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Abstract

This study explores the performance of the random Gaussian smoothing Zeroth-Order Ex-
traGradient (ZO-EG) scheme considering deterministic min-max optimisation problems with
possibly NonConvex-NonConcave (NC-NC) objective functions. We consider both uncon-
strained and constrained, differentiable and non-differentiable settings. We discuss the min-
max problem from the point of view of variational inequalities. For the unconstrained
problem, we establish the convergence of the ZO-EG algorithm to the neighbourhood of an
ϵ-stationary point of the NC-NC objective function, whose radius can be controlled under
a variance reduction scheme, along with its complexity. For the constrained problem, we
introduce the new notion of proximal variational inequalities and give examples of functions
satisfying this property. Moreover, we prove analogous results to the unconstrained case for
the constrained problem. For the non-differentiable case, we prove the convergence of the
ZO-EG algorithm to a neighbourhood of an ϵ-stationary point of the smoothed version of
the objective function, where the radius of the neighbourhood can be controlled, which can
be related to the (δ, ϵ)-Goldstein stationary point of the original objective function.

1 Introduction

Many min-max problems that arise in modern machine learning are nonconvex-nonconcave, for example, gen-
erative adversarial networks (Goodfellow et al., 2014; Gulrajani et al., 2017), robust neural networks (Madry
et al., 2018), and sharpness-aware minimisation (Foret et al., 2021). These min-max problems are gener-
ally intractable even for computing an approximate first-order locally optimal solution for smooth objective
functions (Diakonikolas et al., 2021), thus structural properties have to be imposed in analyses. The exist-
ing literature generally follows two approaches to solving nonconvex-nonconcave min-max optimisation: (i)
imposing one-sided or two-sided Polyak-Łojasiewicz conditions (Yang et al., 2020) (or Kurdyka-Łojasiewicz
for nonsmooth functions (Zheng et al., 2023)) on the min-max problem; or (ii) addressing the problem from
the lens of variational inequalities (Diakonikolas et al., 2021; Pethick et al., 2023).

Regardless of either approach, most existing works require access to the gradient of the oracle, which prohibits
its use for a wide range of applications. For example, one can only access the input and output of a Deep
Neural Network (DNN) instead of the internal configurations (e.g., the network structure and weights) in most
real-world systems. Hence, it is more practical to design black-box attacks to DNNs for robustifying them
against adversarial examples (Chen et al., 2017). Another example is Automated Machine Learning tasks,
where computing gradients with respect to pipeline configuration parameters is infeasible (Wang et al., 2021).
Other applications include hyperparameter tuning (Snoek et al., 2012), reinforcement learning (Salimans
et al., 2017), robust training (Moosavi-Dezfooli et al., 2019), network control and management (Chen &
Giannakis, 2018), and high-dimensional data processing (Liu et al., 2018).

In this paper, we solve possibly NonConvex-NonConcave (NC-NC) min-max problems via Zeroth-Order (ZO)
methods from the perspective of Variational Inequalities (VI). Unlike first-order methods, ZO methods only
require access to (often noisy) evaluations of the objective function, thus are applicable to problems for which

1



Under review as submission to TMLR

gradients are costly or even impossible to compute (Maass et al., 2021; Salimans et al., 2017; Bottou et al.,
2018); also see (Rios & Sahinidis, 2013; Audet & Hare, 2017) for detailed reviews of these frameworks. As
far as we are concerned, the literature on solving NC-NC min-max optimisation problems via ZO methods is
very sparse. The only works we noticed are (Xu et al., 2023) and (Anagnostidis et al., 2021), which study the
unconstrained differentiable nonconvex-Polyak-Łojasiewicz (NC-PL) min-max problem. Our work considers
the min-max problem for both the unconstrained and the constrained setting. We assume the existence of
a solution to the weak Minty Variational Inequality (MVI) (Diakonikolas et al., 2021) problem and propose
a ZO extragradient method to solve it. The word "extra" refers to the extra oracle evaluation needed in
each iteration compared to ZO gradient descent ascent. It is shown that our analysis is also applicable to
non-differentiable min-max problems, with a convergence guarantee to a Goldstein stationary point.

1.1 Contributions

In this paper, we study the possibly nonconvex-nonconcave deterministc min-max problem of the form

min
x∈X

max
x∈Y

f(x, y), (1)

where f : Rn × Rm → R is an integrable objective function. The sets X ⊂ Rn and Y ⊂ Rm are assumed
to be nonempty, closed, and convex. To solve the problem, we propose a ZO extragradient algorithm
based on Gaussian smoothing. While it is common in the ZO optimisation literature based on Gaussian
smoothing to sample random directions from the standard normal distribution N (0, I), in this work, we
consider a more general setting introduced in (Nesterov & Spokoiny, 2017, Section 1.3) where a symmetric
and positive definite matrix1 B = B⊤ ≻ 0 is used to define random directions sampled from N (0, B−1).
The performance of the algorithm in both the unconstrained and the constrained setting is analysed. For
the unconstrained setting, by assuming the existence of a solution satisfying the weak MVI (introduced in
Definition 10), we prove the convergence of the algorithm to a neighbourhood of the ϵ-stationary point of
f (whose size depends on the variance), in at most O(ϵ−2) iterations and function evaluations. For the
constrained setting, by assuming the existence of a solution satisfying the proximal weak MVI (defined in
Definition 11), we show that the algorithm converges to a neighbourhood of the ϵ-stationary point of f (whose
size again depends on the variance), in at most O(ϵ−2) iterations and function evaluations. The size of the
neighbourhood of convergence in both settings can be controlled using variance-reduction techniques in the
ZO random oracle. In particular, by employing the variance reduction technique described in Algorithm 2,
we establish the convergence of the algorithm to an ϵ-stationary point of f in the unconstrained setting within
O(ϵ−2) iterations and requiring O(ϵ−4) function evaluations. For the constrained setting, we demonstrate
convergence to an ϵ-stationary point of f in O(ϵ−2) iterations, with O(ϵ−6) function evaluations.

While most of the prior works assume the differentiability of the objective function of the min-max problem,
we show that the assumption can be removed by considering a Gaussian smoothed objective function instead.
Assuming the existence of a weak MVI solution for a Gaussian smoothed function fµ of f , we show that
the algorithm converges to a variance dependent neighbourhood of the ϵ-stationary point of fµ in at most
O(ϵ−2) iterations and function evaluations, implying convergence to an ϵ-Goldstein stationary point of f
(defined in Definition 7). Gaussian smoothing of a function is discussed in (10). As in the smooth setting,
using the variance reduction technique in Algorithm 2, we show the convergence of the algorithm to an
ϵ-stationary point of fµ and an ϵ-Goldstein stationary point of f in O(ϵ−2) iterations and O(ϵ−4) function
evaluations. Note that in our work, across all considered settings, the bounds on the number of iterations
do not explicitly depend on the problem dimension.

1.2 Related work

ZO min-max optimisation: ZO methods provide a key for solving a host of min-max optimisation
problems in which gradient information is not accessible; see, e.g., (Chen et al., 2017; Wang et al., 2021;
Snoek et al., 2012; Salimans et al., 2017; Moosavi-Dezfooli et al., 2019). A vast majority of existing literature
on ZO min-max optimisation focuses on solving convex-concave or convex-nonconcave min-max problems.

1In Nesterov & Spokoiny (2017), B is allowed to be complex valued and thus the Hermitian matrix B∗ is used instead of
the transpose B⊤. Here, we restrict our attention to real-valued matrices.
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For example, Wang et al. (2023) addresses the deterministic and stochastic nonconvex-strongly concave min-
max optimisation problem with constraints only on the maximiser. The authors solve the deterministic
optimisation problem using ZO gradient descent ascent and ZO gradient descent multi-step ascent methods,
both sampled from Gaussian random oracles, and in the deterministic case, prove the convergence of their
methods to an ϵ-stationary point in O(dϵ−2) and in O(d log(ϵ−1)ϵ−2) iterations (d is the problem dimension),
respectively. Liu et al. (2020) considers the constrained nonconvex-strongly concave min-max problem and
solves it using a ZO projected gradient descent ascent method with uniform sampling vectors. The method
is shown to converge to a neighbourhood of an ϵ-stationary point in O(ϵ−2) iterations.

ZO methods are also developed for stochastic min-max optimisation problems with similar problem struc-
tures. Xu et al. (2020) proposes a ZO variance-reduced gradient descent ascent method based on Gaussian
sampling vectors for solving the (deterministic or stochastic) unconstrained differentiable nonconvex-strongly
concave min-max optimisation problems. The algorithm is proved to converge to an ϵ-stationary point of the
objective function in O(dϵ−3) iterations. Later, Huang et al. (2022) developed an accelerated ZO momentum
descent ascent method based on uniform smoothing estimators for solving stochastic nonconvex-strongly
concave min-max optimisation problems, which has been shown to converge to an ϵ-stationary point in
O(d3/4ϵ−3) iterations.

To the best of our knowledge, the only existing works on ZO NC-NC min-max optimisation are (Xu et al.,
2023) and (Anagnostidis et al., 2021). In (Xu et al., 2023), the authors study min-max problems for
stochastic and deterministic unconstrained differentiable nonconvex-Polyak-Łojasiewicz min-max problems
using a uniform smoothing random oracle. The authors prove convergence of their approach to an ϵ-stationary
point. The authors use ZO alternating gradient descent ascent and ZO variance-reduced alternating gradient
descent ascent algorithms and, respectively, in the deterministic case, prove convergence of their approaches
to an ϵ-stationary point in O(dϵ−2) and O(d2ϵ−2) iterations. The authors in (Anagnostidis et al., 2021)
consider stochastic unconstrained differentiable nonconvex-Polyak-Łojasiewicz min-max problems. They
use the direct-search method and prove the convergence of their approaches to an ϵ-stationary point in
O(log(ϵ−1)ϵ−2) iterations. In this work, we study the class of NC-NC min-max problems for which there
exists a solution satisfying the weak MVI, which has been shown to be satisfied for a large class of functions
including all min-max problems with objectives that are bilinear, pseudo-convex-concave, quasi-convex-
concave, and star-convex-concave (Diakonikolas et al., 2021), and all unconstrained variationally coherent
problems studied in, e.g., Mertikopoulos et al. (2019) and Zhou et al. (2017).

Variational inequalities: Finding solutions to VIs is equivalent to finding a first-order Nash equilibrium
of the min-max problem (Facchinei, 2003; Song et al., 2020). In particular, a VI with a monotone operator,
which has been well investigated, provides a framework in studying convex-concave min-max problems (Ne-
mirovski, 2004). Researchers have spent efforts in reducing the assumption on the monotonicity of the
operator, so as to include a larger class of applicable functions. Dang & Lan (2015) focuses on a class of
VI problems, referred to as generalised monotone VI problems, that covers both monotone and pseudo-
monotone VI problems. Their work discusses a generalised non-Euclidean extragradient method and proves
its convergence in O(ϵ−2) iterations. Song et al. (2020) uses an optimistic dual extrapolation algorithm and
proves its convergence to a strong solution in O(ϵ−2) iterations when the existence of a weak solution is
assumed.

Diakonikolas et al. (2021) introduces a class of problems with weak MVI solutions to solve the smooth un-
constrained NC-NC min-max problem, which is a weaker assumption than the existence of a weak solution
to the VI problem. The assumption is shown to be satisfied by quasiconvex-concave or starconvex-concave
min-max problems, and the problems for which the operator F (x, y) =

[
∇xf(x,y)

−∇yf(x,y)

]
is negatively comono-

tone (Bauschke et al., 2021) or positively cohypomonotone (Combettes & Pennanen, 2004). The authors
proposed an extragradient algorithm in an unconstrained setup and proved its convergence to an ϵ-stationary
point in O(ϵ−2) iterations. Later, Pethick et al. (2023) addresses the constrained NC-NC min-max problem.
The paper assumes the existence of a solution to the weak MVI with a less restricted parameter range and
proposes a new extragradient-type algorithm with fixed and adaptive step sizes. The algorithm is proved to
converge to a fixed point in O(ϵ−2) iterations.
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To our knowledge, no previous work has considered solving the min-max problem (1) that satisfies the weak
MVI using ZO random oracles.

Non-differentiable min-max optimisation: Gradient information is needed when studying first-order
min-max optimisation problems, hence non-differentiable min-max optimisation has barely been discussed in
the literature. However, because a Gaussian smoothed function always has a Lipschitz continuous gradient as
long as the function is itself Lipschitz (Nesterov & Spokoiny, 2017), it hints that ZO smoothing methods may
provide a tool to circumvent the computational difficulty caused by the non-differentiability of the objective
function. Indeed, Gu & Xu (2024) considers a non-differentiable convex-concave problem and approximates
the gradient by taking the average of finite differences of random points in a neighbourhood of the iterate
with uniformly sampled vectors. It is proved that the algorithm converges to an ϵ-optimal point in O(dϵ−2)
iterations. Qiu et al. (2023) considers a non-differentiable nonconvex-strongly concave federated optimisation
problem. The authors use a ZO federated averaging algorithm based on sampling from a unit ball and prove
the convergence to an ϵ-stationary point of the uniformly smoothed function in O(d8ϵ−2) iterations.

Goldstein subdifferential in ZO optimisation: The Goldstein subdifferential (defined in Definition 6)
has been used in studying the stationarity of a non-differentiable function (Goldstein, 1977). Lin et al. (2022)
shows that the gradient of a uniformly smoothed function is an element of the Goldstein subdifferential. The
authors then proposed a gradient-free method for solving non-smooth nonconvex minimisation problems and
proved its convergence to a (δ,ϵ)-Goldstein stationary point at a rate of O(d3/2δ−1ϵ−4) where d is the problem
dimension. Similar convergence results of ZO uniform smoothing methods to a Goldstein stationary point
can also be found in the non-smooth nonconvex minimisation literature (Kornowski & Shamir, 2024; Rando
et al., 2024). Concurrently, Lei et al. (2024) studies the convergence of a ZO Gaussian smoothing method
for a class of locally Lipschitz functions called sub-differentially polynomially bounded functions. It is shown
that the gradient of the Gaussian smoothed function lies in a neighbourhood of a Goldstein subdifferential.
These results allow us to quantify the stationarity of a solution in a non-differentiable min-max problem.

Outline: The paper is organised as follows. Preliminaries and the proposed framework are introduced in
Section 2. In Section 3, the main convergence and complexity results related to the proposed algorithm are
presented for different settings. Section 4 offers illustrative examples. Lastly, we conclude our paper and
discuss potential future research directions in Section 5. Auxiliary lemmas, proofs of the main theorems,
and complementary material can be found in the appendix.

Notation: For symmetric positive definite real matrices B1 = B⊤
1 ≻ 0, B2 = B⊤

2 ≻ 0, B1 ∈ Rn×n,
B2 ∈ Rm×m, and B =

[
B1 0
0 B2

]
, we define n-, m- and d-dimensional normed spaces

X = (Rn, ∥x∥ = ⟨x,B1x⟩ 1
2 ), Y = (Rm, ∥y∥ = ⟨y,B2y⟩ 1

2 ), and Z = (Rd, ∥z∥ = ⟨z,Bz⟩ 1
2 ), (2)

where d = n+m, respectively. The dual spaces of X, Y, and Z are denoted by X∗, Y∗, and Z∗, respectively.
For all z ∈ Z∗, the dual norm is denoted by ∥z∥∗ = ⟨z,B−1z⟩ 1

2 , i.e., Z∗ = (Rn, ∥z∥∗ = ⟨z,B−1z⟩ 1
2 )

Additionally, for the space Z, we use the weighted norm

|z| def= ∥z∥B−1 = ⟨z,B−1Bz⟩ 1
2 = ⟨z, z⟩ 1

2 , (3)

which reduces to the standard Euclidean norm in Rn and specialises to the absolute value of a real number
in the scalar case.

The smallest eigenvalue, the largest eigenvalue, and the condition number of the positive definite matrix
B ≻ 0 are denoted by λ, λ, and κ = λ

λ , respectively, and it holds that

λ|z|2 ≤ ∥z∥2 ≤ λ|z|2 (4)

λ
−1|z|2 ≤ ∥z∥2

∗ ≤ λ−1|z|2. (5)
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The ceiling function is denoted by ⌈·⌉, i.e., for x ∈ R, x ≥ 0, ⌈x⌉ = min{N ∈ N|n ≥ x}. The projection
operator onto a closed convex set Z ⊂ Z, is defined as

ProjZ(z̄) def= arg min
z∈Z

∥z − z̄∥2. (6)

The convex hull of a set of points S ⊂ Z is denoted by conv(S). Let Bδ(z) be the closed ball in Z with centre z
and radius δ. The expectation operator with respect to a random variable u is denoted by Eu[·]. For k ∈ N,
uk ∈ Z, we denote by Uk = (u1, . . . , uk) a set comprising of independent and identically distributed random
vectors. The conditional expectation over Uk is denoted by EUk

[·]. The identity matrix of appropriate
dimension is denoted by I. The diameter of a set Z⊂ Z is denoted by Dz and is equal to sup{∥z1 − z2∥ :
z1, z2 ∈ Z}. The Minkowski sum of two sets A,B⊂Z is denoted by A + B = {a+ b | a ∈ A, b ∈ B}.

2 Preliminaries, Problem of Interest, and Algorithm

In this section, we provide the preliminaries for different classes of functions used in this paper. Moreover,
the definitions for ϵ-stationary points, generalised gradients, and (δ, ϵ)-Goldstein stationary points are given.
We define different classes of VIs and explain how they are related to min-max problems. Finally, definitions
related to Gaussian smoothing ZO oracles are provided, and the main algorithm discussed in this paper is
introduced.

2.1 Preliminaries and Problem of Interest

For simplicity of notation, we use the definitions d = n + m ∈ N, Z = X × Y⊂ Z (X ⊂ X, Y ⊂ Y and
Z = X × Y), and z = (x, y) to write f(z) = f(x, y) in cases where the properties of function f in (1) are
important but the individual components x and y are not.

Regularity of the objective function f in (1) is essential for optimisation algorithms to have convergence
guarantees (Nesterov et al., 2018). The Lipschitz continuity, as defined below, is the first of such conditions.
We introduce other necessary properties later in this section.
Definition 1 (Lipschitz continuity). Let f : Z → R be a continuous function. Then, f is said to be globally
Lipschitz if there exists a Lipschitz constant L0(f) > 0 such that

|f(z1) − f(z2)| ≤ L0(f)∥z1 − z2∥ ∀ z1, z2 ∈ Z.

If there exists a positive δ̃ where the above inequality is satisfied for any z1 ∈ Z and z2 where ∥z1−z2∥ ≤ δ̃,then
f is said to be locally Lipschitz.

Moreover, if f is a continuously differentiable function, then the gradient of f is said to be globally Lipschitz
if there exists a Lipschitz constant L1(f) > 0 such that

∥∇f(z1) − ∇f(z2)∥∗ ≤ L1(f)∥z1 − z2∥ ∀ z1, z2 ∈ Z. (7)

Finding the global minimum of a nonconvex optimisation problem, if it exists, is NP-hard (Nemirovskij &
Yudin, 1983) and it is known that finding a global saddle point (or Nash equilibrium) of an NC-NC function
f is in general intractable (Murty & Kabadi, 1987). Thus, in this paper, instead of finding the saddle points
of (1), we mainly focus on finding stationary points of f as described in the following problem statement.
Problem 1. Consider a function f : Z → R along with a nonempty closed convex set Z ⊂ X × Y. Find the
stationary points of f .

In what follows, we discuss various ways of characterising the stationary points of a function under different
smoothness conditions.

We start by defining the stationary points of continuously differentiable functions.
Definition 2 (Stationary points). For a continuously differentiable function f , z0 ∈ Z is a stationary point
of f if ∇f(z0) = 0.
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Similarly, under the same assumptions on f , one can define ϵ-stationary points through the condition
∥∇f(z0)∥∗ ≤ ϵ for ϵ ≥ 0. A general definition of ϵ-stationary points is presented below.
Definition 3 (ϵ-stationary points (Liu et al., 2024)). Let f : X × Y → R be a continuously differentiable
function, where X ⊂ X and Y ⊂ Y are nonempty closed convex sets and let h1 and h2 denote positive
constants. Then, a point (x0, y0) ∈ X × Y is an ϵ-stationary point of f if ∥τ(x0, y0)∥∗ ≤ ϵ, where

τ(x0, y0) def=
[ 1

h1
(x0 − ProjX (x0 − h1∇xf(x0, y0)))

1
h2

(y0 − ProjY(y0 + h2∇yf(x0, y0)))

]
.

Recall that the projection operator ProjX (·) is defined in (6) in the notation section. We can further extend
the definition of stationary points for the case where f is not necessarily continuously differentiable, termed
(δ, ϵ)-Goldstein stationary points. To this aim, we first need to define generalised directional derivatives and
generalised gradients (Clarke, 1975).
Definition 4 (Generalised directional derivative). Let f : Z → R be a locally Lipschitz continuous function.
Given a point z ∈ Z and a direction v ∈ Z, the generalised directional derivative of function f is given by
f◦(z; v) def= lim

z′→z
sup
t↓0

1
t (f(z′ + tv) − f(z′)). The generalised gradient of f is defined as the set

∂f(z) def= {g ∈ Z : ⟨g, v⟩ ≤ f◦(z; v), ∀v ∈ Z}.

Rademacher’s theorem guarantees that any Lipschitz continuous function is differentiable almost everywhere
(that is, non-differentiable points are of Lebesgue measure zero) (Evans, 2018). Hence, for any Lipschitz
continuous function f , there is a simple way to represent the generalised gradient ∂f(z),

∂f(z) = conv
({

g ∈ Z : g = lim
zk→z

∇f(zk),∇f(zk) exists
})

,

which is the convex hull of all limit points of ∇f over all sequences (zk)k∈N such that zk → z for k → ∞
and ∇f(zk) exists for all k ∈ N (Lin et al., 2022). Given the definition of generalised gradients, as a next
step towards (δ, ϵ)-Goldstein stationary points, we need to consider Clarke stationary points (Clarke, 1990).
Definition 5 (Clarke stationary point). Given a locally Lipschitz continuous function f : Z → R, a Clarke
stationary point of f is a point z ∈ Z satisfying 0 ∈ ∂f(z). A point z ∈ Z is an ϵ-Clarke stationary point if
min{∥g∥∗ : g ∈ ∂f(z)} ≤ ϵ.

In Zhang et al. (2020), it is shown that ϵ-Clarke stationary points of a nonsmooth nonconvex function with
a fixed ϵ ∈ (0, 1] can not be found by any finite-time optimisation algorithm in general. This leads to the
definitions of δ-Goldstein subdifferentials and (δ, ϵ)-Goldstein stationary points.
Definition 6 (δ-Goldstein subdifferential (Lin et al., 2022)). Given a point z ∈ Z and δ ≥ 0, the δ-
Goldstein subdifferential of a Lipschitz continuous function f : Z → R at z is given by ∂δf(z) def=
conv

(⋃
z′∈Bδ(z) ∂f(z′)

)
.

The Goldstein subdifferential of f at z is the convex hull of the unions of all generalised gradients at points
in a δ-ball around z. Accordingly, the (δ,ϵ)-Goldstein stationary points are defined below.
Definition 7 ((δ, ϵ)-Goldstein stationary point). A point z ∈ Z is a (δ,ϵ)-Goldstein stationary point of a
Lipschitz continuous function f : Z → R if min{∥g∥∗ : g ∈ ∂δf(z)} ≤ ϵ.

Note that (δ, ϵ)-Goldstein stationary points are a weaker notion than ϵ-Clarke stationary points because any
ϵ-Clarke stationary point is a (δ, ϵ)-Goldstein stationary point, but not vice versa. In Zhang et al. (2020), it
is shown that the converse holds under the assumption of continuous differentiability and limδ→0 ∂δf(z) =
∂f(z). Finding a (δ,ϵ)-Goldstein stationary point in nonsmooth nonconvex optimisation has been shown to
be tractable (Tian et al., 2022).
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As a next step, we introduce variational inequalities. In particular, instead of solving (1) directly, we find
points satisfying these variational inequalities for different operators, which under appropriate continuity
assumptions, characterise stationary points of f in the presence of Z and consequently solutions to Problem 1.

For example, for the case where f is continuously differentiable, the gradient operator of f is defined as

F (z) def=
[

∇xf(x, y)
−∇yf(x, y)

]
. (8)

Then, a point z∗ satisfying Definition 8 below is a stationary point of f .
Definition 8 (Stampacchia variational inequality (Diakonikolas et al., 2021)). Consider a closed and convex
set Z ⊂ Z and an operator F : Z → Z∗. Then, we say that z∗ ∈ Z satisfies the Stampacchia Variational
Inequality (SVI) if

⟨F (z∗), z − z∗⟩ ≥ 0,

holds for all z ∈ Z.

The SVI is in general difficult to verify. Thus, a related and computationally more tractable Minty variational
inequality can be used.
Definition 9 (Minty variational inequality (Diakonikolas et al., 2021)). Consider a closed and convex set
Z ⊂ Z and an operator F : Z → Z∗. Then, we say that z∗ ∈ Z satisfies the Minty Variational Inequality
(MVI) if

⟨F (z), z − z∗⟩ ≥ 0,

holds for all z ∈ Z.

