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Abstract
The Gradient Descent-Ascent (GDA) algorithm,
designed to solve minimax optimization prob-
lems, takes the descent and ascent steps either
simultaneously (Sim-GDA) or alternately (Alt-
GDA). While Alt-GDA is commonly observed
to converge faster, the performance gap between
the two is not yet well understood theoretically,
especially in terms of global convergence rates.
To address this theory-practice gap, we present
fine-grained convergence analyses of both al-
gorithms for strongly-convex-strongly-concave
and Lipschitz-gradient objectives. Our new it-
eration complexity upper bound of Alt-GDA is
strictly smaller than the lower bound of Sim-GDA;
i.e., Alt-GDA is provably faster. Moreover, we
propose Alternating-Extrapolation GDA (Alex-
GDA), a general algorithmic framework that sub-
sumes Sim-GDA and Alt-GDA, for which the
main idea is to alternately take gradients from
extrapolations of the iterates. We show that
Alex-GDA satisfies a smaller iteration complex-
ity bound, identical to that of the Extra-gradient
method, while requiring less gradient computa-
tions. We also prove that Alex-GDA enjoys linear
convergence for bilinear problems, for which both
Sim-GDA and Alt-GDA fail to converge at all.

1. Introduction
The minimax problem aims to solve:

min
x∈Rdx

max
y∈Rdy

f(x,y). (1)

This has been popularized since the work by von Neumann
(1928) and is widely studied in mathematics, economics,
computer science, and machine learning. Particularly, in
modern machine learning, there are many important settings
which fall within problem (1), including but not limited to
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Figure 1. (Top) Comparing the convergence speeds of algorithms:
Sim-GDA, Alt-GDA, EG, OGD and Alex-GDA. (Bottom) Tra-
jectory of the algorithms. (Partial visualization. Originally, the
trajectory is 6-dimensional since dx = dy = 3).

generative adversarial networks (GANs) (Arjovsky et al.,
2017; Goodfellow et al., 2020; Heusel et al., 2017), adver-
sarial training and robust optimization (Latorre et al., 2023;
Madry et al., 2018; Sinha et al., 2018; Yu et al., 2022), rein-
forcement learning (Li et al., 2019), and area-under-curve
(AUC) maximization (Liu et al., 2020; Ying et al., 2016;
Yuan et al., 2021).

The simplest baseline algorithm for solving minimax prob-
lems is gradient descent-ascent (GDA) (Dem’yanov &
Pevnyi, 1972), which naturally generalizes the idea of gradi-
ent descent for minimization problems. The GDA algorithm
updates x in the direction of decreasing the objective func-
tion f while updating y in the direction of increasing f ,
either simultaneously (Sim-GDA) or alternately (Alt-GDA).
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Unfortunately, it is not easy for both algorithms to converge
to an optimal point even in a convex-concave minimax prob-
lem: in an unconstrained bilinear problem minxmaxy xy,
for example, Sim-GDA diverges all the way out while Alt-
GDA generates bounded but non-convergent iterates (Bailey
et al., 2020; Gidel et al., 2019a;b; Zhang et al., 2022).

To tackle the issues of vanilla GDA(s), numerous algo-
rithms have been introduced and analyzed for smooth mini-
max problems, including Extra-gradient (EG) (Korpelevich,
1976), Optimistic Gradient Descent (OGD) (Popov, 1980),
negative momentum (Gidel et al., 2019b), and many more
(Lee & Kim, 2021; Park & Ryu, 2022; Yoon & Ryu, 2021;
2022). Although these algorithms enjoy accelerated con-
vergence rates compared to vanilla GDA, the majority of
these works focus on simultaneous updates of x and y,
mainly because of the simplicity of analysis. However, in
minimax problems applied in practical machine learning,
it is more natural for the training procedure to work in an
alternating sense. In training GANs, for instance, the dis-
criminator should update its weight based on the outcome of
the generator, and vice versa. Moreover, there exist substan-
tial amounts of empirical evidence of Alt-GDA exhibiting
faster convergence (Goodfellow et al., 2020; Mescheder
et al., 2017), as we demonstrate in Figure 1. In contrast, we
still lack a theoretical understanding of why and how much
Alt-GDA is faster, especially compared to Sim-GDA. To
fill this gap between theory and practice, it is a timely and
important subject to study which one is a winner between
simultaneous and alternating updates.

An existing work by Zhang et al. (2022) proposes a theoreti-
cal explanation involving local convergence guarantees for
µ-strongly-convex-strongly-concave (SCSC), L-Lipschitz
gradient functions. Their results constructively explain that
Alt-GDA (of iteration complexity Õ(κ)) has a faster con-
vergence rate than Sim-GDA (Õ(κ2)), where κ = L/µ is
the condition number of the problem. However, their results
are confined to guaranteeing local convergence rates, which
is only valid after enough iterations.

Overall, this raises the following question:

For minimax problems (1), are alternating updates

strictly better than simultaneous updates,

even in terms of global convergence?
(2)

1.1. Summary of Contributions
Our contributions are largely twofold. First, we eliminate
the limitations of prior work by providing global conver-
gence guarantees that elucidate the fundamental strength of
Alt-GDA over Sim-GDA. Second, we propose a novel algo-
rithm called Alternating-Extrapolation GDA (Alex-GDA)
that achieves an identical rate to the Extra-gradient (EG)
method with the same number of gradient computations per
iteration as Sim-GDA and Alt-GDA.

For the following results, we assume (µx, µy)-strongly-
convex-strongly-concave (SCSC), (Lx, Ly, Lxy)-Lipschitz
gradient objectives with condition numbers κx = Lx/µx,
κy = Ly/µy, and κxy = Lxy/

√
µxµy.1 In particular, we

study the upper and lower bounds on the rates of the iteration
complexity K required to achieve ∥zK − z⋆∥2 ≤ ϵ.

• In Section 3, we prove that Sim-GDA satisfies an iter-
ation complexity rate of

Θ
(
(κx + κy + κ2xy) · log(1/ϵ)

)
by showing tightly matching upper and lower bounds.
Our fine-grained convergence rate highlights the fact
that the term κ2xy is the main cause of slow conver-
gence, which previously known results do not capture.

• In Section 4, we prove that Alt-GDA satisfies an itera-
tion complexity rate upper bound of

O
((
κx + κy + κxy(

√
κx +

√
κy)
)
· log(1/ϵ)

)
,

which, compared to the results in Section 3, concludes
that Alt-GDA is provably faster than Sim-GDA.

• In Section 5, we propose a new algorithm, Alternating-
Extrapolation GDA (Alex-GDA), and prove a smaller
iteration complexity rate of

Θ((κx + κy + κxy) · log(1/ϵ))

by showing tightly matching upper and lower bounds.
We also show that EG—which requires twice the num-
ber of gradient computations per iteration—yields the
same rate by showing an identical lower bound.

Next, we turn to bilinear objectives f(x,y) = x⊤By, for
which both Sim-GDA and Alt-GDA fail to converge.

• In Section 6, we show that Alex-GDA enjoys linear
convergence with an iteration complexity rate upper
bound of

O
(
(Lxy/µxy)

2 · log(1/ϵ)
)
,

where µxy, Lxy are the smallest, largest nonzero sin-
gular values of the coupling matrix B, respectively.

Long story short, our results altogether answer the ground-
setting question (2) in the positive. For the optimization
community—we believe that our fundamental comparison
between simultaneous and alternating updates could provide
fruitful insights for future investigations to unveil new rate-
optimal algorithms by exploiting alternating updates.

1For the definitions of SCSC and Lipschitz-gradient functions,
please refer to Definitions 2.2 and 2.3. For the definition of condi-
tion numbers κx, κy , and κxy , please refer to Definition 2.4.
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2. Preliminaries
Notation. We study unconstrained minimax problems with
objective function f : Rdx × Rdy → R, where x ∈ Rdx
and y ∈ Rdy are the variables. In some cases we use
z = (x,y) ∈ Rdx × Rdy for notational simplicity. We
denote by ∥ · ∥ the Euclidean ℓ2-norm for vectors and the
spectral norm (i.e., maximum singular value) for matrices.
We denote by ⟨·, ·⟩ the usual inner product between vectors
in Euclidean space of the same dimension. The spectral
radius (i.e., maximum absolute eigenvalue) of a matrix M
is denoted by ρ(M). The letters O, Ω, ω, and Θ are for the
conventional asymptotic notations, while the tilde notation
(e.g., Õ and Ω̃) hides polylogarithmic factors.

2.1. Function Class

We first introduce the definitions we need in order to char-
acterize the function class we will mainly focus on.

Definition 2.1 (Strong convexity/concavity). For a given
constant µ > 0, we say that a differentiable function f :
Rd → R is µ-strongly convex if

f(z′) ≥ f(z) + ⟨∇f(z), z′ − z⟩+ µ

2
∥z′ − z∥2

for all z, z′ ∈ Rd, and µ-strongly concave if −f(z) is µ-
strongly convex. If the above inequality holds for f (or −f )
and µ = 0, then we say that f is convex (or concave).

Definition 2.2 (Strong-convex-strong-concavity). For given
constants µx, µy > 0, we say that a differentiable function
f : Rdx × Rdy → R is (µx, µy)-strong-convex-strong-
concave (or (µx, µy)-SCSC) if

• f(·,y) is µx-strongly convex for all y ∈ Rdy ,

• f(x, ·) is µy-strongly concave for all x ∈ Rdx .

If µx = µy = 0, we say that f is convex-concave.

Definition 2.3 (Lipschitz gradients). For given constants
Lx, Ly ≥ 0 and Lxy ≥ 0, we say that a differentiable
function f : Rdx × Rdy → R has (Lx, Ly, Lxy)-Lipschitz
gradients if

∥∇xf(x
′,y)−∇xf(x,y)∥ ≤ Lx∥x′ − x∥,

for all x,x′ ∈ Rdx and y ∈ Rdy ,

∥∇yf(x,y
′)−∇yf(x,y)∥ ≤ Ly∥y′ − y∥,

for all y,y′ ∈ Rdy and x ∈ Rdx , and

∥∇xf(x,y
′)−∇xf(x,y)∥ ≤ Lxy∥y′ − y∥,

∥∇yf(x
′,y)−∇yf(x,y)∥ ≤ Lxy∥x′ − x∥

for all x,x′ ∈ Rdx and y,y′ ∈ Rdy .

For SCSC and Lipschitz-gradient objective functions, the
convergence rates of algorithms usually depend on the ratio
between the parameters µx, µy and Lx, Ly, Lxy, which we
often refer to as the condition number.

