2022; Gera et al.,
2022). The above-mentioned utilizes the normal samples to decide the threshold (boundary). While it
is common to approach this task in a supervised manner, the reality is for most practical use cases,
the normal instances are not available which makes unsupervised anomaly detection challenging. As
such to tackle this task in an unsupervised manner, we split the previous threshold learning methods
of unsupervised anomaly detection into two sections: detection-based and detection-free.

Detection-Based. Some classical anomaly detectors such as OC-SVM (Schölkopf et al., 2001), IF
(Liu et al., 2008), Shell (Lin et al., 2021) have their built-in threshold learning models, so they can
predict both the anomaly score and label at the same time. Alternatively, the outlier removal model
DRAE (Xia et al., 2015) produces the discriminative anomaly score function and then implements
clustering techniques to decide the threshold.

Detection-Free. The detection-free threshold learner most is based on statistical analysis that can be
utilized for any given anomaly score. The representative works are "three-sigma" rule (Leys et al.,
2013; Bakar et al., 2006), MAD (Iglewicz & Hoaglin, 1993) and RANSAC (Lai et al., 2019). MAD
is the simplest threshold that measures how to spread out a set of data, while RANSAC is the robust
linear fitting method, which also implements the MAD as the threshold of fitted value.

3 PROBLEM STATEMENT

Traditionally, the objective of anomaly detection is to learn a score function Z(·), which maps each
instance xi ∈ X to an anomaly score Z(xi) that refers to the likelihood of xi being anomalous. For
example, if we choose the euclidean distance (Squared L2-norm) as the score generator, the function
is: Z(xi) = ∥xi − µX∥2. After that, the threshold is decided by the following rule:

g(xi) =

{
normal, Z(xi) < τ
anomalous, Z(xi) ≥ τ

(1)

g(·) is the indicator, τ is the threshold, which helps us to predict the labels [g1, g2, · · · ], where
gi = normal or anomalous. Thus, we suggest the general anomaly detection pipeline involves two
separated modules: score generation and threshold learning.

[x1, x2, · · · ]
score generation−−−−−−−−−−−−−→

score function:Z(·)
[Z(x1),Z(x2), · · · ]

thresholding−−−−−−−−→
threshold:τ

[g1, g2, · · · ] (2)

In this paper, we will concentrate on threshold learning given any kind of anomaly score function. We
believe an accurate threshold can split the anomalies well from the normal set, achieving a trade-off
between Precision and Recall, approaching the maximum possible F1_score. Moreover, it needs the
generalization ability with different anomaly score functions among various datasets.

4 "L"-TREND PRIOR

4.1 SORT TRANSFORMATION

In Figure 2 (a), it is difficult to explore the normality in raw anomaly score function. To address
this problem, we propose a sort-transformation Z̃ = sort(Z). It projects Z into a two-dimensional
(x-y) space. The sort-transform firstly ranks instances by their anomaly scores. It then represents
each instance as a two-dimensional data point, the y-component being the instance’s anomaly score

3



Under review as a conference paper at ICLR 2023

and the x-component refers to its ranking index. In this way, the sorted anomaly score function 1is
monotonically increasing. Obviously, it helps better visualize normal behavior, shown in Figure 2 (b).

 

(a) (b)

best threshold

ours threshold

best threshold

Figure 2: Visualization of different types of the anomaly score function. (a) is the raw anomaly
score function, it is quite hard to define the boundary. (b) means the determination of the threshold
between normal data and anomalies is possible if we sort the distance. We can apply a polynomial
curve to fit the normal pattern which allows the abnormal group to be detected.