If F is monotone, then every solution to SVI is also a solution to MVI, and the two sets of solutions are
equivalent. If F is not monotone, all that can be said is that the set of MVI solutions is a subset of the set of
SVI solutions (Kinderlehrer & Stampacchia, 2000). Instead of Definition 9, we will consider a generalisation
of MVIs, as discussed in Diakonikolas et al. (2021).
Definition 10 (Weak Minty variational inequality (Diakonikolas et al., 2021)). Consider a closed and convex
set Z ⊂ Z and a Lipschitz operator F : Z → Z∗ with Lipschitz constant L > 0. Then, we say that z∗ ∈ Z
satisfies the weak Minty variational inequality if, for some ρ ∈

[
0, 1

8Lκ2

)
,

⟨F (z), z − z∗⟩ + ρ

2∥F (z)∥2
∗ ≥ 0, (9)

holds for all z ∈ Z, and where κ denotes the condition number of B defined in (2).

Note that Definition 10 is a generalisation of Definition 9 and it reduces to Definition 9 for ρ = 0. For more
details, see (Diakonikolas et al., 2021, Section 2.2).

2.2 The Zeroth-Order Extragradient Algorithm & Gaussian Smoothing

In this paper, the objective function f in (1) is not necessarily continuously differentiable, or, if f is contin-
uously differentiable, its gradient is not necessarily accessible for computations. For this sake, we will use a
function approximation known as Gaussian smoothing (Nesterov & Spokoiny, 2017). Such approximation is
continuously differentiable as long as f is integrable. Namely, for a parameter µ > 0, the Gaussian smoothed
version of an integrable function f : Z → R, is defined as fµ : Z → R,

fµ(z) def= 1
ψ

∫
Z

f(z + µu)e− 1
2 ∥u∥2

du, where ψ
def=
∫
Z

e− 1
2 ∥u∥2

du = (2π)d/2

[detB] 1
2
. (10)

Here, u ∈ Z is sampled from Gaussian distribution N (0, B−1). In (Nesterov & Spokoiny, 2017, Section
2), it is shown that for all µ > 0 and under the assumption that f is integrable, then fµ is continuously
differentiable. If f is additionally assumed to be globally Lipschitz continuous, then fµ is globally Lipschitz
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continuous with the same Lipschitz constant. The same conclusion can be made with respect to the gradient
of the functions f and fµ.

To approximate the gradient of a function f (for points where the gradient is defined), we define the random
oracle gµ : Z → Z∗ as (Nesterov & Spokoiny, 2017, Section 3)

gµ(z) = gµ(z;B) def= f(z + µu) − f(z)
µ

Bu, (11)

where u ∈ Z and B are as defined in (2). It is shown in Nesterov & Spokoiny (2017) that gµ is an unbiased
estimator of ∇fµ, i.e., ∇fµ(z) = Eu[gµ(z)]. The oracle gµ allows us to approximate ∇fµ(z) only with
function evaluations of the function f .

In our proposed framework, we use the simultaneous smoothing for both x and y using a pre-specified
smoothing parameter µ > 0, but with independent random vectors u1, û1 ∈ X and u2, û2 ∈ Y sampled from
N (0, B−1

1 ) and N (0, B−1
2 ). To simplify the notation, we define

u
def=
[
u1
u2

]
, û

def=
[
û1
û2

]
, and B =

[
B1 0
0 B2

]
. (12)

The common choice of B defined in (12) is the identity matrix B = I, but we will state the main results in
Section 3 for the general choice of B = B⊤ ≻ 0. Now that all preliminary definitions have been detailed, we
are able to state the zeroth-order extragradient algorithm, as shown in Algorithm 1.

Algorithm 1 Zeroth-Order Extragradient (ZO-EG)
1: Input: z0 = (x0, y0) ∈ Z;N ∈ N; {h1,k}N

k=0, {h2,k}N
k=0 ⊂ R>0;µ > 0; B1 = B⊤

1 ≻ 0; B2 = B⊤
2 ≻ 0

2: for k = 0, . . . , N do
3: Sample û1,k and û2,k from N (0, B−1

1 ) and N (0, B−1
2 )

4: Calculate Gµ(zk) using u = ûk, (14) and (13)
5: Compute ẑk = ProjZ(zk − h1,kGµ(zk))
6: Sample u1,k and u2,k from N (0, B−1

1 ) and N (0, B−1
2 )

7: Calculate Gµ(ẑk) using u = uk, (14) and (13)
8: Compute zk+1 = ProjZ(zk − h2,kGµ(ẑk))
9: end for

10: return z1, . . . , zN

Algorithm 1 relies on the evaluation of the oracle

Gµ(z) def=
[
gµ,x(z)

−gµ,y(z)

]
, (13)

where

gµ,x(z) def= f(z + µu) − f(z)
µ

B1u1 and gµ,y(z) def= f(z + µu) − f(z)
µ

B2u2. (14)

If we define

Fµ(z) def=
[

∇xfµ(z)
−∇yfµ(z)

]
and ξ(z) def= Gµ(z) − Fµ(z), (15)

then from (Nesterov & Spokoiny, 2017, Section 3), it is known that Eu[ξ(z)] = 0 for all z ∈ Z, as Gµ(z) is
an unbiased estimator of Fµ(z), i.e., with only the evaluations of f , we can obtain an unbiased estimation
of Fµ. We later use this identity to prove the convergence to a point z̄ for which |F (z̄)| ≤ ϵ is satisfied.

In Algorithm 1, z0 denotes the initial guess of a stationary point of (1), µ > 0 is the smoothing parameter
in (13), (14), N ∈ N denotes the number of iterations, and h1,k and h2,k denote positive step sizes for

8
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k ∈ {0, . . . , N}. The projection steps are only necessary in the constrained case to ensure feasibility, i.e., to
ensure that zk ∈ Z for all k ∈ {1, . . . , N}.

Algorithm 1 ensures convergence to a variance-dependent neighbourhood of the ϵ-stationary point as shown
in the subsequent sections under various assumptions. To reduce the size of the variance-dependent neigh-
bourhood, a variance reduction scheme can be used. Here we use the scheme as outlined in Algorithm 2,
which can be found in Balasubramanian & Ghadimi (2022), for example. In Algorithm 1, if in each iteration
instead of sampling one u to calculate the corresponding Gµ defined in (13), we sample tk directions, then
Algorithm 1 changes to Algorithm 2.

Algorithm 2 Variance-Reduced ZO-EG
1: Input: z0 = (x0, y0) ∈ Z;N ∈ N; {h1,k}N

k=0, {h2,k}N
k=0 ⊂ R>0;µ > 0; B1 = B⊤

1 ≻ 0; B2 = B⊤
2 ≻ 0;

{tk}N
k=0 ⊂ N

2: for k = 0, . . . , N do
3: Sample û0

1,k, · · · , ûtk

1,k and û0
2,k, · · · , ûtk

2,k from N (0, B−1
1 ) and N (0, B−1

2 )
4: Calculate G0

µ(zk), · · · , Gtk
µ (zk) using ui = ûi

k, i = 0, . . . , tk, (14) and (13)
5: Compute Gµ(zk) = 1

tk

∑tk

i=0 G
i
µ(zk)

6: Compute ẑk = ProjZ(zk − h1(k)Gµ(zk))
7: Sample u0

1,k, · · · , utk

1,k and u0
2,k, · · · , utk

2,k from N (0, B−1
1 ) and N (0, B−1

2 )
8: Calculate G0

µ(ẑk), · · · , Gtk
µ (ẑk) using ui = ui

k, i = 0, . . . , tk, (14) and (13)
9: Compute Gµ(ẑk) = 1

tk

∑tk

i=0 G
i
µ(ẑk)

10: Compute zk+1 = ProjZ(zk − h2(k)Gµ(ẑk))
11: end for
12: return z1, . . . , zN

Leveraging this technique the upper bound on the variance of the random oracle will be divided by the
number of sampled directions.

Having the stage set up, in the next section, we present the main results. In particular, we analyse the
convergence and iteration complexity of Algorithm 1 for three different cases.

3 Main Results

In this section, we analyse the convergence and iteration complexity of Algorithm 1 for possibly nonconvex-
nonconcave min-max problems. Specifically, Section 3.1 examines the scenario where f is continuously
differentiable and Z = Z. In Section 3.2, we extend the analysis to the case where f is continuously
differentiable but Z ̸= Z in Problem 1. Finally, Section 3.3 focuses on the case where Z = Z and f is
non-differentiable. Detailed proofs of the lemmas and theorems are provided in Appendices A and B.

3.1 Unconstrained Differentiable Problem

In this subsection, we consider the unconstrained version (1) that corresponds to Problem 1 with Z = Z. Let
us start with the following standard assumption on the variance of the ZO random oracle in the literature
of ZO and stochastic optimisation; see, e.g., Maass et al. (2021); Liu et al. (2020); Xu et al. (2020).
Assumption 1. For a fixed µ > 0, the variance of the random oracle Gµ(z) defined in (13) is upper bounded
by σ2 ≥ 0, i.e.,

Eu[∥Gµ(z) − Fµ(z)∥2
∗] ≤ σ2, ∀z ∈ Z, (16)

We assume that Assumption 1 is satisfied throughout the paper. Indeed, a simple calculation shows that

Eu[∥Gµ(z) − Fµ(z)∥2
∗] = Eu[∥Gµ(z)∥2

∗ + ∥Fµ(z)∥2
∗ − 2⟨Gµ(z), B−1Fµ(z)⟩]

= Eu[∥Gµ(z)∥2
∗] + ∥Fµ(z)∥2

∗ − 2∥Fµ(z)∥2
∗

= Eu[∥Gµ(z)∥2
∗] − ∥Fµ(z)∥2

∗ ≤ Eu[∥Gµ(z)∥2
∗], (17)

9
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where the first equality follows from expanding the norm, and the second equality holds since Eu[Gµ(z)] =
Fµ(z). It is shown that Eu[∥Gµ(z)∥2

∗] ≤ L0(f)2(d+ 4)2 for a Lipschitz continuous function f with Lipschitz
constant L0(f) and Eu[∥Gµ(z)∥2

∗] ≤ µ2

2 L
2
1(f)(d + 6)3 + 2(d + 4)∥F (z)∥2

∗ for a function f with Lipschitz
continuous gradient with constant L1(f) (Nesterov & Spokoiny, 2017, Theorem 4). Hence, Assumption 1 is
not a stringent assumption, particularly when f is Lipschitz continuous or when f has Lipschitz gradients.
Remark 1. Leveraging the variance reduction technique in Algorithm 2, the upper bound on the variance in
(16) of the random oracle is

Eu[∥Gµ(zk) − Fµ(zk)∥2
∗] ≤ σ2

tk
.

Thus, by increasing the number of samples tk, the bound on variance decreases. Additionally, note that this
variance reduction scheme preserves the property Eu[Gµ(zk)] = Fµ(zk).

Next, we need to make an assumption about the existence of a solution for the weak MVI in Definition 10.
Assumption 2. For Problem 1 with Z = Z, there exists z∗ ∈ Z such that F (z) defined in (8) satisfies the
weak MVI defined in (9).

Now, we need to analyse the behaviour of Fµ defined in (15) when Assumption 2 is satisfied. The following
lemma presents the properties of Fµ when Assumption 2 is satisfied.
Lemma 1. Let f : Z → R be continuously differentiable with Lipschitz continuous gradient with constant
L1(f) > 0. Moreover, let Fµ be the operator defined in (15) with smoothing parameter µ > 0, and let ρ
denote the weak MVI parameter defined in Definition 10. If there exists z∗ ∈ Z such that Assumption 2 is
satisfied, then it holds that

⟨Fµ(z), z − z∗⟩ + ρ∥Fµ(z)∥2
∗ + µ2L1(f)d+ ρµ2L2

1(f)(d+ 3)3 ≥ 0, ∀z ∈ Rd. (18)

A proof of Lemma 1 can be found in Appendix A. Using Lemma 1, we can present the main theorem of this
subsection. This theorem introduces an upper bound for the average of the expected value of the square
norm of the gradient operator of the smoothed function in the sequence generated by Algorithm 1.
Theorem 1. Let f : Z → R be continuously differentiable with Lipschitz continuous gradients with con-
stant L1(f) > 0. Let σ2 be an upper bound on the variance of the random oracle defined in Assump-
tion 1, N ≥ 0 be the number of iterations, Fµ be defined in (15) with smoothing parameter µ > 0,
Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, and ρ denotes the weak MVI parameter in Defini-
tion 10. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by Algorithm 1, lines 5 and 8,
respectively, suppose that Assumption 2 is satisfied, and recall the definitions of the smallest eigenvalue λ,
the largest eigenvalue λ and the condition number κ of the positive definite matrix B defined in (2). Then,
for any iteration N , with

h1,k = h1 ≤ 1
L1(f)λκ

and h2,k = h2 ∈

(√
2ρ

L1(f)λλκ
,
h1

2

]
, (19)

we have

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λλL1(f)κ|z0 − z∗|2

(λλL1(f)κh2
2 − 2ρ)(N + 1)

+ 2µ2λL1(f)d
(λλL1(f)κh2

2 − 2ρ)

+ 2µ2λL1(f)2ρ(d+ 3)3

(λλL1(f)κh2
2 − 2ρ)

+ 3λσ2

L1(f)κ(λλL1(f)κh2
2 − 2ρ)

.

(20)

A proof of Theorem 1 can be found in Appendix B. Given the upper bound provided by Theorem 1, the
first right-hand side term of (20) becomes arbitrarily small for N → ∞. The second term, in turns, can
become arbitrarily small if µ → 0. The last term depends on the variance of the random oracle, defined in
Assumption 1, which becomes arbitrarily small by using a variance reduction scheme, see Algorithm 2 and
Remark 1.

10
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In Theorem 1, the positive definite matrix B defines a degree of freedom, whose eigenvalues and condition
number have a significant impact on the step size selection in (19) and on the upper bound in (20). An optimal
selection of B in terms of (19) and (20) is out of the scope of this paper. Nevertheless, a discussion based
on heuristic arguments is added in Appendix C.1, indicating that an optimal selection of B in Theorem 1
implies B to have a condition number κ = 1 (but B does not necessarily need to be the identity matrix).
Building on the discussion in Appendix C.1, the following corollary restates the result of Theorem 1 for the
special case where B is a scalar multiple of the identity matrix. In this setting, the random directions uk

and ûk in Algorithm 1 are sampled from N (0, λI) for some λ > 0.
Corollary 1. Let the assumptions of Theorem 1 be satisfied with B = λI for λ > 0. Then, it holds that

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λ2L1(f)|z0 − z∗|2

(λ2L1(f)h2
2 − 2ρ)(N + 1) + 2µ2λL1(f)d

(λ2L1(f)h2
2 − 2ρ)

+ 2µ2λL1(f)2ρ(d+ 3)3

(λ2L1(f)h2
2 − 2ρ) + 3λσ2

L1(f)(λ2L1(f)h2
2 − 2ρ) .

The proof of Corollary 1 is the same as the proof of Theorem 1 with λ = λ = λ and κ = 1. The next
corollary gives a guideline on how to choose the number of iterations and the smoothing parameter µ, for a
given specific measure of performance ϵ and for diagonal matrices B ≻ 0.
Corollary 2. Let the assumptions of Theorem 1 be satisfied with B = λI for λ > 0 and let r0 = ∥z0 − z∗∥.
For a given ϵ > 0, if

µ ≤
(

(λ2L1(f)h2
2 − 2ρ)

4λL1(f)d+ 4λL2
1(f)ρ(d+ 3)3

) 1
2

ϵ and N ≥

⌈(
4λ2L1(f)r2

0
(λ2L1(f)h2

2 − 2ρ)

)
ϵ−2 − 1

⌉
,

then,
1

N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ ϵ2 + 3λσ2

(λ2L2
1(f)h2

2 − 2ρL1(f)) .

A proof of Corollary 2 can be found in Appendix B. Considering Definition 3, to show that the sequence
generated by Algorithm 1 converges to an ϵ-stationary point, ∥F (ẑk)∥ needs to be bounded. Based on
Theorem 1 and Corollary 2, the following corollary introduces an upper bound of the average of the expected
value of the squared norm of the gradient operator F , defined in (8), over the sequence generated by
Algorithm 1.
Corollary 3. Let the assumptions of Theorem 1 be satisfied with B = λI for λ > 0 and let

µ≤min
{

ϵ√
2λL1(f)(d+ 3) 3

2
,

(
λ2L1(f)h2

2 − 2ρ
16λL1(f)d+ 16λL2

1(f)ρ(d+ 3)3

) 1
2

ϵ

}
and N≥

⌈(
8λ2L1(f)r2

0
λ2L1(f)h2

2 − 2ρ

)
ϵ−2−1

⌉
.

Then, it holds that
1

N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ ϵ2 + 6λσ2

(λ2L2
1(f)h2

2 − 2ρL1(f)) .

The proof of the Corollary 3 can be found in Appendix B. In light of Corollary 3, it can be seen that the
sequence generated by Algorithm 1 is guaranteed to converge to a neighbourhood of the ϵ-stationary points
of f in expectation. Additionally, the size of the neighbourhood can be made arbitrarily small using the
variance reduction scheme in Algorithm 2. The next theorem introduces an upper bound for the average of
the expected value of the square norm of the gradient operator of the smoothed function in the sequence
generated by Algorithm 2.
Theorem 2. Let f : Z → R be continuously differentiable with Lipschitz continuous gradients with constant
L1(f) > 0. Let σ2 be an upper bound on the variance of the random oracle defined in Assumption 1, N ≥ 0 be
the number of iterations, tk ∈ N be the number of samples in each iteration of Algorithm 2, Fµ be defined in

11
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(15) with smoothing parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, and ρ denotes
the weak MVI parameter in Definition 10. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by
Algorithm 2, lines 6 and 10, respectively, and suppose that Assumption 2 is satisfied. Then, for any iteration
N , with

h1,k = h1 ≤ 1
L1(f)λκ

and h2,k = h2 ∈

(√
2ρ

L1(f)λλκ
,
h1

2

]
,

we have

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λλL1(f)κ|z0 − z∗|2

(λλL1(f)κh2
2 − 2ρ)(N + 1)

+ 2λµ2L1(f)d
(λλL1(f)κh2

2 − 2ρ)
+ 2λµ2L1(f)2ρ(d+ 3)3

(λλL1(f)κh2
2 − 2ρ)

+ 3λσ2

L1(f)κ(λλL1(f)κh2
2 − 2ρ)

1
(N + 1)

N∑
k=0

1
tk
. (21)

A proof of Theorem 2 can be found in Appendix B. As in the case of Theorem 1, a discussion on the
selection of B can be found in Appendix C.1. The next corollary gives a guideline on how to choose the
number of iterations and the smoothing parameter µ, for a given specific measure of performance ϵ to
guarantee convergence to an ϵ-stationary point of the objective function.
Corollary 4. Let the assumptions of Theorem 2 be satisfied with B = λI for λ > 0. Moreover, let

tk = t ≥
⌈

18λσ2

λ2L1(f)(L1(f)h2
2 − 2ρ)ϵ

−2
⌉
, N≥

⌈(
12λ2L1(f)r2

0
(λ2L1(f)h2

2 − 2ρ

)
ϵ−2−1

⌉
, and

µ ≤ min
{

ϵ√
3λL1(f)(d+ 3) 3

2
,

(
λ2L1(f)h2

2 − 2ρ
24λL1(f)d+ 24λL2

1(f)ρ(d+ 3)3

) 1
2

ϵ

}
.

Then, it holds that
1

N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ ϵ2.

A proof of the Corollary 4 can be found in Appendix B. Based on Corollaries 3 and 4, and under appro-
priate parameter selection, we observe the following: employing Algorithm 1 guarantees convergence to a
neighbourhood—whose size depends on the variance of the stochastic oracle—of an ϵ-stationary point of the
objective function, within O(ϵ−2) iterations and O(ϵ−2) function evaluations. In contrast, utilising Algo-
rithm 2, convergence to an actual ϵ-stationary point (rather than a variance-dependent neighbourhood) is
guaranteed in O(ϵ−2) iterations and O(ϵ−4) function evaluations.
Remark 2. In Algorithm 2, if we set B = λI (with λ > 0) and tk = k + 1, then from (21), we get

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2]≤ 2λ2L1(f)|z0 − z∗|2

(λ2L1(f)h2
2 − 2ρ)(N + 1) + 2λL1(f)d+ 2λL2

1(f)ρ(d+ 3)3

(λ2L1(f)h2
2 − 2ρ) µ2

+ (ln(N + 1) + 1)3λσ2

(N + 1)(λ2L2
1(f)h2

2 − 2ρL1(f)) .

Thus, to obtain 1
N+1

∑N
k=0EUk

[|Fµ(ẑk)|2]≤ ϵ2,

N ≥ max
{⌈(

6λ2L1(f)r2
0

(λ2L1(f)h2
2 − 2ρ) + β

)
ϵ−2 − 1

⌉
,

⌈
βϵ−2 ln(βϵ−2) − 1

⌉}

is required and where β = 9λσ2

(λ62L2
1(f)h2

2−2ρL1(f)) and ϵ ≤ 1. Hence, compared to Corollary 4, the dependency
of the number of iterations on ϵ changes and a total of 2(N + 1)(N + 2) function evaluations are required.

12



Under review as submission to TMLR

In cases where specific properties of the objective function (such as Lipschitz constant L1(f) of the gradient or
ρ corresponding to the weak MVI) are unknown or can only be approximated, µ can be chosen independently
of the objective function’s properties. The following remark provides a guideline for selecting µ and N to
achieve a performance comparable to that of Corollary 2, in the case that µ is independent of the function’s
properties.
Remark 3. Theorem 1’s analysis can be repeated for the case where the smoothing parameter µ is iteration-
dependent and satisfies µk = l

k+1 , for some positive scalar l. For this case, under the additional assumption
that B = I, (20) becomes

1
N + 1

N∑
k=0

EUk
[∥Fµk

(ẑk)∥2] ≤ L1(f)∥z0 − z∗∥2

(L1(f)h2
2 − 2ρ)(N + 1) + L1(f)d+ L2

1(f)ρ(d+ 3)3

(L1(f)h2
2 − 2ρ)

l2π2

6(N + 1)

+ 3σ2

(L2
1(f)h2

2 − 2ρL1(f)) .

(22)

Then, for a given tolerance ϵ > 0, if

N ≥

⌈(
2L1(f)r2

0
(L1(f)h2

2 − 2ρ) + L1(f)d+ L2
1(f)ρ(d+ 3)3

(L1(f)h2
2 − 2ρ)

l2π2

6

)
ϵ−2 − 1

⌉
,

we have
1

N + 1

N∑
k=0

EUk
[∥Fµk

(ẑk)∥2] ≤ ϵ2 + 3σ2

(L2
1(f)h2

2 − 2ρL1(f)) .

As can be seen, if l is selected independently of d, then the number of iterations to achieve a tolerance of ϵ
is of order O(d3ϵ−2). However, it is possible to reduce the power of d in the complexity order by choosing l
appropriately. For example, if l = 1

d , the number of iterations to achieve a tolerance of ϵ is of order O(dϵ−2).
For the sake of comparison, in Anagnostidis et al. (2021), the authors extended the direct search algorithm
of Vicente (2013) and analysed the unconstrained differentiable NC-PL min-max problem and showed that
the complexity order of the direct search algorithm for computing an ϵ-stationary point is O(d2ϵ−2 log(ϵ−1)).

3.2 Constrained Differentiable Problem

Here, we study the performance of Algorithm 1 for solving the constrained version of Problem 1 where
Z ⊂ Z is a convex compact set with Dz as its diameter. To ensure that the iterates stay in the constraint
set, projection steps are needed. In this case, Problem 1, with f as its objective function and Z as its
constraint set, can be reformulated as an unconstrained problem with Γ(z) as its objective function, where

Γ(z) def= f(z) + IZ(z) and IZ(z) def= IX (x) − IY(y) with IZ(z) def=
{

0 z ∈ Z,
∞ z ̸∈ Z.

(23)

It is easy to see that Γ : Z → R∪ {∞} is not differentiable and its gradient is not defined everywhere. Thus,
we can not use Definitions 9 and 10 with the gradient of Γ. To proceed and to analyse stationary points of
f in the sense of Definition 3, we define operator Qℓ as follows:

Qℓ(z, a, F (z̄)) def= −1
a

(Proxℓ(z − aF (z̄)) − z), ∀z, z̄ ∈ Z. (24)

Here, a is a positive scalar and Proxℓ(z̄)
def= arg min

z
(∥z − z̄∥2 + ℓ(z)) for a proper and lower semicontinuous

function ℓ.

For the instances where ℓ = IZ and Proxℓ = ProjZ , we recover τ defined in Definition 3. Next, we define
the proximal (weak) Minty variational inequality, analogous to Definitions 9 and 10, for the analysis of
Algorithm 1 in the constrained case.

