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Abstract

Meta-learning enables learning systems to adapt quickly to new tasks, similar to
humans. Different meta-learning approaches all work under/with the mini-batch
episodic training framework. Such framework naturally gives the information
about task identity, which can serve as additional supervision for meta-training
to improve generalizability. We propose to exploit task identity as additional
supervision in meta-training, inspired by the alignment and discrimination ability
which is is intrinsic in human’s fast learning. This is achieved by contrasting
what meta-learners learn, i.e., model representations. The proposed ConML is
evaluating and optimizing the contrastive meta-objective under a problem- and
learner-agnostic meta-training framework. We demonstrate that ConML integrates
seamlessly with existing meta-learners, as well as in-context learning models, and
brings significant boost in performance with small implementation cost.

1 Introduction

Learning to learn, also known as meta-learning [38, 41], is a powerful paradigm designed to enable
learning systems to adapt quickly to new tasks. During the meta-training phase, a meta-learner
simulates adaptation (learning) across a variety of relevant tasks to accumulate knowledge on how to
learn effectively. In the meta-testing phase, this learned adaptation strategy is applied to unseen tasks.
The adaptation is typically accomplished by the meta-learner, which, given a set of task-specific
training examples, generates a predictive model tailored to that task.

As the objective of meta-learning is to learn a meta-learner to generalize well to unseen tasks where a
few labeled examples are given, the most conventional objective in meta-training follows the natural
idea "train as you test" [46] to minimize the validation loss, by splitting each task into a training
set (support set) to which the meta-learner would be adapted to, and a validation set (query set) to
evaluate the adapted model. Beyond "train as you test", people also have introduced regularization
to the meta-training objective to improve generalizability, like supervision from stronger models
[52, 13, 54], or injecting global information into each task [49]. All these works are under/with the
same mini-batch episodic training framework: sampling a batch of tasks in each episode to obtain an
episodic loss to minimize.

The mini-batch episodic training framework is universal, and naturally gives the information about
task identity, which can serve as additional supervision for meta-training for generalizability. Inspired
by the intrinsic property of human’s fast learning ability: alignment and discrimination [9, 23, 11],
we hope a meta-learner itself should be able to tell if different datasets are from the same
task or different tasks by exploiting task identity. A good learner possesses alignment ability
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Figure 1: ConML is performing contrastive learning in model space, to make the meta-learner itself
able to align information from the same task (alignment) while discriminate different tasks to improve
generalizability (discrimination).

to align different partial views of a certain object, which means they can integrate various aspects
or perspectives of information to form a coherent understanding [10]. This means a meta-learner
should learn similar models from different datasets of the same tasks even if the data are few
or noisy, benefiting the meta-testing performance through being robust to the given labeled data.
Discrimination involves distinguishing between similar stimuli to respond appropriately only to
decisive inputs. This means a meta-learner should learn different models from different tasks even
if some of their inputs are similar, benefiting meta-testing performance through generalization to
diverse tasks.

In this paper, we propose ConML, modifying the conventional mini-batch episodic meta-training
with additional contrastive meta-objective to improve alignment and discrimination abilities of meta-
learner. Similar to how contrastive learning contrasts unlabeled samples by identity, ConML contrasts
the outputs of the meta-learner based on task identity. Positive pairs consist of different subsets
of the same task, while negative pairs come from different tasks, with the objective of minimizing
inner-task distance (alignment) and maximizing inter-task distance (discrimination). We design cheap
and straightforward ways to obtain model representations for different types of meta-learners.

ConML distinguishes itself by being universal: it is problem-agnostic, as it is based-on mini-batch
episodic training where task-identity are intrinsic information; and it is learner-agnostic, as we design
easy-to-implement mapping functions from model to representations for different meta-learners.
Additionally, it is efficient in that it requires no additional data or retraining. Existing approaches
have also leveraged task-level alignment or contrastiveness as additional supervision for improved
meta-learning. However, they are based on either problem-specific knowledge [52, 54, 49] or learner-
specific knowledge [18, 13]. Thus, they can be improved by exploiting the problem- and learner-
agnostic task identity through incorporating with ConML. Our contributions are:

• We propose to exploit task-identity as additional supervision in meta-training by emulating human
cognitive alignment and discrimination abilities.

• We extend contrastive learning from the representation space in unsupervised learning to the model
space in meta-learning, by designing mapping functions from models to representations for various
types of meta-learners.

• We empirically show the proposed ConML universally improves the performance of various meta-
learning algorithms from different categories with small implementation cost. Furthermore, we
show that ConML can also improve in-context learning (ICL) as its training also follows the
paradigm of learning to learn.

2 Preliminaries: Learning to Learn

Learning to learn, which is also known as meta-learning, focuses on improving the learning algorithm
itself [38]. We focus on the most general meta-learning setting. Formally, let g(; θ) be a meta-learner
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that maps a dataset D to a model h, i.e., h = g(D; θ). Let L(D;h) represent the loss when evaluating
a model h on a dataset D using a loss function ℓ(y, ŷ) (e.g., cross-entropy or mean squared error).
Given a distribution of tasks p(τ) for meta-training, where each task τ corresponds to a dataset
Dτ = {(xτ,i, yτ,i)}mi=1, the objective of meta-learning is to train g(; θ) to generalize well to unseen
task τ ′ sampled from p(τ ′). During meta-testing, give an unseen task τ ′ with labeled dataset Dtr

τ ′

(training set or support set) to g(; θ) to generate h, which is tested by another set from the same task
Dval
τ ′ (validation set or query set), i.e., evaluated by L(Dval

τ ′ ; g(Dtr
τ ′ ; θ)).

In meta-training, the meta-learner g(; θ) is optimized through a series of episodes, each consisting of
a batch b of B tasks, and obtains an episodic loss Le to minimize. The form of Le can be various,
while we take the most typical validation loss as example to illustrate our method. Splitting each
Dτ into a training set Dtr

τ = {(xτ,i, yτ,i)}ni=1 and a validation set Dval
τ = {(xτ,i, yτ,i)}mi=n+1, the

meta-training objective is minimizing Eτ∼p(τ)L(Dval
τ ; g(Dtr

τ ; θ)). The mini-batch episodic training
with validation loss is outlined in Algorithm 1. Note that ConML relies on the mini-batch episodic
framework, which is general. ConML does not rely on how the specific meta-learner measures Le
inside each episode. Here we take the representative validation loss as example and will discuss other
forms in Section 5.

Algorithm 1 Mini-Batch Episodic Training
(with Validation Loss).

while Not converged do
Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
Get episodic loss
Le = 1

B

∑
τ∈b L(D

val
τ ; g(Dtr

τ ; θ));
Update θ by θ ← θ −∇θLe.

end while

Different meta-learners implement their own specific
functions within g(; θ). Popular meta-learning ap-
proaches can be broadly categorized into the follow-
ing types [5]: (i) Optimization-based approaches
[2, 15, 31], which focus on learning better opti-
mization strategies for adapting to new tasks; (ii)
Metric-based approaches [46, 39, 40], which lever-
age learned similarity metrics; and (iii) Amortization-
based approaches [17, 36, 4], which aim to learn a
shared representation across tasks, amortizing the
adaptation process by using neural networks to di-
rectly infer task-specific parameters from the training
set; (iv) Furthermore, the emerging ICL ability in
large language models (LLMs) can also be viewed as the consequence of meta-learning [16, 1], and
ICL model is meta-learner with minimal inductive bias [53], so we will also use meta-learner g to
express the function of ICL. Details reformulating ICL model as meta-learner to incorporate ConML
with are in Section 3.3.