4.2 UNDERSTANDING THE DISTRIBUTION

Ideally, there exist a distinctive-shell that almost-surely encapsulates all normal instances N =
{xi|Z(xi) = const} and excludes almost-all anomalies A = {xi|Z(xi) > const}, which indicates
the normal data share the same function value (Lin et al., 2021). In practice, the assumption is not
realistic. Assuming the major class is "airplane" if there are no anomalies from other classes, the
"wing", and "cockpit" will be relatively more anomalous-like than other airplane images. Therefore,
normality has sub-clusters that cannot be covered with a single mechanism. In other word, it is non-
linear. Within normal set N , we denote these anomalous-like instances as V and the other as U , so
N = U ∪V . V share the congruous semantic attributes with the real normal images but heterogeneous
feature embedding, resulting in the variation of normal anomaly score set Z(N ) = Z(U) ∪ Z(V).
Most previous anomaly detectors tend to explore the normality. Drawn a lesson from the above
analysis, we suggest the anomalous pattern also should be considered. We believe that anomalies are
not only different from normal instances but also vary from other anomalous data. For example, a
diagnosed medical disease can have multiple etiologies. The distinction can be reflected in the score
function, where Z(A) demonstrate higher variance and lower density than Z(N ).

4.3 "L"-TREND

Sort transform will cause contaminated data to form a "L"-trend. As the majority normal samples are
similar to each other and amount accounts for the majority of the normal set, they will be concentrated
at a specific score and thus form a long quasi-horizontal line, which is the base of the "L". While noisy
instances are different from each other and rare, they will create a vertical branch of the "L"-trend.

"L"-trend prior explains there are two natural different patterns in the contaminated data. Thus,
it’s trivial to generalize the prior from Z(N ) to Z(N ∪ A). As var(Z(A)) > var(Z(N )) and
|A| ≪ |N |, thus var(Z(A))

|A| ≫ var(Z(N ))
|N | . Within the normality Z(N ) = Z(U) ∪ Z(V), Z(V)

shows a sharp ascending trend compared with Z(U) while in the whole target dataset, Z(A) shows a
sharper increasing trend compared with Z(N ). This gives us a blessing that fit the normality with a
constrained optimization problem.

1Unless otherwise stated, the term anomaly score function of visualization is used to refer to Squared
L2-norm, which is naive and intuitive.
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Figure 3: A new prospective of unsupervised threshold learning: "L"-trend prior. (a) shows the
"L"-trend prior of normality. The majority U are gathering together, form a long quasi-horizontal
line, which is the base of the "L". As noisy normal instances A are different from each other, they
will have a variety of different scores, and thus create a vertical branch. (b) demonstrate the natural
properties of anomalies: sparse and higher anomaly likelihood. (c) is the visualization of the whole
target dataset, which proves the prior knowledge can be generalized and robust.

5 METHODOLOGY

5.1 POLYNOMIAL CURVE FITTING

Inspired by the "L"-trend prior, the normality is non-linear but varies smoothly compared to their
anomaly counterparts. So we propose a robust polynomial regression with an upper bound to identify
the nonlinear normality distribution. We construct a polynomial curve yd = β0 +β1x+β2x

2 + · · ·+
βdx

d + ε to fit the objective: Z̃ . The parameters β0, · · · , βd, ε are automatically learned via least
squares method. With the degree list {d1, d2, · · · , dmax}, we have a series of candidate polynomial
curves {y1, y2, · · · }. For stability, the maximum degree is capped at 5. For each fitted curve, the
threshold is determined as:

τd = max(yd) (3)

5.2 AVERAGE SEPARABILITY

As there is no supervision, we need to evaluate how well the polynomial regressor fits normality.
After determining the threshold τ , we have the predicted normal data N = {xi|Z(xi) < τ} and the
anomalies A = {Z(xi)|Z(xi) ≥ τ}. We define the separability s of each set as:

s(N ) = var(Z(N )), s(A) = var(Z(A)) (4)

Thus, the average separability s̄ is:

s̄(N ) =
s(N )

|N |
=

var(Z(N ))

|N |
, s̄(A) =

s(A)

|A|
=

var(Z(A))

|A|
(5)

We wish the predicted anomalous set contains fewer instances while higher variation. So the accuracy
of normality fitting Acc is proportional to the compactness Comp of separability.