13
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Definition 11 (Proximal (weak) Minty variational inequality). Consider a closed and convex set Z ⊂ Z,
a Lipschitz operator F : Z → Z with Lipschitz constant L > 0, and a possibly non-differentiable convex
function ℓ. Then z∗ ∈ Z is said to satisfy the proximal Minty variational inequality if

⟨Qℓ(z, a, F (z̄)), z̄ − z∗⟩ ≥ 0, (25)

holds for all z, z̄ ∈ Z.

Moreover, z∗ ∈ Z is said to satisfy the proximal weak Minty variational inequality if

⟨Qℓ(z, a, F (z̄)), z − z∗⟩ + ρ

2∥Qℓ(z, a, F (z̄))∥2
∗ ≥ 0, ρ ∈

[
0, 1

24Lκ2

)
, (26)

holds for all z, z̄ ∈ Z, where operator Qℓ is defined in (24), and κ denotes the condition number of B.

By comparing Definition 11 with Definitions 9 and 10, it follows that, if function ℓ is constant or Z = Z (as
noted in Remark 7), the proximal (weak) MVI simplifies to the (weak) MVI.

We now discuss examples of functions satisfying the proximal MVI defined in (25). Consider f(x, y) =
xy with Z = {z = (x, y) | x ≥ 0, y ≥ 0} and ℓ = IZ , then f satisfies the proximal MVI definition with
z∗ = (0, 0). Similarly, the functions f(x, y) = xnym (n,m > 0) with Z = {z = (x, y) | x ≥ 0, y ≥ 0}
and ℓ = IZ satisfy the definition of proximal MVI with z∗ = (0, 0). More generally, it can be shown
that f(x, y) = x⊤Ay + c⊤x + d⊤y, where x, c ∈ Rn, y, d ∈ Rm, A ∈ Rn×m, with nonnegative A, c, d,
Z = {z = (x, y) | x ≥ 0, y ≥ 0} and ℓ = IZ meets the definition of the proximal MVI (25) with z∗ = (0, 0).

Before proceeding further, we define the following auxiliary function

PZ(z, h, g(z̄)) def= 1
h

[z − ProjZ(z − hg(z̄))] , (27)

where h is a positive scalar. We note that when ℓ is the indicator function, then PZ(z, h, g(z̄)) =
Qℓ(z, h, g(z̄)). Moreover, let F , Gµ, and Fµ be defined in (8), (13), and (15). Also, let zk, ẑk, h1,k,
and h2,k be adopted from Algorithm 1. Then we can define below auxiliary variables:

sk
def= PZ(zk, h1,k, Gµ(zk)), ŝk

def= PZ(zk, h2,k, Gµ(ẑk)). (28)

Hence, using above auxiliary variables in the constrained case of Problem 1, then the update steps in lines
5 and 8 in Algorithm 1 can be written as

zk+1 = zk − h2,kŝk and ẑk = zk − h1,ksk. (29)

To proceed, we need to make an assumption about the existence of a solution for the proximal weak MVI in
Definition 11.
Assumption 3. For Problem 1 with Z ⊂ Z, compact and convex, and ℓ = IZ defining the indicator function,
there exists z∗ ∈ Z such that F (z) defined in (8) satisfies the proximal weak MVI defined in (26).

Next, the main lemma of this subsection is presented. This result is analogous to Lemma 1 in the un-
constrained setting but adapted for the constrained case. The lemma characterises sk and ŝk under the
assumption that there exists a z∗ satisfying Assumption 3.
Lemma 2. Let f(z) defined in Problem 1, be continuously differentiable with Lipschitz continuous gradient
with constant L1(f) > 0. Moreover, let ŝk and sk be defined in (28), ξk

def= Gµ(zk) − Fµ(zk), ξ̂k
def=

Gµ(ẑk) − Fµ(ẑk), Gµ and Fµ be defined in (13) and (15) with smoothing parameter µ > 0, ρ denote the
proximal weak MVI parameter defined in Definition 11, κ denote the condition number of B in (2) and Dz

be the diameter of Z ⊂ Rd. If there exists z∗ ∈ Z such that Assumption 3 is satisfied, then it holds that

⟨sk, zk − z∗⟩ + ρ∥sk∥2
∗ + µ

2DzκL1(f)(d+ 3) 3
2 +Dzκ∥ξk∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξk∥2

∗ ≥ 0, (30)

⟨ŝk, ẑk − z∗⟩ + ρ∥ŝk∥2
∗ + µ

2DzκL1(f)(d+ 3) 3
2 +Dzκ∥ξ̂k∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξ̂k∥2

∗ ≥ 0. (31)
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A proof of Lemma 2 is provided in Appendix A. In the sequel, using Lemma 2, we can present the main
theorem of this subsection. This theorem introduces an upper bound on the average of the expected value
of the Euclidean norm of sk defined in (28). Considering the formulation in (29), this theorem is analogous
to Theorem 1 in the unconstrained setting but adapted for the constrained case.
Theorem 3. Let f(z), defined in Problem 1, be continuously differentiable with Lipschitz continuous gra-
dient with constant L1(f) > 0. Let σ2 be an upper bound on variance of the random oracle defined in
Assumption 1, N ≥ 0 be the number of iterations, sk be defined in (28) with smoothing parameter µ > 0,
Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, ρ denotes the proximal weak MVI parameter defined
in Definition 11, and Dz be diameter of the compact and convex set Z ⊂ Rd. Moreover, let {zk}k≥0 and
{ẑk}k≥0 be the sequences generated by Algorithm 1, lines 5 and 8, respectively, suppose that Assumption 2 is
satisfied, and recall the definitions of the smallest eigenvalue λ, the largest eigenvalue λ and the condition
number κ of the positive definite matrix B defined in (2). Then, for any iteration N , with h1,k = h2,k = h

and h ∈
(√

6ρ

L1(f)κλλ
, 1

2L1(f)κλ

]
, we have

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2L1(f)λλκ|z0 − z∗|2

(L1(f)h2λλκ− 6ρ)(N + 1)
+ µDzλκL1(f)(d+ 3)3/2

L1(f)h2λλκ− 6ρ
+ µ2ρλκ2L1(f)2(d+ 3)3

L1(f)h2λλκ− 6ρ

+
(36ρκ2λ+ 4λ

L1(f) )σ2

L1(f)h2λλκ− 6ρ
+ 2Dzλκσ

L1(f)h2λλκ− 6ρ
. (32)

A proof of Theorem 3 is provided in Appendix B. Given the upper bound of Theorem 3, the first term
on the right-hand side of (32) becomes arbitrarily small as N → ∞. The second and third terms become
arbitrarily small for µ → 0. The last two terms are dependent on the variance of the random oracle, defined
in Assumption 1, which becomes arbitrarily small by using the variance reduction scheme in Algorithm 2.
As in the unconstrained setting, an optimal selection of B is out of the scope of this paper, but a discussion
on the selection of B can be found in Appendix C.2. As in Section 3.1, and motivated through the discussion
in Appendix C.2, we focus on diagonal matrices B = λI, λ > 0, in the remainder of this section.
Corollary 5. Let the assumptions of Theorem 3 be satisfied with B = λI for λ > 0. Then, we have

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2λ2L1(f)|z0 − z∗|2

(λ2L1(f)h2 − 6ρ)(N + 1) + µλDzL1(f)(d+ 3)3/2

λ2L1(f)h2 − 6ρ + µ2λρL1(f)2(d+ 3)3

λ2L1(f)h2 − 6ρ

+
(36ρ+ 4

L1(f) )λσ2

λ2L1(f)h2 − 6ρ + 2Dzλσ

λ2L1(f)h2 − 6ρ . (33)

The proof of Corollary 5 is the same as the proof of Theorem 3 with λ = λ = λ and κ = 1. The next
corollary gives a guideline on how to choose the number of iterations and the smoothing parameter provided
a specific measure of performance ϵ and for diagonal matrices B ≻ 0.
Corollary 6. Let ŝk be defined in (28), with Gµ defined in (13), and adopt the assumptions of Theorem 3
with B = λI for λ > 0. Let r0 = ∥z0 − z∗∥, a def= ρλL2

1(f)(d+3)3

λ2L1(f)h2−6ρ , and b def= λL1(f)Dz(d+3)
3
2

λ2L1(f)h2−6ρ . For a given ϵ > 0,
if

µ ≤ −b+
√
b2 + 2aϵ2
2a and N ≥

⌈(
4λ2L1(f)r2

0
λ2L1(f)h2 − 6ρ

)
ϵ−2 − 1

⌉
,

then,
1

N + 1

N∑
k=0

EUk
[|sk|2] ≤ ϵ2 +

(36ρ+ 4
L1(f) )λσ2

λ2L1(f)h2 − 6ρ + 2Dzλσ

λ2L1(f)h2 − 6ρ .

A proof of the Corollary 6 can be found in Appendix B. To proceed to the next result, we need the auxiliary
variable below:

pk
def= PZ(zk, h2,k, F (zk)). (34)
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Considering Definition 3 and (27), we observe that pk can be written as pk = τ(xk, yk). To show that the
sequence generated by Algorithm 1 converges to an ϵ-stationary point of f , it is needed to bound |pk|. Based
on Theorem 3, the next corollary provides an upper bound for the average expected value of p̂k defined in
(34).
Corollary 7. Let pk be defined in (34), adopt the assumptions of Theorem 3 with B = λI for λ > 0 and let
a

def= 4ρλL2
1(f)(d+3)3

λ2L1(f)h2−6ρ , b def= 4λL1(f)Dz(d+3)
3
2

λ2L1(f)h2−6ρ ,

µ ≤ min
{

−b+
√
b2 + aϵ2

2a ,
ϵ√

2λL1(f)(d+ 3) 3
2

}
and N ≥

⌈(
16λ2L1(f)r2

0
λ2L1(f)h2 − 6ρ

)
ϵ−2 − 1

⌉
.

Then, the following bound holds:

1
N + 1

N∑
k=0

EUk
[|pk|2] ≤ ϵ2 +

(
4(36ρ+ 4

L1(f) )
λ2L1(f)h2 − 6ρ + 4

)
λσ2 + 8Dzλσ

λ2L1(f)h2 − 6ρ .

A proof of the Corollary 7 can be found in Appendix B. Taking into account Definition 3 and Corollary 7,
the projected Gaussian smoothing ZO estimate generated by Algorithm 1 is guaranteed to converge to a
neighbourhood of the ϵ-stationary points of f in terms of the expected value. We further note that this
neighbourhood can be ensured to be arbitrarily small using the variance reduction technique in Algorithm 2.
The next theorem introduces an upper bound for the average of the expected value of the Euclidean norm
of sk defined in (28) with respect to the sequence generated by Algorithm 2.
Theorem 4. Let f(z), defined in Problem 1, be continuously differentiable with Lipschitz continuous gradient
with constant L1(f) > 0. Let σ2 be an upper bound on the variance of the random oracle defined in Assump-
tion 1, N ≥ 0 be the number of iterations, tk be the number of samples in each iteration of Algorithm 2, sk

be defined in (28) with smoothing parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, ρ
denotes the proximal weak MVI parameter defined in Definition 11, and Dz be diameter of the compact and
convex set Z ⊂ Rd. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by Algorithm 1, lines 5
and 8, respectively, suppose that Assumption 2 is satisfied and recall the definition of the smallest eigenvalue
λ, the largest eigenvalue λ and the condition number κ of the positive definite matrix B defined in (2). Then,
for any iteration N , with h1,k = h2,k = h and h ∈

(√
6ρ

L1(f)κλλ
, 1

2L1(f)κλ

]
, we have

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2L1(f)λλκ|z0 − z∗|2

(L1(f)h2λλκ− 6ρ)(N + 1)
+ µDzλκL1(f)(d+ 3)3/2

L1(f)h2λλκ− 6ρ
+ µ2ρλκ2L1(f)2(d+ 3)3

L1(f)h2λλκ− 6ρ

+
(36ρκ2λ+ 4λ

L1(f) )σ2

L1(f)h2λλκ− 6ρ
1

N + 1

N∑
k=0

1
tk

+ 2Dzλκσ

L1(f)h2λλκ− 6ρ
1

N + 1

N∑
k=0

1√
tk
. (35)

A proof of Theorem 4 can be found in Appendix B. A discussion on the step size selection h and the selection
of B can be found in Appendix C.2. The next corollary gives a guideline on how to choose the number of
iterations and the smoothing parameter µ, for a given specific measure of performance ϵ to guarantee the
convergence to an ϵ-stationary point of the objective function.
Corollary 8. Let pk be defined in (34), adopt the assumptions of Theorem 4 with B = λI for λ > 0.
Moreover, define

a
def= 4ρλL2

1(f)(d+ 3)3

λ2L1(f)h2 − 6ρ , b
def= 4λL1(f)Dz(d+ 3) 3

2

λ2L1(f)h2 − 6ρ , c
def=

(36ρ+ 4
L1

+ 4)λσ2

λ2L1h2 − 6ρ , d
def= 2Dzλσ

λ2L1h2 − 6ρ ,

and let

tk = t ≥ 32⌈max
{
cϵ−2, d2ϵ−4}⌉,

µ ≤ min
{

−b+
√
b2 + aϵ2

2a ,
ϵ√

2λL1(f)(d+ 3) 3
2

}
and N ≥

⌈(
32λ2L1(f)r2

0
λ2L1(f)h2 − 6ρ

)
ϵ−2 − 1

⌉
.
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Then, the following bound holds:

1
N + 1

N∑
k=0

EUk
[|pk|2] ≤ ϵ2.

A proof of the Corollary 8 can be found in Appendix B. Based on Corollaries 7 and 8, and under appropriate
parameter choices, the following conclusions can be drawn: employing Algorithm 1 ensures convergence
to a neighbourhood—whose radius depends on the variance of the stochastic oracle—of an ϵ-stationary
point of the objective function, within O(ϵ−2) iterations and O(ϵ−2) function evaluations. In contrast,
using Algorithm 2 guarantees convergence to an ϵ-stationary point (i.e., not merely a variance-dependent
neighbourhood), with the same iteration complexity O(ϵ−2), but at the cost of O(ϵ−6) function evaluations.

Remark 4. In Pethick et al. (2023), the authors addressed the NC-NC min-max problem using a first-order
extragradient algorithm with adaptive and constant step sizes. In their approach, they assume the existence
of a solution to the weak MVI with respect to the operator v = F +A, where F is the gradient operator and
A is the sub-differential operator of the indicator function. It is worth noting that both Assumption 3 and
their assumption simplify to the weak MVI with respect to the gradient operator in the unconstrained case.
Beyond this, there is no direct relationship between the assumptions, as each encompasses different classes
of problems.

Remark 5. The results presented in Section 3.2 are restricted to convex and compact constraint sets. How-
ever, it is well known that if the objective function is coercive, then there exists a compact set containing
the optimal solution. Consequently, any constrained problem with an unbounded convex constraint set and
a coercive objective can be equivalently reformulated as a problem with a convex compact constraint set. We
refer the reader to (Calafiore & El Ghaoui, 2014, Lemma 8.5) for additional information on extensions
to coercive objective functions. Extending the current results to settings with unbounded constraint sets of
infinite volume and non-coercive objective functions remains an important direction for future research.

3.3 Unconstrained Non-differentiable Problem

The smoothed function fµ defined in (10) has several nice properties that can circumvent the difficulties
associated with solving non-differentiable problems. Among these the following two play a critical role in one’s
ability to solve these problems. First, it is known that fµ is differentiable regardless of the differentiability
of f (Nesterov & Spokoiny, 2017, Section 2). Second, if f is Lipschitz continuous, then fµ has Lipschitz
continuous gradients with its Lipschitz constant explicitly expressed in the following lemma.
Lemma 3 ((Nesterov & Spokoiny, 2017, Lemma 2)). Let f : Z → R be Lipschitz continuous with constant
L0(f) > 0 and fµ be defined in (10). Then fµ’s gradient is Lipschitz continuous with L1(fµ) = d1/2

µ L0(f).

Moreover, the existing literature has characterised the relation between the stationary points of a smoothed
function fµ and the Goldstein stationary points of the original function. Specifically, (Lin et al., 2022,
Theorem 3.1) proves that ∇fδ(z) ∈ ∂δf(z) for any z ∈ Rd, where fδ(z) = Eu∼P[f(z + δu)] is the uniform
smoothing with P being a uniform distribution on a unit ball. Lei et al. (2024) derives similar results for
Gaussian smoothing of a class of functions, called Subdifferentially Polynomially Bounded, which includes
global Lipschitz continuous functions as a special case.
Lemma 4 ((Lei et al., 2024, Theorem 3.6 and Remark 3.7)). Let f : Z → R be a Lipschitz continuous
function with constant L0(f) > 0 and B = I defined in (12) be the identity. Let fµ : Z → R be defined
according to (10) and let ∂δf be the δ-Goldstein subdifferential defined through Definition 6. For 0 < δ < 1,
0 < γ ≤ min{5L0(f), 1}, and µ ≤ δ√

dπe
( γ

4L0(f) )1/d, it holds that

∇fµ(z) ∈ ∂δf(z) + Bγ(0) ∀z ∈ Z.

These results motivate us to study the convergence of ZO-EG in non-differentiable min-max optimisation
via the smoothed function fµ. Towards that end, in the following we make an assumption on the existence
of a solution to the weak MVI with respect to Z = Z and Fµ, defined in (15).
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Assumption 4. Consider Problem 1 with Z = Z. Let f : Z → R be a Lipschitz continuous function, Fµ(z)
be defined in (15), L1(fµ) be the Lipschitz constant of the gradients of fµ defined in (10) and let κ denote
the condition number of the matrix B defined in (2). For all z ∈ Z, there exist z∗ ∈ Z such that

⟨Fµ(z), z − z∗⟩ + ρ

2∥Fµ(z)∥2
∗ ≥ 0, ρ ∈

[
0, 1

4L1(fµ)κ2

)
.

From Lemma 3, we see that as long as f is Lipschitz continuous, L1(fµ) is well-defined and can be expressed
in terms of L0(f). Hence, Assumption 4 is well-defined for studying non-differentiable min-max optimisation
problems. One simple but non-differentiable example that satisfies Assumption 4 is f(x, y) = |x| − |y|, for
x, y ∈ R and Z = R2. We leave the proof to Appendix D.

Having this set-up, we can discuss the convergence of Algorithm 1 when the objective function is non-
differntiable.
Theorem 5. Let f(z), defined in Problem 1, be Lipschitz continuous with constant L0(f) > 0 and recall
the definitions of the smallest eigenvalue λ, the largest eigenvalue λ and the condition number κ of the
positive definite matrix B defined in (2). Let σ2 be an upper bound on variance of the random oracle defined
in Assumption 1, N ≥ 0 be the number of iterations, Fµ be defined in (15) with smoothing parameter
µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, ρ denotes the weak MVI parameter defined in
Assumption 4, and L1(fµ) be the Lipschitz constant of the gradient of fµ. Moreover, let {zk}k≥0 and {ẑk}k≥0
be the sequences generated by Algorithm 1 (see lines 5 and 8) and suppose Assumption 4 is satisfied. Then,
for any number of iterations N , with h1,k = h1 ≤ 1

L1(fµ)λκ
and h2,k = h2 ∈

(√
ρ

L1(fµ)λλκ
, h1

2

]
, we have

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2L1(fµ)λλκ|z0 − z∗|2

(L1(fµ)λλκh2
2 − ρ)(N + 1)

+ 3λ
L1(fµ)κ(L1(fµ)λλκh2

2 − ρ)
σ2. (36)

A proof of Theorem 5 is provided in Appendix B. Given the upper bound of Theorem 5, the first term
on the right-hand side of (36) becomes arbitrarily small for N → ∞. The second term is dependent on
the variance of the random oracle, defined in Assumption 1, which becomes arbitrarily small by using the
variance reduction scheme in Algorithm 2. As before, we refer to Appendix C.3 for a discussion on the
selection of the matrix B and continue with results for the special case B is defined as the identity matrix
B = I.
Corollary 9. Consider the assumptions of Theorem 5 and let B defined in (12) be the identity matrix B = I.
Then, we have

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2] ≤ 2L1(fµ)∥z0 − z∗∥2

(L1(fµ)h2
2 − ρ)(N + 1) + 3

L1(fµ)(L1(fµ)h2
2 − ρ)σ

2. (37)

The proof of Corollary 9 is the same as the proof of Theorem 5 with ∥z∥ = ∥z∥B = ∥z∥∗ for all z ∈ Z and
λ = λ = 1. The next corollary provides a guideline for choosing the hyperparameters of Theorem 5, given a
specific measure of performance ϵ.
Corollary 10. Adopt the assumptions of Theorem 5 and let B defined in (12) be the identity matrix B = I.
Let µ > 0 be the smoothing parameter, r0 = ∥z0 − z∗∥, and the step sizes to be h1,k = h1 ≤ 1

L1(fµ)λκ
and

h2,k = h2 ∈
(√

ρ

L1(fµ)λλκ
, h1

2

]
with L1(fµ) = d1/2L0(f)

µ . For a given ϵ > 0, if

N ≥

⌈(
2r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)

)
ϵ−2 − 1

⌉
then 1

N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2] ≤ ϵ2 + 3

L1(fµ)(L1(fµ)h2
2 − ρ)σ

2.

A proof of Corollary 10 is given in Appendix B. Considering Theorem 5, and Corollary 10, it can be
concluded that the sequence generated by Algorithm 1 is guaranteed to converge to a neighbourhood of the
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ϵ-stationary points of fµ in the expected sense. The size of the neighbourhood can be made arbitrarily small
using the variance reduction technique. Moreover, leveraging Lemma 4, ∇fµ belongs to a neighbourhood of
δ-Goldstein subdifferential, whose size becomes arbitrarily small by choosing appropriate parameters. Thus,
this convergence result means that the point is a (δ,ϵ̄)-Goldstein stationary point of f , defined in Definition 7.
The result is presented in the following corollary.
Corollary 11. Adopt the assumptions of Lemma 4 and Theorem 5 and let B, as defined in (12), be the
identity matrix B = I. Let 0 < δ < 1, r0 = ∥z0 − z∗∥, and the step sizes to be h1,k = h1 ≤ 1

L1(fµ)λκ
and

h2,k = h2 ∈
(√

ρ

L1(fµ)λλκ
, h1

2

]
. For a given ϵ > 0, if

µ ≤ δ√
dπe

(
ϵ

8L0(f)

)1/d

and N ≥

⌈(
8r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)

)
ϵ−2 − 1

⌉
,

then there exists zk ∈ Rd, k ∈ {0, . . . , N}, in the sequence generated by Algorithm 1 which is a (δ,ϵ̄)-Goldstein
stationary point of f , where ϵ̄ = ϵ+

√
3

L1(fµ)(L1(fµ)h2
2−ρ))σ in the expected sense.

A proof of the Corollary 11 is given in Appendix B. Note that in Corollary 11, σ is the upper bound on
the variance of the random oracle, defined in Assumption 1, which becomes arbitrarily small by using the
variance reduction scheme in Algorithm 2. The next theorem introduces an upper bound for the average of
the expected value of the square norm of the gradient operator of the smoothed function in the sequence
generated by Algorithm 2.
Theorem 6. Let f(z), defined in Problem 1, be Lipschitz continuous with constant L0(f) > 0 and recall
the definitions of the smallest eigenvalue λ, the largest eigenvalue λ and the condition number κ of the
positive definite matrix B defined in (2). Let σ2 be an upper bound on the variance of the random oracle
defined in Assumption 1, N ≥ 0 be the number of iterations, tk be the number of samples in each iteration
of Algorithm 2, Fµ be defined in (15) with smoothing parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)],
k ∈ {0, . . . , N}, ρ denotes the weak MVI parameter defined in Assumption 4, and L1(fµ) be the Lipschitz
constant of the gradient of fµ. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by Algorithm 1
(see lines 5 and 8) and suppose Assumption 4 is satisfied. Then, for any number of iterations N , with
h1,k = h1 ≤ 1

L1(fµ)λκ
and h2,k = h2 ∈

(√
ρ

L1(fµ)λλκ
, h1

2

]
, we have

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2L1(fµ)λλκ|z0 − z∗|2

(L1(fµ)λλκh2
2 − ρ)(N + 1)

+ 3λσ2

L1(fµ)κ(L1(fµ)λλκh2
2 − ρ)

1
N + 1

N∑
k=0

1
tk
. (38)

A proof of Theorem 6 can be found in Appendix B and for the step size selection and a selection of the
matrix B we refer again to Appendix C.3. The next corollary gives a guideline on how to choose the number
of iterations, the smoothing parameter µ, and the number of samples in each iteration of Algorithm 2, for a
given specific measure of performance ϵ to guarantee the convergence to a (δ,ϵ)-Goldstein stationary point
of the objective function.
Corollary 12. Adopt the assumptions of Lemma 4 and Theorem 6 and let B defined in (12) be the identity
matrix B = I. Let 0 < δ < 1, r0 = ∥z0 − z∗∥, and the step sizes to be h1,k = h1 ≤ 1

L1(fµ)λκ
and

h2,k = h2 ∈
(√

ρ

L1(fµ)λλκ
, h1

2

]
. For a given ϵ > 0, if

µ ≤ δ√
dπe

(
ϵ

8L0(f)

)1/d

, N ≥

⌈(
16r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)

)
ϵ−2−1

⌉
, and tk = t ≥

⌈
24σ2

L1(fµ)(L1(fµ)h2
2 − ρ)ϵ

−2
⌉
,

then there exists zk ∈ Rd, k ∈ {0, . . . , N}, in the sequence generated by Algorithm 1 which is a (δ,ϵ)-Goldstein
stationary point of f in the expected sense.
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A proof of the Corollary 12 can be found in Appendix B. In light of Corollaries 11 and 12, and under
appropriate parameter selection, it can be established that employing Algorithm 1 with O(ϵ−2) iterations
and O(ϵ−2) function evaluations ensures convergence to a neighbourhood—dependent on the variance of
the random oracle—of a (δ, ϵ)-Goldstein stationary point of the objective function. In contrast, utilising
Algorithm 2 with O(ϵ−2) iterations and O(ϵ−4) function evaluations guarantees convergence to a true (δ, ϵ)-
Goldstein stationary point, independent of the oracle variance.
Remark 6. In this paper, we have discussed unconstrained non-differentiable min-max optimisation by
assuming the existence of solutions of the weak MVI based on the smoothed function fµ. Similar assumptions
can be made via the proximal weak MVI when constrained non-differentiable min-max optimisation is studied.
For the sake of brevity, we omit the detailed discussion here.