Definition 2.4 (Condition numbers). For given constants
0 < µx ≤ Lx, 0 < µy ≤ Ly, and Lxy ≥ 0, we define
the condition numbers as κx := Lx/µx, κy := Ly/µy , and
κxy := Lxy/

√
µxµy .

The definitions of κx and κy are completely analogous to the
definition widely used in convex optimization literature, and
we have κx, κy ≥ 1 since µx ≤ Lx, µy ≤ Ly . The number
κxy ≥ 0 additionally takes into account how the coupling
between the two variables can affect the convergence speed.

Definition 2.5 (Function class). For 0 < µx ≤ Lx, 0 <
µy ≤ Ly, and Lxy ≥ 0, we define F(µx, µy, Lx, Ly, Lxy)
as the function class containing all f : Rdx ×Rdy → R that
are (i) twice-differentiable, (ii) (µx, µy)-SCSC, and (iii) has
(Lx, Ly, Lxy)-Lipschitz gradients.

Considering the minimax problem as in (1), the optimal
solution is often characterized as in Definition 2.6.

Definition 2.6. A Nash equilibrium of a function f : Rdx ×
Rdy → R is defined as a point (x⋆,y⋆) ∈ Rdx ×Rdy which
satisfies for all x ∈ Rdx and y ∈ Rdy :

f(x⋆,y) ≤ f(x⋆,y⋆) ≤ f(x,y⋆).

It is well known that if f ∈ F(µx, µy, Lx, Ly, Lxy), then
the Nash equilibrium (x⋆,y⋆) of f uniquely exists (see
Zhang et al. (2022)).

2.2. Algorithms

We focus on GDA algorithms with constant step sizes
α, β > 0. In Sections 3 and 4, we provide convergence anal-
yses for Sim-GDA and Alt-GDA, shown in Algorithm 1.
In Sections 5 and 6, we construct a new algorithm called
Alternating-Extrapolation GDA (Alex-GDA), shown in Al-
gorithm 2, which we formally define later.

Algorithm 1 Sim-GDA and Alt-GDA
Input: Number of epochs K, step sizes α, β > 0
Initialize: (x0,y0) ∈ Rdx × Rdy
for k = 0, . . . ,K − 1 do

xk+1 = xk − α∇xf(xk,yk)
if Sim-GDA then
yk+1 = yk + β∇yf(xk,yk)

else if Alt-GDA then
yk+1 = yk + β∇yf(xk+1,yk)

end if
end for
Output: (xK ,yK) ∈ Rdx × Rdy
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2.3. Lyapunov Function

Originally designed for stability analysis of dynamical sys-
tems (Kalman & Bertram, 1960), the Lyapunov function
defined as in Definition 2.7 (sometimes referred to as the
potential function) is widely used as a strategy to obtain
convergence guarantees in optimization studies (Bansal &
Gupta, 2019; Taylor et al., 2018).

Definition 2.7 (Lyapunov function). Suppose that we have
a function f with optimal point z⋆, an initialization point
z0, and an algorithm that outputs zk at the k-th iterate.
A Lyapunov function is defined as a continuous function
Ψ : Rd → R such that:

• Ψ(z) ≥ 0 and Ψ(z) = 0 if and only if z = z⋆,

• Ψ(z) → ∞ as ∥z∥ → ∞,

• Ψ(zk+1) ≤ Ψ(zk) for all k ≥ 0.

For an algorithm that outputs {zk}k≥0 and a Lyapunov
function Ψ, we define the sequence {Ψk}k≥0 as Ψk :=
Ψ(zk), which we will refer to as, with a bit of an abuse of
notation, just the Lyapunov function throughout the paper.

Definition 2.8. We say that a Lyapunov function {Ψk}k≥0

is valid if it satisfies Ψk ≥ A∥zk − z⋆∥2 for all k and for
some constant A > 0.

If we find a valid Lyapunov function with contraction factor
r ∈ (0, 1)— that is, for all k ≥ 0, we have Ψk+1 ≤ rΨk,
then we can deduce that

K = O
(

1

1− r
· log Ψ0

Aϵ

)
(3)

iterations are sufficient to ensure ∥zK −z⋆∥2 ≤ ϵ. We refer
to K as the iteration complexity, and the rate in the right-
hand side of (3) as the iteration complexity upper bound.

3. Convergence Analysis of Sim-GDA
Given an objective function f ∈ F(µx, µy, Lx, Ly, Lxy),
for which the Nash equilibrium is unique, we define the
scaled distance to the Nash equilibrium V (x,y) as

V (x,y) =
1

α
∥x− x⋆∥2 +

1

β
∥y − y⋆∥2.

For Sim-GDA, we focus on the convergence rate in terms of
the Lyapunov function ΨSim

k = V (xk,yk). Note that ΨSim
k

is always nonnegative, and is valid since we haveASim∥zk−
z⋆∥2 ≤ ΨSim

k for ASim = min
{

1
α ,

1
β

}
. This potential

function is a popular choice in minimax optimization or
variance reduction problems with step sizes of different
scales (Palaniappan & Bach, 2016).

3.1. Convergence Upper Bound

Theorem 3.1 yields a contraction result for Sim-GDA.
Theorem 3.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy).
Then, there exists a pair of step sizes α, β with

αµx = βµy = Θ

(
1

κx + κy + κ2xy

)
,

such that Sim-GDA satisfies ΨSim
k+1 ≤ rΨSim

k with

r =


(
κxy +

√
max {κx, κy}+ κ2xy

)2
− 1(

κxy +
√
max {κx, κy}+ κ2xy

)2
+ 1


2

. (4)

While we defer the proof of Theorem 3.1 to Appendix B.1,
by (3) we can restate the convergence rate upper bound in
terms of the iteration complexity as follows.
Corollary 3.2. For the step sizes given as in Theorem 3.1,
Sim-GDA linearly converges with iteration complexity

O
((
κx + κy + κ2xy

)
· log ΨSim

0

ASimϵ

)
,

where ASim = min
{

1
α ,

1
β

}
.

We defer the proof of Corollary 3.2 to Appendix B.2.

Comparison with Previous Work. The previously known
iteration complexity upper bound of Sim-GDA was Õ(κ2)
(Mescheder et al., 2017; Azizian et al., 2020; Zhang et al.,
2022), where the condition number is defined as κ =
max{Lx,Ly,Lxy}

min{µx,µy} . However, using a single condition number
might oversimplify the problem and lead to loose results; for
instance, if the condition numbers follow κx, κy = Θ(t2)
and κxy = Θ(t) for some t, then previous results can only
guarantee up to Õ(t4), while Corollary 3.2 suggests a bet-
ter rate of Õ(t2). This shows that separating the condition
numbers helps capture how κxy , or the interaction between
x and y, affects convergence speed.

Meanwhile, a recent work by Zamani et al. (2022) pro-
poses an iteration complexity upper bound for Sim-GDA
of Õ(κ+ κ2xy) for κ =

max{Lx,Ly}
min{µx,µy} , but the proof heavily

relies on a computer-assisted method known as the Perfor-
mance Estimation Problem (PEP) (Drori & Teboulle, 2014).
Our fine-grained analysis subsumes all of these previous
results, and—to the best of our knowledge—is the first to
clarify the exact convergence rate of Sim-GDA in terms of
individual condition numbers κx, κy , and κxy .

3.2. Convergence Lower Bound

Theorem 3.3 provides a convergence lower bound of the iter-
ation complexity of Sim-GDA which holds for all possible
step sizes α, β > 0.
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Theorem 3.3. There exists a 6-dimensional function f ∈
F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of Sim-GDA
requires an iteration complexity of rate at least

Ω

((
κx + κy + κ2xy

)
· log 1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

The iteration complexity lower bound in Theorem 3.3 ex-
actly matches the upper bound in Corollary 3.2, ensuring
that our analysis on Sim-GDA is tight (ignoring log factors).
We defer the proof of Theorem 3.3 to Appendix B.3.
Remark. Unlike typical lower bounds for which the initial-
ization is specifically chosen along with the function, our
results in Theorem 3.3 works for any initialization, while
the dependency on initialization is hidden in the numerator
in the log(1/ϵ) part similarly as in the upper bound results.
All we need is an initialization point with O(1) distance
from the optimum, and the same applies to the lower bound
results we present in Theorem 5.3.

4. Convergence Analysis of Alt-GDA
For Alt-GDA, the half-step iterates alternating between x
and y updates make theoretical analysis much harder than
when dealing with simultaneous updates. We address this by
focusing on the convergence rate in terms of the following
Lyapunov function (instead of just V (xk,yk)):

ΨAlt
k = V Alt(xk,yk) + V Alt(xk+1,yk)

− α(1− αLx)∥∇xf(xk,yk)∥2,

where V Alt(x,y) is defined as(
1

α
− µx

)
∥x− x⋆∥2 +

(
1

β
− µy

)
∥y − y⋆∥2.

Note that we capture the two-step-alternating nature of the
algorithm by considering two adjacent iterates at a time,
which turns out to be the key idea in the proofs.

4.1. Convergence Upper Bound

Theorem 4.1 yields a contraction result for Alt-GDA.

Theorem 4.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy)
and we run Alt-GDA with step sizes α, β > 0 that satisfy

α ≤ 1

2
·min

{
1

Lx
,

√
µy

Lxy
√
Lx

}
,

β ≤ 1

2
·min

{
1

Ly
,

√
µx

Lxy
√
Ly

}
.

Then ΨAlt
k is valid, and satisfies ΨAlt

k+1 ≤ rΨAlt
k with

r = max

{
1
α − µx

1
α − 2β2LyL2

xy

,

1
β − µy

1
β − α2LxL2

xy

,
1
α − µx

1
α

}
,

where we have 0 < r < 1.

While we defer the proof of Theorem 4.1 to Appendix C.1,
by (3) we can restate the convergence rate upper bound in
terms of the iteration complexity as follows.

Corollary 4.2. For step sizes given by the maximum possi-
ble values in Theorem 4.1, Alt-GDA linearly converges with
iteration complexity

O
((
κx + κy + κxy(

√
κx +

√
κy)
)
· log ΨAlt

0

AAltϵ

)
,

where AAlt = min
{

1
2α − µx, 2

(
3
4β − µy

)}
> 0.

We defer the proof of Corollary 4.2 to Appendix C.2.

Recall that for Sim-GDA we have an upper bound of
Õ
(
κx + κy + κ2xy

)
, and a lower bound which shows that

this rate cannot be improved. Comparing this with Corol-
lary 4.2, we can conclude that the convergence rate of Alt-
GDA is faster than Sim-GDA.