Acc ∝ var(Z(A))

var(Z(N ))
∗ |N |
|A|

=

s(A)
|A|
s(N )
|N |

=
s̄(A)

s̄(N )
= Comp (6)

5.3 DEGREE OPTIMIZATION

For each polynomial regressor with each degree d, the predicted normal and anomalous set is
Nd = {xi|Z(xi) < τd}, Ad = {xi|Z(xi) ≥ τd}. So we choose the optimal polynomial degree with
the following rule. The only parameter in our method is the degree of the polynomial curve. To find
the optimal degree d∗, we utilize the following rule:

d∗ =

{
argmax

d
Compd

s.t. d ≤ dmax

(7)
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Based on Equations (6) and (7), the automatically learned threshold is:

τ∗ = max(yd∗) (8)

Data-Type Dataset-Name Description Feature # Instance/class

Normal-Dataset

MNIST LeCun & Cortes, 2010 hand-wrcitten digit Raw Pixel ∼ 6,000
Fashion-MNIST Xiao et al., 2017 fashion product Raw Pixel 6,000

STL-10 Coates et al., 2011 subset of ImageNet ResNet-50 1,300
CIFAR-10 Krizhevsky et al., 2009 from ImageNet ResNet-50 6,000

MIT-Places-Small Zhou et al., 2017 subset of MIT-Places ResNet-50 ∼ 3,000

OOD Anomaly Internet-STL10 Lin et al., 2021 web image ResNet-50 ∼ 580
Flickr-11k Van Miltenburg, 2016 sentence-based image ResNet-50 ∼ 11,000

Table 1: Summary statistics of all benchmark datasets and OOD anomalies. The OOD anomaly
means the abnormal data comes from the out-of-distribution dataset: Internet-STL10 and Flickr-11k.

Dataset: Avg (STL-10, CIFAR-10, MIT-Places-Small)
Feature Thresholding Algorithm Anomaly Score Precision Recall F1-score F1-ratio

Pretrained

Shell Lin et al., 2021 − 0.051 0.750 0.095 0.563
Shell-re Lin et al., 2021 − 0.013 0.979 0.025 0.628

OC-SVM Schölkopf et al., 2001 − 0.020 0.981 0.038 0.089
IF Liu et al., 2008 − 0.277 0.119 0.089 0.174

RANSAC Fischler & Bolles, 1981

Squared L2-norm 0.220 0.683 0.173 0.484
OC-SVM 0.138 0.737 0.226 0.495

ECOD Li et al., 2022 0.095 0.631 0.162 0.508
ResNet-50 RSRAE Lai et al., 2019 0.134 0.831 0.229 0.514

LVAD Lin et al., 2022 0.267 0.601 0.313 0.581

Ours

Squared L2-norm 0.484 0.423 0.451 0.843
OC-SVM 0.496 0.456 0.471 0.864

ECOD Li et al., 2022 0.322 0.291 0.301 0.738
RSRAE Lai et al., 2019 0.392 0.394 0.389 0.667
LVAD Lin et al., 2022 0.521 0.434 0.464 0.864

Dataset: Avg (MNIST, Fashion-MNIST)
Feature Thresholding Algorithm Anomaly Score Precision Recall F1-score F1-ratio

Raw-pixel

Shell Lin et al., 2021 − 0.030 0.489 0.057 0.647
Shell-re Lin et al., 2021 − 0.011 0.959 0.023 0.834

OC-SVM Schölkopf et al., 2001 − 0.019 0.949 0.036 0.124
IF Liu et al., 2008 − 0.055 0.403 0.100 0.511