In the next section, we provide a general discussion on Algorithm 1 and the main results presented in
Sections 3.1, 3.2, and 3.3.

3.4 Other oracles, the effect of noisy function evaluation, and the selection of B

In this section, we give some general explanations on Algorithm 1, the main theorems, and the results of
this study. First, we focus on the choice of the random oracle defined in (11). The random Gaussian oracle
defined in (11) is a forward approximation oracle. Other types of random Gaussian oracles, such as the
central difference approximation, i.e.,

ḡµ(z) = f(z + µu) − f(z − µu)
2µ Bu,

and the backward approximation, i.e.,

g̃µ(z) = f(z) − f(z − µu)
µ

Bu,

are used in the literature of ZO optimisation (see Nesterov & Spokoiny (2017); Malladi et al. (2023), for
example). We should note that the proofs of all the results in this work only rely on

(i) the unbiasedness of the random oracle as an estimation of the gradient of the Gaussian smoothed
version of the objective function; and

(ii) the boundedness of the variance of the random oracle.

Any random oracle satisfying the aforementioned properties can be employed as a substitute for the forward
approximation oracle defined in (11), without affecting the convergence bounds established in Sections 3.1,
3.2, and 3.3. Although the forward approximation oracle is prevalent in the literature Nesterov & Spokoiny
(2017); Liu et al. (2020); Wang et al. (2023); Farzin & Shames (2024); Xu et al. (2020); Huang et al. (2022);
Xu et al. (2023), the central difference approximation often provides higher accuracy by eliminating the first-
order term in the Taylor expansion. Empirically, the central difference approximation oracle may outperform
both forward and backward approximations, particularly in scenarios with noisy feedback, as demonstrated
in Section 4.3.

In this paper, we have considered noiseless function evaluations. In the presence of noisy evaluations—
modelled as function values corrupted by additive noise γ with zero mean and bounded variance, i.e., E[γ] = 0
and E[γ2] < ∞—the variance bound associated with the forward approximation oracle defined in (11)
scales by a factor of 1

µ2 . In contrast, when employing the central difference approximation, the variance
bound improves, scaling it by 1

4µ2 . Although it should be noted that in each iteration of Algorithm 2,
the central difference approximation requires 4tk function evaluations, whereas the forward or backward
difference approximations require 2tk + 2 function evaluations, where tk denotes the number of sampled
directions. The practical benefits of the central difference approximation over the forward approximation
are demonstrated numerically in Section 4.3. A rigorous theoretical analysis addressing the noisy feedback
scenario remains an important direction for future research.
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Regarding the choice of the matrix B defined in (12), it is common in the literature to select B as the
identity matrix Balasubramanian & Ghadimi (2022); Malladi et al. (2023); Wang et al. (2023); Xu et al.
(2020). However, our main theorems in Sections 3.1, 3.2, and 3.3 are stated for a general positive definite
matrix B = B∗ ≻ 0. A detailed discussions on the selection of the minimum and maximum eigenvalues
of B are provided in Appendix C. The impact of different choices of B is further investigated numerically
in Section 4.3. Extending the theoretical analysis of the choice of B constitutes an important direction for
future work.

Comparing the update rule in (Nesterov & Spokoiny, 2017, (66)) with the update rules in Algorithms 1 and 2
of this work, one key difference is that the random oracle in (Nesterov & Spokoiny, 2017, (66)) is multiplied
by B−1, whereas in our work it is not. Furthermore, the results in Nesterov & Spokoiny (2017) are expressed
in terms of the primal and dual norms, while our results are formulated using the | · | = ∥ · ∥B−1 norm. This
difference in formulation explains why the eigenvalues and condition number of B do not appear in the final
results of Nesterov & Spokoiny (2017). Specifically, the use of primal-dual norms and multiplication by B−1

absorb the influence of B in their bounds. However, translating their results from primal-dual norms into
the | · | norm would generally lead to more conservative bounds compared to deriving the results directly in
the | · | norm, as we do in this work. Our motivation for using the | · | norm is to make the decay of the
iterates explicit without masking the influence of B. To illustrate this point, suppose |z|2 ≤ C for some
constant C > 0. Then, using the dual norm ∥ · ∥∗, we have ∥z∥2

∗ ≤ C
λ . This implies that by choosing λ

sufficiently large, one can make ∥z∥2
∗ arbitrarily small. This highlights how the ∥ · ∥∗ norm can obscure the

true behaviour of the algorithm unless B is explicitly accounted for. For more details, see Appendix E. It is
worth noting that the per-iteration complexity of Algorithm 2 is lower than that of Algorithm 3, as it avoids
the additional matrix-vector multiplication step. Furthermore, in Algorithms 1 and 2, the matrix B is treated
as a hyperparameter, and its selection influences the algorithm’s performance with respect to the Euclidean
norm of the gradient operator. In contrast, the hyperparameter choice in Algorithm 3 is independent of the
choice of B, and for a fixed hyperparameter configuration, the algorithm guarantees consistent performance
across all choices of B, measured with respect to the B-weighted primal and dual norms.

Next, we discuss the relationship between second-order optimality conditions and the results of this study.
Prior works such as Daskalakis & Panageas (2018); Jin et al. (2020); Farzin et al. (2025); Cai et al. (2024)
characterise local convergence behaviour and limit points of certain first-order algorithms, analysing second-
order optimality conditions to relate these limit points to local Nash equilibria, local min-max points, or
Φ-equilibria. To the best of our knowledge, the second-order optimality properties of limit points produced
by ZO algorithms have not yet been investigated. In this study, we focused on establishing first-order
optimality properties of the sequence generated by the ZO-EG algorithm. Examining second-order optimality
constitutes a promising avenue for future research.

4 Numerical examples

In this section, we evaluate the performance of Algorithm 1 via numerical experiments. First, ZO-EG is
applied to three toy functions, and the trajectory of iterates for each case is analysed. Second, a robust
underdetermined least squares problem is studied, and the convergence trajectory of Algorithm 1 is analysed
and compared with other algorithms. The third example is concerned with a data poisoning attack on a
logistic regression problem. Algorithm 1 is applied to this problem and it is shown how it compromises the
prediction accuracy of a logistic regressor. The performance of the algorithm is compared to that of the
direct search (DS) algorithm from (Anagnostidis et al., 2021). In the fourth example, a classifier neural
network is trained and a corresponding empirical risk minimisation problem is solved using Algorithm 1.
Finally, a version of a lane merging problem, which can be formulated as min-max problem, is implemented
and solved using ZO-EG. In all the examples below, we set B−1

1 = B−1
2 = I, unless stated otherwise.
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4.1 Low Dimensional Toy Problems

In this section, we apply Algorithm 1 to the following three functions:

f1(x, y) = 2x2 − 2y2 + 4xy + 10 sin(xy), (39)
f2(x, y) = log(1 + ex) + 3xy − log(1 + ey), (40)
f3(x, y) = |x3 − 1| − |y3 + 1|. (41)

We consider the functions f1, f2 and f3 as the objective functions of the min-max Problem 1. Function
f1(x, y) is smooth and nonconvex-nonconcave, and thus fits into the setting discussed in Section 3.1. Function
f2(x, y) is smooth and nonconvex-nonconcave and is considered in a constrained setting where X def= {x ∈ R :
|x| ≤ 3} and Y def= {y ∈ R : |y| ≤ 2} and thus, the corresponding theory, is covered in Section 3.2. Function
f3(x, y) is non-differentiable and nonconvex-nonconcave. Hence, we can use the theory of Section 3.3 to study
the performance of Algorithm 1. For (39) and (41), we choose h1 = 2 × 10−3, h2 = 10−3, and µ = 10−6.
For (40), we choose h1 = h2 = 10−3 and µ = 10−6. The sequence {xk, yk}k≥0 for objective functions f1 and
f2 with two initial values (5,−7) and (−7, 5) and for objective function f3 with two initial values (7,−1) and
(1, 7) are shown in Figure 1. For (41), Algorithm 1 is initialised through values where f1 is non-differentiable.
As expected from the theoretical results, from Figure 1, we observe that Algorithm 1 successfully converges
to the stationary point of the objective function for all three cases.
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Figure 1: The trajectories of iterates generated by Algorithm 1 applied to functions f1, f2, f3 in Section 4.1.
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Table 1: Average wall-clock time to reach 0.5%∥Ax0 −y0 +δ0∥ for 10 runs for the RLS problem in Section 4.2

ZO-EG GDA DS
Average Wall-Clock Time (s) 0.39 0.21 24.56

Standard Deviation 0.13 0.04 3.80

4.2 Robust Least-Squares Problem

We illustrate the behaviour of Algorithm 1 when applied to a robust least-squares (RLS) problem. Slightly
deviating from the notation so far, let A ∈ Rn×m be the coefficient matrix and y0 ∈ Rn be the noisy
measurement vector for n,m ∈ N. We assume that y0 is subject to a bounded additive deterministic
perturbation δ ∈ Rn. The RLS problem can be formulated as (El Ghaoui & Lebret, 1997)

min
x

max
|δ|≤ρ

|Ax− y0 + δ|2.

This problem has a compact convex constraint set Bρ(0) with respect to the optimisation variable δ. We
set ρ = 5, n = 150, m = 250 and sample the elements of A and y0 from N (0, 1). In Algorithm 1 we
choose h1 = h2 = 10−5 and µ = 10−9. For comparison, we solve the same problem with Gradient Descent
Ascent (GDA) and min-max Direct Search (DS) Anagnostidis et al. (2021) algorithms. The sequence of the
objective function values is plotted against the execution time (0.5 sec), the number of iterations, and the
number of function calls for ZO-EG, GDA, and DS in Figure 2. In each iteration of ZO-EG, there are 2
oracle calls (i.e., 4 function evaluations), whereas the number of function evaluations per iteration in DS can
vary. Notably, for this particular example, both ZO-EG and DS reached their target within 0.5 seconds, but
DS made minimal progress. The average and the standard deviation over 10 runs of the wall-clock times, as
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Figure 2: On the left, objective function value versus the execution time, in the middle, objective function
value versus the number of iterations, on the right, objective function value versus the number of function
calls for RLS problem of Section 4.2.

measured by the python time package, for each algorithm to yield an iterate that results in the function value
of 0.5%∥Ax0 − y0 + δ0∥ are presented Table 1. Note that GDA, as a first-order method, uses the gradient of
the objective function while ZO-EG only has access to the function values. Also, in each iteration of GDA,
two gradient evaluations are needed, while we need four function evaluations in each iteration of ZO-EG.

4.3 Choice of B and the Oracle, Effect of Output Noise, and Impact of Increased Sample Size

In this section, we illustrate the behaviour of Algorithms 1 and 2 applied to the RLS problem described in
Section 4.2. First, we analyse the effect of the choice of matrix B defined in (12). Then, assuming noisy
function evaluations, we study the performance of Algorithms 1 and 2 using forward, backward, and central
difference approximation oracles with varying numbers of samples per iteration. We set ρ = 5, n = 150,
m = 250, and sample the elements of A and y0 from N (0, 1). In both algorithms, we fix h1 = h2 = 10−5,
N = 5000, and µ = 10−5. We run Algorithm 1 with five different choices of B defined in (12). Specifically,
B1 is a diagonal matrix with all diagonal entries equal to 10, B2 is a diagonal matrix with all diagonal
entries equal to 0.1, B3 is diagonal with entries randomly chosen between [0.1, 10] (yielding a condition
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number κ = 98.87), B4 is diagonal with half of the diagonal entries equal to 10 and the other half equal to
1, randomly placed, and B5 is the identity matrix. Figure 3 plots the average objective function value over
five runs. It can be seen that, for this example, the choices of B with condition number equal to 1 perform
better and yield smoother convergence.
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Figure 3: Objective function values over the generated sequence by Algorithm 1 with different choice of B
for the example of Section 4.3.

Next, we test Algorithms 1 and 2 in the case of noisy feedback. The parameter selection is as mentioned
above, and we choose B as the identity matrix. First, we consider output noise sampled from N (0, 10−3),
N (0, 10−2), and N (0, 10−1), and test Algorithms 1 and 2 with forward, backward, and central difference
approximation oracles. The number of samples per iteration of Algorithm 2 is set to 100. The average
objective function values over 3 runs are plotted in Figure 4. It can be observed that when the noise level is
small, there is little difference among the oracles; however, as the noise scale increases, the central difference
oracle outperforms the forward and backward oracles. Additionally, in all three noise cases, the variance
reduction technique employed in Algorithm 2 improves convergence by reducing variance, leading to better
and more accurate results. We repeated the test with noise sampled from N (0, 10−1), but with µ = 10−4.
The average objective function values over 3 runs are plotted in Figure 5. Comparing the bottom row of
Figure 4 with Figure 5 reveals the inverse dependency of variance on µ; under the same noise conditions, a
larger smoothing parameter leads to more accurate convergence.

4.4 Data Poisoning attack on Logistic Regression

Following the examples in Huang et al. (2022); Liu et al. (2020), as a next example, we consider a poisoning
attack scenario where a fraction of the samples is corrupted by an additive perturbation vector aiming to
compromise the training process and, consequently, deteriorate the prediction accuracy. This problem can
be formulated as

max
∥x∥∞≤ζ

min
y

h(x, y;Dp) + h(0, y;Dt) + λ∥y∥2,

where Dp is the corrupted data set and Dt is the clean data set, ζ > 0 is the maximum allowed perturbation
magnitude, λ > 0 is a regularisation parameter, y is the model parameter, and x is the corruption vector.
Note that this max-min problem can be reformulated as a min-max problem: min∥x∥∞≤ζ maxy f(x, y) with
f(x, y) def= −(h(x, y;Dp) + h(0, y;Dt) + λ∥y∥2). The corruption ratio is set to 15%. We consider a binary
cross-entropy loss function, i.e., h(x, y;D) = − 1

card(D)
∑

(ai,bi)∈D[bi log(g(x, y; ai))+(1−bi) log(1−g(x, y; ai))]
and g(x, y; ai) = 1

1+exp(−(x+ai)⊤y) , where card(D) denotes the cardinality of the set D.
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Figure 4: Performance of Algorithms 1 (left column) and 2 (right column) under additive Gaussian output
noise in the example of Section 4.3. The plots show the objective function values over the generated sequence
for different noise levels. From top to bottom, the noise is sampled from N (0, 10−3), N (0, 10−2), and
N (0, 10−1), respectively.
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Figure 5: Performance of Algorithms 1 and 2 with µ = 10−4, under additive Gaussian output noise sampled
from N (0, 10−1) in the example of Section 4.3.

In the experiment, we generate 500 samples. Specifically, we randomly draw the feature vectors ai ∈ R20

(n = m = 20) from N (0, I). Label bi = 1 if 1
1+exp(−(a⊤

i
θ+vi)) ≥ 1

2 , otherwise bi = 0. Moreover, θ and vi are
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sampled from N (0, 1) and N (0, 10−3), respectively, for i = 1, . . . , 500. We let λ = 0.001 and ζ = 10. DS
is implemented with the same parameter setting as the first experiment of (Anagnostidis et al., 2021) as a
comparison. ZO-EG is run for 12000 iterations with h1 = h2 = 10−3 and DS is run for 330 iterations. We
note that, for this particular example, on average, each iteration of ZO-EG takes 6.9 × 10−3 seconds and
each iteration of DS takes 0.24 seconds. The average evaluation accuracy over 20 runs versus the number
of iterations, the wall-clock execution time, and number of function calls for both algorithms are plotted
in Figure 6. In each iteration of ZO-EG, there are 2 oracle calls (i.e., 4 function evaluations), whereas the
number of function evaluations per iteration in DS can vary. We note that ZO-EG’s improved performance
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Figure 6: On the left, evaluation accuracy versus the execution time, in the middle, evaluation accuracy
versus the number of iterations, and on the right, evaluation accuracy versus the number of function calls
for the poisoning attack example of Section 4.4.

(doing so in an increased amount of time) in comparison to DS, i.e., ZO-EG successfully decreases the
prediction accuracy to a lower level than DS, as it is the goal of poisoning attacks.

4.5 Robust Optimisation

The problem of empirical risk minimisation for a specific class of a binary classification problems is formulated
as (Anagnostidis et al., 2021)

min
θ

max
p

−
m∑

i=1
pi[yi log(ŷ(Xi; θ)) + (1 − yi) log(1 − ŷ(Xi; θ))] − λ

m∑
i=1

(
pi − 1

m

)2
,

where Xi ∈ Rv, i ∈ {1, . . . ,m}, are the data points, θ ∈ Rn are the network parameters, and ŷ(Xi; θ), yi ∈ Rm

are the predicted and the true class of data points Xi, respectively. Moreover, p ∈ Rm denotes the weights
assigned to each data point. The positive scalar λ is the regularisation parameter. The Wisconsin breast
cancer data set2 is considered for this test. This dataset has 569 instances and each instance has 30 (v = 30)
features. Specifically, we consider the case where the predicted class of a data point X, ŷ(X; θ), is generated
by a neural network with a hidden layer of size 50 and the LeakyReLU activation function with n = 1601 and
m = 513. We let λ = 0.05, h1 = 10−2, h2 = 10−3, and µ = 10−5. The min-max DS algorithm is implemented
using the same setting as the first test of Anagnostidis et al. (2021) for comparison purposes. In Figure 7,
the evolution of the zero-one error and the total error are plotted against the wall-clock time. The algorithm
is trained using a 10-fold cross-validation process (Refaeilzadeh et al., 2009). It can be observed that the
steady-state performance of the algorithms is the same for class 1 and DS performs slightly better for class 0.
However, DS leads to a faster decrease in the transient in comparison to ZO-EG. This behaviour is almost
similar to that of GDA (Anagnostidis et al., 2021, Appendix D1, Figure 4). It is important to note that this
objective function explicitly satisfies a more stringent assumption; it is strongly concave in p.

4.6 Lane Merging

In this subsection, we present a numerical example of a lane merging problem formulated as a min-max
optimisation problem. This scenario involves two cars. The first aims to maximise its velocity while staying

2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Figure 7: Numerical simulations for the binary classification problem of Section 4.5.

in its lane, and the second aims to perform a lane merging maneuver. Both vehicles aim to avoid collision.
The kinematic bicycle model is used to simulate the cars’ dynamics, represented as:

d
dtsi(t) = f(t, si(t), ui(t)) =


vi(t) cos(θi(t))
vi(t) sin(θi(t))

vi(t) tan(δi(t))/L
ai(t)

 , si(t) =


xi(t)
yi(t)
θi(t)
vi(t)

 , ui(t) =
[
ai(t)
δi(t)

]
,

where i ∈ {1, 2} indicates first or second car, (xi, yi) represents the position, θi the heading angle, vi the
velocity, δi the steering angle, ai the longitudinal acceleration, and L is the car’s wheelbase. The input for
the first car is defined as u1(t) =

[
a1(t) 0

]⊤, while the second car’s input is u2(t) =
[
a2(t) δ2(t)

]⊤.

To solve the problem using numerical optimisation, the continuous-time system is discretised using the fourth
order Runge-Kutta (RK4) method with a fixed time step ∆t > 0. In RK4, an update is calculated using
four intermediate evaluations of f at different points within the time step:

K1,i,k = f
(
tk, si,k, ui(tk)

)
, K2,i,k = f

(
tk + ∆t

2 , si,k + ∆t
2 K1,i,k, ui(tk + ∆t

2 )
)
,

K3,i,k = f
(
tk + ∆t

2 , si,k + ∆t
2 K2,i,k, ui(tk + ∆t

2 )
)
, K4,i,k = f

(
tk + ∆t, si,k + ∆tK3,i,k, ui(tk + ∆t)

)
.

(42)

Here, si,k denotes the approximation of si(tk + t), tk = k∆t, and assuming that the initial time satisfies
t = 0, the resulting discrete-time dynamics are:

si,k+1 = si,k + ∆t
6
(
K1,i,k + 2K2,i,k + 2K3,i,k +K4,i,k

)
.

where k ∈ N denotes the discrete time steps. The discrete-time objective functions for the two cars are:

Γ1(k, s1,k, s2,k) = 1
2v

2
1,k − 2 exp

(
−
(
(x1,k − x2,k)2 + (y1,k − y2,k)2)) ,

Γ2(k, s1,k, s2,k) = exp
(
−
(
(x1,k − x2,k)2 + (y1,k − y2,k)2))+ 10

(
y2,k − ytarget

)2
,

where ytarget is the y-coordinate of the target lane. These objective functions penalise proximity between the
cars to avoid collisions, encourage the first car to increase its velocity, and encourage the second car to reach
the target lane. This problem can be solved as an open-loop non-cooperative game over a time horizon of
T > 0, where we use the parameter T = 20 for the numerical example. The control inputs are parametrised
using Φ = 50 uniformly spaced control points leading to a sampling time of ∆t = 0.4 second. The inputs are
continuous and piecewise linear by assumption, i.e., ui(tk + ∆t

2 ) = 1
2 (ui(tk) + ui(tk + ∆t))) is used in (42)
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for i ∈ {1, 2} and k ∈ N. The optimisation problem is formulated as:

min
U2∈Π

max
U1∈Π

Φ−1∑
k=0

Γ1(k, s1,k, s2,k) + Γ2(k, s1,k, s2,k),

subject to si,k+1 = si,k + ∆t
6
(
K1,i,k + 2K2,i,k + 2K3,i,k +K4,i,k

)
, ∀i ∈ {1, 2},

where Ui = {ui(tk)| k ∈ {0, . . . ,Φ − 1}}, i ∈ {1, 2}, and Π = {(a, δ) | a ∈ [amin, amax], δ ∈ [δmin, δmax]}. The
input dimensions are 50 for U1 and 100 for U2. The steering input for the first car is fixed and does not
contribute to the dimensionality.

We implement the ZO-EG algorithm with ytarget = 5, µ = 10−6, h1 = 2 × 10−9, h2 = 10−9, and N = 4000.
The initial states of the cars are s1(0) = [0, 5, 0, 2]⊤ for the first car and s2(0) = [5, 0, 0, 3]⊤ for the second
car. Figure 8 shows the evolution of the objective function values over the iterations. The initial and final
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Figure 8: Objective function values versus iterations.

positions and paths of the cars are depicted in Figure 9.
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Figure 9: Initial and final positions and paths of the cars.

We also investigate the proximal MVI in this context. Using ZO-EG with the same time horizon T = 20,
Φ = 20 control values (sampling time ∆t = 1 second), the same step sizes and smoothing parameter, and
N = 7500 iterations, we generate a candidate point up = (u1p, u2p) for the answer to the proximal MVI
problem (candidate for z∗). To evaluate the proximal MVI condition ⟨Qℓ(u, h2, F (ū)), ū− up⟩ ≥ 0, where ℓ
is the indicator function of Π, we sample 1000 samples for u and ū separately. All points are sampled from
a normal distribution centred at up. For the acceleration inputs, the covariance matrix is set to 0.1I, while
for the steering inputs, it is 0.01I. Among all tested points, the proximal MVI product is positive, as shown
in Figure 10.
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Figure 10: Distribution of proximal MVI values around the optimal solution.

5 Conclusion And Future Research Directions

The performance of Gaussian ZO random oracles on finding stationary points of nonconvex-nonconcave func-
tions, with or without constraints, differentiable or non-differentiable objective functions, was explored. For
the unconstrained problem, the convergence and complexity bounds of the ZO-EG algorithm were studied
when applied to nonconvex-nonconcave objective functions. For the constrained problem, we introduced the
notion of proximal variational inequalities and established convergence and complexity bounds of the ZO-EG
algorithm. We also considered non-differentiable objective functions and obtained convergence and complex-
ity bounds of finding the stationary point of a smoothed function and related that to the original function
using the existing literature and the definition of (δ,ϵ)-Goldstein stationary points. A number of numerical
examples were presented to illustrate the findings. A future research direction includes the exploration of the
constrained case where the diameter of the constrained set is unbounded. Another potential direction is to
study the non-differentiable case, assuming local instead of global Lipschitz continuity properties. Another
promising direction for future research is to analyse the second-order optimality conditions of the limit points
generated by the ZO-EG algorithm.
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A Complementary Lemmas, Corollaries and Remarks

The following lemmas are adopted from Nesterov & Spokoiny (2017). The results are used in the proofs of
the main results.
Lemma 5 ((Nesterov & Spokoiny, 2017, Lemma 1)). Let u ∈ Z be sampled from Gaussian distribution
N (0, B−1). If we define Mp

def= 1
κ

∫
||u||pe− 1

2 ||u||2du. For p ∈ [0, 2] we have Mp ≤ d
p
2 . For p ≥ 2 we have

d
p
2 ≤ Mp ≤ (p+ d)

p
2 .