Comparison with Sim-GDA. Our fine-grained analysis
clarifies how the dependence of the convergence speed of
Sim-GDA and Alt-GDA on κxy, corresponding to the in-
teraction between x and y, are different from each other.
If κxy = O(

√
κx +

√
κy), then the diagonal blocks of

the Hessian dominate, for which both Sim-GDA and Alt-
GDA exhibit similar convergence dynamics to plain GD. If
κxy = ω(

√
κx +

√
κy), i.e., the off-diagonal block domi-

nates, then the relatively large interaction between x and y
slows down convergence. Our results show that Alt-GDA
is capable of faster convergence essentially because its de-
pendency on κxy is of smaller order.

Comparison with Local Analysis. Zhang et al. (2022)
show that the local convergence rates of Sim-GDA and
Alt-GDA are Õ(κ2) and Õ(κ), respectively, where κ =
max{Lx,Ly,Lxy}

min{µx,µy} . Such kinds of local convergence rates
of operators, including GDA iterates, rely on (the spectral
radius of) the Jacobian matrix of the operator at the opti-
mum (Bertsekas, 1999) and require that the iterates are in a
small neighborhood around the optimum, or—for gradient
methods—that the objective function is quadratic, so that
the Jacobian is constant and the same spectral arguments
hold everywhere in the domain. In contrast, Corollaries 3.2
and 4.2 both show global convergence rates for all initial-
ization and SCSC objectives without such assumptions.
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While we can see that Corollary 3.2 naturally subsumes
the local convergence rate Õ(κ2), it turns out that Corol-
lary 4.2 is analogous to Õ(κ3/2), which is has a gap of
κ1/2 with the local convergence rate of Õ(κ) by Zhang et al.
(2022). Viewing the local convergence result as a global
convergence bound for the smaller class of quadratic SCSC
functions, we believe that there may exist a non-quadratic
function for which Alt-GDA requires an iteration complex-
ity of ω̃(κ), which we discuss in detail in Conjecture 8.1.

5. Alternating-Extrapolation GDA
A natural way of unifying the baseline algorithms Sim-GDA
and Alt-GDA is to think of taking a linear combination
between the two. That is, we can write:

xk+1 = xk − α∇xf(xk,yk),

x̃k+1 = (1− γ)xk + γxk+1,

yk+1 = yk + β∇yf(x̃k+1,yk).

(5)

Note that this formulation provides an interpolation between
Sim-GDA (γ = 0) and Alt-GDA (γ = 1). In the previous
sections, we demonstrated a provable gap in the iteration
complexity between the two endpoints γ = 0 and 1; this
motivates us to consider an extrapolation to γ > 1 and see
if we can achieve a further speed-up.

However, if we extrapolate the x side alone, the update
equations for x and y will no longer be of the same form.
By symmetrizing the x and y sides, we now obtain the
following general framework:

xk+1 = xk − α∇xf(xk, ỹk),

x̃k+1 = (1− γ)xk + γxk+1,

yk+1 = yk + β∇yf(x̃k+1,yk),

ỹk+1 = (1− δ)yk + δyk+1,

where x̃k+1 and ỹk+1 are the points where we compute the
gradients, and γ, δ ≥ 0 are hyperparameters. Notice that
choosing (γ, δ) = (0, 1) recovers Sim-GDA and (γ, δ) =
(1, 1) corresponds to Alt-GDA.

We can rewrite our updates in terms of gradient updates (Al-
gorithm 2). We name our algorithm framework Alternating-
Extrapolation GDA (Alex-GDA), after the fact that our
analysis mainly focuses on the case γ, δ > 1 in which we
compute gradients using extrapolated iterates, and we make
alternating updates between x and y.

Initialization. Some careful readers might notice that the
first step of Alex-GDA is a bit different from the rest of
the iterations; for k = 0 we set ỹ0 = y0, whereas we use
ỹk = yk+(δ−1)β∇yf(x̃k,yk−1) for all subsequent steps
(k ≥ 1). This requires a bit more careful analysis, just as in

Algorithm 2 Alternating-Extrapolation GDA (Alex-GDA)
Input: Number of epochs K, step sizes α, β > 0,
hyperparameters γ, δ ≥ 0
Initialize: (x0,y0) ∈ Rdx × Rdy and ỹ0 = y0 ∈ Rdy
for k = 0, . . . ,K − 1 do

xk+1 = xk − α∇xf(xk, ỹk)
x̃k+1 = xk − γα∇xf(xk, ỹk)
yk+1 = yk + β∇yf(x̃k+1,yk)
ỹk+1 = yk + δβ∇yf(x̃k+1,yk)

end for
Output: (xK ,yK) ∈ Rdx × Rdy

how we define the Lyapunov function for Alex-GDA:

ΨAlex
k = V (xk,yk) + V (xk+1,yk)

− α∥∇xf(xk, ỹk)∥2 + (δ − 1)β∥∇xf(x̃k,yk−1)∥2

+
(γ − 1)(δ − 1)αβ

1− αµx
· Lxy

√
µy
µx

· ∥∇xf(xk−1, ỹk−1)∥2

for k ≥ 1, and

ΨAlex
0 = V (x0,y0) + V (x1,y0)− α∥∇xf(x0, ỹ0)∥2

+
(γ − 1)(δ − 1)αβ

(1− αµx)(1− βµy)
· Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

for k = 0.

5.1. Convergence Upper Bound

Theorem 5.1 yields a contraction result for Alex-GDA.
Theorem 5.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy)
and we run Alex-GDA with γ, δ > 1 and step sizes α, β > 0
that satisfy

α ≤ C ·min

{
1

Lx
,

√
µy

Lxy
√
µx

}
,

β ≤ C ·min

{
1

Ly
,

√
µx

Lxy
√
µy

}
.

for some constant C > 0 (which only depends on γ and δ).
Then ΨAlex

k is valid, and satisfies ΨAlex
k+1 ≤ rΨAlex

k with

r = max {1− αµx, 1− βµy} .

While we defer the proof of Theorem 5.1 to Appendix D.1,
by (3) we can restate the convergence rate upper bound in
terms of the iteration complexity as follows.
Corollary 5.2. For step sizes given by the maximum pos-
sible values in Theorem 5.1, Alex-GDA linearly converges
with iteration complexity

O
(
(κx + κy + κxy) · log

ΨAlex
0

AAlexϵ

)
,

where AAlex = min
{

1
2α ,

1
β

}
> 0.
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While we defer the proof of Corollary 5.2 to Appendix D.2,
we can observe that Corollary 5.2 provides a stronger itera-
tion complexity upper bound than Corollary 4.2.

5.2. Convergence Lower Bound

Theorem 5.3 provides a convergence lower bound of the iter-
ation complexity of Alex-GDA which holds for all possible
step sizes α, β > 0.

Theorem 5.3. There exists a 6-dimensional function f ∈
F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of Alex-GDA
with γ, δ > 1 requires an iteration complexity of

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

The iteration complexity rate in Theorem 5.3 exactly
matches the upper bound in Corollary 5.2, which ensures
that our analysis on Alex-GDA is tight (ignoring log factors).
We defer the proof of Theorem 5.3 to Appendix D.3.

5.3. Comparison with EG

Here we compare Alex-GDA to the Extra-gradient (EG)
method (Korpelevich, 1976), an algorithm based on simul-
taneous updates of the form:

xk+ 1
2
= xk − α∇xf(xk,yk),

yk+ 1
2
= yk + β∇yf(xk,yk),

}
exploration steps

xk+1 = xk − α∇xf(xk+ 1
2
,yk+ 1

2
),

yk+1 = yk + β∇yf(xk+ 1
2
,yk+ 1

2
).

}
update steps

It is known by Mokhtari et al. (2019) that EG converges with
iteration complexity Õ(κ), where κ =

max{Lx,Ly,Lxy}
min{µx,µy} .

While EG is famous for its simplicity and fast convergence,
we can show that EG must satisfy the same lower bound
with Alex-GDA via the following proposition.

Proposition 5.4. There exists a 6-dimensional function f ∈
F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for
any constant step sizes α, β > 0, the convergence of EG
requires an iteration complexity of rate at least

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

We defer the proof of Proposition 5.4 to Appendix D.4.

By comparing Proposition 5.4 with the upper (and lower)
bound for Alex-GDA, it is clear that EG cannot be strictly
faster than Alex-GDA in terms of iteration complexity rates.

Moreover, Alex-GDA requires only two gradient values
(one for x, y each) per a single iteration, while EG needs to
perform exactly twice the amount of computations (two for
x, y each). Nevertheless, Alex-GDA is provably as fast as
EG, and in fact, it showcases faster empirical convergence
compared to EG as shown in Figure 1.

In Appendix A, we also compare Alex-GDA with another
well-known baseline algorithm, Optimistic Gradient De-
scent (OGD) (Popov, 1980).

6. Alex-GDA Converges on Bilinear Problems
One drawback shared by Sim-GDA and Alt-GDA is that
both algorithms fail to converge for simple unconstrained bi-
linear problems of the form minx maxy f(x,y) = x⊤By
(Gidel et al., 2019b), an important special case of a convex-
concave but non-SCSC problem with Lipschitz gradients.

Surprisingly, we show that Alex-GDA, on the other hand,
does converge on bilinear problems. In order to present
the result, we define µxy as the smallest nonzero singular
value of B. Note that it is natural to assume the existence of
nonzero singular values—if not, then B = 0, and the objec-
tive is constantly zero. Analogously to previous definitions,
we choose Lxy as the largest singular value of B.

We first characterize the exact condition for convergent step
sizes of Alex-GDA on bilinear problems. Interestingly, it
allows a larger range of parameters γ and δ: we no longer
require γ > 1 and δ > 1 here.

Theorem 6.1. With a proper choice of step sizes α and β,
Alex-GDA linearly converges to a Nash equilibrium of a
bilinear problem if and only if γ + δ > 2. In this case, the
exact conditions for convergent step sizes α and β are:{
αβ< 4

(2γ−1)(2δ−1)L2
xy
, if 4γδ−3(γ+δ)+2 ≥ 0,

αβ< γ+δ−2
−(γ−1)(δ−1)(γ+δ−1)L2

xy
, if 4γδ−3(γ+δ)+2 < 0.

We defer the proof of Theorem 6.1 to Appendix E.1.

Furthermore, if we properly choose the step size, we can
obtain the iteration complexity of Alex-GDA on bilinear
problems.