DRAE Xia et al., 2015 − 0.301 0.429 0.213 0.574

RANSAC Fischler & Bolles, 1981

Squared L2-norm 0.071 0.706 0.126 0.438
OC-SVM 0.083 0.713 0.147 0.437

RSRAE Lai et al., 2019 0.046 0.656 0.085 0.376
LVAD Lin et al., 2022 0.285 0.486 0.222 0.526

Ours

Squared L2-norm 0.317 0.287 0.299 0.783
OC-SVM 0.365 0.353 0.355 0.816

RSRAE Lai et al., 2019 0.272 0.251 0.261 0.732
LVAD Lin et al. (2022) 0.440 0.335 0.355 0.836

Table 2: Average Precision, Recall, F1_score and F1_ratio per method on two data categories:
ResNet-50 feature (STL-10, CIFAR-10 and MIT-Places-Small) and Raw pixel (MNIST and Fashion-
MNIST). F1_score is important to justify whether a threshold learner is good or not, F1_ratio is
compared with the optimal threshold (Ground Truth) given the score function. Our method holds the
SOTA results both of them in various datasets. The best-performing method is in bold.
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Dataset: STL-10 (Anomaly: Internet-STL10)
Thresholding Algorithm Anomaly Score Precision Recall F1-score F1-ratio

Shell Lin et al., 2021 − 0.060 0.869 0.112 0.483
Shell-re Lin et al., 2021 − 0.012 0.977 0.025 0.714

OC-SVM Schölkopf et al., 2001 − 0.020 1.000 0.039 0.044
IF Liu et al., 2008 − 0.478 0.154 0.219 0.356

RANSAC Fischler & Bolles, 1981

Squared L2-norm 0.178 0.962 0.297 0.328
OC-SVM 0.147 0.977 0.254 0.286

ECOD Li et al., 2022 0.127 0.769 0.216 0.461
RSRAE Lai et al., 2019 0.201 1.000 0.332 0.426
LVAD Lin et al., 2022 0.408 0.792 0.466 0.566

Ours

Squared L2-norm 0.837 0.831 0.819 0.929
OC-SVM 0.870 0.854 0.860 0.959

ECOD Li et al., 2022 0.471 0.431 0.448 0.883
RSRAE Lai et al., 2019 0.749 0.769 0.755 0.963
LVAD Lin et al., 2022 0.814 0.715 0.745 0.896

Dataset: STL-10 (Anomaly: Flickr-11k)
Thresholding Algorithm Anomaly Score Precision Recall F1-score F1-ratio

Shell Lin et al., 2021 − 0.064 0.938 0.120 0.330
Shell-Re Lin et al., 2021 − 0.013 0.992 0.025 0.635

OC-SVM Schölkopf et al., 2001 − 0.020 1.000 0.039 0.040
IF Liu et al., 2008 − 0.533 0.092 0.149 0.282

RANSAC Fischler & Bolles, 1981

Squared L2-norm 0.184 1.000 0.308 0.317
OC-SVM 0.155 1.000 0.265 0.273

ECOD Li et al., 2022 0.159 0.962 0.270 0.404
RSRAE Lai et al., 2019 0.201 0.985 0.332 0.362
LVAD Lin et al., 2022 0.525 0.792 0.476 0.506

Ours

Squared L2-norm 0.923 0.977 0.948 0.978
OC-SVM 0.922 0.962 0.940 0.974

ECOD Li et al., 2022 0.535 0.685 0.585 0.854
RSRAE Lai et al., 2019 0.818 0.938 0.872 0.945
LVAD Lin et al., 2022 0.863 0.808 0.815 0.868

Table 3: The performance of threshold learning with Out-of-Distribution anomalies (Internet-STL10
and Flickr-11k).