Lemma 6 ((Nesterov & Spokoiny, 2017, Theorem 1)). Let f : Z → R be continuously differentiable with
Lipschitz gradients with constant L1(f) > 0, and fµ be defined in (10). Then

|fµ(z) − f(z)| ≤ µ2

2 L1(f)d, ∀z ∈ Z, (43)

where fµ is Gaussian smoothed version of f .
Lemma 7 ((Nesterov & Spokoiny, 2017, Lemma 3)). Let f : Z → R be continuously differentiable with
Lipschitz continuous gradient with constant L1(f) > 0, and fµ be defined in (10). Then

∥∇fµ(z) − ∇f(z)∥∗ ≤ µ

2L1(f)(d+ 3) 3
2 , ∀z ∈ Z. (44)

We continue with a proof of Lemma 1 introduced in Section 3.1.

Proof of Lemma 1. Since z∗ ∈ Z satisfies the weak MVI (9) by Assumption 2, we know that ⟨F (z), z− z∗⟩ +
ρ
2 ∥F (z)∥2

∗ ≥ 0, for all z ∈ Z. Hence replacing z with z + µu in (9), we have

0 ≤ ⟨F (z + µu), z + µu− z∗⟩ + ρ

2∥F (z + µu)∥2
∗

= ⟨F (z + µu), z − z∗⟩ + ⟨F (z + µu), µu⟩ + ρ

2∥F (z + µu)∥2
∗. (45)

Also, considering that the gradient of f is Lipschitz continuous, we have (Nesterov, 1998)

f(x1, y) ≤ f(x2, y) + ⟨∇xf(x2, y), x1 − x2⟩ + L1

2 ∥x1 − x2∥2

and
f(x, y1) ≤ f(x, y2) + ⟨∇yf(x,2 y), y1 − y2⟩ + L1

2 ∥y1 − y2∥2.

Considering above inequalities, we get

f(x, y + µu2) ≤ f(x+ µu1, y + µu2) + ⟨∇xf(x+ µu1, y + µu2),−µu1⟩ + L1µ
2

2 ∥u1∥2.

Since f and −f satisfy the same Lipschitz continuity properties, it holds that

−f(x+ µu1, y) ≤ −f(x+ µu1, y + µu2) + ⟨−∇yf(x+ µu1, y + µu2),−µu2⟩ + L1µ
2

2 ∥u2∥2.

Thus
⟨∇xf(x+ µu1, y + µu2), µu1⟩ ≤ f(x+ µu1, y + µu2) − f(x, y + µu2) + L1µ

2

2 ∥u1∥2

and
⟨−∇yf(x+ µu1, y + µu2), µu2⟩ ≤ f(x+ µu1, y) − f(x+ µu1, y + µu2) + L1µ

2

2 ∥u2∥2.

Adding the above two inequalities, we have

⟨F (z + µu), µu⟩ ≤ L1µ
2

2 ∥u∥2 + f(x+ µu1, y) − f(x, y + µu2),
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where z = (x, y) and u = [u1, u2]. Now adding and subtracting f(x, y) we have

⟨F (z + µu), µu⟩ ≤ L1µ
2

2 ∥u∥2 + (f(x+ µu1, y) − f(x, y)) + (f(x, y) − f(x, y + µu2)). (46)

Moreover, recalling the definition of Fµ in (15), it holds that

∥F (z + µu)∥2
∗ = ∥Fµ(z) + (F (z) − Fµ(z)) + (F (z + µu) − F (z))∥2

∗

≤ 2∥Fµ(z)∥2
∗ + 2∥(F (z) − Fµ(z)) + (F (z + µu) − F (z))∥2

∗

≤ 2∥Fµ(z)∥2
∗ + 4∥(F (z) − Fµ(z))∥2

∗ + 4∥(F (z + µu) − F (z))∥2
∗

≤ 2∥Fµ(z)∥2
∗ + 4∥(F (z) − Fµ(z))∥2

∗ + 4µ2L2
1(f)∥u∥2,

where the last inequality is due to the Lipschitz continuity of F . Thus considering Lemma 7, it holds that

∥F (z + µu)∥2
∗ ≤ 2∥Fµ(z)∥2

∗ + µ2L2
1(d+ 3)3 + 4µ2L2

1(f)∥u∥2. (47)

Substituting (46) and (47) in (45), we have

0 ≤⟨F (z + µu), z − z∗⟩ + L1µ
2

2 ∥u∥2 + ρ∥Fµ(z)∥2
∗ + ρ

2µ
2L2

1(d+ 3)3 + 2ρµ2L2
1∥u∥2

+ (f(x+ µu1, y) − f(x, y)) + (f(x, y) − f(x, y + µu2)). (48)

Computing the expected value with respect to u the estimate

0 ≤⟨Fµ(z), z − z∗⟩ + L1µ
2d

2 + ρ∥Fµ(z)∥2
∗ + ρ

2µ
2L2

1(d+ 3)3 + 2ρµ2L2
1d

+ (fµ,x(x, y) − f(x, y)) + (f(x, y) − fµ,y(x, y)).

is obtained and where fµ,x = Eu1 [f(x + µu1, y)] and fµ,y = Eu2 [f(x, y + µu2)] are the Gaussian smoothed
functions of f with respect to only x and y, respectively. Using Lemma 6 we have

0 ≤⟨Fµ(z), z − z∗⟩ + L1µ
2d

2 + ρ∥Fµ(z)∥2
∗ + ρ

2µ
2L2

1(d+ 3)3 + 2ρµ2L2
1d+ L1µ

2n

2 + L1µ
2m

2 .

With n + m = d and using the fact that 2d + (d+3)3

2 ≤ (d + 3)3 for all d ≥ 2, the last expression can be
simplified to

⟨Fµ(z), z − z∗⟩ + ρ∥Fµ(z)∥2
∗ + µ2L1(f)d+ ρµ2L2

1(f)(d+ 3)3 ≥ 0, (49)

which completes the proof.

Remark 7. Extending Qℓ(x, a, F (z̄)), we have

Qℓ(z, a, F (z̄)) = −1
a

(arg min
x

[
∥x− z∥2 + 2a⟨F (z̄), B(x− z)⟩ + ℓ(x)

]
− z).

Then we have

x′ = arg min
x

[
∥x− z∥2 + 2a⟨F (z̄), B(x− z)⟩ + ℓ(x)

]
= arg min

x

[ 1
a2 ∥x− z∥2 + 2

a
⟨F (z̄), B(x− z)⟩ + 1

a2 (ℓ(x))
]

= arg min
x

[ 1
a2 ∥x− z∥2 + 2

a
⟨F (z̄), B(x− z)⟩ + ∥F (z̄)∥2 + 1

a2 (ℓ(x)))
]

= arg min
x

[
∥1
a

(x− z) + F (z̄)∥2 + 1
a2 (ℓ(x))

]
= arg min

x

[
∥x− (z − aF (z̄))∥2 + ℓ(x)

]
Thus, if ℓ(x) = 0 or ℓ is a constant, then x′ = z − aF (z̄) and Qℓ(z, a, F (z̄)) = F (z̄) independent of positive
scalar a.
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Before we continue with a proof of Lemma 2, we introduce the auxiliary variables

vk
def= PZ(zk, h1,k, Fµ(zk)), v̂k

def= PZ(zk, h2,k, Fµ(ẑk)), pk
def= PZ(zk, h1,k, F (zk)), (50)

to simplify the presentation in the following.

Proof of Lemma 2. Let sk and ŝk, be defined in (28), p̂k be defined in (34), and vk, v̂k, and pk be defined
in (50). Considering Algorithm 1 and Γ(z) along with Z as defined in Section 3.2 when ℓ(z) = IZ(z), we
have Proxℓ(·) = ProjZ(·), Qℓ(zk, h1, F (zk)) = pk and Qℓ(zk, h2, F (ẑk)) = p̂k. Thus, when Assumption 3 is
satisfied, we have

⟨pk, zk − z∗⟩ + ρ

2∥pk∥2
∗ ≥ 0, ⟨p̂k, ẑk − z∗⟩ + ρ

2∥p̂k∥2
∗ ≥ 0.

Considering the above inequalities, we have

0 ≤ ⟨pk, zk − z∗⟩ + ρ

2∥pk∥2
∗

= ⟨sk, zk − z∗⟩ + ⟨pk − vk, zk − z∗⟩ + ⟨vk − sk, zk − z∗⟩ + ρ

2∥sk + (pk − vk) + (vk − sk)∥2
∗

≤ ⟨sk, zk − z∗⟩ + |pk − vk||zk − z∗| + ⟨vk − sk, zk − z∗⟩ + ρ∥sk∥2
∗ + ρ∥(pk − vk) + (vk − sk)∥2

∗

≤ ⟨sk, zk − z∗⟩ +Dzκ∥F (zk) − Fµ(zk)∥∗ +Dzκ∥ξk∥∗ + ρ∥sk∥2
∗ + 2ρκ2∥F (zk) − Fµ(zk)∥2

∗ + 2κ2ρ∥ξk∥2
∗

≤ ⟨sk, zk − z∗⟩ + µ

2DzκL1(f)(d+ 3)3/2 +Dzκ∥ξk∥∗ + ρ∥sk∥2
∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξk∥2

∗. (51)

The third inequality is due to ∥pk − vk∥ ≤ ∥F (zk) − Fµ(zk)∥ and ∥vk − sk∥ ≤ ∥Fµ(zk) −Gµ(zk)∥ which can
be obtained directly from the non-expansiveness of the projection operator. The last inequality is due to
Lemma 7. Inequality (51) proves (30). A proof of (31) follows the same arguments.

B Proof of Theorems and Corollaries

In this section, we give proofs of the main results presented in this paper.

Proof of Theorem 1. Considering Lemma 1, h2 > 0, and letting

ξk := Gµ(zk) − Fµ(zk) and ξ̂k := Gµ(ẑk) − Fµ(ẑk) (52)

(with Euk
[ξ̂k] = 0 and Eûk

[ξk] = 0), we have

0 ≤ h2⟨Fµ(ẑk), ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2
∗ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

= h2⟨Gµ(ẑk), ẑk − z∗⟩ − h2⟨ξ̂k, ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2
∗ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

= h2⟨Gµ(ẑk), zk+1 − z∗⟩ + h2⟨Gµ(zk), ẑk − zk+1⟩ + h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩ (53a)
− h2⟨ξ̂k, ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2

∗ + h2µ
2L1d+ h2ρµ

2L2
1(d+ 3)3 (53b)

Here, we have additionally used L1 = L1(f) to shorten the expressions. As a next step, we derive a bound for
the three terms in (53a). Considering Z = Z and from Algorithm 1 line 8, we know that zk−zk+1 = h2Gµ(ẑk)
as ProjZ(z) = z. Thus, it holds that

h2⟨Gµ(ẑk), zk+1 − z∗⟩ = ⟨zk − zk+1, zk+1 − z∗⟩

= 1
2 |z∗ − zk|2 − 1

2 |z∗ − zk+1|2 − 1
2 |zk − zk+1|2. (54)
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Similarly, from Algorithm 1 line 5, we know that zk − ẑk = h1Gµ(zk) and thus the estimate

h2⟨Gµ(zk), ẑk − zk+1⟩ = h2

h1
⟨zk − ẑk, ẑk − zk+1⟩

= h2

2h1
(|zk − zk+1|2 − |zk − ẑk|2 − |zk+1 − ẑk|2)

= h2

2h1
|zk − zk+1|2 − h2

2h1λ
∥zk − ẑk∥2 − h2

2h1λ
∥zk+1 − ẑk∥2) (55)

is obtained. For the third term in (53a), we use the fact that the gradient of f is Lipschitz continuous.
Hence, for any α > 0, the chain of inequalities

h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩ ≤ h2|Fµ(ẑk) − Fµ(zk)||ẑk − zk+1| + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1κ∥ẑk − zk∥∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1κα

2 ∥ẑk − zk∥2 + h2L1κ

2α ∥ẑk − zk+1∥2 + h2⟨ξ̂k − ξk, ẑk − zk+1⟩, (56)

is satisfied.

Substituting (54), (55), and (56) in (53a), letting rk = |zk − z∗|, and noting that zk − zk+1 = h2Gµ(ẑk) and
zk − ẑk = h1Gµ(zk), we get

0 ≤ 1
2(r2

k − r2
k+1) +

(
h2

2h1
− 1

2

)
|zk − zk+1|2 +

(
h2L1κα

2 − h2

2h1λ

)
∥ẑk − zk∥2 + h2ρ∥Fµ(ẑk)∥2

∗

+
(
h2L1κ

2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

+ h2⟨ξ̂k − ξk, ẑk − zk+1⟩

= 1
2(r2

k − r2
k+1) + h2

2

(
h2

2h1
− 1

2

)
|Gµ(ẑk)|2 + h2

1

(
h2L1κα

2 − h2

2h1λ

)
∥Gµ(zk)∥2 + h2ρ∥Fµ(ẑk)∥2

∗

+
(
h2L1κ

2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

+ h2⟨ξ̂k − ξk, ẑk − zk+1⟩. (57)

Rearranging the above terms we have

h2
2

(
1
2 − h2

2h1

)
|Gµ(ẑk)|2 ≤ 1

2(r2
k − r2

k+1) + h2
1

(
h2L1κα

2 − h2

2h1λ

)
∥Gµ(zk)∥2 +h2ρ∥Fµ(ẑk)∥2

∗

+
(
h2L1κ

2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩+h2µ

2L1d+h2ρµ
2L2

1(d+ 3)3

+h2⟨ξ̂k − ξk, h2Gµ(ẑk) −h1Gµ(zk)⟩. (58)

Choosing h1 ≤ 1
λL1κ

and α = 1 ensures that the second and third right-hand side terms of (58) are
non-positive. For 1

2 − h2
2h1

> 0 to hold, h2 needs to satisfy h2 < h1. Considering these facts, we choose√
2ρ

L1λλκ
≤ h2 ≤ h1

2 . Considering Definition 10, ρ ∈ [0, 1
8Lκ2 ) and we can guarantee that there exists h1 and

h2 such that
√

2ρ

L1λλκ
≤ h2 ≤ h1

2 . Thus, we have

h2
2

4 |Gµ(ẑk)|2 − ρ

2L1λλκ
|Fµ(ẑk)|2 ≤ 1

2(r2
k − r2

k+1) − h2⟨ξ̂k, ẑk − z∗⟩ + µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3

+ h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1Gµ(zk)⟩

≤ 1
2(r2

k − r2
k+1) + h2⟨ξ̂k, z

∗ − zk + h1Gµ(zk)⟩ + µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3

+ h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1Gµ(zk)⟩. (59)
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The second inequality is due to the fact that ẑk = zk − h1Gµ(zk) considering Algorithm 1 line 5. For the
last term of the inequality above, we have

h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1G(zk)⟩ = h2⟨ξ̂k − ξk, h2(ξ̂k + Fµ(ẑk)) − h1(ξk + Fµ(zk))⟩
= h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩ + h2⟨ξ̂k − ξk, h2Fµ(ẑk) − h1Fµ(zk)⟩. (60)

For h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩, we have

h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩ = h2
2|ξ̂k|2 + h2h1|ξk|2 + h2⟨ξk,−h2ξ̂k⟩ + h2⟨ξ̂k,−h1ξk⟩. (61)

Substituting (60) and (61) in (59), we have

h2
2

4 |Gµ(ẑk)|2− ρ

2L1λλκ
|Fµ(ẑk)|2 ≤ 1

2(r2
k −r2

k+1)+ µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3+h2

2|ξ̂k|2+h2h1|ξk|2

+ h2⟨ξ̂k, z
∗ − zk + h1Gµ(zk)⟩ + h2⟨ξ̂k − ξk, h2Fµ(ẑk) − h1Fµ(zk)⟩ + h2⟨ξk,−h2ξ̂k⟩ + h2⟨ξ̂k,−h1ξk⟩.

(62)

From Jensen’s inequality, we know that Euk
[|Gµ(ẑk)|]2 ≤ Euk

[|Gµ(ẑk)|2]. Additionally, it can be concluded
that Euk

[|Gµ(ẑk)|] ≥ |Euk
[Gµ(ẑk)]| = |Fµ(ẑk)|, and thus

Euk
[|Gµ(ẑk)|2] ≥ |Fµ(ẑk)|2. (63)

Using this inequality we can lower bound Euk
[|Gµ(ẑk)|2] and by taking the expected value of (62) with respect

to uk and then with respect to ûk, noting that Euk
[ξ̂k] = 0, Euk

[|ξ̂k|2] ≤ λEuk
[∥ξ̂k∥2

∗] ≤ λσ2, Eûk
[ξk] = 0,

and Eûk
[|ξk|2] ≤ λEûk

[∥ξk∥2
∗] ≤ λσ2, we have(

h2
2

4 − ρ

2L1λλκ

)
Euk,ûk

[|Fµ(ẑk)|2] ≤ 1
2(r2

k − Euk,ûk
[r2

k+1]) + µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3

+ 1
4L2

1λκ
2
σ2 + 1

2L2
1λκ

2
σ2. (64)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk (Euk
[ξ̂k] = 0 and

Euk
[ξk] = ξk,) the expected value of the last four terms of (62) with respected to uk are zero. The technique

of taking the expectation with respect to the last sampled random variable first, and then with respect to
the history has been leveraged before in ZO optimisation, e.g., (Nesterov & Spokoiny, 2017, (67)).

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (64)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2
4 − ρ

2L1λλκ

)
EUk

[|Fµ(ẑk)|2] ≤ 1
2(ϕ2

k − ϕ2
k+1)+ µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3+ 1

4L2
1λκ

2
σ2+ 1

2L2
1λκ

2
σ2. (65)

Summing (65) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λλL1κ|z0 − z∗|2

(λλL1κh2
2 − 2ρ)(N + 1)

+ 2µ2λL1d

(λλL1κh2
2 − 2ρ)

+ 2µ2λL2
1ρ(d+ 3)3

(λλL1κh2
2 − 2ρ)

+ 3λσ2

L1κ(λλL1κh2
2 − 2ρ)

, (66)

which completes the proof
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Proof of Corollary 2. Adopting the hypothesis of Theorem 1 (and L1 = L1(f)) and letting B defined in (12)
be B = λI with λ > 0, we have

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λ2L1|z0 − z∗|2

(λ2L1h2
2 − 2ρ)(N + 1) + 2λL1d+ 2λL2

1ρ(d+ 3)3

(λ2L1h2
2 − 2ρ) µ2 + 3λσ2

L1(λ2L1h2
2 − 2ρ) .

We want to obtain a guideline on how to choose the parameters N and µ, given a measure of performance ϵ, in
order to bound the above inequality by ϵ. Thus, by bounding terms 2λ2L1∥z0−z∗∥2

(λ2L1h2
2−2ρ)(N+1) and 2L1d+2L2

1ρ(d+3)3

(λ2L1h2
2−2ρ) λµ2

separately by ϵ2

2 , we obtain the lower bound on the number of iterations N and upper bound on smoothing
parameter µ. Thus if

µ ≤
(

(λ2L1h
2
2 − 2ρ)

4λL1d+ 4λL2
1ρ(d+ 3)3

) 1
2

ϵ and N ≥

⌈(
4λ2L1r

2
0

(λ2L1h2
2 − 2ρ)

)
ϵ−2 − 1

⌉
,

then,
1

N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ ϵ2 + 3λσ2

(λ2L2
1h

2
2 − 2ρL1) ,

which completes the proof.

Proof of Corollary 3. Considering Lemma 7 (and L1 = L1(f)) and letting B defined in (12) be λI where
λ > 0, it can be seen that

1
N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ 2

N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] + µ2

2 λL2
1(d+ 3)3.

Considering Theorem 1 and (20), if

µ ≤ min

 ϵ√
2λL1(d+ 3) 3

2
, ϵ

√(
16λL1d+ 16λL2

1ρ(d+ 3)3

(λ2L1h2
2 − 2ρ)

)−1
 and N ≥

⌈(
8λ2L1r

2
0

(λ2L1h2
2 − 2ρ

)
ϵ−2 − 1

⌉
,

then
1

N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ ϵ2 + 6λσ2

λ2L1(L1h2
2 − 2ρ)

and thus the assertion follows.

Proof of Theorem 2. The proof of Theorem 2 follows the proof of Theorem 1 from beginning to (63). Using
(63) and by taking the expected value of (62) with respect to uk and then with respect to ûk, noting that
Euk

[ξ̂k] = 0, Euk
[|ξ̂k|2] ≤ λEuk

[∥ξ̂k∥2
∗] ≤ λσ2

tk
, Eûk

[ξk] = 0, and Eûk
[|ξk|2] ≤ λEûk

[∥ξk∥2
∗] ≤ λσ2

tk
, we have(

h2
2

4 − ρ

2L1λλκ

)
Euk,ûk

[|Fµ(ẑk)|2] ≤ 1
2(r2

k − Euk,ûk
[r2

k+1]) + µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3

+ 1
4L2

1λκ
2tk

σ2 + 1
2L2

1λκ
2tk

σ2. (67)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk, and Euk
[ξ̂k] = 0, the

expected value of the last four terms of (62) with respected to uk are zero.

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (64)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2
4 − ρ

2L1λλκ

)
EUk

[|Fµ(ẑk)|2]≤ 1
2(ϕ2

k − ϕ2
k+1)+ µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3+ 1

4L2
1λκ

2tk
σ2+ 1

2L2
1λκ

2tk
σ2.

(68)
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Summing (68) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2λλL1κ|z0 − z∗|2

(λλL1κh2
2 − 2ρ)(N + 1)

+ 2λµ2L1d

(λλL1κh2
2 − 2ρ)

+ 2λµ2L2
1ρ(d+ 3)3

(λλL1κh2
2 − 2ρ)

+ 3λσ2

L1κ(λλL1κh2
2 − 2ρ)

1
N + 1

N∑
k=0

1
tk
, (69)

which completes the proof

Proof of Corollary 4. Considering Lemma 7 (and L1 = L1(f)) and let B defined in (12) be the identity
matrix, it can be seen that

1
N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ 2

N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] + µ2

2 λL2
1(d+ 3)3.

Considering Theorem 2 and (21), if tk = t ≥ 18λσ2

L1(λ2L1h2
2−2ρ)ϵ

−2 and

µ ≤ min

 ϵ√
3λL1(d+ 3) 3

2
, ϵ

√(
24λL1d+ 24λL2

1ρ(d+ 3)3

(λ2L1h2
2 − 2ρ)

)−1
 and N ≥

⌈(
12λ2L1r

2
0

(λ2L1h2
2 − 2ρ

)
ϵ−2 − 1

⌉
,

then
1

N + 1

N∑
k=0

EUk
[|F (ẑk)|2] ≤ ϵ2

and thus the assertion follows.