3 Meta-Learning with ConML

Now, we introduce our ConML which equips meta-learners with the desired alignment and discrimi-
nation ability via task-level contrastive learning.

3.1 A General Framework

To enhance the alignment and discrimination abilities of meta-learning, we draw inspiration from
Contrastive Learning (CL) [32, 8, 50]. CL focuses on learning representations that are invariant to
irrelevant details while preserving essential information. This is achieved by maximizing alignment
and discrimination (uniformity) in the representation space [50]. While most existing studies focus on
sample-wise contrastive learning in the representation space via unsupervised learning [20, 3, 43, 8],
we extend CL to the model space in meta-learning.

Specifically, we introduce contrastive meta-objective by tasks-level CL in the model space, where
alignment is achieved by minimizing the inner-task distance (i.e., the distance between models trained
on different subsets of the same task), and discrimination is achieved by maximizing the inter-task
distance (i.e., the distance between models from different tasks). Such alignment and discrimination
together form the contrastive meta-objective to optimize a meta-learner. The detailed procedures of
ConML are introduced below.

Obtaining Model Representation. To train the meta-learner g, the inner-task distance din and inter-
task distance dout are measured in the output space of g, also referred to as the model space H. A
practical approach is to represent the model h = g(D; θ) ∈ H as a fixed-length vector e ∈ Rd, and
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then compute the distances using an explicit distance function ϕ(·, ·) (e.g., cosine distance). To form
a learner-agnostic framework, we introduce a projection function ψ : H → Rd to obtain the model
representations e = ψ(h). The details ofH and ψ will be specified in Section 3.3.

Obtaining Inner-Task Distance. Alignment is achieved by minimizing inner-task distance. During
meta-training, the combined dataset Dtr

τ ∪ Dval
τ contains all the available information about task τ .

The meta-learner is expected to produce similar models when trained on any subset κ of this dataset.
Moreover, models trained on subsets should resemble the model learned from the full datasetDtr

τ∪Dval
τ .

For ∀κ ⊆ Dtr
τ ∪ Dval

τ , we expect eκτ = e∗τ , where eκτ = ψ(g(κ; θ)), e∗τ = ψ(g(Dtr
τ ∪ Dval

τ ; θ)). The
inner-task distance din

τ for each task τ is computed as:

din
τ = (1/K) ·

∑K

k=1
ϕ(eκk

τ , e∗τ ), s.t. κk ∼ πκ(Dtr
τ ∪ Dval

τ ), (1)

where {κk}Kk=1 are K subsets sampled from Dtr
τ ∪Dval

τ using a specific sampling strategy πκ. In each
episode, given a batch b of task containing B tasks, the overall inner-task distance is averaged as
din = 1

B

∑
τ∈b d

in
τ .

Obtaining Inter-Task Distance. Discrimination is achieved by maximizing inter-task distance. Since
the goal of meta-learning is to improve performance on unseen tasks, it is crucial for the meta-learner
g to generalize well across diverse tasks. Given the natural assumption that different tasks require
distinct task-specific models, it is essential that g can learn to differentiate between tasks—i.e., possess
strong discrimination capabilities. To enhance task-level generalization, we define the inter-task
distance dout, which should be maximized to encourage g to learn distinct models for different tasks.
Specifically, for any two tasks τ ̸= τ ′ during meta-training, we maximize the distance between their
respective representations, e∗τ and e∗τ ′ . To make this practical within the mini-batch episodic training
paradigm, we compute dout across a batch of tasks sampled in each episode:

dout = (1/B(B − 1)) ·
∑

τ∈b

∑
τ ′∈b\τ

ϕ(e∗τ , e
∗
τ ′). (2)

Algorithm 2 Meta-Training with ConML (with Valida-
tion Loss).

while Not converged do
Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

†Sample κk from πκ(Dtr
τ ∪ Dval

τ ) for k ∈ {1 · · ·K};
†Get model representation e

κk
τ = ψ(g(κk; θ));

†Get model representation e∗
τ =ψ(g(Dtr

τ ∪ Dval
τ ; θ));

†Get inner-task distance din
τ by (1);

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
†Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while

"†" indicates additional steps introduced by ConML to Algo-
rithm 1.

Training Procedure. ConML optimizes
the combination of the original episodic
loss Le and contrastive meta-objective
Lc = din − dout:

LConML = Le + λLc (3)

The meta-training procedure with ConML
is in Algorithm 2. Note ConML is agnos-
tic to the form of Le so here we take the
typical validation loss as example. Com-
pared to Algorithm 1, ConML introduces
additional computations for ψ(g(D; θ)) a
total of K + 1 times per episode. How-
ever, ψ is implemented as a lightweight
function (e.g., extracting model weights),
and g(D; θ) is already part of the stan-
dard episodic training process, with mul-
tiple evaluations of g(D; θ) being paral-
lelizable. As a result, ConML incurs only
a little extra cost in computation (detailed analysis is in Appendix A).

3.2 Provable Benefits for Generalization

Here, we provide another perspective to understand how ConML helps meta-learning. It is provable
that a meta-learner which minimizes Lc has lower generalization error upper-bound than any other
meta-learners. This means ConML serves as a ‘safeguard’ for the worst case of error due to finite
samples in Dval

τ in meta-testing, that can be plugged-in any meta-learners.

Following [28], the excess risk of a meta-learner g(; θ) is defined as:

∆ϵp(τ)(θ)=Eτ∼p(τ)EDtr
τ ∼τnE(x,y)∼τ ℓ

(
g(Dtr

τ ; θ)(x), y
)
−min

θ
Eτ∼p(τ)

[
min

h∈Hg(θ)

E(x,y)∼τ ℓ
(
h(x), y

)]
,
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Table 1: Specifications of integrating ConML with different meta-learners.

Category Examples Meta-learner g(D; θ) Model representation ψ(g(D; θ))
Optimization

-based
MAML,
Reptile

Update model weights
θ −∇θL(D;h(; θ))

Updated model weight
θ −∇θL(D;h(; θ))

Metric
-based

ProtoNet,
MatchNet

Build classifier with
{({f(xi; θ)}xi∈Dj , label j)}Nj=1

Concatenate
[ 1
|Dj |

∑
xi∈Dj

f(xi; θ)]
N
j=1

Amortization
-based

CNPs,
CNAPs

Map D to model weights
by H(D; θ) Output of hypernetwork H(D; θ)

In-context
learning

In-context
learning

Task-specific prediction for x is given by
sequential model g([D⃗, x]; θ)

g([D⃗, u]; θ),
where u is dummy input

where Hg(θ) is the hypothesis class of h given g(; θ). The value of ∆ϵp(τ)(θ) > 0, means the
difference between expectation of validation loss between g(; θ) given finite n examples per task, and
the best we can find given g and p(τ). First, we can find an upper bound Up(τ)(θ) for ∆ϵp(τ)(θ).

Lemma 1. Denote Up(τ)(θ) = C1

√
sup||v||≤1Eτ∼p(τ)E(x,y)∼τ [⟨v, g({(x, y)}; θ)⟩2] + C2. There

exists positive constants C1, C2 not related with θ, satisfying ∀θ, ∆ϵp(τ)(θ) ≤ Up(τ)(θ).

Given contrastive meta-objective Lc as defined above, we then have the following theorem:
Theorem 1. ∀p(τ), Up(τ)(θ∗Lc

) = minθ Up(τ)(θ), where θ∗Lc
= argminθ Lc(g(; θ), p(τ)).

This means the contrastive meta-objective can exactly serve as a surrogate objective of the worst-case
meta-testing performance, as described in the above theorem. Note that this holds for any p(τ) and g,
which indicates the problem- and learner-agnostic benefit of ConML. The proof is in Appendix B.