Theorem 6.2. For general γ ≥ 1 and δ ≥ 1 such that
γ + δ > 2, If we choose the step sizes α and β so that
αβ = 1

Cγ,δL2
xy

where Cγ,δ > 0 is a constant that only
depends on γ and δ, an iteration complexity upper bound of
Alex-GDA is

O

(
Cγ,δ

γ + δ − 2
·
(
Lxy
µxy

)2
· log

(
∥w0∥2

ϵ

))
,

where ∥w0∥2=∥x0−x⋆∥2+2∥y0−y⋆∥2 and z⋆=(x⋆,y⋆)
is a uniquely determined Nash equilibrium if z0 is given.
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If δ = 1, the optimal rate exponent of Alex-GDA is

lim
k→∞

∥zk − z⋆∥
∥zk−1 − z⋆∥

=

√
L2
xy − µ2

xy

L2
xy + µ2

xy

,

where the optimal choice of parameters are

αβ =
2µ2

xy/L
2
xy

L2
xy + µ2

xy

, γ = 1 +
L2
xy

µ2
xy

.

While we defer the proof of Theorem 6.2 to Appendix E.2,
we remark that the convergence speed depends on a new
type of condition number, namely Lxy/µxy ≥ 1, which is
distinct from our definition of κxy .

6.1. Comparison with EG

A work by Zhang & Yu (2020) analyzes optimal conver-
gence rates of EG and several other minimax optimization
algorithms on bilinear problems. They prove that the opti-

mal rate exponent of EG is
L2

xy−µ
2
xy

L2
xy+µ

2
xy

, which boils down to

the iteration complexity Õ
(
(Lxy/µxy)

2
)

; it matches the
iteration complexity of Alex-GDA up to constant factor.

It seems that the optimal rate exponent of EG is quadrati-
cally better than that of Alex-GDA with δ = 1. However,
since EG takes twice more gradient computation per iter-
ation than Alex-GDA, the optimal gradient computation
complexity of EG and Alex-GDA with δ = 1 are exactly
identical. Still, there is room for further improvement in the
convergence rate of Alex-GDA by choosing δ other than 1,
but we leave it as a future work.

We also compare Alex-GDA with OGD in Appendix A.

7. Experiments
The details of the experiments are illustrated in Appendix G.

7.1. SCSC Quadratic Games

An SCSC quadratic game is a minimax problem:

min
x

max
y

1
2x

⊤Ax+ x⊤By − 1
2y

⊤Cy,

where A and C are positive definite matrices.

(1) Small-scale. We conducted experiments on a (3 + 3)-
dimensional SCSC quadratic game to visually compare the
convergence speed of the algorithms in Figure 1. We choose
appropriate step sizes for each algorithm by applying grid
search, regarding the number of gradient computations to ar-
rive at an ϵ-distant point from the Nash equilibrium, among
convergent step sizes. As shown in the figure and already ob-
served in Zhang et al. (2022), Alt-GDA beats Sim-GDA in

terms of the convergence rate. We additionally observe that
the gradient complexity of Alt-GDA seems comparable to
that of EG and OGD.2 Furthermore, with moderately tuned
parameters γ and δ, our Alex-GDA achieves a convergence
rate that is even faster than EG and OGD.

(2) Higher Dimension, Extensive Comparisons. We
run further experiments on (100 + 100)-dimensional SCSC
quadratic games to extensively compare GDA, EG, OGD,
and Alex-GDA. We test both simultaneous/alternating ver-
sions and (either positive or negative) momentum variants.
In particular, we investigate five different configurations of
problem parameters (µx = µy, µxy, Lx =Ly, Lxy), where
µxy is the smallest singular value of the matrix B. The
results are shown in Table 1. We observe Alt-GDA is much
faster than Sim-GDA and even faster than Sim-GDA with
momentum. Among algorithms without momentum, Alex-
GDA exhibits the best gradient complexity. If we include
algorithms with momentum, a variant of Alex-GDA (Al-
gorithm 3 in Appendix G.2) achieves the best performance
among all compared algorithms, while the alternating &
momentum variant of OGD showcases the second-best
performance for most of problem parameters. Lastly, we
verify our theoretical findings by observing an increasing
trend of gradient complexity in terms of condition num-
bers L/µ(= κx = κy) and Lxy/

√
µxµy(= κxy), but not

in terms of Lxy/µxy (introduced for analysis of bilinear
problems).

7.2. Generative Adversarial Networks

To examine the efficacy of Alex-GDA, we train WGAN-GP
(Arjovsky et al., 2017; Gulrajani et al., 2017) for the im-
age generation task, mostly following the implementation
details in Heusel et al. (2017). We examine the natural com-
binations of Adam (Kingma & Ba, 2015) and (stochastic
variants of) Sim-/Alt-/Alex-GDA, which we call Sim-/Alt-
/Alex-Adam, respectively. We highlight that Alex-GDA
can be easily implemented on top of any existing base opti-
mizers including Adam because all we need to implement
additionally is a couple of extrapolation steps; we provide
a brief PyTorch (Paszke et al., 2019) implementation of
Alex-Adam for GANs in Listing 1 of Appendix G.3. We
moderately tune the step sizes and the values of γ and δ. As
a result, we use (γ, δ) = (1, 4) for MNIST (Deng, 2012),
(γ, δ) = (1, 1.2) for CIFAR-10 (Krizhevsky et al., 2009),
and (γ, δ) = (1, 2) for LSUN Bedroom 64×64 dataset
(Yu et al., 2015). The result is shown in Table 2, where
we report Fréchet inception distance (FID) scores (Heusel
et al., 2017). To the best of our knowledge, we achieve

2In all experiments, we allow EG with different step sizes used
at the exploration and update steps, which is of a more general
formulation than the description in Section 5.3. We also use a more
general formulation of OGD than that explained in Appendix A.
See Appendix G.1.
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Table 1. (100+100)-dimensional SCSC quadratic games. We report the number of gradient computations, averaged over 30 runs. Every
algorithm was run until the squared distance from the optimum reached ≤ϵ. We set µx = µy = µ, Lx = Ly = L. Note that Sim means
Sim-GDA and Alt means Alt-GDA. Also, +M means momentum (positive or negative), while +A means alternating updates. For each
row, we mark the first, second, and third places as ∗, †, and ‡, respectively.

(µ, µxy, L, Lxy, ϵ) Sim Sim Alt Alt EG EG EG EG OGD OGD OGD OGD Alex
+M +M +M +A +AM +M +A +AM Alex +M

(0.1, 0.1, 1, 1, 10−8) 1974.2 421.0 105.9 78.9 133.8 115.6 139.9 102.0 132.8 105.3 90.0 67.6‡ 62.7† 44.7∗

(0.1, 0.05, 1, 2, 10−8) 7865.0 839.8 149.1 105.6 253.2 210.6 278.9 186.9 215.1 177.3 116.1 93.6† 100.6‡ 69.1∗

(0.01, 0.001, 1, 0.5, 10−4) 42762.1 3824.3 394.9 182.0 291.1 225.9 380.7 228.4 281.1 176.1 182.3 127.7† 133.1‡ 58.3∗

(0.01, 0.01, 1, 1, 10−4) 104220.5 8539.4 567.6 157.2 308.8 223.9 299.9 175.7 280.5 184.9 200.5 117.3† 138.8‡ 73.2∗

(0.01, 0.05, 1, 2, 10−4) 416822.5 16719.4 777.4 149.0 347.5 253.9 363.6 231.0 337.6 213.3 162.0 108.6† 135.4‡ 83.9∗

Table 2. WGAN-GP. We report the mean (and standard deviation)
of FID scores (the lower the better).

MNIST CIFAR-10 LSUN Bedroom
Sim-Adam 3.97 (1.3) 45.0 (1.2) 131.2 (8.4)
Alt-Adam 1.85 (0.3) 24.2 (1.7) 9.0 (1.2)

Alex-Adam 1.53 (0.3) 23.8 (1.5) 6.3 (0.6)

state-of-the-art image generation performance in terms of
FID scores for MNIST and LSUN Bedroom 64×64 datasets
with Alex-Adam.

The experiments in Tables 1 and 2 can be reproduced with
our code available at GitHub.3

8. Conclusion
We present global convergence rates of Sim-GDA and Alt-
GDA on SCSC, Lipschitz-gradient objectives in terms of
the condition numbers κx, κy, and κxy. For Sim-GDA we
prove an iteration complexity of Θ̃(κx + κy + κ2xy), while
for Alt-GDA we obtain a smaller iteration complexity of
Õ(κx + κy + κxy(

√
κx +

√
κy)). Comparing the results,

we show that Alt-GDA is provably faster than Sim-GDA in
terms of global convergence.

Moreover, we propose a novel algorithm called Alex-GDA,
inspired by an extension of Sim-GDA and Alt-GDA via
linear extrapolation. Alex-GDA shows a faster iteration
complexity of Θ̃(κx+κy+κxy), matching the convergence
rate of EG with less gradient computations per iteration. We
also show that Alex-GDA converges linearly for bilinear
problems, for which Sim-GDA and Alt-GDA diverge.

We believe that our results, altogether, are valuable demon-
strations of the benefit of alternating updates in GDA al-
gorithms for minimax optimization.

Future Work. As an effort to check if it is possible to
obtain O(κ) convergence of Alt-GDA, we have tried using
a computer-assisted method called the performance estima-
tion problem (PEP) (Drori & Teboulle, 2014), a powerful
tool originally designed to infer tight worst-case complexi-

3github.com/HanseulJo/Alex-GDA

ties of convex optimization algorithms. Based on the work
by Das Gupta et al. (2023), we devised a PEP-based tool
that automatically finds the worst-case convergence rate of
an algorithm by optimizing the function, step size, and per-
formance measure altogether. While it is known by Ryu
et al. (2020) that the extension of such methods to minimax
optimization can only yield a possibly loose upper bound,
the estimate we obtained for Alt-GDA was approximately
O(κ1.4). Moreover, the estimated rate for Sim-GDA was
O(κ1.99), which is very close to our theoretical results. You
may refer to Appendix H for more details.

Based on these observations and the discussions about The-
orem 4.1 at the end of Section 4, we leave the following
conjecture on the convergence lower bound of Alt-GDA.

Conjecture 8.1. There exists a non-quadratic function f ∈
F(µx, µy, Lx, Ly, Lxy) such that for any constant step sizes
α, β > 0, the convergence of Alt-GDA requires an iteration
complexity of

Θ

(
(κx + κy + κxy(κx + κy)

p) · log 1

ϵ

)
for p ∈ (0, 12 ).

Also, on top of our findings on bilinear functions in Sec-
tion 6, we also leave the following conjecture on Alex-GDA
on general convex-concave objectives for future work.