Proof of Theorem 3. In the following we use L1 = L1(f) to shorten expressions. Considering ξk = Gµ(zk) −
Fµ(zk) and ξ̂k = Gµ(ẑk)−Fµ(ẑk), h1 = h2 = h,

√
6ρ

L1λλκ
< h ≤ 1

2L1κλ
and ρ ≤ 1

24L1κ2 , the following estimate
holds:

|zk+1 − z∗|2 = |zk − hŝk − z∗|2

= |zk − z∗|2 + h2|ŝk|2 − 2h⟨ŝk, zk − z∗⟩
= |zk − z∗|2 + h2|ŝk|2 − 2h⟨ŝk, zk − ẑk⟩ − 2h⟨ŝk, ẑk − z∗⟩

≤ |zk − z∗|2 + h2|ŝk|2 − 2h⟨ŝk, zk − ẑk⟩ + 2h
(
ρ∥ŝk∥2

∗

+ µ

2DzκL1(f)(d+ 3) 3
2 +Dzκ∥ξ̂k∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξ̂k∥2

∗

)
= |zk − z∗|2 + h2|ŝk|2 − 2h2⟨ŝk, sk⟩ + 2hρ∥ŝk∥2

∗

+ 2h
(
µ

2DzκL1(f)(d+ 3) 3
2 +Dzκ∥ξ̂k∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξ̂k∥2

∗

)
≤ |zk − z∗|2 + h2(|ŝk − sk|2 − |sk|2) + 4hρ

λ
(|ŝk − sk|2 + |sk|2)

+ 2h
(
µ

2DzκL1(f)(d+ 3) 3
2 +Dzκ∥ξ̂k∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξ̂k∥2

∗

)
. (70)
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The first inequality is obtained using Lemma 2 and the second inequality is obtained by completing squares.
Next, we derive an upper bound for the term ∥ŝk − sk∥2. We have

|ŝk − sk|2 ≤ |(v̂k − vk) + (ŝk − v̂k) + (vk − sk)|2

≤ 2|v̂k − vk|2 + 4|ŝk − v̂k|2 + 4|vk − sk|2

≤ 2λκ2∥Fµ(ẑk) − Fµ(zk)∥2
∗ + 4λκ∥Gµ(zk) − Fµ(zk)∥2

∗ + 4λκ∥Gµ(ẑk) − Fµ(ẑk)∥2
∗

≤ 2L2
1λ

2
κ2|ẑk − zk|2 + 4λκ∥ξk∥2

∗ + 4λκ∥ξ̂k∥2
∗

= 2h2λ
2
κ2L2

1|sk|2 + 4λκ∥ξk∥2
∗ + 4λκ∥ξ̂k∥2

∗. (71)

The third inequality is due to the inequalities ∥sk −vk∥ ≤ ∥Gµ(zk)−Fµ(zk)∥, ∥ŝk − v̂k∥ ≤ ∥Gµ(ẑk)−Fµ(ẑk)∥,
and ∥v̂k − vk∥ ≤ ∥Fµ(ẑk) − Fµ(zk)∥, which can be directly obtained from the non-expansiveness of the
projection operator. The forth inequality is obtained using the fact that the gradient of the objective
function is Lipchitz. Plugging (71) in (70), we have

|zk+1 − z∗|2 ≤ |zk − z∗|2 + h2(2h2λ
2
κ2L2

1|sk|2 + 4λκ∥ξk∥2
∗ + 4λκ∥ξ̂k∥2

∗ − ∥sk∥2)

+ 4hρ
λ

(
2h2λ

2
κ2L2

1|sk|2 + 4λκ∥ξk∥2
∗ + 4λκ∥ξ̂k∥2

∗ + ∥sk∥2
)

+ 2h
(µ

2DzκL1(f)(d+ 3) 3
2

+Dzκ∥ξ̂k∥∗ + µ2

2 ρκ2L2
1(f)(d+ 3)3 + 2ρκ2∥ξ̂k∥2

∗

)
≤ |zk − z∗|2 + h2(2L2

1h
2λ

2
κ2 − 1)|sk|2 + 4hρ

λ
(2h2L2

1λ
2
κ2 + 1)|sk|2 + µhDzκL1(d+ 3) 3

2

+ µ2hρκ2L2
1(d+ 3)3 + 2hDzκ∥ξ̂k∥∗ + (20hρκ2 + 4λκh2)∥ξ̂k∥2

∗ + (16hρκ2 + 4λκh2)∥ξk∥2
∗

≤ |zk − z∗|2 − h2

2 |sk|2 + 3ρ
L1λλκ

|sk|2 + µ

2λ
Dz(d+ 3) 3

2 + µ2

2λ
ρκL1(d+ 3)3

+ Dz

L1λ
∥ξ̂k∥ +

(
10ρκ
L1λ

+ 1
L2

1λκ

)
∥ξ̂k∥2

∗ +
(

8ρκ
L1λ

+ 1
L2

1λκ

)
∥ξk∥2

∗. (72)

Letting r2
k = |zk − z∗|2, the inequality

(
h2

2 − 3ρ
L1λλκ

)
|sk|2 ≤ r2

k − r2
k+1 + µ

2λ
Dz(d+ 3) 3

2 + µ2

2λ
ρκL1(d+ 3)3 + Dz

L1λ
∥ξ̂k∥

+
(

10ρκ
L1λ

+ 1
L2

1λκ

)
∥ξ̂k∥2

∗ +
(

8ρκ
L1λ

+ 1
L2

1λκ

)
∥ξk∥2

∗ (73)

holds. As a next step, we compute the expected value of (73) with respect to uk and then with respect to ûk,
and we use the fact that Euk

[∥ξ̂k∥∗] ≤ σ, Eûk
[∥ξk∥∗] ≤ σ, which follows from the assumptions of Theorem

3 and Jensen’s inequality. Let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N} and EUk−1 [r2
k] = ϕ2

k.
Then, Computing expected value of (73) with respect to Uk−1, summing from k = 0 to k = N , and dividing
it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2L1λλκ|z0 − z∗|2

(L1h2λλκ− 6ρ)(N + 1)
+ µDzλκL1(d+ 3)3/2

L1h2λλκ− 6ρ
+ µ2ρλκ2L2

1(d+ 3)3

L1h2λλκ− 6ρ

+
(36ρκ2λ+ 4λ

L1
)σ2

L1h2λλκ− 6ρ
+ 2Dzλκσ

L1h2λλκ− 6ρ
,

(74)

which completes the proof.
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Proof of Corollary 6. The proof is similar to the proof of Corollary 2. Adopting the hypothesis of Theorem 3
(and L1 = L1(f)) and letting B defined in (12) be λI where λ > 0, we have

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2λ2L1|z0 − z∗|2

(λ2L1h2 − 6ρ)(N + 1) + µλDzL1(d+ 3)3/2

λ2L1h2 − 6ρ + µ2λρL2
1(d+ 3)3

λ2L1h2 − 6ρ

+
(36ρ+ 4

L1
)λσ2

λ2L1h2 − 6ρ + 2Dzλσ

λ2L1h2 − 6ρ .

We want to obtain a guideline on how to choose the parameters N and µ, given a measure of performance ϵ,
in order to bound the above inequality by ϵ. Thus, by bounding terms 2λ2L1∥z0−z∗∥2

(λ2L1h2−6ρ)(N+1) and µλDzL1(d+3)3/2

λ2L1h2−6ρ +
µ2ρλL2

1(d+3)3

λ2L1h2−6ρ separately by ϵ2

2 , we obtain the lower bound on the number of iterations N and upper bound

on smoothing parameter µ. Let a = ρλL2
1(d+3)3

λ2L1h2−6ρ , and b = λL1Dz(d+3)
3
2

λ2L1h2−6ρ . Thus if

µ ≤ −b+
√
b2 + 2aϵ2
2a and N ≥

⌈(
4λ2L1r

2
0

λ2L1h2 − 6ρ

)
ϵ−2 − 1

⌉
,

then,
1

N + 1

N∑
k=0

EUk
[|sk|2] ≤ ϵ2 +

(36ρ+ 4
L1

)λσ2

λ2L1h2 − 6ρ + 2Dzλσ

λ2L1h2 − 6ρ ,

which completes the proof.

Proof of Corollary 7. Let sk be defined in (28), pk be defined in (34), vk be defined in (50), and B defined
in (12) be λI where λ > 0. Adopting the hypothesis of Theorem 3 and considering the fact that ∥vk − sk∥ ≤
∥Fµ(zk) −Gµ(zk)∥, which can be obtained directly from (Ghadimi et al., 2016, Proposition 1), we have

|vk|2 ≤ 2|sk|2 + 2|vk − sk|2 ≤ 2|sk|2 + 2|Fµ(zk) −Gµ(zk)|2 ≤ 2|sk|2 + 2|ξk|2.

Hence, taking the expected value with respect to Uk, summing it from k = 0 to k = N , and dividing it by
N + 1, yields

1
N + 1

N∑
k=0

EUk
[|vk|2] ≤ 2

N + 1

N∑
k=0

EUk
[|sk|2] + 2λσ2.

Similarly, the chain of inequalities

|pk|2 ≤ 2|vk|2 + 2|pk − vk|2 ≤ 2|vk|2 + 2|Fµ(zk) − F (zk)|2 ≤ 2|vk|2+µ2λL2
1(f)(d+ 3)

2

is obtained and the last inequality follows from Lemma 7. Thus

1
N + 1

N∑
k=0

EUk
[|pk|2] ≤ 2

N + 1

N∑
k=0

EUk
[|vk|2] + µ2λL2

1(f)(d+ 3)
2 ,

and
1

N + 1

N∑
k=0

EUk
[|pk|2] ≤ 4

N + 1

N∑
k=0

EUk
[|sk|2] + 4λσ2 + µ2λL2

1(f)(d+ 3)
2 .

Let a def= 4ρλL2
1(f)(d+3)3

λ2L1(f)h2−6ρ , b def= 4λL1(f)Dz(d+3)
3
2

λ2L1(f)h2−6ρ . Considering Theorem 3 and (32), if

µ ≤ min
{

−b+
√
b2 + aϵ2

2a ,
ϵ√

2λL1(f)(d+ 3) 3
2

}
and N ≥

⌈(
16λ2L1(f)r2

0
λ2L1(f)h2 − 6ρ

)
ϵ−2 − 1

⌉
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then
1

N + 1

N∑
k=0

EUk
[|pk|2] ≤ ϵ2 +

(
4(36ρ+ 4

L1(f) )
λ2L1(f)h2 − 6ρ + 4

)
λσ2 + 8Dzλσ

λ2L1(f)h2 − 6ρ

and thus the assertion follows.

Proof of Theorem 4. The proof of Theorem 4 follows the proof of Theorem 3 from beginning to (73). As a
next step, we compute the expected value of (73) with respect to uk and then with respect toûk, and we use
the fact that Euk

[∥ξ̂k∥∗] ≤ σ√
tk
, Eûk

[∥ξk∥∗] ≤ σ√
tk

, which follows from the assumptions of Theorem 3 and
Jensen’s inequality. Let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N} and EUk−1 [r2

k] = ϕ2
k. Then,

Computing expected value of (73) with respect to Uk−1, summing from k = 0 to k = N , and dividing it by
N + 1, yields

1
N + 1

N∑
k=0

EUk
[|sk|2] ≤ 2L1λλκ|z0 − z∗|2

(L1h2λλκ− 6ρ)(N + 1)
+ µDzλκL1(d+ 3)3/2

L1h2λλκ− 6ρ
+ µ2ρλκ2L2

1(d+ 3)3

L1h2λλκ− 6ρ

+
(36ρκ2λ+ 4λ

L1
)σ2

L1h2λλκ− 6ρ
1

N + 1

N∑
k=0

1
tk

+ 2Dzλκσ

L1h2λλκ− 6ρ
1

N + 1

N∑
k=0

1√
tk
,

(75)

which completes the proof

Proof of Corollary 8. Let sk be defined in (28), pk be defined in (34), vk be defined in (50), and B defined
in (12) be λI where λ > 0. Adopting the hypothesis of Theorem 4 and considering the proof of Corollary 7,
we have

1
N + 1

N∑
k=0

EUk
[|pk|2] ≤ 4

N + 1

N∑
k=0

EUk
[|sk|2] + 4λσ2 + µ2λL2

1(f)(d+ 3)
2 .

Let a def= 4ρλL2
1(f)(d+3)3

λ2L1(f)h2−6ρ , b def= 4λL1(f)Dz(d+3)
3
2

λ2L1(f)h2−6ρ , c =
(36ρ+ 4

L1
+4)λσ2

λ2L1h2−6ρ , and e = 2Dzλσ
λ2L1h2−6ρ . Considering Theorem 3

and (32), if tk = t ≥ max
{

32cϵ−2, 32e2ϵ−4}
µ ≤ min

{
−b+

√
b2 + aϵ2

2a ,
ϵ√

2λL1(f)(d+ 3) 3
2

}
and N ≥

⌈(
32λ2L1(f)r2

0
λ2L1(f)h2 − 6ρ

)
ϵ−2 − 1

⌉

then
1

N + 1

N∑
k=0

EUk
[|pk|2] ≤ ϵ2

and thus the assertion follows.

Proof of Theorem 5. Considering Assumption 4, h2 > 0, and letting ξk = Gµ(zk)−Fµ(zk) and ξ̂k = Gµ(ẑk)−
Fµ(ẑk) (and recalling that Euk

[ξ̂k] = 0 and Eûk
[ξk] = 0), we have

0 ≤ h2⟨Fµ(ẑk), ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗

= h2⟨Gµ(ẑk), ẑk − z∗⟩ − h2⟨ξ̂k, ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗

= h2⟨Gµ(ẑk), zk+1 − z∗⟩ + h2⟨Gµ(zk), ẑk − zk+1⟩ + h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩

− h2⟨ξ̂k, ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗. (76a)
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As a first step, we derive a bound for the first three terms in (76a). Considering that Z = Z, from Algorithm 1
line 8, we know that zk − zk+1 = h2Gµ(ẑk). Thus it holds that

h2⟨Gµ(ẑk), zk+1 − z∗⟩ = ⟨zk − zk+1, zk+1 − z∗⟩

= 1
2 |z∗ − zk|2 − 1

2 |z∗ − zk+1|2 − 1
2 |zk − zk+1|2. (77)

Similarly, form Algorithm 1 line 5, we know that zk − ẑk = h1Gµ(zk), and thus the estimate

h2⟨Gµ(zk), ẑk − zk+1⟩ = h2

h1
⟨zk − ẑk, ẑk − zk+1⟩

= h2

2h1
(|zk − zk+1|2 − |zk − ẑk|2 − |zk+1 − ẑk|2)

= h2

2h1
|zk − zk+1|2 − h2

2h1λ
∥zk − ẑk∥2 − h2

2h1λ
∥zk+1 − ẑk∥2 (78)

is obtained. For the third term in (76a), considering that the gradient of fµ is Lipschitz continuous, for any
α > 0, we have

h2⟨Gµ(ẑk) −Gµ(zk),ẑk − zk+1⟩ ≤ h2|Fµ(ẑk) − Fµ(zk)||ẑk − zk+1| + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1(fµ)κ∥ẑk − zk∥∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1(fµ)ακ
2 ∥ẑk − zk∥2 + h2L1(fµ)κ

2α ∥ẑk − zk+1∥2 + h2⟨ξ̂k − ξk, ẑk − zk+1⟩. (79)

Substituting (77), (78), and (79) in (76a), letting rk = |zk − z∗|, and noting that zk − zk+1 = h2Gµ(ẑk) and
zk − ẑk = h1Gµ(zk), we get

0 ≤ 1
2(r2

k − r2
k+1) +

(
h2

2h1
− 1

2

)
|zk − zk+1|2 +

(
h2L1(fµ)ακ

2 − h2

2h1λ

)
∥ẑk − zk∥2

+
(
h2L1(fµ)κ

2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩ + h2

ρ

2∥Fµ(ẑk)∥2
∗

= 1
2(r2

k − r2
k+1) + h2

2

(
h2

2h1
− 1

2

)
|Gµ(ẑk)|2 + h2

1

(
h2L1(fµ)ακ

2 − h2

2h1λ

)
∥Gµ(zk)∥2

+
(
h2L1(fµ)κ

2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩ + h2

ρ

2∥Fµ(ẑk)∥2
∗.

Rearranging the above terms, we have

h2
2

(
1
2 − h2

2h1

)
|Gµ(ẑk)|2 ≤ 1

2 (r2
k − r2

k+1) + h2
1

(
h2L1(fµ)ακ

2 − h2
2h1λ

)
∥Gµ(zk)∥2 + h2

ρ

2∥Fµ(ẑk)∥2
∗

+
(

h2L1(fµ)κ
2α − h2

2h1λ

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1G(zk)⟩.

(80)

Choosing h1 ≤ 1
L1(fµ)λκ

and α = 1 ensures that the second and third right-hand side terms of (80) are

non-positive. Also, we need 1
2 − h2

2h1
> 0 and thus h2 < h1 needs to be satisfied. Considering

√
ρ

L1(fµ)λλκ
≤

h2 ≤ h1
2 , we have

h2
2

4 |Gµ(ẑk)|2 ≤ 1
2 (r2

k − r2
k+1) − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1G(zk)⟩ + h2ρ

2 ∥Fµ(ẑk)∥2
∗

≤ 1
2 (r2

k −r2
k+1)+h2⟨ξ̂k, z

∗−zk +h1Gµ(zk)⟩+ ρ

4L1(fµ)λλκ
|Fµ(ẑk)|2+h2⟨ξ̂k −ξk, h2Gµ(ẑk)−h1G(zk)⟩.

(81)
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The last term of the inequality above can be equivalently written as

h2⟨ξ̂k − ξk, h2Gµ(ẑk) − h1G(zk)⟩ = h2⟨ξ̂k − ξk, h2(ξ̂k + Fµ(ẑk)) − h1(ξk + Fµ(zk))⟩
= h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩ + h2⟨ξ̂k − ξk, h2Fµ(ẑk) − h1Fµ(zk)⟩. (82)

Moreover, for h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩ the equality

h2⟨ξ̂k − ξk, h2ξ̂k − h1ξk⟩ = h2
2|ξ̂k|2 + h2h1|ξk|2 + h2⟨ξk,−h2ξ̂k⟩ + h2⟨ξ̂k,−h1ξk⟩ (83)

holds. Substituting (82) and (83) in (81), we have

h2
2

4 |Gµ(ẑk)|2− ρ

4L1(fµ)λλκ
|Fµ(ẑk)|2 ≤ 1

2(r2
k −r2

k+1) + h2
2|ξ̂k|2 + h2h1|ξk|2

+h2⟨ξ̂k, z
∗−zk +h1Gµ(zk)⟩+h2⟨ξ̂k − ξk, h2Fµ(ẑk) − h1Fµ(zk)⟩ + h2⟨ξk,−h2ξ̂k⟩ + h2⟨ξ̂k,−h1ξk⟩. (84)

From Jensen’s inequality, we know that Euk
[|Gµ(ẑk)|]2 ≤ Euk

[|Gµ(ẑk)|2]. Also, it can be concluded that
Euk

[|Gµ(ẑk)|] ≥ |Euk
[Gµ(ẑk)]| = |Fµ(ẑk)|, and thus

Euk
[|Gµ(ẑk)|2] ≥ |Fµ(ẑk)|2. (85)

Using this inequality and the taking the expected value of (81) with respect to uk and then with respect to ûk,
noting that Euk

[ξ̂k] = 0, Euk
[|ξ̂k|2] ≤ λEuk

[∥ξ̂k∥2
∗] ≤ λσ2, Eûk

[ξk] = 0, and Eûk
[|ξk|2] ≤ λEûk

[∥ξk∥2
∗] ≤ λσ2,

we have (
h2

2
4 − ρ

4L1(fµ)λλκ

)
Euk,ûk

[|Fµ(ẑk)|2] ≤ 1
2(r2

k − Euk,ûk
[r2

k+1]) + h2
2λσ

2 + h2λ

L1(fµ)λκ
σ2. (86)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk, and Euk
[ξ̂k] = 0, the

expected value of the last four terms of (84) with respected to uk are zero.

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (86)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2 − ρ

L1(fµ)λλκ

)
EUk

[|Fµ(ẑk)|2] ≤ 2(ϕ2
k − ϕ2

k+1) + 3
L2

1(fµ)λκ2
σ2. (87)

Summing (87) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2L1(fµ)λλκ|z0 − z∗|2

(L1(fµ)λλκh2
2 − ρ)(N + 1)

+ 3λ
L1(fµ)κ(L1(fµ)λλκh2

2 − ρ)
σ2,

which completes the proof.

Proof of Corollary 10. We adopt the hypothesis of Theorem 5 and use the definition r0 = ∥z0 − z∗∥. Let B
defined in (12) be the identity matrix. From Lemma 3, we know that L1(fµ) = d1/2

µ L0(f).

Hence, if

N ≥

⌈(
2r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)

)
ϵ−2 − 1

⌉
, then 1

N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2] ≤ ϵ2 + 3

L1(fµ)(L1(fµ)h2
2 − ρ))σ

2,

where ϵ is a positive scalar.

45



Under review as submission to TMLR

Proof of Corollary 11. Adopting the hypothesis of Theorem 5 and letting B defined in (12) be the identity
matrix, we have

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2] ≤ 2r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)(N + 1) + 3
L1(fµ)(L1(fµ)h2

2 − ρ)σ
2.

Thus, for N ≥
⌈

8r2
0L1(fµ)

(L1(fµ)h2
2−ρ)ϵ

−2 − 1
⌉

, there exists a point z̄ in the sequence generated such that

EUk
[∥Fµ(z̄)∥2] ≤ ϵ2

4 + 3
L1(fµ)(L1(fµ)h2

2 − ρ))σ
2,

which implies that

EUk
[∥Fµ(z̄)∥] ≤ ϵ

2 +
√

3
L1(fµ)(L1(fµ)h2

2 − ρ))σ. (88)

From Lemma 4, we have
∇fµ(z̄) ∈ ∂δf(z̄) + Bγ(0).

This implies that

dist(0, ∂δf(z̄)) ≤ ∥Fµ(z̄)∥ + γ, (89)

where dist(0, A) = mina∈A ∥a∥. Calculating the expected value of (89) and substituting (88) into the
expected value, yields

EUk
[dist(0, ∂δf(z̄))] ≤ ϵ

2 + γ +
√

3
L1(fµ)(L1(fµ)h2

2 − ρ))σ.

Let γ ≤ ϵ
2 . Then , for µ ≤ δ√

dπe
( ϵ

8L0(f) )1/d,

EUk
[dist(0, ∂δf(z̄))] ≤ ϵ̄, ϵ̄ = ϵ+

√
3

L1(fµ)(L1(fµ)h2
2 − ρ))σ

i.e., z̄ is a (δ, ϵ̄)-Goldstein stationary point of f.

Proof of Theorem 6. The proof of Theorem 6 follows the proof of Theorem 5 from beginning to (85). Using
(85) and by taking the expected value of (84) with respect to uk and then with respect to ûk, noting that
Euk

[ξ̂k] = 0, Euk
[|ξ̂k|2] ≤ λEuk

[∥ξ̂k∥2
∗] ≤ λσ2

tk
, Eûk

[ξk] = 0, and Eûk
[|ξk|2] ≤ λEûk

[∥ξk∥2
∗] ≤ λσ2

tk
, we have(

h2
2

4 − ρ

4L1(fµ)λλκ

)
Euk,ûk

[|Fµ(ẑk)|2] ≤ 1
2(r2

k − Euk,ûk
[r2

k+1]) + h2
2λσ

2 + h2λ

L1(fµ)λκtk
σ2. (90)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk, and Euk
[ξ̂k] = 0, the

expected value of the last four terms of (84) with respected to uk are zero.

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (90)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2 − ρ

L1(fµ)λλκ

)
EUk

[|Fµ(ẑk)|2] ≤ 2(ϕ2
k − ϕ2

k+1) + 3
L2

1(fµ)λκ2tk
σ2. (91)

Summing (91) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[|Fµ(ẑk)|2] ≤ 2L1(fµ)λλκ|z0 − z∗|2

(L1(fµ)λλκh2
2 − ρ)(N + 1)

+ 3λσ2

L1(fµ)κ(L1(fµ)λλκh2
2 − ρ)

1
N + 1

N∑
k=0

1
tk
,

which completes the proof.
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Proof of Corollary 12. Adopting the hypothesis of Theorem 6 and letting B defined in (12) be the identity
matrix, we have

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2] ≤ 2r2

0L1(fµ)
(L1(fµ)h2

2 − ρ)(N + 1) + 3σ2

L1(fµ)(L1(fµ)h2
2 − ρ)

1
N + 1

N∑
k=0

1
tk
.

Thus, for N ≥
⌈

16r2
0L1(fµ)

(L1(fµ)h2
2−ρ)ϵ

−2 − 1
⌉

and tk = t ≥ ⌈ 24σ2

L1(fµ)(L1(fµ)h2
2−ρ)ϵ

−2⌉, there exists a point z̄ in the

sequence generated such that

EUk
[∥Fµ(z̄)∥2] ≤ ϵ2

4 ,

which implies that

EUk
[∥Fµ(z̄)∥] ≤ ϵ

2 . (92)

From Lemma 4, we have
∇fµ(z̄) ∈ ∂δf(z̄) + Bγ(0).

This implies that

dist(0, ∂δf(z̄)) ≤ ∥Fµ(z̄)∥ + γ, (93)

where dist(0, A) = mina∈A ∥a∥. Calculating the expected value of (93) and substituting (92) into the
expected value, yields

EUk
[dist(0, ∂δf(z̄))] ≤ ϵ

2 + γ.

Let γ ≤ ϵ
2 . Then , for µ ≤ δ√

dπe
( ϵ

8L0(f) )1/d,

EUk
[dist(0, ∂δf(z̄))] ≤ ϵ

i.e., z̄ is a (δ, ϵ)-Goldstein stationary point of f.

C Choice of B

In this section we provide a discussion on the selection of the matrix B defined in (12) for the different
settings in Sections 3.1, 3.2, and 3.3. In particular, we discuss how the smallest and the largest eigenvalues
of B impact the results in Section 3 and we discuss how B can be used as a design parameter.

C.1 Unconstrained Differentiable Settings

To analyse the choice of minimum and maximum eigenvalues of B in the unconstrained case, consider
Theorem 2 with tk = t (the analysis holds for Theorem 1 with t = 1). To simplify the notation, let
L1(f) = L1 and let ν1(·) denote the right-hand side of (21), i.e., we define

ν1(λ, λ, h2) = λλL1κa

λλL1κh2
2 − 2ρ

+ λL1b+ λL2
1c

λλL1κh2
2 − 2ρ

+ λe

L1κ(λλL1κh2
2 − 2ρ)

, (94)

where a = 2|z0−z∗|2

N+1 , b = 2µ2d, c = 2µ2ρ(d + 3)3, and e = 3σ2

t . We are interested in minimising ν1(·)
with respect to all of its variables subject to 0 < λ ≤ λ and h2 ∈

(√
ρ

L1λλκ
, h1

2

]
where h1 ≤ 1

L1λκ
.