3.3 Integrating with Typical Meta-Learners

ConML is universally applicable to enhance meta-learning algorithm that follows episodic training.
It does not depend on a specific form of g or Le and can be used alongside other forms of task-level
information. Next, we provide the specifications ofH and ψ(g(D, θ)) to obtain model representations
for implementing ConML. We illustrate examples across different categories of meta-learning
algorithms, including optimization-based, metric-based, amortization-based and ICL. They are
summarized in Table 1. Appendix C provides the detailed procedures for integrating ConML with
various meta-learning algorithms.

With Optimization-Based. The representative algorithm of optimization-based meta-learning is
MAML, which meta-learns an initialization from where gradient steps are taken to learn task-specific
models, i.e., g(D; θ) = h(; θ −∇θL(D;h(; θ))). Since MAML directly generates the model weights,
we use these weights as model representation. Specifically, the representation of the model learned by
g given a dataset D is: ψ(g(D; θ)) = θ −∇θL(D;h(; θ)), certain optimization-based meta-learning
algorithms, such as FOMAML [15] and Reptile [31], use first-order approximations of MAML and
do not strictly follow Algorithm 1 to minimize validation loss. Nonetheless, ConML can still be
incorporated into these algorithms as long as they adhere to the episodic training framework.

With Metric-Based. Metric-based algorithms are well-suited for classification tasks. Given a
dataset D for an N -way classification task, these algorithms classify based on the distances
between input samples {{f(xi; θ)}xi∈Dj

}Nj=1 and their corresponding labels, where f(; θ) is a
meta-learned encoder and Dj represents the set of inputs for class j. We represent this metric-
based classifier by concatenating the mean embeddings of each class in a label-aware order.
For example, ProtoNet [39] computes the prototype cj , which is the mean embedding of sam-
ples in each class: cj = 1

|Dj |
∑

(xi,yi)∈Dj
f(xi; θ). The classifier hτ then makes predictions as

p(y = j | x) = exp(−d(f(x; θ), cj))/
∑
j′ exp(−d(f(x; θ), cj′)). Since the outcome model hτ

depends on D through {cj}Nj=1 and their corresponding labels, the representation is specified as
ψ(g(D; θ)) = [c1|c2| · · · |cN ], where [·|·] denotes concatenation.

With Amortization-Based. Amortization-based approaches meta-learns a hypernetwork H(; θ) that
aggregates information from D to task-specific parameter α, which serves as the weights for the
main-network h, resulting in a task-specific model h(;α). For example, Simple CNAPS [4] uses
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a hypernetwork to generate a small set of task-specific parameters that perform feature-wise linear
modulation (FiLM) on the convolution channels of the main-network. In ConML, we represent the
task-specific model h(;α) using the task-specific parameters α, i.e., the output of the hypernetwork
H(; θ): ψ(g(D; θ)) = H(D; θ).

With In-Context Learning (ICL). An ICL model makes task-specific prediction by g([D⃗, x]; θ), where
g is a sequential model and D⃗ is the sequentialized D (prompt), [x1, y1, · · · , xm, ym]. The details
are in Appendix D. Note that ICL does not specify an explicit output model h(x) = g(D; θ)(x);
instead, this procedure exists only implicitly through the feeding-forward of the sequence model.
Thus, obtaining the representation ψ(g(D; θ)) by explicit model weights of h is not feasible for
ICL. To represent what g learns from D, we design to incorporate D⃗ with a dummy input u, which
functions as a probe and its corresponding output can be readout as representation:

ψ(g(D; θ)) = g([D⃗, u]; θ), (4)

where u is constrained to be in the same shape as x, and has consistent value in an episode. For
example, for training a ICL model on linear regression tasks we can choose u = 1, and in pretraining
of LLM we can choose u ="what is this task?". The complete algorithm of ConML for training an
ICL model is in Appendix C.

4 Empirical Studies

We provide empirical studies to understand the effect of ConML on synthetic data, which shows that
learning to learn with ConML brings generalizable alignment and discrimination abilities. Code is
avaliable at https://github.com/LARS-research/ConML.

4.1 Few-Shot Image Classification Performance

To show ConML brings learner-agnostic improvement, we integrate ConML into various meta-
learners and evaluate the meta-learning performance on few-shot image classification problem follow
existing works [46, 15, 4]. We use two few-shot image classification benchmarks: miniImageNet
[46] and tieredImageNet [35], evaluating on 5-way 1-shot and 5-way 5-shot tasks.

We consider representative meta-learning algorithms from different categories, including optimization-
based: MAML [15], FOMAML [15], Reptile [31]; metric-based: MatchNet [46], ProtoNet [39];
amortization-based: SCNAPs (Simple CNAPS) [4]; and the state-of-the-art ICL-based few-shot
learner: CAML [14]. Note that for CAML, ConML only effect the meta-training of the ICL mode,
not the pretraining of Vit feature extractor. We also incorporate ConML with meta-learners with

Table 2: Meta-testing accuracy (%) on miniImageNet and tieredImageNet.

Category Algorithm Objective miniImageNet tieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Optimization-
Based

MAML - 48.75 ± 1.25 64.50 ± 1.02 51.39 ± 1.31 68.25 ± 0.98
w/ ConML 56.25 ± 0.94 67.37 ± 0.97 58.75 ± 1.45 72.94 ± 0.98

FOMAML - 48.12 ± 1.40 63.86 ± 0.95 51.44 ± 1.51 68.32 ± 0.95
w/ ConML 57.64 ± 1.29 68.50 ± 0.78 58.21 ± 1.22 73.26 ± 0.78

Reptile - 49.21 ± 0.60 64.31 ± 0.97 47.88 ± 1.62 65.10 ± 1.13
w/ ConML 52.82 ± 1.06 67.04 ± 0.81 55.01 ± 1.28 70.15 ± 1.00

Metric-
Based

MatchNet - 43.92 ± 1.03 56.26 ± 0.90 48.74 ± 1.06 61.30 ± 0.94
w/ ConML 48.75 ± 0.88 62.04 ± 0.89 53.29 ± 1.05 67.86 ± 0.77

ProtoNet - 48.90 ± 0.84 65.69 ± 0.96 52.50 ± 0.96 71.03 ± 0.74
w/ ConML 51.03 ± 0.91 67.35 ± 0.72 54.62 ± 0.79 73.78 ± 0.75

Amortization-
Based SCNAPs - 53.14 ± 0.88 70.43 ± 0.76 62.88 ± 1.04 79.82 ± 0.87

w/ ConML 55.73 ± 0.86 71.70 ± 0.71 65.06 ± 0.95 81.79 ± 0.80

In-Context
Learning CAML - 96.15 ± 0.10 98.57 ± 0.08 95.41 ± 0.10 98.06 ± 0.10

w/ ConML 97.03 ± 0.10 98.92 ± 0.08 96.56 ± 0.09 98.23 ± 0.05

Other
Objective

MELR - 51.33 ± 0.73 68.16 ± 0.59 54.96 ± 0.89 72.51 ± 0.81
w/ ConML 53.56 ± 1.02 70.04 ± 0.95 57.06 ± 0.90 74.21 ± 0.78

LastShot - 64.80 ± 0.20 81.65 ± 0.14 69.37 ± 0.23 85.36 ± 0.16
w/ ConML 66.24 ± 0.72 83.29 ± 0.45 71.82 ± 0.70 87.05 ± 0.49
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improved meta-training objective as discussed in Section 5, including: MELR [13] and LastShot [54].
We evaluate the meta-learning performance of each algorithm in its original form (w/o ConML) and
after incorporating ConML into the training process (w/ ConML). The implementation of ConML
follows the general procedure described in Algorithm 2 and the specification for corresponding
category in Section 3.3.