Conjecture 8.2. Suppose that the objective function f is
convex-concave and has (Lx, Ly, Lxy)-Lipschitz gradients.
Then, we conjecture that Alex-GDA exhibits last-iterate
convergence to a Nash equilibrium of f .
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Supplementary Material
A. Comparison with OGD
Here we compare Alex-GDA to the Optimistic Gradient Descent (OGD) method (Popov, 1980), an algorithm based on
simultaneous updates of the form:

xk+1 = xk − 2α∇xf(xk,yk) + α∇xf(xk−1,yk−1),

yk+1 = yk + 2β∇yf(xk,yk)− β∇yf(xk−1,yk−1).
(6)

We remark that OGD takes the same amount of gradient computation as Sim-GDA, Alt-GDA, and Alex-GDA. One may
observe that Alex-GDA stores the previous iterates xk and yk to compute x̃k+1 and ỹk+1, whereas the implementation of
OGD requires storing the previous gradients ∇xf(xk−1,yk−1) and ∇yf(xk−1,yk−1) instead. As a result, while these
two algorithms exploit different types of information, the memory consumption of Alex-GDA and OGD are identical.

As EG, it is also known that OGD converges with iteration complexity Õ(κ), where κ =
max{Lx,Ly,Lxy}

min{µx,µy} (Mokhtari et al.,
2019). We show that the iteration complexity cannot be strictly better than Alex-GDA through the following proposition.

Proposition A.1. There exists a 6-dimensional function f ∈ F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of OGD requires an iteration complexity of rate at least

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

We prove Proposition A.1 in Appendix F.

We also compare Alex-GDA with OGD in terms of bilinear problem, based upon the analysis of Zhang & Yu (2020). From
their results, the iteration complexity of OGD is translated to Õ

(
(Lxy/µxy)

2
)

; it matches to the iteration complexity of
Alex-GDA up to constant factor. In more detail, the authors proved that optimal convergence rate exponent of OGD of the

form in Equation (6) is approximately 1− µ2
xy

6L2
xy

, which is 6 times slower than our optimal rate exponent
√

L2
xy−µ2

xy

L2
xy+µ

2
xy

≈ 1− µ2
xy

L2
xy

proved in Theorem 6.2. On the other hand, Zhang & Yu (2020) also proved that the alternating variant of OGD, i.e.,

Gauss-Siedel OGD (GS-OGD), has an optimal convergence rate exponent
√

L2
xy−µ2

xy

L2
xy+µ

2
xy

. It exactly matches our optimal

rate of Alex-GDA with δ = 1. These facts again buttress our claim that alternating updates are beneficial in minimax
optimization.

13
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B. Proofs used in Section 3
Here we prove all theorems related to Sim-GDA presented in Section 3.

• In Appendix B.1 we prove Theorem 3.1 which yields a contraction inequality for Sim-GDA.

• In Appendix B.2 we prove Corollary 3.2 which derives the corresponding iteration complexity upper bound.

• In Appendix B.3 we prove Theorem 3.3 which yields a matching lower bound for Sim-GDA.

• In Appendix B.4 we prove technical propositions and lemmas used throughout the proofs in Appendix B.

B.1. Proof of Theorem 3.1

Here we prove Theorem 3.1 of Section 3, restated below for the sake of readability.

Theorem 3.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy). Then, there exists a pair of step sizes α, β with

αµx = βµy = Θ

(
1

κx + κy + κ2xy

)
,

such that Sim-GDA satisfies ΨSim
k+1 ≤ rΨSim

k with

r =


(
κxy +

√
max {κx, κy}+ κ2xy

)2
− 1(

κxy +
√
max {κx, κy}+ κ2xy

)2
+ 1


2

. (4)

Proof. Recall that we define the Lyapunov function as

ΨSim
k =

1

α
∥xk − x⋆∥2 +

1

β
∥yk − y⋆∥2.

Now we will show that ΨSim
1 ≤ γΨSim

0 for any choice of initialization points x0 and y0 (i.e., set k = 0 W.L.O.G.), which
directly implies ΨSim

k+1 ≤ γΨSim
k for all k. Proposition B.1 yields a one-step contraction inequality that applies to Sim-GDA

with α < 1
Lx

and β < 1
Ly

, i.e., when the step sizes are small enough.

Proposition B.1. For f ∈ F(µx, µy, Lx, Ly, Lxy), Sim-GDA with step sizes α < 1
Lx

and β < 1
Ly

satisfies

1

α
∥x1 − x⋆∥2 +

1

β
∥y1 − y⋆∥2 ≤ r

(
1

α
∥x0 − x⋆∥2 +

1

β
∥y0 − y⋆∥2

)
,

where the contraction factor is given by

r = max

{∥∥∥∥[1− αLx −
√
αβLxy√

αβLxy 1− βµy

]∥∥∥∥2 , ∥∥∥∥[1− αµx −
√
αβLxy√

αβLxy 1− βLy

]∥∥∥∥2
}
.

We prove Proposition B.1 in Appendix B.4.1.

To find the right step sizes, we search among α, β which satisfies α/β = µy/µx. This allows us to reduce the problem to
optimizing the choice of ζ, which can be defined as

ζ = αµx = βµy.

Then the contraction factor can be rewritten as

r = max

{∥∥∥∥[1− ζκx −ζκxy
ζκxy 1− ζ

]∥∥∥∥2 , ∥∥∥∥[1− ζ −ζκxy
ζκxy 1− ζκy

]∥∥∥∥2
}
.
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For κ ≥ 1, let us define the function fκ : (0,∞) → (0,∞) as:

fκ(ζ) =

∥∥∥∥[1− ζκ −ζκxy
ζκxy 1− ζ

]∥∥∥∥ =
κ− 1

2
· ζ +

√(
1− κ+ 1

2
· ζ
)2

+ ζ2κ2xy. (7)

Then we can simplify as follows:

r = max
{
(fκx

(ζ))
2
,
(
fκy

(ζ)
)2}

.

Proposition B.2 characterizes the optimal choice of ζ and the optimal function value of fκ(ζ) defined as in (7).

Proposition B.2. For fκ : (0,∞) → (0,∞) defined as in (7), the minimizer ζ⋆ is equal to

ζ⋆ =
1√

κ+ κ2xy

·
2
(
κxy +

√
κ+ κ2xy

)
1 +

(
κxy +

√
κ+ κ2xy

)2
and the minimum value of fκ attained at ζ⋆ is equal to

fκ(ζ
⋆) =

(
κxy +

√
κ+ κ2xy

)2
− 1(

κxy +
√
κ+ κ2xy

)2
+ 1

.

Moreover, we have fκx
(ζ) ≥ fκy

(ζ) for all ζ ∈ (0,∞) if and only if κx ≥ κy .

We prove Proposition B.2 in Appendix B.4.2.

If κx ≥ κy , we choose α, β such that

αµx = βµy = ζ⋆x :=
1√

κx + κ2xy

·
2
(
κxy +

√
κx + κ2xy

)
1 +

(
κxy +

√
κx + κ2xy

)2 .
Note that ζ⋆x = Θ

(
1

κx+κ2
xy

)
. Then, since fκx

(ζ) ≥ fκy
(ζ), we have

r = max
{
(fκx(ζ

⋆
x))

2
,
(
fκy (ζ

⋆
x)
)2}

= (fκx(ζ
⋆
x))

2
=


(
κxy +

√
κx + κ2xy

)2
− 1(

κxy +
√
κx + κ2xy

)2
+ 1


2

which is identical to (4) when κx ≥ κy .

Similarly, if κx < κy , we choose α, β such that

αµx = βµy = ζ⋆y :=
1√

κy + κ2xy

·
2
(
κxy +

√
κy + κ2xy

)
1 +

(
κxy +

√
κy + κ2xy

)2 .
Note that ζ⋆y = Θ

(
1

κy+κ2
xy

)
. Then, since fκy (ζ) ≤ fκy (ζ), we have

r = max
{(
fκx

(ζ⋆y )
)2
,
(
fκy

(ζ⋆y )
)2}

=
(
fκy

(ζ⋆y )
)2

=


(
κxy +

√
κy + κ2xy

)2
− 1(

κxy +
√
κy + κ2xy

)2
+ 1


2
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which is identical to (4) when κx < κy . Note that for either case, we have that

αµx = βµy = Θ

(
1

max{κx, κy}+ κxy

)
= Θ

(
1

κx + κy + κxy

)
,

which concludes the proof.4

B.2. Proof of Corollary 3.2

Here we prove Corollary 3.2 of Section 3, restated below for the sake of readability.

Corollary 3.2. For the step sizes given as in Theorem 3.1, Sim-GDA linearly converges with iteration complexity

O
((
κx + κy + κ2xy

)
· log ΨSim

0

ASimϵ

)
,

where ASim = min
{

1
α ,

1
β

}
.

Proof. Let us define ξ := κxy +
√

max {κx, κy}+ κ2xy so that r =
(
ξ2−1
ξ2+1

)2
by Theorem 3.1. By definition we have

ξ2 = Θ
(
κx + κy + κ2xy

)
and ξ ≥ 1, which gives us

1

1− r
=

1

1−
(
ξ2−1
ξ2+1

)2 =

(
ξ2 + 1

)2
(ξ2 + 1)

2 − (ξ2 − 1)
2 =

1

4

(
ξ +

1

ξ

)2

= Θ
(
κx + κy + κ2xy

)
.

Therefore it is sufficient to run

K = O
((
κx + κy + κ2xy

)
· log ΨSim

0

ASimϵ

)

iterations to ensure that ∥zK − z⋆∥2 ≤ ϵ, where ASim = min
{

1
α ,

1
β

}
.

Remark. Here we present a simpler proof of Corollary 3.2 we discovered afterwards. The proof can achieve the same
iteration complexity upper bound with a similar yet slightly different choice of step sizes α, β. Compared to the one using
Theorem 3.1, this proof does not require complicated matrix analyses and better extends to algorithms with alternating
updates, such as Alt-GDA (as in Proposition C.2) or Alex-GDA (as in Proposition D.2).

STEP 1. CONTRACTION INEQUALITY

We first prove the following proposition.

Proposition B.3. For f ∈ F(µx, µy, Lx, Ly, Lxy) and Sim-GDA with step sizes α ≤ 1
2Lx

and β ≤ 1
2Ly

, we have

1

α
∥x1 − x⋆∥2 +

1

β
∥y1 − y⋆∥2 ≤

(
1

α
− µx + 2βL2

xy

)
∥x0 − x⋆∥2 +

(
1

β
− µy + 2αL2

xy

)
∥y0 − y⋆∥2 (8)

for all x0 ∈ Rdx ,y0 ∈ Rdy .