Moreover, considering (7), we know L1 is dependent on B. Thus converting the norms in (7) to | · |, we get
|∇f(z2) − ∇f(z1)| ≤ L̄|z2 − z1| where L1 = L̄

λ
. Rearranging ν1(·) we get

ν1(λ, λ, h2) = λL̄κa

λL̄κh2
2 − 2ρ

+ L̄κ−1b+ L̄2(λκ)−1c+ λ2L̄−1e

λL̄κh2
2 − 2ρ

= λā+ b̄κ−1 + c̄(λκ)−1 + λ2ē

L̄λh2
2 − 2ρ

, (95)
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where ā = L̄a, b̄ = L̄b, c̄ = L̄2c, and ē = L̄−1e. Now, to minimise ν1(·) with respect to h2, it can be seen
that h2 only appears in denominator and ∂ν1

∂h2
(λ, λ, h2) < 0. Thus the optimal h2 is the maximum feasible

value or h∗
2 = 1

2L1λκ
= 1

2L̄κ
. Substituting h∗

2 in ν1(·) we get

ν1(λ, λ, h∗
2) = λā+ b̄κ−1 + c̄(λκ)−1 + λ2ē

λ2

4L̄λ
− 2ρ

= 4L̄ āλκ
2 + b̄+ c̄(λκ)−1 + ēλ2κ

λ− 8ρL̄κ
. (96)

Minimising ν1(·) with respect to λ and λ leads to the problem of finding the roots of two polynomials of
degree 4 and above. According to the Abel-Ruffini theorem, no closed form solution to characterise the roots
of the polynomials exist.

We thus proceed by numerically evaluating ν1(λ, λ, h∗
2) for 500 different randomly selected values of param-

eters L̄, ρ, |z0 − z∗|2, N, µ, d, σ and the numerical evaluation indicates that κ∗ = 1 provides the best bound.
In particular, we can conclude that, based on numerical experiments, matrices B ≻ 0 with condition number
κ = 1 and thus

ν1(λ, λ, h∗
2) = 4L̄ āλ+ b̄+ c̄(λ)−1 + ēλ2

λ− 8ρL̄

provide the best bound and the selection of λ depends on the parameters of a specific optimisation problem.

As a next step, we focus on the analysis of the selection of B under the assumption that ρ = 0. Thus, (96)
simplifies to

ν1(λ, λ, h∗
2) = λā+ b̄κ−1 + λ2ē

λ2

4L̄λ

= 4L̄(āκ2 + b̄

λ
+ ēλ). (97)

Due to the relationship λ = κλ, we can remove λ in (97) and minimise

ν1(λ, κλ, h∗
2) = 4L̄(āκ2 + b̄

λ
+ ēλκ)

subject to κ ≥ 1 and λ > 0. Taking the derivative of ν1(·) with respect to λ and equalling it to zero, we get
λ∗ =

√
b̄

κē and thus we have

ν1(λ∗, κλ∗, h∗
2) = 4L̄(āκ2 + 2

√
b̄ēκ).

Finally, from κ ≥ 1 and ∂ν1
∂κ (λ∗, κλ∗, h∗

2) > 0 for κ > 0, we can conclude that κ∗ = 1. Summarising the above

discussion, in the unconstrained case, λ∗ = λ
∗ =

√
b̄
ē

C.2 Constrained Differentiable Settings

To analyse the choice of minimum and maximum eigenvalues of B in the constrained case we proceed as
in the unconstrained case in Appendix C.1 and we consider Theorem 4 with tk = t (the analysis holds for
Theorem 3 with t = 1). As in the unconstrained setting, we use the notation L1(f) = L1 and and define

ν2(λ, λ, h) =
λλL1κa+ λκL1b+ λκ2L2

1c+ (36ρκ2λ+ 4λ
L1

)e+ λκp

λλL1κh2 − 6ρ
(98)

to denote the right-hand side of (35) with a = 2|z0−z∗|2

N+1 , b = µDz(d + 3)3/2, c = µ2ρ(d + 3)3, e = σ2

t , and
p = 2Dzσ√

t
. We are interested in minimising ν2(·) with respect to all of its variables subject to 0 < λ ≤ λ

and h ∈
(√

ρ

L1λλκ
, 1

2L1λκ

]
. Moreover, considering (7), we know L1 is dependent on B. Thus converting the

norms in (7) to | · |, we get |∇f(z2) − ∇f(z1)| ≤ L̄|z2 − z1| where L1 = L̄

λ
. Rearranging the individual terms
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in ν2(·) we get

ν2(λ, λ, h) =
λā+ b̄+ c̄λ−1 + pλκ+ (36ρκ2λ+ 4λλ

L̄
)e

L̄λh2 − 6ρ
, (99)

where ā = L̄a, b̄ = L̄b, and c̄ = L̄2c. Now, to minimise ν2(·) with respect to h, it can be seen that h
only appears in denominator and ∂ν2

∂h (λ, λ, h) < 0. Thus the optimal h is the maximum feasible value or
h∗ = 1

2L1λκ
= 1

2L̄κ
. Substituting h∗ in ν2 we get

ν2(λ, λ, h∗) = 4L̄
λκā+ b̄κ+ c̄κλ−1 + pλκ2 + (36ρκ3λ+ 4λ

2

L̄
)e

λ− 24ρL̄κ
,

Minimising ν2(·) with respect to λ and λ leads to the problem of finding the roots of two polynomials of
degree 5 and above. As before, we thus proceed by numerically evaluating ν2(λ, λ, h∗) for 500 different
randomly picked values of parameters L̄, ρ, |z0 − z∗|2, N, µ, d, σ and the numerical evaluation again indicates
that κ∗ = 1 provides the best bound. In particular, we can conclude that, based on numerical experiments,
matrices B ≻ 0 with condition number κ = 1 and thus

ν2(λ, λ, h∗) = 4L̄
λā+ b̄+ c̄λ−1 + pλ+ (36ρλ+ 4λ2

L̄
)e

λ− 24ρL̄
provide the best bound and the selection of λ depends on the parameters of a specific optimisation problem.

We continue with the analysis for the case that ρ = 0. Thus, it holds that

ν2(λ, λ, h∗) = 4L̄
λκā+ b̄κ+ pλκ2 + ( 4λ

2

L̄
)e

λ
= 4L̄

(
āκ2 + b̄κ

λ
+ pκ2 + ē

λ
2

λ

)
,

where ē = 4
L̄
e. We use again the relationship λ = κλ to replace λ and consider

ν2(λ, κλ, h∗) = 4L̄(āκ2 + b̄κ

λ
+ pκ2 + ēκ2λ)

subject to κ ≥ 1 and λ > 0. Continuing with the same steps as in the unconstrained setting, we get λ∗ =
√

b̄
κē

and
ν2(λ∗, κλ∗, h∗) = 4L̄(pκ2 + āκ2 + 2

√
b̄ēκ3),

and from κ ≥ 1 and ∂ν2
∂κ (λ∗, κλ∗, h∗) > 0 for positive κ it follows that κ∗ = 1 and λ∗ = λ

∗ =
√

b̄
ē .

C.3 Unconstrained Non-Differentiable Settings

To analyse the choice of minimum and maximum eigenvalues of B in the non-differentiable case, consider
Theorem 6 with tk = t (the analysis holds for Theorem 5 with t = 1). Let L1(f) = L1 and let ν3(·) denote
right-hand side of (38), i.e., we define

ν3(λ, λ, h2) = λλL1κa+ λ(L1κ)−1b

λλL1κh2
2 − ρ

(100)

where a = 2|z0−z∗|2

N+1 and b = 3σ2

t . We are interested in minimising ν3(·) with respect to all of its variables
subject to 0 < λ ≤ λ and h2 ∈

(√
ρ

L1λλκ
, h1

2

]
where h1 ≤ 1

L1λκ
. Moreover, considering (7), we know L1

is dependent on B. Thus converting the norms in (7) to | · |, we get |∇f(z2) − ∇f(z1)| ≤ L̄|z2 − z1| where
L1 = L̄

λ
. Rearranging ν3(·) we get

ν3(λ, λ, h2) = λā+ λ2b̄

L̄λh2
2 − ρ

, (101)
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where ā = L̄a and b̄ = L̄−1b. Now to minimise ν3(·) with respect to h2, it can be seen that h2 only appears in
denominator and ∂ν3

∂h2
(λ, λ, h2) < 0. Thus the optimal h2 is the maximum feasible value or h∗

2 = 1
2L1λκ

= 1
2L̄κ

.

Substituting h∗
2 in ν3(·) we get

ν3(λ, λ, h∗
2) = λā+ λ2b̄

λ2

4L̄λ
− ρ

= 4L̄ āλκ
2 + b̄λ2κ

λ− 4ρL̄κ
.

As before, we analyse ν3(λ, λ, h∗
2) numerically for 500 different randomly picked values of parameters

L̄, ρ, |z0 − z∗|2, N, σ, indicating that κ∗ = 1 is optimal. In particular, we conclude that, based on numerical
experiments, matrices B ≻ 0 with condition number κ = 1 are optimal and thus

ν3(λ, λ, h∗
2) = 4L̄ āλ+ b̄λ2

λ− 4ρL̄

provide the best bound. The optimal selection of λ again depends on the parameters of a specific optimisation
problem.

For the case ρ = 0, we have

ν3(λ, λ, h∗
2) = λā+ λ2b̄

λ2

4L̄λ

= 4L̄(āκ2 + b̄λ),

which is equivalent to
ν3(λ, κλ, h∗

2) = 4L̄(āκ2 + b̄λκ)
for κ ≥ 1 and λ > 0. We observe that the optimal value for ν3(·) is obtained when λ goes to zero. Moreover,
from κ ≥ 1 and ∂ν1

∂κ (λ, κλ, h∗
2) > 0 for positive κ it follows that κ∗ = 1. Summarising the above discussion,

in the non-differentiable case, λ∗ = λ
∗ → 0. To give an intuition for this phenomena, note that uk and ûk

in Algorithm 1 and 2 are sampled from N (0, B−1) and the smaller the eigenvalues of B get, the directions
are sampled from a larger area and the smoothing process will be done over a larger domain. This leads to
a smaller Lipschitz constant of the smoothed version of the non-differentiable function.

D A Non-differentiable Loss Function Satisfying MVI

In this section we prove that f(x, y) = |x| − |y|, x, y ∈ R along with Z = R2 satisfies Assumption 4. Let
u1, u2 ∼ N (0, σ2) and z∗ = (0, 0). Using (10), we know that

fµ(x, y) = Eu1,u2 [f(x+ µu1, y + µu2)] = Eu1 [|x+ µu1|] + Eu2 [|y + µu2|].

To calculate these expected values, we note that x + µu1 ∼ N (x, µ2σ2). We define the random variable
Y

def= |x+ µu1|. It is well known that Y has a folded normal distribution and the intended expected value is
the mean of Y . Thus,

Eu1 [|x+ µu1|] = µσ

√
2
π

exp
(

− x2

2µ2σ2

)
+ x

(
1 − 2Φ

(
− x

µσ

))
,

where Φ(x) = 1√
2π

∫ x

−∞ exp(− t2

2 )dt is the cumulative distribution function of a Gaussian distribution. Sim-
ilarly we can obtain Eu2 [|y + µu2|] and we have

fµ(x, y) = µσ

√
2
π

(
exp

(
− x2

2µ2σ2

)
− exp

(
− y2

2µ2σ2

))
+ x− y − 2xΦ

(
− x

µσ

)
+ 2yΦ

(
− y

µσ

)
.

To obtain Fµ(z) =
[

∇xfµ(x, y)
−∇yfµ(x, y)

]
, we need to calculate ∇xfµ(x, y) and ∇yfµ(x, y). Taking the derivative

of fµ(x, y) with respect to x, we have

∇xfµ(x, y) = −x
µσ

√
2
π

exp
(

− x2

2µ2σ2

)
+ 1 − 2Φ

(
−x
µσ

)
+ 2x
µσ

1√
2π

exp
(

− x2

2µ2σ2

)
= 1 − 2Φ

(
−x
µσ

)
.
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Similarly, the expression

∇yfµ(x, y) = −1 + 2Φ
(

−y
µσ

)
,

is obtained. We are interested in checking if ⟨Fµ(z), z − z∗⟩ ≥ 0 for all x, y ∈ R. Substituting the terms, we
have

⟨Fµ(z), z − z∗⟩ = x

(
1 − 2Φ

(
−x
µσ

))
+ y

(
1 − 2Φ

(
−y
µσ

))
.

It is well known that Φ(−x) = 1 − ϕ(x). Also, if x < 0 then ϕ(x) < 1/2, if x > 0 then ϕ(x) > 1/2, and
ϕ(0) = 1/2. Considering these facts, x and 1 − 2Φ( −x

µσ ) have the same sign and the same holds for y and
1 − 2Φ( −y

µσ ). Thus,

x

(
1 − 2Φ

(
−x
µσ

))
+ y

(
1 − 2Φ

(
−y
µσ

))
≥ 0 or ⟨Fµ(z), z − z∗⟩ ≥ 0.

E B-Invariant upper bounds

In this section, we analyse how one can obtain upper bounds for 1
N+1

∑N
k=0 EUk

[∥F (ẑk)∥2] or
1

N+1
∑N

k=0 EUk
[∥Fµ(ẑk)∥2] invariant of minimum and maximum eigenvalues of B. Towards this end, we

modify Algorithm 2 as described below. The main differences between Algorithms 2 and 3 are the up-

Algorithm 3 Modified Variance-Reduced ZO-EG
1: Input: z0 = (x0, y0) ∈ Z;N ∈ N; {h1,k}N

k=0, {h2,k}N
k=0 ⊂ R>0;µ > 0; B1 = B⊤

1 ≻ 0; B2 = B⊤
2 ≻ 0;

{tk}N
k=0 ⊂ N

2: for k = 0, . . . , N do
3: Sample û0

1,k, · · · , ûtk

1,k and û0
2,k, · · · , ûtk

2,k from N (0, B−1
1 ) and N (0, B−1

2 )
4: Calculate G0

µ(zk), · · · , Gtk
µ (zk) using ui = ûi

k, i = 0, . . . , tk, (14) and (13)
5: Compute Gµ(zk) = 1

tk

∑tk

i=0 G
i
µ(zk)

6: Compute ẑk = ProjZ(zk − h1(k)B−1Gµ(zk))
7: Sample u0

1,k, · · · , utk

1,k and u0
2,k, · · · , utk

2,k from N (0, B−1
1 ) and N (0, B−1

2 )
8: Calculate G0

µ(ẑk), · · · , Gtk
µ (ẑk) using ui = ui

k, i = 0, . . . , tk, (14) and (13)
9: Compute Gµ(ẑk) = 1

tk

∑tk

i=0 G
i
µ(ẑk)

10: Compute zk+1 = ProjZ(zk − h2(k)B−1Gµ(ẑk))
11: end for
12: return z1, . . . , zN

dates changed from ẑk = ProjZ(zk − h1(k)Gµ(zk)) and zk+1 = ProjZ(zk − h2(k)Gµ(ẑk)) in Algorithm 2 to
ẑk = ProjZ(zk − h1(k)B−1Gµ(zk)) and zk+1 = ProjZ(zk − h2(k)B−1Gµ(ẑk)) in Algorithm 3 as well as the
left multiplication of the random oracle by B−1 in Algorithm 3. These modifications are similar to the one
in (Nesterov & Spokoiny, 2017, (66)). Using these small modifications, we can obtain upper bounds for the
average expected norm of the gradient operator invariant of eigenvalues of B. In the next subsections, we
will show how the results will change alongside with their proofs.

E.1 Unconstrained Settings

In this section, we present an analogue of Theorem 2 for the case where Algorithm 3 instead of Algorithm 2
is employed.
Theorem 7. Let f : Z → R be continuously differentiable with Lipschitz continuous gradients with constant
L1(f) > 0. Let σ2 be an upper bound on the variance of the random oracle defined in Assumption 1, N ≥ 0 be
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the number of iterations, tk ∈ N be the number of samples in each iteration of Algorithm 2, Fµ be defined in
(15) with smoothing parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, and ρ denotes
the weak MVI parameter in Definition 10. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by
Algorithm 3, lines 6 and 10, respectively, and suppose that Assumption 2 is satisfied. Then, for any iteration
N , with

h1,k = h1 ≤ 1
L1(f) and h2,k = h2 ∈

(√
2ρ

L1(f) ,
h1

2

]
,

we have

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2

∗] ≤ 2L1(f)∥z0 − z∗∥2

(L1(f)h2
2 − 2ρ)(N + 1) + 2µ2L1(f)d

(L1(f)h2
2 − 2ρ) + 2µ2L1(f)2ρ(d+ 3)3

(L1(f)h2
2 − 2ρ)

+ 3σ2

L1(f)(L1(f)h2
2 − 2ρ)

1
(N + 1)

N∑
k=0

1
tk
. (102)

Proof of Theorem 7. Considering Lemma 1, h2 > 0, and letting

ξk := Gµ(zk) − Fµ(zk) and ξ̂k := Gµ(ẑk) − Fµ(ẑk) (103)

(with Euk
[ξ̂k] = 0 and Eûk

[ξk] = 0), we have

0 ≤ h2⟨Fµ(ẑk), ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2
∗ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

= h2⟨Gµ(ẑk), ẑk − z∗⟩ − h2⟨ξ̂k, ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2
∗ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

= h2⟨Gµ(ẑk), zk+1 − z∗⟩ + h2⟨Gµ(zk), ẑk − zk+1⟩ + h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩ (104a)
− h2⟨ξ̂k, ẑk − z∗⟩ + h2ρ∥Fµ(ẑk)∥2

∗ + h2µ
2L1d+ h2ρµ

2L2
1(d+ 3)3 (104b)

Here, we have additionally used L1 = L1(f) to shorten the expressions. As a next step, we derive a
bound for the three terms in (104a). Considering Z = Z and from Algorithm 2 line 8, we know that
zk − zk+1 = h2B

−1Gµ(ẑk). Thus, it holds that

h2⟨Gµ(ẑk), zk+1 − z∗⟩ = ⟨B(zk − zk+1), zk+1 − z∗⟩

= 1
2∥z∗ − zk∥2 − 1

2∥z∗ − zk+1∥2 − 1
2∥zk − zk+1∥2. (105)

Similarly, from Algorithm 2 line 5, we know that zk − ẑk = h1B
−1Gµ(zk) and thus the estimate

h2⟨Gµ(zk), ẑk − zk+1⟩ = h2

h1
⟨B(zk − ẑk), ẑk − zk+1⟩

= h2

2h1
(∥zk − zk+1∥2 − ∥zk − ẑk∥2 − ∥zk+1 − ẑk∥2) (106)

is obtained. For the third term in (104a), we use the fact that the gradient of f is Lipschitz continuous.
Hence, for any α > 0, the chain of inequalities

h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩ ≤ h2∥Fµ(ẑk) − Fµ(zk)∥∗∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1∥ẑk − zk∥∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1α

2 ∥ẑk − zk∥2 + h2L1

2α ∥ẑk − zk+1∥2 + h2⟨ξ̂k − ξk, ẑk − zk+1⟩, (107)

is satisfied. The first inequality is due to the fact that for all z ∈ Z and z̃ ∈ Z∗ we have ⟨z, z̃⟩ ≤ ∥z∥∥z̃∥∗
and this comes from the definition of the dual norm (Boyd, 2004, A.1.6).
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Substituting (105), (106), and (107) in (104a), letting rk = ∥zk − z∗∥, and noting that zk − zk+1 =
h2B

−1Gµ(ẑk) and zk − ẑk = h1B
−1Gµ(zk), we get

0 ≤ 1
2(r2

k − r2
k+1) +

(
h2

2h1
− 1

2

)
∥zk − zk+1∥2 +

(
h2L1α

2 − h2

2h1

)
∥ẑk − zk∥2 + h2ρ∥Fµ(ẑk)∥2

∗

+
(
h2L1

2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

+ h2⟨ξ̂k − ξk, ẑk − zk+1⟩

= 1
2(r2

k − r2
k+1) + h2

2

(
h2

2h1
− 1

2

)
∥B−1Gµ(ẑk)∥2 + h2

1

(
h2L1α

2 − h2

2h1

)
∥B−1Gµ(zk)∥2 + h2ρ∥Fµ(ẑk)∥2

∗

+
(
h2L1

2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2µ

2L1d+ h2ρµ
2L2

1(d+ 3)3

+ h2⟨ξ̂k − ξk, ẑk − zk+1⟩. (108)

Rearranging the above terms and noting that ∥B−1Gµ(zk)∥ = ∥Gµ(zk)∥∗ and ∥B−1Gµ(ẑk)∥ = ∥Gµ(ẑk)∥∗,
we have

h2
2

(
1
2 − h2

2h1

)
∥Gµ(ẑk)∥2

∗ ≤ 1
2(r2

k − r2
k+1) + h2

1

(
h2L1α

2 − h2

2h1

)
∥Gµ(zk)∥2

∗ +h2ρ∥Fµ(ẑk)∥2
∗

+
(
h2L1

2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩+h2µ

2L1d+h2ρµ
2L2

1(d+ 3)3

+h2⟨ξ̂k − ξk, h2B
−1Gµ(ẑk) −h1B

−1Gµ(zk)⟩. (109)

Choosing h1 ≤ 1
L1

and α = 1 ensures that the second and third right-hand side terms of (109) are non-

positive. For 1
2 − h2

2h1
> 0 to hold, h2 needs to satisfy h2 < h1. Considering these facts, we choose

√
2ρ
L1

≤
h2 ≤ h1

2 and we have

h2
2

4 ∥Gµ(ẑk)∥2
∗ − ρ

2L1
|Fµ(ẑk)|2∗ ≤ 1

2(r2
k − r2

k+1) − h2⟨ξ̂k, ẑk − z∗⟩ + µ2d

2 + ρ

2µ
2L1(d+ 3)3

+ h2⟨ξ̂k − ξk, h2B
−1Gµ(ẑk) − h1B

−1Gµ(zk)⟩

≤ 1
2(r2

k − r2
k+1) + h2⟨ξ̂k, z

∗ − zk + h1B
−1Gµ(zk)⟩ + µ2d

2λκ
+ ρ

2λκ
µ2L1(d+ 3)3

+ h2⟨ξ̂k − ξk, h2B
−1Gµ(ẑk) − h1B

−1Gµ(zk)⟩. (110)

For the last term of the inequality above, we have

h2⟨ξ̂k − ξk,h2B
−1Gµ(ẑk) − h1B

−1G(zk)⟩ = h2⟨ξ̂k − ξk, h2B
−1(ξ̂k + Fµ(ẑk)) − h1B

−1(ξk + Fµ(zk))⟩
= h2⟨ξ̂k − ξk, h2B

−1ξ̂k − h1B
−1ξk⟩ + h2⟨ξ̂k − ξk, h2B

−1Fµ(ẑk) − h1B
−1Fµ(zk)⟩. (111)

For h2⟨ξ̂k − ξk, h2B
−1ξ̂k − h1B

−1ξk⟩, we have

h2⟨ξ̂k − ξk, h2B
−1ξ̂k − h1B

−1ξk⟩ = h2
2∥ξ̂k∥2

∗ + h2h1∥ξk∥2
∗ + h2⟨ξk,−h2B

−1ξ̂k⟩ + h2⟨ξ̂k,−h1B
−1ξk⟩. (112)

Substituting (111) and (112) in (110), we have

h2
2

4 ∥Gµ(ẑk)∥2
∗− ρ

2L1
∥Fµ(ẑk)∥2

∗ ≤ 1
2(r2

k −r2
k+1)+µ2d

2 + ρ

2µ
2L1(d+ 3)3+h2

2∥ξ̂k∥2
∗+h2h1∥ξk∥2

∗

+ h2⟨ξ̂k, z
∗ − zk + h1B

−1Gµ(zk)⟩ + h2⟨ξ̂k − ξk, h2B
−1Fµ(ẑk) − h1B

−1Fµ(zk)⟩
+ h2⟨ξk,−h2B

−1ξ̂k⟩ + h2⟨ξ̂k,−h1B
−1ξk⟩. (113)
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From Jensen’s inequality, we know that Euk
[∥Gµ(ẑk)∥∗]2 ≤ Euk

[∥Gµ(ẑk)∥2
∗]. Additionally, it can be concluded

that Euk
[∥Gµ(ẑk)∥∗] ≥ ∥Euk

[Gµ(ẑk)]∥∗ = ∥Fµ(ẑk)∥∗, and thus

Euk
[∥Gµ(ẑk)∥2

∗] ≥ ∥Fµ(ẑk)∥2
∗. (114)

Using this inequality and by taking the expected value of (113) with respect to uk and then with respect to
ûk, noting that Euk

[ξ̂k] = 0, Euk
[∥ξ̂k∥2

∗] ≤ σ2/tk, Eûk
[ξk] = 0, and Eûk

[∥ξk∥2
∗] ≤ σ2/tk, we have(

h2
2

4 − ρ

2L1

)
Euk,ûk

[∥Fµ(ẑk)∥2
∗] ≤ 1

2(r2
k − Euk,ûk

[r2
k+1]) + µ2d

2 + ρ

2µ
2L1(d+ 3)3 + 1

4L2
1tk

σ2 + 1
2L2

1tk
σ2.