Table 2 shows the results on miniImageNet and tieredImageNet respectively. We uses a common
configuration for ConML’s hyperparameter for all meta-learners: task batch size B = 32, inner-
task sampling K = 1, and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ , ϕ(a, b) = 1 − a·b/∥a∥∥b∥ and λ = 0.1. Other
hyperparameters related to model architecture and training procedure remain consistent with the
original meta-learners’. This demonstrates boosted performance can be brought even without specific
hyperparameter tuning for different meta-learners. The performance improvement demonstrates
that ConML offers universal improvements across different meta-learning algorithms. Note that
performance between different algorithms are not comparable. We also show ConML’s consistent
benefit on different sizes of backbones in Appendix F.

4.2 Cross-Domain Few-Shot Image Classification Performance

Table 3: Cross-domain results on META-DATASET (accu-
racy (%)).

Baseline MatchNet ProtoNet fo-MAML fo-Proto-MAML P>M>F

ConML w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

ILSVRC 45.0 51.1 50.5 52.3 45.5 54.1 49.5 54.3 77.0 78.6

Omniglot 52.2 54.6 59.9 61.2 55.5 63.7 63.3 69.8 91.7 93.3

Aircraft 48.9 51.5 53.1 54.9 56.2 64.9 55.9 61.5 89.7 91.1

Birds 62.2 66.8 68.7 68.9 63.6 69.9 68.6 68.6 92.9 94.0

Textures 64.1 67.6 66.5 68.4 68.0 72.3 66.4 69.4 86.9 87.5

Quick Draw 42.8 46.7 48.9 50.0 43.9 48.5 51.5 53.1 80.2 83.3

Fungi 33.9 36.4 39.7 40.9 32.1 40.6 39.9 43.7 78.2 80.1

VGG Flower 80.1 84.9 85.2 88.0 81.7 90.4 87.1 91.0 95.7 96.8

Traffic Signs 47.8 49.5 47.1 48.6 50.9 52.2 48.8 51.5 89.8 94.0

MS COCO 34.9 40.1 41.0 42.4 35.3 43.5 43.7 48.9 64.9 68.4

To show that ConML is problem-
agnostic, we provide learner-agnostic
improvement on large-scale cross-
domain few-shot image classification
problem, obtained on META-DATASET
[44]. Table 3 shows the results. The
backbone and setting of P>M>F [22] is
different with the other baselines [44],
so they are not comparable across base-
lines. ConML is introduced with the
same setting as Section 4.1 (inner-task
sampling K = 1 and πκ(Dtr

τ ∪ Dval
τ ) =

Dtr
τ , ϕ(a, b) = 1 − a·b/∥a∥∥b∥ (cosine

distance) and λ = 0.1.). Note that
for P>M>F, ConML is integrated into
the meta-training phase, and all other
phases remain unchanged. As shown,
ConML brings consistent improvement.

4.3 Model Analysis

We show ConML does not require much efforts on tuning hyperparameters. Furthermore, better
performance can be obtained through hyperparameter optimization for specific meta-learners. In this
Section we show the impact of key ConML settings: (1) the number of subset samples K, which
influences the model’s complexity, and (2) the contrastive loss, including the distance function ϕ, the
weighting factor λ, and the use of InfoNCE as a replacement for (din − dout).

4.3.1 Effect of the Number of Subset Samples K

Table 4 presents the results of varying the number of subset samples K. Starting from K = 1, we
observe moderate performance growth as K increases, while memory usage grows linearly with K.
Notably, there is a significant discrepancy in both performance and memory (approximately ∼ 2×)
between the configurations without ConML and with K = 1. However, K has a negligible impact on
time efficiency, assuming sufficient memory, as the processes are independent and can be executed in
parallel.

4.3.2 The Design of Contrastive Loss

Here, we explore various design factors of the contrastive loss. ConML optimizes the following
objective: LConML = Le + λLc. In the previous sections, to highlight our motivation and perform
a decoupled analysis, we used the naive contrastive loss Lc = din − dout, with the natural cosine
distance ϕ(x, y). Here, we consider distance function ϕ as Euclidean distance, contrastive loss Lc
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in the form of InfoNCE [32], varying contrastive weight λ in a wide range. More details are in
Appendix G.1.

Table 4: The effect of subset sampling numberK.
w/o K=1 4 16 32

MAML
w/ ConML

Acc.(%) 48.75 56.25 56.08 57.59 57.33

Mem.(MB) 1331 2801 3011 4103 5531

Time (relative) 1× 1.1× 1.1× 1.1× 1.1×

ProtoNet
w/ ConML

Acc.(%) 48.90 51.03 52.04 52.34 52.48

Mem.(MB) 7955 14167 15175 19943 26449

Time (relative) 1× 1.2× 1.2× 1.2× 1.2×

(a) MAML w/ ConML. (b) ProtoNet w/ ConML.

Figure 2: The effect of distance function ϕ, con-
trastive loss form Lc, contrastive weight λ .

Figure 2 presents the results. We observe that ConML can significantly improve the performance of
meta-learners across a considerable range of λ, though setting λ too high can lead to model collapse by
overshadowing the original meta-learning objective. The choice of distance function varies between
algorithms, with some performing better with specific functions. Additionally, InfoNCE outperforms
the naive contrastive strategy, offering greater potential and reduced sensitivity to hyperparameters.

These findings suggest that we may not have yet reached the full potential of ConML, and there
are several promising directions for further improvement. For instance, refining batch sampling
strategies to account for task-level similarities or developing more advanced subset-sampling methods
could enhance performance further [26, 47, 48]. We also notice that the matching between the
chosen distance metric and model representation is the key to success. We can find that Euclidean
distance performs much better than cosine in ProtoNet, since ProtoNet makes classification with
Euclidean distance, and ConML contrasts the classifier’s weights describing the model’s behavior
more precisely. Although cosine works generally, it would be interesting to tailor distance metrics for
various parameter types (e.g., classifiers, MLPs, CNNs, GNNs, Transformers).

In Appendix E, we provide empirical results under synthetic dataset to understand (i) learning to
learn with ConML brings generalizable alignment and discrimination abilities; and (ii) alignment
enhances fast-adaptation and discrimination enhances task-level generalizability.

4.4 ICL Performance

Following [16], we investigate ConML on ICL by learning to learn synthetic functions including
linear regression (LR), sparse linear regression (SLR), decision tree (DT) and 2-layer neural network
with ReLU activation (NN). We train the GPT-2 [34]-like transformer for each function with ICL and
ICL w/ ConML respectively and compare the inference (meta-testing) performance. We follow the
same model structure, data generation and training settings [16]. More implementation details are
provided in Appendix G.2.

Figure 3 shows the performance, where ICL w/ ConML always makes more accurate predictions than
ICL w/o ConML. Table 5 shows the two values to show the effect ConML brings to ICL: Rel. Min.
Error is ICL w/ ConML’s minimal inference error given different number of examples, divided by
ICL’s; and Shot Spare is when ICL w/ ConML obtain an error no larger than ICL’s minimal error, the
difference between the corresponding example numbers. One can observe significant improvement.
The effect of ConML on ICL is without loss of generalizability to real-world applications like
pretrained LLMs.

(a) LR. (b) SLR. (c) DT. (d) NN.

Figure 3: Varying the number of in-context examples during inference of ICL.
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Table 5: Relative minimal error (Rel. Min. Error) and spared example number to reach the same error
(Shot Spare) comparing ICL w/ and w/o ConML.