6 EVALUATION

6.1 DATA PREPARATION

For gray-scale datasets: MNIST and Fashion-MNIST, we utilize the rasterized pixels as image
features and we choose ResNet-50 (He et al., 2016) as the feature extractor that is pre-trained on
ImageNet (He et al., 2019) for other RGB datasets, The statistics details are shown in Table 1.
There are two creation schemes for the target dataset: (I) Normal+In-Distribution (ID) anomaly: we
designate every single class in the dataset in every round as normal data, while randomly choosing
anomalies from the remaining, then combining them. (II) Normal+Out-Of-Distribution (OOD)
anomaly: the anomalies are coming from Flickr-11k and Internet STL-10, and use the same protocol
as (I). The above data mixing is applied to all datasets.

6.2 EVALUATION METRIC

Adopting Area Under the Receiver Operating Characteristic curve (AUROC) (Fawcett, 2006) is
common in score generation evaluation, but it cannot evaluate the threshold learning performance.
Besides the current decision metrics: Precision, Recall, F1_score, we propose a new evaluation
scheme called F1_ratio to achieve fair comparison as there are seldom perfect anomaly detectors.
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F1_ratio =
F1_score

best F1_score
=

F1_score
max{F1_scoreτ ,∀τ ∈ Z}

(9)

6.3 UNSUPERVISED THRESHOLD LEARNER

• OC-SVM: proposed by Schölkopf et al., 2001. The one-class support vector machine aims to learn
a hypersphere containing most of the normal samples in the input space with kernel tricks. Samples
outside of the normal group are deemed anomalous.

• IF: proposed by Liu et al., 2008. Isolation forest is a classification algorithm based on a tree
structure. It can learn the distribution of a sample and then separate this sample from other types of
samples.

• Shell, Shell-Re: proposed by Lin et al., 2021. Shell theory suggests there exist naturally occurring
class boundaries that are defined in terms of the mean-variance of each class. Those instances
outside of the normal boundary are considered anomalous.

• RANSAC: proposed by Fischler & Bolles, 1981. RANdom SAmple Consensus is a resampling
method that generates candidate solutions by choosing the minimum number of instances required
to estimate parameters. We implement RANSAC with a sorted anomaly score as a robust linear
regression model, the threshold is defined by the MAD (Median Absolute Deviation) strategy.

• DRAE: proposed by Xia et al., 2015. DRAE implements the clustering model after a discriminative
autoencoder is learned, we can apply any clustering algorithm (such as K-Means) to partition
reconstruction errors into two clusters. Samples in the cluster with a large average error are
identified as outliers.

(a) (b) (c)

Figure 4: Threshold learning with true normalization. If normalized with the mean of the whole
dataset (true normalization), the AUC will dramatically be increased, and the results of our method
also improved, close to the best threshold manually computed. So with a more accurate anomaly
score function, our threshold learner becomes more powerful.

6.4 RESULTS ANALYSIS

We show the performance of our method evaluated on two kinds of target dataset schemes: ID-
anomaly and OOD-anomaly respectively with various anomaly score functions among a series of
benchmarks. The current threshold learners often rely on statistical assumptions or fixed thresholds.
From our view, these assumptions are not robust, especially in high-dimensional space. So, most of
them predict a loose threshold, that is the predicted anomalous set involves many normal instances,
resulting in a high recall score but low precision score, illustrated in the third and fourth columns in
Table 2 and 3. Our proposed method outperforms all existing threshold learners, achieve the trade-
off between Precision and Recall, thus demonstrate a dramatic increase on F1-score and F1-ratio.
Besides the classical anomaly detection task with the in-dataset anomalies, we believe in practice, the
anomalies will come from other out-of-dataset distributions. In Table 3, our method even close to
perfection. More results with different anomaly score functions can be found in the Appendix.

A good anomaly score function is critical for threshold learning, we also test the performance of
our method with the true normalized score generator. With a more accurate score function, our
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performance also shows dramatic improvement in Figure 4. Moreover, the threshold learner should be
available to recognize different categories of anomalous data. If there is no anomaly, our method can
continuously identify the more anomalous-like instances until convergence (no anomaly detected),
illustrated in Figure 5.

threshold
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Figure 5: Visualization of our method on no anomaly scene. The empirical normal set involves
some anomalous-like instances, shown on two datasets MNIST and STL-10. Our method can avoid
overfitting to the normality. It can recursively defect the more anomalous-like data and clean the
normal set until convergence.