Proof. Recall that Sim-GDA takes updates of the form:

x1 = x0 − α∇xf(x0,y0),

y1 = y0 + β∇yf(x0,y0).

4Note that for a, b ≥ 0, we have max{a, b} = Θ(a+ b) since a+b
2

≤ max{a, b} ≤ a+ b.
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From this, we can deduce that

1

α
∥x1 − x⋆∥2 =

1

α
∥x0 − x⋆∥2 +

2

α
⟨x1 − x0,x0 − x⋆⟩+

1

α
∥x1 − x0∥2

=
1

α
∥x0 − x⋆∥2 − 2 ⟨∇xf(x0,y0),x0 − x⋆⟩+ α∥∇xf(x0,y0)∥2,

1

β
∥y1 − y⋆∥2 =

1

β
∥y0 − y⋆∥2 +

2

β
⟨y1 − y0,y0 − y⋆⟩+

1

β
∥y1 − y0∥2

=
1

β
∥y0 − y⋆∥2 + 2 ⟨∇yf(x0,y0),y0 − y⋆⟩+ β∥∇yf(x0,y0)∥2.

Note that µx-strong convexity of f(·,y0) yields

−2 ⟨∇xf(x0,y0),x0 − x⋆⟩ ≤ −µx∥x0 − x⋆∥2 − 2(f(x0,y0)− f(x⋆,y0)), (9)

and µy-strong concavity of f(x0, ·) yields

2 ⟨∇yf(x0,y0),y0 − y⋆⟩ ≤ −µy∥y0 − y⋆∥2 − 2(f(x0,y⋆)− f(x0,y0)). (10)

Moreover, since f is convex-concave and has Lipschitz gradients5, we have

−2(f(x0,y⋆)− f(x⋆,y⋆)) ≤ − 1

Lx
∥∇xf(x0,y⋆)∥2, (11)

−2(f(x⋆,y⋆)− f(x⋆,y0)) ≤ − 1

Ly
∥∇yf(x⋆,y0)∥2. (12)

Applying (9)–(12), we have

1

α
∥x1 − x⋆∥2 +

1

β
∥y1 − y⋆∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 +

(
1

β
− µy

)
∥y0 − y⋆∥2

+ α∥∇xf(x0,y0)∥2 + β∥∇yf(x0,y0)∥2 −
1

Lx
∥∇xf(x0,y⋆)∥2 −

1

Ly
∥∇yf(x⋆,y0)∥2.

If α ≤ 1
2Lx

and β ≤ 1
2Ly

, we can use the triangle inequality and the Lipschitz gradient condition for Lxy to obtain

α∥∇xf(x0,y0)∥2 −
1

Lx
∥∇xf(x0,y⋆)∥2 ≤ α∥∇xf(x0,y0)∥2 − 2α∥∇xf(x0,y⋆)∥2

≤ 2α∥∇xf(x0,y0)−∇xf(x0,y⋆)∥2

≤ 2αL2
xy∥y0 − y⋆∥2,

β∥∇yf(x0,y0)∥2 −
1

Ly
∥∇yf(x⋆,y0)∥2 ≤ β∥∇xf(x0,y0)∥2 − 2β∥∇yf(x⋆,y0)∥2

≤ 2β∥∇xf(x0,y0)−∇yf(x⋆,y0)∥2

≤ 2βL2
xy∥x0 − x⋆∥2,

which boils down to (8).

STEP 2. ITERATION COMPLEXITY

Now let us show that Proposition B.3 can guarantee the same iteration complexity as in Corollary 3.2 when

α =
1

2
·min

{
1

Lx
,
µy

2L2
xy

}
, β =

1

2
·min

{
1

Ly
,
µx

2L2
xy

}
.

5Note that the Lipschitz gradient conditions for Lx and Ly are equivalent to the widely used notion of smoothness in convex
optimization literature.
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Proof. If α ≤ µy

4L2
xy

and β ≤ µx

4L2
xy

, Proposition B.3 implies

1

α
∥x1 − x⋆∥2 +

1

β
∥y1 − y⋆∥2 ≤

(
1

α
− µx + 2βL2

xy

)
∥x0 − x⋆∥2 +

(
1

β
− µy + 2αL2

xy

)
∥y0 − y⋆∥2

≤
(
1

α
− µx

2

)
∥x0 − x⋆∥2 +

(
1

β
− µy

2

)
∥y0 − y⋆∥2.

Hence we have ΨSim
1 ≤ rΨSim

0 for r = max {1− αµx/2, 1− βµy/2}, and

1

1− r
≤ max

{
1

αµx
,

1

βµy

}
= max

{
Θ
(
κx + κ2xy

)
, Θ

(
κy + κ2xy

)}
= Θ

(
κx + κy + κ2xy

)
.

Therefore it is sufficient to take

K = O
((
κx + κy + κ2xy

)
· log ΨSim

0

ASimϵ

)
iterations to ensure that ∥zK − z⋆∥2 ≤ ϵ, where ASim = min

{
1
α ,

1
β

}
.

B.3. Proof of Theorem 3.3

Here we prove Theorem 3.3 of Section 3, restated below for the sake of readability.

Theorem 3.3. There exists a 6-dimensional function f ∈ F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of Sim-GDA requires an iteration complexity of rate at least

Ω

((
κx + κy + κ2xy

)
· log 1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

Proof. We construct the worst-case function as follows:

f(x,y) =
1

2


x
s
t
y
u
v



⊤ 
µx 0 0 Lxy 0 0
0 µx 0 0 0 0
0 0 Lx 0 0 0
Lxy 0 0 −µy 0 0
0 0 0 0 −µy 0
0 0 0 0 0 −Ly




x
s
t
y
u
v

 ,

where x = (x, s, t) and y = (y, u, v). We can easily check that f is a quadratic function (i.e., the Hessian is constant) such
that f ∈ F(µx, µy, Lx, Ly, Lxy) and x⋆ = y⋆ = 0 ∈ R3.

As a first step, we will find a set of necessary conditions on step sizes for convergence, and then compute (at least) how large
the number of iterations K of Sim-GDA we need to accomplish ∥xK∥2 + ∥yK∥2 < ϵ. To this end, we first observe that the
k-th step of Sim-GDA satisfies [

xk+1

yk+1

]
=

[
1− αµx −αLxy
βLxy 1− βµy

]
︸ ︷︷ ︸

≜P

[
xk
yk

]
, (13)

sk+1 = (1− αµx)sk, (14)
tk+1 = (1− αLx)tk, (15)
uk+1 = (1− βµy)uk, (16)
vk+1 = (1− βLy)vk. (17)
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To assure the convergence of iterations (15) and (17), the step sizes α and β are required to be

α <
2

Lx
and β <

2

Ly
. (18)

Also, to guarantee ∥xK∥2 + ∥yK∥2 < ϵ, we need from (14) and (16) that s2K < O(ϵ) and u2K < O(ϵ), respectively. These
two necessary conditions require an iteration number of at least:

K = Ω

((
1

αµx
+

1

βµy

)
· log 1

ϵ

)
. (19)

Note that (18) automatically yields

1

αµx
+

1

βµy
= Ω(κx + κy). (20)

From now on, we deal with the remaining proof case by case with respect to the step sizes α and β.

Case 1. Suppose that α and β satisfies
(
αµx−βµy

2

)2
≤ αβL2

xy, which is equivalent to the eigenvalues of the matrix P

defined in Equation (13) being complex. We can check that, for i =
√
−1, the eigenvalues of P can be expressed as

λ = 1− αµx + βµy
2

± i

√
αβL2

xy −
(
αµx − βµy

2

)2

.

We recall a well-known convergence theory of matrix iteration in Proposition B.4.

Proposition B.4 (Horn & Johnson (2012), Theorem 5.6.12, Corollary 5.6.13). For a square matrix A ∈ Rm×m and a
sequence of m-dimensional vectors (vk), the matrix iteration vk+1 = Avk converges as vk → 0 with arbitrarily chosen
initialization v0 if and only if the spectral radius ρ(A) of A is less than 1. In this case, the convergence rate is written as
O((ρ(A) + ϵ)k), where ϵ is an any given positive number.

Noting that

ρ(P )2 =

(
1− αµx + βµy

2

)2

+ αβL2
xy −

(
αµx − βµy

2

)2

= 1− (αµx + βµy) + αβ
(
µxµy + L2

xy

)
,

in order to assure convergence of iteration (13), we need

ρ(P )2 < 1 ⇐⇒ β <
µx + rµy
µxµy + L2

xy

⇐⇒ α <
1
rµx + µy

µxµy + L2
xy

,

where r = β
α is the ratio of step sizes. Combined with (18), we have

1

αµx
> max

{
Lx
2µx

,
rLy
2µx

,
µxµy + L2

xy
1
rµ

2
x + µxµy

}
, (21)

1

βµy
> max

{
Lx
2rµy

,
Ly
2µy

,
µxµy + L2

xy

µxµy + rµ2
y

}
. (22)

If r ≥ µx

µy
, then by (21), 1

αµx
= Ω

(
κx + κy + κ2xy

)
. On the other hand, if r < µx

µy
, then by (22), 1

βµy
= Ω

(
κx + κy + κ2xy

)
.

Therefore, we have a desired lower bound of iteration complexity for the first case, deduced from (19).
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Case 2. Suppose that α and β satisfies
(
αµx−βµy

2

)2
> αβL2

xy . Note that this is equivalent to∣∣∣∣∣
√
αµx
βµy

−

√
βµy
αµx

∣∣∣∣∣ > 2κxy. (23)

If r ≥ µx

µy
, i.e., αµx

βµy
≤ βµy

αµx
, then it implies βµy

αµx
> 4κ2xy . Thus, combined with (20), we have

1

αµx
+

1

βµy
=

1

2
· 1

αµx
+

1

βµy

(
1

2
· βµy
αµx

+ 1

)
= Ω

(
κx + κy(κ

2
xy + 1)

)
= Ω

(
κx + κy + κ2xy

)
.

On the other hand, if r < µx

µy
, i.e., αµx

βµy
>

βµy

αµx
, then it implies αµx

βµy
> 4κ2xy . Thus, combined with (20), we have

1

αµx
+

1

βµy
=

1

αµx

(
1 +

1

2
· αµx
βµy

)
+

1

2
· 1

βµy
= Ω

(
κx(1 + κ2xy) + κy

)
= Ω

(
κx + κy + κ2xy

)
.

Therefore, from (19) we can obtain the desired lower bound for the second case as well, which concludes the proof.

B.4. Proofs used in Appendix B

Here we prove some technical propositions and lemmas used throughout Appendix B.

B.4.1. PROOF OF PROPOSITION B.1

Here we prove Proposition B.1, restated below for the sake of readability.