Function
(max prompt len.) LR (10 shot) SLR (10 shot) DT (20 shot) NN (40 shot)

Rel. Min. Error 0.42 ± 0.09 0.49 ± .06 0.81 ± 0.12 0.74 ± 0.19

Shot Spare −4.68 ± 0.45 −3.94 ± 0.62 −4.22 ± 1.29 −11.25 ± 2.07

5 Relation with Existing Works

Task-Identity in Meta-Learning There are existing works attempt to leverage task-identity in-
formation into meta-learning, but no "counterpart" for ConML. We discuss them in two categories:
(i) The first category is using problem-specific information, while ConML uses problem-agnostic
information thus can be plugged-in these methods and brings improvement. They primarily focusing
on few-shot image classification problem [12, 19, 33], and require a static pool of base classes for
meta-training and class-level alignment [51, 13, 54, 42, 49]. These problem-specific approaches are
limited by their focus on few-shot classification and cannot effectively handle dynamic or diverse
tasks, nor can they generalize to other meta-learning problems beyond classification. As such, they
are not directly comparable with ConML. However, ConML can be integrated into these methods.
Though they introduce new objectives other than validation loss by additional modules or steps,
but they all work under/with the general mini-batch episodic training, either by replacing the steps
to obtain Le in Algorithm 1 with their steps to obtain episodic loss, or introduce additional steps
outside Algorithm 1. We demonstrate in Section 4.1 that incorporating ConML leads to performance
gains. (ii) The second category includes works that are learner-specific but not problem-specific.
For example, [18] and [27] explore contrastive representations for neural processes. However, their
methods are tightly coupled with specific meta-learners that involve explicit model representation
vectors, which can be seen as special cases of ConML within amortization-based meta-learners.

Contrastive Learning with Meta-Learning Some studies involve both meta-learning and con-
trastive learning as key components, but they are not directly related to ConML. [30] reformulates
contrastive learning through meta-learning for better unsupervised learning, while [55] proposes
an optimization-based meta-learner inspired by contrastive Hebbian learning in biology, which is
not related to the contrastive learning used in unsupervised learning. [25] introduces contrastive
set representations for unsupervised meta-learning but does not integrate them with the general
meta-learning framework or model.

6 Conclusion, Limitations and Discussion

In this work, we propose ConML, a universal, learner-agnostic contrastive meta-learning framework
that emulates the alignment and discrimination capabilities integral to human fast learning, achieved
through task-level contrastive learning in the model space. ConML can be seamlessly integrated
with meta-training procedure of existing meta-learners, by modifying the conventional mini-batch
episodic training, and we provide specific implementations across a wide range of meta-learning
algorithms. Empirical results show that ConML consistently and significantly enhances meta-learning
performance by improving the meta-learner’s fast-adaptation and task-level generalization abilities.
Additionally, we explore in-context learning by reformulating it within the meta-learning paradigm,
demonstrating how ConML can be effectively integrated to boost performance.

The primary contribution of ConML is offering a universal framework built and on the general meta-
learning setting and training procedure, to reflects the inherency of alignment and discrimination as
meta-training objective and the efficacy of learning to learn with contrasting model representation. The
cost of ConML is additional training cost, as dicussed in Section 4.3.1, which is moderate but indelible
under such framework. The current implementation of ConML is relatively primitive, as discussed
in Section 4.3.2, there are many directions for further improvement, such as optimizing sampling
strategies, task-scheduling, refining the contrastive strategy and tailoring model representations and
distance metrics.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this work, we propose ConML, a universal, learner-agnostic contrastive
meta-learning framework that emulates the alignment and discrimination capabilities inte-
gral to human fast learning, achieved through task-level contrastive learning in the model
space. ConML can be seamlessly integrated with meta-training procedure of existing
meta-learners, by modifying the conventional mini-batch episodic training, and we provide
specific implementations across a wide range of meta-learning algorithms. Empirical results
show that ConML consistently and significantly enhances meta-learning performance by
improving the meta-learner’s fast-adaptation and task-level generalization abilities. Addition-
ally, we explore in-context learning by reformulating it within the meta-learning paradigm,
demonstrating how ConML can be effectively integrated to boost performance.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors, as
summarized in the last paragraph of the main text.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof, involving assumption and results in Section 3.2 and proof in
Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment setting and methods are fully described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided at https://github.com/ovo67/ConML_Code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Most key details are directly mentioned and discussed, while the others can be
figured out in the provided code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Most results are provided with standard derivation. Exclusions are Table 3 that
requires too much source we could not afford to do multiple times, and neglecting for paper
space limitation at Table 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No] ,
Justification: Table 4 has shown the detailed relative consumption comparing the proposed
method and standard method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] ,
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and are the license and terms of use explicitly mentioned and
properly respected.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Complexity Analysis

We compare the relative complexity of computing the original meta-objective and the additional
contrastive objective introduced by ConML.

A.1 ICL

For ICL model like LLM, ConML does not obtain model representation by explicit model parameters,
but by simply adding an additional token to the forward-pass (u in (4)). Which means pretraining
a LLM with ConML only requires K/n (K: subset sampling number, n: average sentence length,
typically K/n << 1) times computation comparing with pretraining a LLM without ConML,
regardless of the model size.

A.2 Typical Meta-Learners

For typical meta-learners, denote the model representation has d parameters, i.e., e ∈ Rd. We
discuss about the complexity of the original computation path h = g(D; θ)→ Le and the additional
computation path h = g(D; θ)→ ψ(h)→ Lc introduced by ConML. We consider giving a single
input sample in 1-d vector, the complexity Oh→Le

to calculate the loss Le = ℓ(h(x), y), and the
complexity Oh→ψ(h)→Lc

to calculate Lc = d(ψ(h), ψ(h)).

• For optimization-based, e.g., MAML, we have d = |θ| = |h|. We consider h as a l-layer
MLP, with each average layer size (|h|/l)1/2 ∗ (|h|/l)1/2. With a single input sample,
Oh→Le = O(l ∗ (|h|/l)3/2), Oh→ψ(h)→Lc

= O(|d|) + O(|d|) = O(|h|). While l << |θ|,
we have Oh→Le

> Oh→ψ(h)→Lc
.

• For metric-based, e.g., ProtoNet, θ corresponds to the parameter in feature extractor like
CNN. h is the final classifier which makes prediction by Euclidean distance, which can be
viewed as a linear classifier with parameter size in N ∗ |h|/N . d equals to the N (ways per
task) times the dimension of the embedding of a each sample |h|/N , d = |h|. A sample
x ∈ R|h|/N . We have Oh→Le

= O(|h|2/N), Oh→ψ(h)→Lc
= O(d) + O(d) = O(|h|).

With |h| >> N , Oh→Le
> Oh→ψ(h)→Lc

.
• For amortization-based,e.g., Simple CNAPs. Denote q as the dimension of task-adaptive

parameters generated by hypernetwork Hθ(D). |d| = q, Oh→ψ(h)→Lc
= O(d) +O(d) =

O(q). Consider l layers in main-network modulated by Hθ(D) feature-wisely, the q =√
|h|/l, Oh→Le

= O(l ∗ (|h|/l)3/2) + O(q/l). With l << |h|, we have Oh→Le
>

Oh→ψ(h)→Lc
.

To summarize, for ICL model like LLMs, the complexity to pretrain with ConML is n+K
n ≈ 1

times the complexity to pretrain without ConML. For typical meta-learners, the additional introduced
objective in ConML is comparably less than the complexity of the original meta-training objective,
which verifies the empirical computation cost presented in Table 4 in main text.
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B Provable Benefits for Generalization

Here we first provide the proof of Lemma 1 which shows Up(τ)(θ) is an upper bound of the excess risk
of meta-learning ∆ϵp(τ)(θ), and then the proof of Theorem 1 which shows minimizing contrastive
meta-objective is minimizing Up(τ)(θ).