6.5 ABLATION STUDY

In this section, we first explore two different deep feature extractors: ResNet-50 and Swin-Transformer
perform for anomaly detection. In Table 4, our threshold learning method can maintain the perfor-
mance with two different features. In Table 5, we study the effect of the degree optimization of the
polynomial curve. Compared with a non-degree optimization, our method shows about 0.5 and 0.2
(F1_ratio) improvement on STL-10 and CIFAR-10 respectively.

Feature Extractor F1-ratio

ResNet-50 He et al., 2016 0.761
Swin-Transformer Liu et al., 2021 0.784

Table 4: Ablation Study 1: the impact of feature
extraction on CIFAR-10.

Method STL-10 CIFAR-10

Linear Regression 0.377 0.551
Ours 0.897 0.773

Table 5: Ablation Study 2: the impact of polyno-
mial degree optimization.

7 CONCLUSION

This paper suggests the further anomaly detection domain should pay attention to threshold learning,
and make it more useful in real applications. We introduce a new perspective for unsupervised
anomaly detection called "L"- trend prior, which reflects the inherent variation. Based on the finding,
we propose a data-adaptive and robust polynomial fitting algorithm to address the problem. The
experimental results show that our method outperforms the traditional methods. It strengthens the
robustness of the threshold and makes the selection process more tractable.

Moreover, we study the inherent coherence of normality and the contrast with anomalies, which
demonstrate an unsupervised data distribution prior, we hope it can be further beneficial to other
computer vision domains like few-shot learning.
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Dataset Algorithm Anomaly Score Precision Recall F1-score F1-ratio

STL-10

Shell − 0.054 0.785 0.100 0.571
Shell-Re − 0.013 0.992 0.025 0.683
OC-SVM − 0.020 1.000 0.039 0.058

IF − 0.362 0.131 0.188 0.314

RANSAC

OC-SVM 0.136 0.869 0.233 0.350
IF 0.101 0.615 0.171 0.512

L2-norm 0.083 0.667 0.147 0.493
KDE 0.192 1.000 0.317 0.525
LOF 0.134 1.000 0.232 0.430

ECOD 0.110 0.669 0.187 0.490
RSRAE 0.202 1.000 0.334 0.499
LVAD 0.304 0.500 0.341 0.472

Ours

OC-SVM 0.616 0.638 0.613 0.897
IF 0.342 0.300 0.318 0.720

L2-norm 0.606 0.554 0.578 0.889
KDE 0.575 0.562 0.564 0.870
LOF 0.405 0.569 0.459 0.821

ECOD 0.351 0.346 0.338 0.774
RSRAE 0.600 0.685 0.637 0.840
LVAD 0.619 0.515 0.545 0.831

CIFAR-10

Shell − 0.046 0.698 0.087 0.576
Shell-Re − 0.013 0.952 0.025 0.701
OC-SVM − 0.019 0.950 0.037 0.129

IF − 0.269 0.025 0.045 0.089

RANSAC

OC-SVM 0.113 0.638 0.190 0.599
IF 0.089 0.395 0.141 0.661

L2-norm 0.083 0.667 0.147 0.493
KDE 0.081 0.670 0.143 0.477
LOF 0.058 0.572 0.104 0.583

ECOD 0.105 0.585 0.174 0.569
RSRAE 0.084 0.687 0.150 0.478
LVAD 0.185 0.637 0.273 0.658

Ours

OC-SVM 0.357 0.308 0.330 0.773
IF 0.229 0.183 0.203 0.684

L2-norm 0.355 0.310 0.330 0.761
KDE 0.358 0.312 0.333 0.770
LOF 0.166 0.142 0.153 0.732