Proposition B.1. For f ∈ F(µx, µy, Lx, Ly, Lxy), Sim-GDA with step sizes α < 1
Lx

and β < 1
Ly

satisfies

1

α
∥x1 − x⋆∥2 +

1

β
∥y1 − y⋆∥2 ≤ r

(
1

α
∥x0 − x⋆∥2 +

1

β
∥y0 − y⋆∥2

)
,

where the contraction factor is given by

r = max

{∥∥∥∥[1− αLx −
√
αβLxy√

αβLxy 1− βµy

]∥∥∥∥2 , ∥∥∥∥[1− αµx −
√
αβLxy√

αβLxy 1− βLy

]∥∥∥∥2
}
.

Proof. Recall that Sim-GDA takes updates of the form:

x1 = x0 − α∇xf(x0,y0),

y1 = y0 + β∇yf(x0,y0).
(24)

For simplicity, let us denote z =
[
x⊤ y⊤]⊤ ∈ Rdx+dy , and define

ν(z) :=

[
∇xf(z)
−∇yf(z)

]
.

For instance, z0 =
[
x⊤
0 y⊤

0

]⊤
and z⋆ =

[
x⋆⊤ y⋆⊤

]⊤
.

Let us define matrices A ∈ Rdx×dx , B ∈ Rdx×dy , and C ∈ Rdy×dy as

A :=

∫ 1

0

∇2
xxf(tz0 + (1− t)z⋆)dt, B :=

∫ 1

0

∇2
xyf(tz0 + (1− t)z⋆)dt, C := −

∫ 1

0

∇2
yyf(tz0 + (1− t)z⋆)dt.

Since f ∈ F(µx, µy, Lx, Ly, Lxy), we have µxI ⪯ A ⪯ LxI , µyI ⪯ C ⪯ LyI , and ∥B∥ ≤ Lxy .

Also, by chain rule, we have the following identities:

∇xf(x0,y0) = A(x0 − x⋆) +B(y0 − y⋆),

∇yf(x0,y0) = B⊤(x0 − x⋆)−C(y0 − y⋆).
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For simplicity, we assume W.L.O.G. x⋆ = 0 (∈ Rdx) and y⋆ = 0 (∈ Rdy ). Then we have[
1√
α
x1

1√
β
y1

]
=

[
1√
α
x0

1√
β
y0

]
−
[ √

α∇xf(x0,y0)
−
√
β∇yf(x0,y0)

]
=

[
1√
α
x0

1√
β
y0

]
−
[ √

α(Ax0 +By0)
−
√
β(B⊤x0 −Cy0)

]

=

[
1√
α
x0

1√
β
y0

]
−
[

αA
√
αβB

−
√
αβB⊤ βC

] [ 1√
α
x0

1√
β
y0

]
=

[
I − αA −

√
αβB√

αβB⊤ I − βC

][ 1√
α
x0

1√
β
y0

]
.

This means that it is enough to show that∥∥∥∥[ I − αA −
√
αβB√

αβB⊤ I − βC

]∥∥∥∥2 ≤ r = max

{∥∥∥∥[1− αLx −
√
αβLxy√

αβLxy 1− βµy

]∥∥∥∥2 ,∥∥∥∥[1− αµx −
√
αβLxy√

αβLxy 1− βLy

]∥∥∥∥2
}
, (25)

since if this is true, then we automatically have

1

α
∥x1∥2 +

1

β
∥y1∥2 =

∥∥∥∥∥
[

1√
α
x1

1√
β
y1

]∥∥∥∥∥
2

≤ r

∥∥∥∥∥
[

1√
α
x0

1√
β
y0

]∥∥∥∥∥
2

= r

(
1

α
∥x0∥2 +

1

β
∥y0∥2

)
.

To prove Equation (25), the matrix norm can be bounded via Lemma B.5.

Lemma B.5. Suppose that X ∈ Rdx×dx , Y ∈ Rdy×dy , W ∈ Rdx×dy satisfy

txI ⪯ X ⪯ sxI, tyI ⪯ Y ⪯ syI, ∥W ∥ ≤ ℓ

for some constants tx, ty, sx, sy > 0 and ℓ ≥ 0. Then the block matrix M ∈ R(dx+dy)×(dx+dy) of the form

M =

[
X −W
W⊤ Y

]
satisfies the matrix norm inequality

∥M∥ ≤ max

{∥∥∥∥[sx −ℓ
ℓ ty

]∥∥∥∥ ,∥∥∥∥[tx −ℓ
ℓ sy

]∥∥∥∥} .
We prove Lemma B.5 in Appendix B.4.3.

By observing that 1− αLx > 0, 1− βLy > 0 and

(1− αLx)I ⪯ I − αA ⪯ (1− αµx)I, (1− βLy)I ⪯ I − βC ⪯ (1− βµy)I, ∥
√
αβB∥ ≤

√
αβLxy,

we can use Lemma B.5 with X = I − αA, Y = I − βC, W =
√
αβB, and

tx = 1− αLx, ty = 1− βLy, sx = 1− αµx, sy = 1− βµy, ℓ =
√
αβLxy

which immediately proves Equation (25), and therefore Proposition B.1.

B.4.2. PROOF OF PROPOSITION B.2

Here we prove Proposition B.2, restated below for the sake of readability.
Proposition B.2. For fκ : (0,∞) → (0,∞) defined as in (7), the minimizer ζ⋆ is equal to

ζ⋆ =
1√

κ+ κ2xy

·
2
(
κxy +

√
κ+ κ2xy

)
1 +

(
κxy +

√
κ+ κ2xy

)2
and the minimum value of fκ attained at ζ⋆ is equal to

fκ(ζ
⋆) =

(
κxy +

√
κ+ κ2xy

)2
− 1(

κxy +
√
κ+ κ2xy

)2
+ 1

.

Moreover, we have fκx(ζ) ≥ fκy (ζ) for all ζ ∈ (0,∞) if and only if κx ≥ κy .
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Proof. Recall that we define

fκ(ζ) =
κ− 1

2
· ζ +

√(
1− κ+ 1

2
· ζ
)2

+ ζ2κ2xy.

Then the first two results of the proposition are direct consequences of Lemma B.6.

Lemma B.6. Suppose that A,B,C ≥ 0 and A < B. Then for the function f : (0,∞) → (0,∞) of the following form:

f(x) = Ax+
√
(1−Bx)2 + C2x2,

the minimizer is equal to

x⋆ =
1

D
· 2(C +D)(B −A)

(C +D)2 + (B −A)2
,

and the minimum value attained at x⋆ is equal to

f(x⋆) =
(C +D)2 − (B −A)2

(C +D)2 + (B −A)2
,

where D =
√
B2 + C2 −A2.

We prove Lemma B.6 in Appendix B.4.4.

We can use ζ as x and plug in the following values into Lemma B.6:

A =
κ− 1

2
, B =

κ+ 1

2
, C = κxy, D =

√
B2 + C2 −A2 =

√
κ+ κ2xy,

which yields

B −A = 1, C +D = κxy +
√
κ+ κ2xy.

Then, for the choice

ζ⋆ =
1

D
· 2(C +D)(B −A)

(C +D)2 + (B −A)2
=

1√
κ+ κ2xy

·
2
(
κxy +

√
κ+ κ2xy

)
1 +

(
κxy +

√
κ+ κ2xy

)2 ,
we can obtain the optimal value

fκ(ζ
⋆) =

1

D
· (C +D)2 − (B −A)2

(C +D)2 + (B −A)2
=

(
κxy +

√
κ+ κ2xy

)2
− 1(

κxy +
√
κ+ κ2xy

)2
+ 1

.

The last result of the proposition is a direct consequence of the following lemma.

Lemma B.7. Suppose that A1, A2, B1, B2, C ≥ 0 satisfies A1 ≤ B1, A2 ≤ B2, and A2 −A1 = B2 −B1 ≥ 0. Then for
the functions f1, f2 : (0,∞) → (0,∞) of the following form:

f1(x) = A1x+
√
(1−B1x)2 + C2x2, f2(x) = A2x+

√
(1−B2x)2 + C2x2,

we have f1(x) ≤ f2(x) for all x > 0.
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We prove Lemma B.7 in Appendix B.4.5.

If κx ≥ κy , we can plug in the following values:

A1 =
κy − 1

2
, A2 =

κx − 1

2
, B1 =

κy + 1

2
, B2 =

κx + 1

2
, C = κxy,

so that A2 −A1 = B2 −B1 = κx − κy ≥ 0 and Lemma B.7 implies fκx
(ζ) ≥ fκy

(ζ).

If κx ≤ κy , we can change orders as:

A1 =
κx − 1

2
, A2 =

κy − 1

2
, B1 =

κx + 1

2
, B2 =

κy + 1

2
, C = κxy,

so that A2 −A1 = B2 −B1 = κy − κx ≥ 0 and Lemma B.7 implies fκx
(ζ) ≤ fκy

(ζ).

Therefore we can conclude that fκx
(ζ) ≥ fκy

(ζ) for all ζ ∈ (0,∞) if and only if κx ≥ κy .

B.4.3. PROOF OF LEMMA B.5

Here we prove Lemma B.5, restated below for the sake of readability.
Lemma B.5. Suppose that X ∈ Rdx×dx , Y ∈ Rdy×dy , W ∈ Rdx×dy satisfy

txI ⪯ X ⪯ sxI, tyI ⪯ Y ⪯ syI, ∥W ∥ ≤ ℓ

for some constants tx, ty, sx, sy > 0 and ℓ ≥ 0. Then the block matrix M ∈ R(dx+dy)×(dx+dy) of the form

M =

[
X −W
W⊤ Y

]
satisfies the matrix norm inequality

∥M∥ ≤ max

{∥∥∥∥[sx −ℓ
ℓ ty

]∥∥∥∥ ,∥∥∥∥[tx −ℓ
ℓ sy

]∥∥∥∥} .
Proof. We first observe that the following matrix norms are equal:∥∥∥∥[ X −W

W⊤ Y

]∥∥∥∥ =

∥∥∥∥ [ X W
W⊤ −Y

]
︸ ︷︷ ︸

≜M ′

∥∥∥∥.