We need two preliminary results:
Lemma 2 (Upper Bound from [28]). ∀θ, ∆ϵp(τ)(θ) ≤ Up(τ)(θ), where

Φp(τ)(θ) = C1

√
Eτ∼p(τ)E(x,y)∼τ [||ψ(g((x, y); θ))||2] + C2,

with C1, C2 > 0, dC1

dg = dC2

dg = 0 .

Lemma 3 (Universal Approximation of MLP from [21]). Let σ : R → R be a non-constant,
bounded, and continuous function. Let K be a compact subset of Rn. The set of real-valued
continuous functions on K is denoted by C(K). For any function f ∈ C(K) and for any error
tolerance δ > 0, there exists an integer N (the number of neurons in the hidden layer), and real
constants vi, bi ∈ R and vectors wi ∈ Rn for i = 1, . . . , N , such that we can define the MLP output
function F : K → R as:

F (x) =

N∑
i=1

viσ(w
T
i x+ bi)

which satisfies ∀x ∈ K and |f(x)− F (x)| < δ.

B.1 Proof of Lemma 1

Proof. We use the Universal Approximation of MLP to bound the ψ in Φp(τ)(θ).

For the model space H (recall h = g(D; θ) ∈ H) is closed and bounded by the meta-learner’s
hypothesis, which is a compact set on R|H|, we can apply Theorem 3 on ψ in Φp(τ)(θ). There exists
two-layer MLP F with a nonlinear activation function σ. Then

∀Xg ∈ H, |ψ(Xg)− F (Xg)| < δ, (5)

where Xg represents the parameter vector learned by g(; θ) from sample (x, y).

As Xg ∈ H, F (Xg) ∈ R and ||F (Xg)|| = ||ψ(Xg)|| ≤ ||Xg|| by definition, we have

∃w1, · · · , wN ∈ R|H|,

N∑
k=1

||wk||2 ≤ N,F (Xg) =

N∑
k=1

σ(⟨wk, Xg⟩)

As δ can be arbitrarily small by selecting large enough N , we approximately rewrite (5) as ψ(Xg) =
F (Xg) which is not completely rigorous but no harm to our proof. We have

Eτ∼p(τ)E(x,y)∼τ [||ψ(g((x, y); θ))||2] = EX∼Pg(θ)(τ,x,y)
[
∑
k

α(⟨wk, Xg⟩)2],

where Pg(θ)(τ,x,y) is the distribution of Xg output by meta-learner g(; θ) on defined p(τ), x, y.

Let the activation function σ has Lipschitz constant Lσ and σ(0) = 0. We have

EX∼Pg(θ)(τ,x,y)
[
∑
k

α(⟨wk, Xg⟩)2] ≤L2
σ

N∑
k=1

||wk||2EX∼Pg(θ)(τ,x,y)
[⟨ wk
||wk||

, Xg⟩2]

≤L2
σN sup

||v||≤1

EX∼Pg(θ)(τ,x,y)
[⟨v,X⟩2].

So we have

Φp(τ)(θ) = C1

√
Eτ∼p(τ)E(x,y)∼τ [||ψ(g((x, y); θ))||2] + C2

≤ C1

√
L2
σN sup

||v||≤1

Eτ∼p(τ)E(x,y)∼τ [⟨v, g({(x, y)}; θ)⟩2] + C2 = Up(τ)(θ).

So Up(τ)(θ) is a upper bound of he the excess risk of a meta-learner ∆ϵp(τ)(θ).
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B.2 Proof of Theorem 1

Proof. On the one hand, we have

Up(τ)(θ) = C1

√
L2N sup

||v||≤1

Eτ∼p(τ)E(x,y)∼τ [⟨v, g({(x, y)}; θ)⟩2] + C2

= C1

√
L2
σN sup

||v||≤1

EX∼Pg(θ)(τ,x,y)
[⟨v,X⟩2] + C2

≥ C2,

where the minimum of Up(τ)(θ)

U∗
p(τ)(θ) = C2

is achieved if and only if
sup

||v||≤1

EX∼Pg(θ)(τ,x,y)
[⟨v,X⟩2] = 0,

which is a achieved if and only if
∀X ∈ H, Pg(θ)(τ,x,y)(X) = Pg(θ)(τ,x,y)(−X),

i.e., Pg(θ)(τ,x,y) is symmetric.

On the other hand, by definition we have
Lc =din − dout

=− EXτ,κ∼Pg(θ,πκ)(τ,x,y,κ)
[
⟨Xτ,κ, Xτ,κ′⟩
||Xτ,κ||||Xτ,κ′ ||

− ⟨Xτ , Xτ ′⟩
||Xτ ||||Xτ ′ ||

]

=− Eτ∼Pg(θ)(τ)
[EXτ,κ∼Pg(θ,πκ)(x,y,κ|τ)

[
⟨Xτ,κ, Xτ,κ′⟩
||Xτ,κ||||Xτ,κ′ ||

] − ⟨Xτ , Xτ ′⟩
||Xτ ||||Xτ ′ ||

]

=− Eτ∼Pg(θ)(τ),Xτ,κ∼Pg(θ,πκ)(x,y,κ|τ)
[
⟨Xτ,κ, Xτ,κ′⟩
||Xτ,κ||||Xτ,κ′ ||

] + Eτ∼Pg(θ)(τ)
[
⟨Xτ , Xτ ′⟩
||Xτ ||||Xτ ′ ||

].

For arbitrary subset sampling strategy πκ, we have
min
θ
Lc ≥ −1,

where the minimum of Lc
L∗
c = −1,

is achieved if and only if

Eτ∼Pg(θ)(τ),Xτ,κ∼Pg(θ,πκ)(x,y,κ|τ)
[
⟨Xτ,κ, Xτ,κ′⟩
||Xτ,κ||||Xτ,κ′ ||

] = 1,

Eτ∼Pg(θ)(τ)
[
⟨Xτ , Xτ ′⟩
||Xτ ||||Xτ ′ ||

] = 0,

which is achieved if and only if
∀τ, Pg(θ)(τ) = Pg(θ)(−τ), Pg(θ,πκ)(x,y,κ|τ)(X | τ) = δτ (X),

where δτ is the Dirac-delta function centered on τ . Then
Pg(θ,πκ)(τ,x,y,κ)(X) =Pg(θ)(τ)Pg(θ,πκ)(x,y,κ|τ)(X | τ)

=Pg(θ)(τ)δτ (X) = Pg(θ)(τ)δτ (−X)

=Pg(θ,πκ)(τ,x,y,κ)(−X).

Combining both hands, we have
θ∗Lc

= argmin
θ
Lc(g(; θ), p(τ))

⇒ Pg(θ∗Lc
,πκ)(τ,x,y,κ)(X) = Pg(θ∗Lc

,πκ)(τ,x,y,κ)(−X)

⇔ Up(τ)(θ
∗
Lc
) = C2 = min

θ
Up(τ)(θ)
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C Specifications of Meta-Learning with ConML

Here, we provide the specific algorithm process of representative implementation ConML, including
the universal framework of ConML (Algorithm 3), the most efficient implementation of ConMLwith
K = 1 and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ (Algorithm 4), training ICL model with ConML (Algorithm 5),
MAML w/ ConML (Algorithm 6), Reptile w/ ConML (Algorithm 7), SCNAPs w/ ConML (Algo-
rithm 8), ProtoNet w/ ConML (Algorithm 9).