(115)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk, and Euk
[ξ̂k] = 0, the

expected value of the last four terms of (113) with respected to uk are zero.

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (115)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2
4 − ρ

2L1

)
EUk

[∥Fµ(ẑk)∥2
∗] ≤ 1

2(ϕ2
k − ϕ2

k+1)+µ2d

2 + ρ

2µ
2L1(d+ 3)3+ 1

4L2
1tk

σ2+ 1
2L2

1tk
σ2. (116)

Summing (116) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2

∗] ≤ 2L1∥z0 − z∗∥2

(L1h2
2 − 2ρ)(N + 1) + 2µ2L1d

(L1h2
2 − 2ρ) + 2µ2L2

1ρ(d+ 3)3

(L1h2
2 − 2ρ) (117)

+ 3σ2

L1(L1h2
2 − 2ρ)

1
(N + 1)

N∑
k=0

1
tk
, (118)

which completes the proof

It can be seen that (102) is in the primal and dual norms, and the right-hand side of (102) is not dependent
on the minimum and maximum eigenvalues of B directly. Thus, with an appropriate B invariant choice
of hyperparameters, similar to the process in Section 3.1, we can show the convergence of the sequence
generated by Algorithm 3 to an ϵ-stationary point of the objective function in the expectation sense.

E.2 Constrained Settings

In this section, we will show how Theorem 4 will change by using Algorithm 3 instead of Algorithm 2. Before
proceeding further, we need to redefine (24) and (27) as below.

Qℓ(z, a, F (z̄)) def= −B

a
(Proxℓ(z − aB−1F (z̄)) − z), ∀z, z̄ ∈ Z, (119)

and
PZ(z, h, g(z̄)) def= B

h

[
z − ProjZ(z − hB−1g(z̄))

]
, (120)

where h and a are positive scalars. We note that when ℓ is the indicator function, then PZ(z, h, g(z̄)) =
Qℓ(z, h, g(z̄)). Then we can define the below auxiliary variables with respect to (119) and (120):

sk
def= PZ(zk, h1,k, Gµ(zk)), ŝk

def= PZ(zk, h2,k, Gµ(ẑk)). (121)

Hence, using above auxiliary variables in the constrained case of Problem 1, then the update steps in lines
5 and 8 in Algorithm 3 can be written as

zk+1 = zk − h2,kB
−1ŝk and ẑk = zk − h1,kB

−1sk. (122)

Next, we have the modified version of Lemma 2 with respect to (119) and (120).
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Lemma 8. Let f(z) defined in Problem 1, be continuously differentiable with Lipschitz continuous gradient
with constant L1(f) > 0. Moreover, let ŝk and sk be defined in (121), ξk

def= Gµ(zk) − Fµ(zk), ξ̂k
def=

Gµ(ẑk) − Fµ(ẑk), Gµ and Fµ be defined in (13) and (15) with smoothing parameter µ > 0, ρ denote the
proximal weak MVI parameter defined in Definition 11, and Dz be the diameter of Z ⊂ Rd. If there exists
z∗ ∈ Z such that Assumption 3 is satisfied, then it holds that

⟨sk, zk − z∗⟩ + ρ∥sk∥2
∗ + µ

2DzL1(f)(d+ 3) 3
2 +Dz∥ξk∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξk∥2

∗ ≥ 0, (123)

⟨ŝk, ẑk − z∗⟩ + ρ∥ŝk∥2
∗ + µ

2DzL1(f)(d+ 3) 3
2 +Dz∥ξ̂k∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξ̂k∥2

∗ ≥ 0. (124)

Proof of Lemma 8. Let sk and ŝk, be defined in (28) and

vk
def= PZ(zk, h1,k, Fµ(zk)), v̂k

def= PZ(zk, h2,k, Fµ(ẑk)), pk
def= PZ(zk, h1,k, F (zk)), p̂k

def= PZ(zk, h1,k, F (ẑk))
(125)

Considering Algorithm 3 and Γ(z) along with Z as defined in Section 3.2 when ℓ(z) = IZ(z), we have
Proxℓ(·) = ProjZ(·), Qℓ(zk, h1, F (zk)) = pk and Qℓ(zk, h2, F (ẑk)) = p̂k. Thus, when Assumption 3 is
satisfied, we have

⟨pk, zk − z∗⟩ + ρ

2∥pk∥2
∗ ≥ 0, ⟨p̂k, ẑk − z∗⟩ + ρ

2∥p̂k∥2
∗ ≥ 0.

Considering the above inequalities, we have

0 ≤ ⟨pk, zk − z∗⟩ + ρ

2∥pk∥2
∗

= ⟨sk, zk − z∗⟩ + ⟨pk − vk, zk − z∗⟩ + ⟨vk − sk, zk − z∗⟩ + ρ

2∥sk + (pk − vk) + (vk − sk)∥2
∗

≤ ⟨sk, zk − z∗⟩ + ∥pk − vk∥∗∥zk − z∗∥ + ⟨vk − sk, zk − z∗⟩ + ρ∥sk∥2
∗ + ρ∥(pk − vk) + (vk − sk)∥2

∗

≤ ⟨sk, zk − z∗⟩ +Dz∥F (zk) − Fµ(zk)∥∗ +Dz∥ξk∥∗ + ρ∥sk∥2
∗ + 2ρ∥F (zk) − Fµ(zk)∥2

∗ + 2ρ∥ξk∥2
∗

≤ ⟨sk, zk − z∗⟩ + µ

2DzL1(f)(d+ 3)3/2 +Dz∥ξk∥∗ + ρ∥sk∥2
∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξk∥2

∗. (126)

The third inequality is due to ∥pk − vk∥∗ ≤ ∥F (zk) − Fµ(zk)∥∗ and ∥vk − sk∥∗ ≤ ∥Fµ(zk) −Gµ(zk)∥∗ which
can be obtained directly from the non-expansiveness of the projection operator. The last inequality is due
to Lemma 7. Inequality (126) proves (123). A proof of (124) follows the same arguments.

Next, we will have the modified version of Theorem 4.
Theorem 8. Let f(z), defined in Problem 1, be continuously differentiable with Lipschitz continuous gradient
with constant L1(f) > 0. Let σ2 be an upper bound on the variance of the random oracle defined in Assump-
tion 1, N ≥ 0 be the number of iterations, tk be the number of samples in each iteration of Algorithm 3, sk

be defined in (28) with smoothing parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N},
ρ denotes the proximal weak MVI parameter defined in Definition 11, and Dz be diameter of the compact
and convex set Z ⊂ Rd. Moreover, let {zk}k≥0 and {ẑk}k≥0 be the sequences generated by Algorithm 3,
respectively, suppose that Assumption 2 is satisfied. Then, for any iteration N , with h1,k = h2,k = h and
h ∈

(√
6ρ

L1(f) ,
1

2L1(f)

]
, we have

1
N + 1

N∑
k=0

EUk
[∥sk∥2

∗] ≤ 2L1(f)∥z0 − z∗∥2
∗

(L1(f)h2 − 6ρ)(N + 1) + µDzL1(f)(d+ 3)3/2

L1(f)h2 − 6ρ + µ2ρL1(f)2(d+ 3)3

L1(f)h2 − 6ρ

+
(36ρ+ 4

L1(f) )σ2

L1(f)h2 − 6ρ
1

N + 1

N∑
k=0

1
tk

+ 2Dzσ

L1(f)h2 − 6ρ
1

N + 1

N∑
k=0

1√
tk
. (127)
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Proof of Theorem 8. In the following, we use L1 = L1(f) to shorten expressions. Considering ξk = Gµ(zk)−
Fµ(zk) and ξ̂k = Gµ(ẑk) −Fµ(ẑk), h1 = h2 = h,

√
6ρ
L1

< h ≤ 1
2L1

and ρ ≤ 1
24L1

, the following estimate holds:

∥zk+1 − z∗∥2 = ∥zk − hB−1ŝk − z∗∥2

= ∥zk − z∗∥2 + h2∥B−1ŝk∥2 − 2h⟨BB−1ŝk, zk − z∗⟩
= ∥zk − z∗∥2 + h2∥ŝk∥2

∗ − 2h⟨ŝk, zk − ẑk⟩ − 2h⟨ŝk, ẑk − z∗⟩

≤ ∥zk − z∗∥2 + h2∥ŝk∥2
∗ − 2h⟨ŝk, zk − ẑk⟩ + 2h

(
ρ∥ŝk∥2

∗

+ µ

2DzL1(f)(d+ 3) 3
2 +Dz∥ξ̂k∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξ̂k∥2

∗

)
= ∥zk − z∗∥2 + h2∥ŝk∥2

∗ − 2h2⟨ŝk, B
−1sk⟩ + 2hρ∥ŝk∥2

∗

+ 2h
(
µ

2DzL1(f)(d+ 3) 3
2 +Dz∥ξ̂k∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξ̂k∥2

∗

)
≤ ∥zk − z∗∥2 + h2(∥ŝk − sk∥2

∗ − ∥sk∥2
∗) + 4hρ(∥ŝk − sk∥2

∗ + ∥sk∥2
∗)

+ 2h
(
µ

2DzL1(f)(d+ 3) 3
2 +Dz|ξ̂k∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξ̂k∥2

∗

)
. (128)

The first inequality is obtained using Lemma 8, and the second inequality is obtained by completing squares.
Next, we derive an upper bound for the term ∥ŝk − sk∥2

∗. We have

∥ŝk − sk∥2
∗ ≤ ∥(v̂k − vk) + (ŝk − v̂k) + (vk − sk)∥2

∗

≤ 2∥v̂k − vk∥2
∗ + 4∥ŝk − v̂k∥2

∗ + 4∥vk − sk∥2
∗

≤ 2∥Fµ(ẑk) − Fµ(zk)∥2
∗ + 4∥Gµ(zk) − Fµ(zk)∥2

∗ + 4∥Gµ(ẑk) − Fµ(ẑk)∥2
∗

≤ 2L2
1∥ẑk − zk∥2 + 4∥ξk∥2

∗ + 4∥ξ̂k∥2
∗

= 2h2L2
1∥sk∥2

∗ + 4∥ξk∥2
∗ + 4∥ξ̂k∥2

∗. (129)

The third inequality is due to the inequalities ∥sk − vk∥∗ ≤ ∥Gµ(zk) − Fµ(zk)∥∗, ∥ŝk − v̂k∥∗ ≤ ∥Gµ(ẑk) −
Fµ(ẑk)∥∗, and ∥v̂k − vk∥∗ ≤ ∥Fµ(ẑk) −Fµ(zk)∥∗, which can be directly obtained from the non-expansiveness
of the projection operator. The forth inequality is obtained using the fact that the gradient of the objective
function is Lipchitz. Plugging (129) in (128), we have

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 + h2(2h2L2
1∥sk∥2

∗ + 4∥ξk∥2
∗ + 4∥ξ̂k∥2

∗ − ∥sk∥2
∗)

+ 4hρ
(

2h2L2
1∥sk∥2

∗ + 4∥ξk∥2
∗ + 4∥ξ̂k∥2

∗ + ∥sk∥2
∗

)
+ 2h

(µ
2DzL1(f)(d+ 3) 3

2

+Dz∥ξ̂k∥∗ + µ2

2 ρL2
1(f)(d+ 3)3 + 2ρ∥ξ̂k∥2

∗

)
≤ ∥zk − z∗∥2 + h2(2L2

1h
2 − 1)∥sk∥2

∗ + 4hρ(2h2L2
1 + 1)∥sk∥2

∗ + µhDzL1(d+ 3) 3
2

+ µ2hρL2
1(d+ 3)3 + 2hDz∥ξ̂k∥∗ + (20hρ+ 4h2)∥ξ̂k∥2

∗ + (16hρ+ 4h2)∥ξk∥2
∗

≤ ∥zk − z∗∥2 − h2

2 ∥sk∥2
∗ + 3ρ

L1
∥sk∥2

∗ + µ

2Dz(d+ 3) 3
2 + µ2

2 ρL1(d+ 3)3

+ Dz

L1
∥ξ̂k∥∗ +

(
10ρ
L1

+ 1
L2

1

)
∥ξ̂k∥2

∗ +
(

8ρ
L1

+ 1
L2

1

)
∥ξk∥2

∗. (130)

Letting r2
k = |zk − z∗|2, the inequality(

h2

2 − 3ρ
L1

)
∥sk∥2

∗ ≤ r2
k − r2

k+1 + µ

2Dz(d+ 3) 3
2 + µ2

2 ρL1(d+ 3)3 + Dz

L1
∥ξ̂k∥

+
(

10ρ
L1

+ 1
L2

1

)
∥ξ̂k∥2

∗ +
(

8ρ
L1

+ 1
L2

1

)
∥ξk∥2

∗ (131)
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holds. As a next step, we compute the expected value of (131) with respect to uk and then with respect
to ûk, and we use the fact that Euk

[∥ξ̂k∥∗] ≤ σ/tk, Eûk
[∥ξk∥∗] ≤ σ/tk, which follows from the assumptions

of Theorem 8 and Jensen’s inequality. Let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N} and
EUk−1 [r2

k] = ϕ2
k. Then, Computing expected value of (131) with respect to Uk−1, summing from k = 0 to

k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[∥sk∥2

∗] ≤ 2L1∥z0 − z∗∥2

(L1h2 − 6ρ)(N + 1) + µDzL1(d+ 3)3/2

L1h2 − 6ρ + µ2ρL2
1(d+ 3)3

L1h2 − 6ρ

+
(36ρ+ 4

L1
)σ2

L1h2 − 6ρ
1

N + 1

N∑
k=0

1
tk

+ 2Dzσ

L1h2 − 6ρ
1

N + 1

N∑
k=0

1√
tk
,

(132)

which completes the proof.

It can be seen that (127) is in the primal and dual norms, and the right-hand side of (127) is not dependent
on the minimum and maximum eigenvalues of B directly. Thus, with an appropriate B invariant choice
of hyperparameters, similar to the process in Section 3.2, we can show the convergence of the sequence
generated by Algorithm 3 to an ϵ-stationary point of the objective function in the expectation sense.

E.3 Non-differentiable Settings

In this section, we will show how Theorem 6 will change by using Algorithm 3 instead of Algorithm 2.
Theorem 9. Let f(z), defined in Problem 1, be Lipschitz continuous with constant L0(f) > 0. Let σ2

be an upper bound on the variance of the random oracle defined in Assumption 1, N ≥ 0 be the number of
iterations, tk be the number of samples in each iteration of Algorithm 3, Fµ be defined in (15) with smoothing
parameter µ > 0, Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)], k ∈ {0, . . . , N}, ρ denotes the weak MVI parameter
defined in Assumption 4, and L1(fµ) be the Lipschitz constant of the gradient of fµ. Moreover, let {zk}k≥0
and {ẑk}k≥0 be the sequences generated by Algorithm 1 (see lines 5 and 8) and suppose Assumption 4 is
satisfied. Then, for any number of iterations N , with h1,k = h1 ≤ 1

L1(fµ) and h2,k = h2 ∈
(√

ρ
L1(fµ) ,

h1
2

]
,

we have

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2

∗] ≤ 2L1(fµ)∥z0 − z∗∥2

(L1(fµ)h2
2 − ρ)(N + 1) + 3σ2

L1(fµ)(L1(fµ)h2
2 − ρ)

1
N + 1

N∑
k=0

1
tk
. (133)

Proof of Theorem 9. Considering Assumption 4, h2 > 0, and letting ξk = Gµ(zk)−Fµ(zk) and ξ̂k = Gµ(ẑk)−
Fµ(ẑk) (and recalling that Euk

[ξ̂k] = 0 and Eûk
[ξk] = 0), we have

0 ≤ h2⟨Fµ(ẑk), ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗

= h2⟨Gµ(ẑk), ẑk − z∗⟩ − h2⟨ξ̂k, ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗

= h2⟨Gµ(ẑk), zk+1 − z∗⟩ + h2⟨Gµ(zk), ẑk − zk+1⟩ + h2⟨Gµ(ẑk) −Gµ(zk), ẑk − zk+1⟩

− h2⟨ξ̂k, ẑk − z∗⟩ + h2
ρ

2∥Fµ(ẑk)∥2
∗. (134a)

As a first step, we derive a bound for the first three terms in (134a). Considering that Z = Z, from
Algorithm 3 line 8, we know that zk − zk+1 = h2B

−1Gµ(ẑk). Thus it holds that

h2⟨Gµ(ẑk), zk+1 − z∗⟩ = ⟨B(zk − zk+1), zk+1 − z∗⟩

= 1
2∥z∗ − zk∥2 − 1

2∥z∗ − zk+1∥2 − 1
2∥zk − zk+1∥2. (135)
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Similarly, form Algorithm 3 line 5, we know that zk − ẑk = h1B
−1Gµ(zk), and thus the estimate

h2⟨Gµ(zk), ẑk − zk+1⟩ = h2

h1
⟨B(zk − ẑk), ẑk − zk+1⟩

= h2

2h1
(∥zk − zk+1∥2 − ∥zk − ẑk∥2 − ∥zk+1 − ẑk∥2) (136)

is obtained. For the third term in (134a), considering that the gradient of fµ is Lipschitz continuous, for any
α > 0, we have

h2⟨Gµ(ẑk) −Gµ(zk),ẑk − zk+1⟩ ≤ h2∥Fµ(ẑk) − Fµ(zk)∥∗∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1(fµ)∥ẑk − zk∥∥ẑk − zk+1∥ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩

≤ h2L1(fµ)α
2 ∥ẑk − zk∥2 + h2L1(fµ)

2α ∥ẑk − zk+1∥2 + h2⟨ξ̂k − ξk, ẑk − zk+1⟩. (137)

The first inequality is due to the fact that for all z ∈ Z and z̃ ∈ Z∗ we have ⟨z, z̃⟩ ≤ ∥z∥∥z̃∥∗ and this comes
from the definition of the dual norm (Boyd, 2004, A.1.6).

Substituting (135), (136), and (137) in (134a), letting rk = ∥zk − z∗∥, and noting that zk − zk+1 =
h2B

−1Gµ(ẑk) and zk − ẑk = h1B
−1Gµ(zk), we get

0 ≤ 1
2(r2

k − r2
k+1) +

(
h2

2h1
− 1

2

)
∥zk − zk+1∥2 +

(
h2L1(fµ)α

2 − h2

2h1

)
∥ẑk − zk∥2

+
(
h2L1(fµ)

2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩ + h2

ρ

2∥Fµ(ẑk)∥2
∗

= 1
2(r2

k − r2
k+1) + h2

2

(
h2

2h1
− 1

2

)
∥B−1Gµ(ẑk)∥2 + h2

1

(
h2L1(fµ)α

2 − h2

2h1

)
∥B−1Gµ(zk)∥2

+
(
h2L1(fµ)

2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, ẑk − zk+1⟩ + h2

ρ

2∥Fµ(ẑk)∥2
∗.

Rearranging the above terms and noting that ∥B−1Gµ(zk)∥ = ∥Gµ(zk)∥∗ and ∥B−1Gµ(ẑk)∥ = ∥Gµ(ẑk)∥∗,
we have

h2
2

(
1
2 − h2

2h1

)
∥Gµ(ẑk)∥2

∗ ≤ 1
2 (r2

k − r2
k+1) + h2

1

(
h2L1(fµ)α

2 − h2
2h1

)
∥Gµ(zk)∥2

∗ + h2
ρ

2∥Fµ(ẑk)∥2
∗

+
(

h2L1(fµ)
2α − h2

2h1

)
∥ẑk − zk+1∥2 − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, h2B

−1Gµ(ẑk) − h1B
−1G(zk)⟩. (138)

Choosing h1 ≤ 1
L1(fµ) and α = 1 ensures that the second and third right-hand side terms of (138) are non-

positive. Also, we need 1
2 − h2

2h1
> 0 and thus h2 < h1 needs to be satisfied. Considering

√
ρ

L1(fµ) ≤ h2 ≤ h1
2 ,

we have
h2

2
4 ∥Gµ(ẑk)∥2

∗ ≤ 1
2 (r2

k − r2
k+1) − h2⟨ξ̂k, ẑk − z∗⟩ + h2⟨ξ̂k − ξk, h2B

−1Gµ(ẑk) − h1B
−1G(zk)⟩ + h2ρ

2 ∥Fµ(ẑk)∥2
∗

≤ 1
2 (r2

k −r2
k+1)+h2⟨ξ̂k, z

∗−zk +h1B
−1Gµ(zk)⟩+ ρ

4L1(fµ)∥Fµ(ẑk)∥2
∗+h2⟨ξ̂k −ξk, h2B

−1Gµ(ẑk)−h1B
−1G(zk)⟩.

(139)

The last term of the inequality above can be equivalently written as

h2⟨ξ̂k − ξk, h2B
−1Gµ(ẑk) − h1B

−1G(zk)⟩ = h2⟨ξ̂k − ξk, h2B
−1(ξ̂k + Fµ(ẑk)) − h1B

−1(ξk + Fµ(zk))⟩
= h2⟨ξ̂k − ξk, h2B

−1ξ̂k − h1B
−1ξk⟩ + h2⟨ξ̂k − ξk, h2B

−1Fµ(ẑk) − h1B
−1Fµ(zk)⟩. (140)

Moreover, for h2⟨ξ̂k − ξk, h2B
−1ξ̂k − h1B

−1ξk⟩ the equality

h2⟨ξ̂k − ξk, h2B
−1ξ̂k − h1B

−1ξk⟩ = h2
2∥ξ̂k∥2

∗ + h2h1∥ξk∥2
∗ + h2⟨ξk,−h2B

−1ξ̂k⟩ + h2⟨ξ̂k,−h1B
−1ξk⟩ (141)
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holds. Substituting (140) and (141) in (139), we have

h2
2

4 ∥Gµ(ẑk)∥2
∗− ρ

4L1(fµ)∥Fµ(ẑk)∥2
∗ ≤ 1

2(r2
k −r2

k+1) + h2
2∥ξ̂k∥2

∗ + h2h1∥ξk∥2
∗

+h2⟨ξ̂k, z
∗−zk +h1B

−1Gµ(zk)⟩+h2⟨ξ̂k − ξk, h2B
−1Fµ(ẑk) − h1B

−1Fµ(zk)⟩
+ h2⟨ξk,−h2B

−1ξ̂k⟩ + h2⟨ξ̂k,−h1B
−1ξk⟩. (142)

From Jensen’s inequality, we know that Euk
[∥Gµ(ẑk)∥∗]2 ≤ Euk

[∥Gµ(ẑk)∥2
∗]. Also, it can be concluded that

Euk
[∥Gµ(ẑk)∥∗] ≥ ∥Euk

[Gµ(ẑk)]∥∗ = ∥Fµ(ẑk)∥∗, and thus

Euk
[∥Gµ(ẑk)∥2

∗] ≥ ∥Fµ(ẑk)∥2
∗. (143)

Using this inequality and the taking the expected value of (139) with respect to uk and then with respect
to ûk, noting that Euk

[ξ̂k] = 0, Euk
Euk

[∥ξ̂k∥2
∗] ≤ σ2/tk, Eûk

[ξk] = 0, and Eûk
[∥ξk∥2

∗] ≤ σ2/tk, we have(
h2

2
4 − ρ

4L1(fµ)

)
Euk,ûk

[∥Fµ(ẑk)∥2
∗] ≤ 1

2(r2
k − Euk,ûk

[r2
k+1]) + h2

2
σ2

tk
+ h2

L1(fµ)tk
σ2. (144)

Since uk and ûk are independent by assumption, ξk, zk, and ẑk are independent of uk, and Euk
[ξ̂k] = 0, the

expected value of the last four terms of (142) with respected to uk are zero.

Next, let Uk = [(u0, û0), (u1, û1), · · · , (uk, ûk)] for k ∈ {0, . . . , N}. Computing the expected value of (144)
with respect to Uk−1, letting ϕk = EUk−1 [r2

k] and ϕ2
0 = r2

0, we have(
h2

2 − ρ

L1(fµ)

)
EUk

[∥Fµ(ẑk)∥2
∗] ≤ 2(ϕ2

k − ϕ2
k+1) + 3

L2
1(fµ)tk

σ2. (145)

Summing (145) from k = 0 to k = N , and dividing it by N + 1, yields

1
N + 1

N∑
k=0

EUk
[∥Fµ(ẑk)∥2

∗] ≤ 2L1(fµ)∥z0 − z∗∥2

(L1(fµ)h2
2 − ρ)(N + 1) + 3σ2

L1(fµ)(L1(fµ)h2
2 − ρ)

1
N + 1

N∑
k=0

1
tk
,

which completes the proof.

It can be seen that (133) is in the primal and dual norms, and the right-hand side of (133) is not dependent
on the minimum and maximum eigenvalues of B directly. Thus, with an appropriate B invariant choice
of hyperparameters, similar to the process in Section 3.3, we can show the convergence of the sequence
generated by Algorithm 3 to n (δ, ϵ)-stationary point of the objective function in the expectation sense.
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