ECOD 0.327 0.288 0.306 0.751
RSRAE 0.309 0.277 0.291 0.661
LVAD 0.422 0.343 0.378 0.858

MIT-Places-small

Shell − 0.053 0.768 0.099 0.542
Shell-Re − 0.013 0.994 0.025 0.500
OC-SVM − 0.020 0.994 0.038 0.081

IF − 0.200 0.200 0.035 0.120

RANSAC

OC-SVM 0.164 0.703 0.256 0.535
IF 0.076 0.290 0.110 0.641

L2-norm 0.493 0.716 0.224 0.466
KDE 0.148 0.697 0.234 0.482

ECOD 0.069 0.639 0.125 0.464
RSRAE 0.117 0.806 0.202 0.565
LVAD 0.311 0.665 0.326 0.614

Ours

OC-SVM 0.516 0.423 0.470 0.922
IF 0.183 0.168 0.174 0.909

L2-norm 0.491 0.406 0.445 0.879
KDE 0.477 0.394 0.431 0.840

ECOD 0.287 0.239 0.260 0.690
RSRAE 0.266 0.219 0.239 0.500
LVAD 0.521 0.445 0.469 0.903

Table 6: Average Precision, Recall, F1_socre and F1_ratio per method on STL-10, CIFAR-10,
MIT-Places and Fashion-MNIST.
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Dataset Algorithm Anomaly Score Precision Recall F1-score F1-ratio

Fashion-MNIST

Shell − 0.028 0.463 0.053 0.650
Shell-Re − 0.011 0.947 0.023 0.752
OC-SVM − 0.019 0.935 0.036 0.098

IF − 0.070 0.767 0.128 0.385

RANSAC

OC-SVM 0.080 0.720 0.143 0.353
IF 0.102 0.670 0.166 0.536

L2-norm 0.050 0.792 0.092 0.286
KDE 0.014 0.233 0.027 0.077
LOF 0.023 0.338 0.042 0.557

ECOD 0.034 0.485 0.063 0.594
RSRAE 0.046 0.747 0.086 0.247
LVAD 0.453 0.312 0.248 0.517

Ours

OC-SVM 0.424 0.437 0.426 0.840
IF 0.293 0.293 0.280 0.757

L2-norm 0.375 0.350 0.359 0.824
KDE 0.397 0.403 0.393 0.868
LOF 0.057 0.052 0.054 0.605

ECOD 0.260 0.253 0.256 0.657
RSRAE 0.368 0.340 0.352 0.860
LVAD 0.467 0.357 0.357 0.857

MNIST

Shell − 0.032 0.514 0.061 0.644
Shell-Re − 0.012 0.971 0.023 0.915
OC-SVM − 0.019 0.963 0.037 0.150

IF − 0.039 0.039 0.071 0.637

RANSAC

OC-SVM 0.085 0.706 0.151 0.521
IF 0.035 0.530 0.065 0.612

L2-norm 0.092 0.619 0.160 0.589
KDE 0.016 0.136 0.029 0.051
LOF 0.063 0.952 0.119 0.273

ECOD 0.027 0.398 0.049 0.609
RSRAE 0.046 0.566 0.084 0.504
LVAD 0.116 0.660 0.195 0.535

Ours

OC-SVM 0.306 0.268 0.285 0.791
IF 0.064 0.059 0.061 0.469

L2-norm 0.259 0.224 0.240 0.742
KDE 0.271 0.234 0.250 0.749
LOF 0.418 0.388 0.401 0.899

ECOD 0.149 0.139 0.144 0.555
RSRAE 0.176 0.162 0.169 0.604
LVAD 0.412 0.312 0.353 0.815

Table 7: Average Precision, Recall, F1_socre and F1_ratio per method on STL-10, CIFAR-10,
MIT-Places, and Fashion-MNIST.
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