Algorithm 3 ConML.

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = ψ(g(κk; θ));

end for
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance din
τ by (1);

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while

Algorithm 4 ConML (K = 1).

Input: Task distribution p(τ), batch size B (inner-task sample times K = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ ).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Get task-specific model hτ = g(Dtr
τ ; θ), and model representation eκk

τ = ψ(g(κk; θ));
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance din
τ by (1);

Get validation loss L(Dval
τ ;hτ );

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while
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Algorithm 5 ICL with ConML (ICL w/ ConML).

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ,
dummy input u (probe).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get eκk

τ = g([κ⃗k, u]; θ);
end for
Get e∗τ = g([D⃗τ , u]; θ);
Get inner-task distance din

τ by (1);
Get task loss 1

m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ));

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get episodic loss Le = 1
B

∑
τ∈b

1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ))

Update θ by θ ← θ −∇θ(Le + λ(din − dout)).
end while

Algorithm 6 MAML w/ ConML.

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = θ −∇θL(κk;hθ);

end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance din
τ by (1);

Get task-specific model hθ−∇θL(Dtr
τ ;θ)

;
Get validation loss L(Dval

τ ;hθ−∇θL(Dtr
τ ;hθ));

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while

Algorithm 7 Reptile w/ ConML.

Input: Task distribution p(τ), batch sizeB. (inner-task sample timesK = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ )
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get model representation eκk

τ = θ −∇θL(κk;hθ);
end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance din
τ by (1);

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Update θ by θ ← θ + 1
B

∑
τ∈b(e

∗
τ − θ)− λ∇θ(din − dout).

end while
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Algorithm 8 SCNAPs w/ ConML.

Note: Here hw corresponds to the feature extractor fθ; Hθ corresponds to the task encoder gϕ in
[4].
Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
Pretrain hw with the mixture of all meta-training data;
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = Hθ(κk);

end for
Get model representation e∗τ = Hθ(Dtr

τ ∪ Dval
τ );

Get inner-task distance din
τ by (1);

Get task-specific model by FiLM hτ = hw,Hθ(Dtr
τ )

;
Get validation loss L(Dval

τ ;hτ );
end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while

Algorithm 9 ProtoNet w/ ConML (N -way classification).

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Calculate prototypes cj = 1
|κk,j |

∑
(xi,yi)∈κk,j

fθ(xi) for j = 1, · · · , N ;
Get model representation eκk

τ = [c1|c2| · · · |cN ];
end for
Calculate prototypes cj = 1

|Dj |
∑

(xi,yi)∈Dj
fθ(xi) for j = 1, · · · , N ;

Get model representation e∗τ = [c1|c2| · · · |cN ];
Get inner-task distance din

τ by (1);
Get task-specific model h[c1|c2|···|cN ], which gives prediction by p(y = j | x) =

exp(−d(fθ(x),cj))∑
j′ exp(−d(fθ(x),cj′ ))

;

Get validation loss L(Dval
τ ;h[c1|c2|···|cN ]);

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by (2);

Get loss LConML by (3);
Update θ by θ ← θ −∇θL.

end while
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D ICL with ConML

D.1 ICL

ICL is first proposed for LLMs [6], where examples in a task are integrated into the prompt (input-
output pairs) and given a new query input, the language model can generate the corresponding output.
This approach allows pretrained model to address new tasks without fine-tuning the model. For exam-
ple, given "happy->positive; sad->negative; blue->", the model can output "negative", while given
"green->cool; yellow->warm; blue->" the model can output "cool". ICL has the ability to learn from
the prompt. Training ICL can be viewed as learning to learn, i.e., meta-learning [29, 16, 24]. More
generally, the input and output are not necessarily to be natural language. In ICL, a sequence model
Tθ (typically transformer [45]) is trained to map sequence [x1, y1, x2, y2, · · · , xm−1, ym−1, xm]
(prompt prefix) to prediction ym. Given distribution P of training prompt t, then training ICL follows
an auto-regressive manner:

min
θ

Et∼P (t)
1

m

∑m−1

i=0
ℓ(yt,i+1, Tθ([xt,1, yt,1, · · · , xt,i+1])). (6)

It has been mentioned that the training of ICL can be viewed as an instance of meta-learning [16, 1]
as Tθ learns to learn from prompt. It has been pointed out that ICL model is meta-learner with
minimal inductive bias [53]. In this section we first formally reformulate Tθ to meta-learner g(; θ),
then introduce how ConML can be integrated with ICL.

D.2 A Meta-learning Reformulation
Denote a sequentialized D as D⃗ where the sequentializer is default to bridge p(τ) and P (t). Then
the prompt [xτ,1, yτ,1, · · · , xτ,m, yτ,m] can be viewed as D⃗trτ which is providing task-specific infor-
mation. Note that ICL does not specify an explicit output model h(x) = g(D; θ)(x); instead, this
procedure exists only implicitly through the feeding-forward of the sequence model, i.e., task-specific
prediction is given by g([D⃗, x]; θ). Thus we can reformulate the training of ICL (6) as:

min
θ

Eτ∼p(τ)
1

m

∑m−1

i=0
ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)). (7)

The loss in (7) can be evaluated through episodic meta-training, where each task in each episode is
sampled multiple times to form Dval

τ and Dtr
τ to evaluate the episodic loss Le in an auto-regressive

manner. The training of ICL thus follows the episodic meta-training (Algorithm 1), where the
validation loss with determined Dtr

τ and Dval
τ : L(Dval

τ ; g(Dtr
τ ; θ)), is replaced by loss validated in the

auto-regressive manner: 1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)).

D.3 Integrating ConML with ICL
Since the training of ICL could be reformulated as episodic meta-training, the three steps to measure
ConML proposed in Section 3 can be also adopted for ICL, but the first step to obtain model
representation ψ(g(D, θ)) needs modification. Due to the absence of an inner learning procedure for
a predictive model for prediction h(x) = g(D; θ)(x), representation by explicit model weights of h
is not feasible for ICL.

To represent what g learns from D, we design to incorporate D⃗ with a dummy input u, which
functions as a probe and its corresponding output can be readout as representation:

ψ(g(D; θ)) = g([D⃗, u]; θ), (8)

where u is constrained to be in the same shape as x, and has consistent value in an episode. The
complete algorithm of ConML for ICL is in Appendix C.For example, for training a ICL model on
linear regression tasks we can choose u = 1, and in pretraining of LLM we can choose u ="what
is this task?". From the perspective of learning to learn, ConML encourages ICL to align and
discriminate like it does for conventional meta-learning, while the representations to evaluate inner-
and inter- task distance are obtained by probing output rather than explicit model weights. Thus,
incorporating ConML into the training process of ICL benefits the fast-adaptation and task-level
generalization ability. From the perspective of supervised learning, ConML is performing unsuper-
vised data augmentation that it introduces the dummy input and contrastive objective as additional
supervision to train ICL.
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E Experimental Results on Synthetic Data

We begin by conducting experiments on synthetic data in a controlled setting to explain: (i) Does
ConML enable meta-learners to develop alignment and discrimination abilities? (ii) How do alignment
and discrimination boost meta-learning performance? We take MAML w/ ConML as example and
investigate above questions with few-shot regression problem following the same settings in [15].
Each task involves regressing from the input to the output of a sine wave, where the amplitude
and phase of the sinusoid are varied between tasks. The amplitude varies within [0.1, 5.0] and the
phase varies within [0, π]. This synthetic regression dataset allows us to sample data and adjust the
distribution as necessary for analysis. The implementation of ConML follows a simple intuitive
setting: inner-task sampling K = 1 and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ , ϕ(a, b) = 1 − a·b/∥a∥∥b∥ (cosine
distance) and λ = 0.1. The meta-leaner is trained on meta-training distribution with amplitudes
uniformly distributed over [0.1, 5], and each training task has a fixed N = 10. For Figure 4(f), the
meta-learner is tested on tasks with amplitudes uniformly distributed over [0.1 + δ, 5 + δ], where δ is
shown on the x-axis.

(a) Model distribution of
MAML.

(b) Inner-task distance distribution. (c) Varying test shots.

(d) Model distribution of MAML
w/ ConML.

(e) Inter-task distance distribution. (f) Varying test distribution.

Figure 4: Evaluation of ConML on synthetic few-shot regression.

Learning to learn with ConML brings generalizable alignment and discrimination abilities. If
optimizing din and dout does equip meta-learner with generalizable alignment and discrimination,
MAML w/ ConML can generate more similar models from different subsets of the same task, while
generating more separable models from different tasks, though these tasks are unseen. This can be
verified by evaluating the clustering performance for model representations e from unseen tasks.
Figure 4(a) and 4(d) visualize the distribution of these models, where each point corresponds to the
result of a subset and the same color indicates sampled from the same task. We randomly sample
10 different unseen tasks. For each task, we sample 10 different subsets, each containing N = 10
samples. Using these 100 different training sets Dtr as input, the meta-learner generates 100 models.
It can be obviously observed MAML w/ ConML performs better alignment and discrimination than
MAML. To quantity the results, we also evaluate the supervised clustering performance, where task
identity is used as label. Table 6 shows the supervised clustering performance of different metrics:
Silhouette score [37] and Calinski-Harabasz index (CHI) [7]. The results indicate that MAML with
ConML significantly outperforms standard MAML across all metrics. These findings confirm that
training with ConML enables meta-learners to develop alignment and discrimination abilities that
generalize to meta-testing tasks.
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Table 6: Meta-testing performance (MSE) on few-shot regression problem and clustering performance
(Silhouette and CHI) of model representations.

Method MSE (5-shot) MSE (10-shot) Silhouette CHI

MAML .677± .038 .068± .002 .107± .060 31.6± 2.5

MAML w/ ConML .394± .010 .040± .001 .195± .062 39.2± 2.6

Alignment enhances fast-adaptation and discrimination enhances task-level generalizability.
We aim to understand the individual contributions of optimizing din (alignment) and dout (discrim-
ination) to meta-learning performance. In conventional unsupervised contrastive learning, both
positive and negative pairs are necessary to avoid learning representations without useful information.
However, in ConML, the episodic loss Le plays a fundamental role in "learning to learn," while the
contrastive objective serves as additional supervision to enhance alignment and discrimination. Thus,
we consider two variants of ConML: MAML w/ din which optimizes Le and din, MAML w/ dout

which optimizes Le and dout. Figure 4(b) and 4(e) visualize the distribution of din and dout respectively,
where the dashed lines mark mean values. We randomly sample 1000 different unseen tasks, with 10
different subsets (each containing N = 10 samples) per task. These subsets are aggregated into a
single set of N = 100 to obtain e∗τ for each task. Smaller din means better alignment and larger dout

means better discrimination. We can find that the alignment and discrimination abilities are separable,
generalizable, and that ConML effectively couples both. Figure 4(c) shows the testing performance
given different numbers of examples per task (shot). The results indicate that the improvement
from alignment (MAML w/ din) is more pronounced in few-shot scenarios, highlighting its close
relationship with fast-adaptation. Figure 4(f) shows the out-of-distribution testing performance.
As the distribution gap increases, the improvement from discrimination (MAML w/ dout) is more
significant than from alignment (MAML w/ din), indicating that discrimination plays a critical role in
task-level generalization. ConML leverages the benefits of both alignment and discrimination.
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F Experimental Results Obtained Using Different Backbones

In the main text, we have used the following backbones in experiment: Conv4: MAML, FOMAML,
Reptile, MatchNet, ProtoNet; ResNet12: MELR, Lastshot; ResNet18: SCNAPs; ViT-base: CAML.

To study the effect of ConML on different backbones, we compare MAML w/o and w/ ConML,
reporting the miniImageNet 5-way 1-shot accuracy. We specifically demonstrate the effect of
equipping the model with ConML using the change in accuracy (∆ Acc).

Table 7: Meta-testing accuracy (%) on miniImageNet 5-way 1-shot, using different backbones.
Backbone Conv4 Conv6 ResNet12 ResNet18

MAML w/o ConML 48.7 50.9 57.2 56.3
MAML w/ ConML 56.2 57.8 64.5 64.9
∆ Acc +7.5 +6.9 +7.3 +8.6

Table 7 shows the results. As the network deepens, ∆ Acc shows little change. Although deeper
networks generally achieve higher baseline accuracy, making further improvements challenging,
ConML consistently enhances performance—even outperforming shallower architectures. For
instance, while ResNet18 (which may be overly deep for 1-shot MAML on miniImageNet) generalizes
worse than the shallower ResNet12 without ConML, ConML boosts ResNet18’s by a significant
∆ Acc (+8.6%), surpassing ResNet12 with ConML. This suggests that deeper networks can better
leverage ConML’s alignment and discrimination capabilities.

29



G Implementation Details

G.1 Model Analysis

ConML optimizes the following objective: LConML = Le + λLc, where Le is the episodic loss,
and Lc is the contrastive loss. In the previous sections, to highlight our motivation and perform
a decoupled analysis, we used the naive contrastive loss Lc = din − dout, with the natural cosine
distance ϕ(x, y) = 1− x⊤y

∥x∥∥y∥ . Here, we also considered a manually bounded Euclidean distance
ϕ(x, y) = sigmoid(∥x − y∥). Beyond the simple contrastive loss, we incorporate the InfoNCE
[32] loss for an episode with a batch b containing B tasks. The contrastive loss is defined as

Lc = −
∑
τ∈b log

(
exp(−Din

τ )
exp(−Din

τ )+
∑

τ′∈b\τ exp(−Dout
τ,τ′ )

)
, where Dout

τ,τ ′ = ϕ(e∗τ , e
∗
τ ′). In this case, we

treat negative "distance" as "similarity." For the similarity metric in InfoNCE, we experiment with
both cosine distance ϕ(x, y) = 1− x⊤y

∥x∥∥y∥ and Euclidean distance ϕ(x, y) = ∥x− y∥.

G.2 ICL

We implement ICL w/ ConML withK = 1 and πκ([x1, y1, · · · , xn, yn]) = [x1, y1, · · · , x⌊n
2 ⌋, y⌊n

2 ⌋].
To obtain the implicit representation (4), we sample u from a standard normal distribution (the
same with x’s distribution) independently in each episode. Since the output of (4) is a scalar, i.e.,
representation e ∈ R, we adopt distance measure ϕ(a, b) = σ((a − b)2), where σ(·) is sigmoid
function to bound the squared error. λ = 0.02. Note that the learning of different functions (LR, DT,
SLR, NN) share the same efficient and straightforward settings about ConML above, which shows
ConML can bring ICL universal improvement with cheap implementation.

We notice that during training of LR and SLR ⌊n2 ⌋ = 5, which happens to equals to the dimension of
the regression task. This means sampling by πκ would results in the minimal sufficient information
to learn the task. In this case, minimizing din is particularly beneficial for the fast-adaptation ability,
shown as Figure 3(a) and 3(b). This indicates that introducing prior knowledge to design the
hyperparameter settings of ConML could bring more advantage.
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