Let λM
′

max and λM
′

min be the maximum and minimum eigenvalues of M ′, respectively. Since M ′ is a symmetric matrix, the
matrix norm of M ′ is equal to

∥M ′∥ = max
{
|λM

′

max|, |λM
′

min|
}
. (26)

Since X ≻ 0 and −Y ≺ 0, we can observe that M ′ is neither positive definite nor negative definite6, i.e., λM
′

max ≥ 0 ≥ λM
′

min.
Hence we can rewrite:

∥M ′∥ = max
{
λM

′

max, −λM
′

min

}
. (27)

Given a symmetric matrix S ∈ Sd, we have the following identities:

λSmax = sup
z∈Rd,∥z∥=1

z⊤Sz, λSmin = inf
z∈Rd,∥z∥=1

z⊤Sz, (28)

where λSmax and λSmin are the maximum and minimum eigenvalues of S, respectively. Moreover, the sup for λSmax and inf
for λSmin is attained when the unit vector z is aligned with the eigenvectors corresponding to λSmax and λSmin.

Now we will show that

λM
′

max ≤
∥∥∥∥[sx −ℓ

ℓ ty

]∥∥∥∥ and − λM
′

min ≤
∥∥∥∥[tx −ℓ

ℓ sy

]∥∥∥∥ . (29)

6It is easy if we think of the contrapositive— any block partition of a PD matrix must have PD block diagonals.

23



Fundamental Benefit of Alternating Updates in Minimax Optimization

Maximum Eigenvalue. The maximum eigenvalue of M ′ is equal to

λM
′

max = sup
z∈Rdx+dy ,∥z∥=1

z⊤M ′z

= sup
p,q∈[0,1]

p2+q2=1

sup
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

[
px
qy

]⊤ [
X W
W⊤ −Y

] [
px
qy

]

= sup
p,q∈[0,1]

p2+q2=1

sup
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

(
p2x⊤Xx+ 2pqx⊤Wy − q2y⊤Y y

)
,

where we reparameterize z =
[
px⊤ qy⊤]⊤ such that x ∈ Rdx , y ∈ Rdy satisfies ∥x∥ = ∥y∥ = 1, and p2 + q2 = 1.

First, suppose that ℓ > 0, i.e., W ̸= 0. Let W = UΣV ⊤ be the singular value decomposition of W , where U =
[u1, . . . ,ur] ∈ Rdx×r and V = [v1, . . . ,vr] ∈ Rdy×r are matrices with orthonormal columns and Σ = diag(σ1, . . . , σr) ∈
Rr×r is a diagonal matrix with (strictly) positive entries. (Note that 1 ≤ r ≤ min{dx, dy}.) Assume σ1 ≥ · · · ≥ σr
W.L.O.G., so that ∥W ∥ ≤ ℓ is equivalent to σ1 ≤ ℓ. Then we have

p2x⊤Xx+ 2pqx⊤Wy − q2y⊤Y y = p2x⊤Xx+ 2pq

r∑
k=1

σkx
⊤ukv

⊤
k y − q2y⊤Y y

= p2x⊤Xx+ 2pq

r∑
k=1

σku
⊤
k xy

⊤v⊤
k − q2y⊤Y y. (30)

Since we aim to show an upper bound of (30), we now consider another optimization problem over a “bigger” search space
and try to characterize its optimum value; this value will give us an upper bound of λM

′

max. Namely, we now additionally
treat u1, . . . ,ur and v1, . . . ,vr in (30) as optimization variables. With this addition, from now we treat the following items
as optimization variables:

1. Choice of unit vectors u1, . . . ,ur ∈ Rdx of U and v1, . . . ,vr ∈ Rdy of V

2. Choice of unit vectors x ∈ Rdx , y ∈ Rdy

3. Choice of values p, q ∈ [0, 1] such that p2 + q2 = 1

Our problem boils down to finding the maximum value of (30) over all possible choices of these variables. (Note that the
subsequent arguments and the resulting upper bound are true for all cases of r ≤ min{dx, dy}.)

First, note that our choices of u1, . . . ,ur and v1, . . . ,vr only affect the middle term, which is bounded by

2pq

r∑
k=1

σku
⊤
k xy

⊤v⊤
k ≤ 2pqσ1,

for which, for any given x, y and p, q, the maximum is attained when we choose u1 = x, v1 = y. (Note that the terms for
k ≥ 2 all disappear by orthogonality.)

Now we can observe that over possible choices of x and y, we have

p2x⊤Xx+ 2pqσ1 − q2y⊤Y y ≤ p2λXmax + 2pqσ1 − q2λYmin,

where equality holds if the unit vector x (or y) is aligned with the eigenvector corresponding to the maximum (or minimum)
eigenvalue of X (or Y ). We can use the given conditions to obtain

p2λXmax + 2pqσ1 − q2λYmin ≤ p2sx + 2pqℓ− q2ty =

[
p
q

]⊤ [
sx ℓ
ℓ −ty

] [
p
q

]
.
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Finally, if we take the maximum over p, q ∈ [0, 1] with p2 + q2 = 1, we have that

sup
p,q∈[0,1]

p2+q2=1

[
p
q

]⊤ [
sx ℓ
ℓ −ty

] [
p
q

]
=

∥∥∥∥[sx ℓ
ℓ −ty

]∥∥∥∥ =

∥∥∥∥[sx −ℓ
ℓ ty

]∥∥∥∥
and hence we can conclude that

λM
′

max ≤
∥∥∥∥[sx −ℓ

ℓ ty

]∥∥∥∥ .
For the degenerate case ℓ = 0, we can just apply r = 1 and σ1 = 0, which does not hurt the validity of the proof.

Minimum Eigenvalue. Similarly, the minimum eigenvalue of M ′ is equal to

λM
′

min = inf
z∈Rdx+dy ,∥z∥=1

z⊤M ′z

= inf
p,q∈[0,1]

p2+q2=1

inf
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

[
px
qy

]⊤ [
X W
W⊤ −Y

] [
px
qy

]

= inf
p,q∈[0,1]

p2+q2=1

inf
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

(
p2x⊤Xx+ 2pqx⊤Wy − q2y⊤Y y

)
= − sup

p,q∈[0,1]

p2+q2=1

sup
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

(
−p2x⊤Xx− 2pqx⊤Wy + q2y⊤Y y

)
,

and therefore

−λM
′

min = sup
p,q∈[0,1]

p2+q2=1

sup
x∈Rdx ,∥x∥=1

y∈Rdy ,∥y∥=1

(
−p2x⊤Xx− 2pqx⊤Wy + q2y⊤Y y

)
,

where we use the same reparameterization: z =
[
px⊤ qy⊤]⊤ with x ∈ Rdx , y ∈ Rdy with ∥x∥ = ∥y∥ = 1, and

p2 + q2 = 1.

As in the maximum case, we first assume that ℓ > 0 and define the singular value decomposition of W as W = UΣV ⊤.
Then we can write

−p2x⊤Xx− 2pqx⊤Wy + q2y⊤Y y = −p2x⊤Xx− 2pq

r∑
k=1

σku
⊤
k xy

⊤v⊤
k + q2y⊤Y y. (31)

to observe that

−2pq

r∑
k=1

σku
⊤
k xy

⊤v⊤
k ≤ 2pqσ1,

for which the maximum is attained when we choose u1 = x and v1 = −y. Then we have

−p2x⊤Xx+ 2pqσ1 + q2y⊤Y y ≤ −p2λXmin + 2pqσ1 + q2λYmax,

where equality holds if the unit vector x (or y) is aligned with the eigenvector corresponding to the minimum (or maximum)
eigenvalue of X (or Y ). We can use the given conditions to obtain

−p2λXmin + 2pqσ1 + q2λYmax ≤ −p2tx + 2pqℓ− q2sy =

[
p
q

]⊤ [
tx ℓ
ℓ −sy

] [
p
q

]
.
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Finally, if we take the maximum over p, q ∈ [0, 1] with p2 + q2 = 1, we have that

sup
p,q∈[0,1]

p2+q2=1

[
p
q

]⊤ [
tx ℓ
ℓ −sy

] [
p
q

]
=

∥∥∥∥[tx ℓ
ℓ −sy

]∥∥∥∥ =

∥∥∥∥[tx −ℓ
ℓ sy

]∥∥∥∥
and hence we can conclude that

−λM
′

min ≤
∥∥∥∥[tx −ℓ

ℓ sy

]∥∥∥∥ .
Combining the results with (26), we have

∥M ′∥ = max
{
λM

′

max, −λM
′

min

}
= max

{∥∥∥∥[sx −ℓ
ℓ ty

]∥∥∥∥ ,∥∥∥∥[tx −ℓ
ℓ sy

]∥∥∥∥} .
For the degenerate case ℓ = 0, we can just apply r = 1 and σ1 = 0, which does not hurt the validity of the proof.

Therefore we have shown (29), which completes the proof of Lemma B.5.

Remark. An anonymous reviewer has found a much simpler proof of Lemma B.5. By definition we have[
∥x∥
∥y∥

]⊤ [
tx −l
−l −sy

] [
∥x∥
∥y∥

]
≤
[
x
y

]⊤
M ′

[
x
y

]
≤
[
∥x∥
∥y∥

]⊤ [
sx l
l −ty

] [
∥x∥
∥y∥

]
,

for all x ∈ Rdx and y ∈ Rdy . Then we immediately obtain the desired inequality as the matrix norm is invariant with
respect to multiplication by −1 on rows and columns. □

B.4.4. PROOF OF LEMMA B.6

Here we prove Lemma B.6, restated below for the sake of readability.

Lemma B.6. Suppose that A,B,C ≥ 0 and A < B. Then for the function f : (0,∞) → (0,∞) of the following form:

f(x) = Ax+
√
(1−Bx)2 + C2x2,

the minimizer is equal to

x⋆ =
1

D
· 2(C +D)(B −A)

(C +D)2 + (B −A)2
,

and the minimum value attained at x⋆ is equal to

f(x⋆) =
(C +D)2 − (B −A)2

(C +D)2 + (B −A)2
,

where D =
√
B2 + C2 −A2.

Proof. Observing that A2 +D2 = B2 + C2 by definition, we start by substituting

R =
√
B2 + C2 =

√
A2 +D2, sinϕ =

A

R
, sinψ =

B

R

for ϕ ∈ [0, π2 ) and ψ ∈ (0, π2 ]. Note that we have ϕ < ψ from A < B, and

cosϕ =
D

R
, cosψ =

C

R
.

We can compute

Ax+
√
(1−Bx)2 + C2x2 = Rx sinϕ+

√
(1−Rx sinψ)2 +R2x2 cos2 ψ

= Rx sinϕ+
√

1− 2Rx sinψ +R2x2.
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By using change of variables as

y = tanψ −Rx secψ ⇔ x =
1

R
(sinψ − y cosψ) ,

we have y ∈ [−∞, tanψ], and

1− 2xR sinψ +R2x2 = (1 + y2) cos2 ψ.

Plugging in, we can obtain the following reparameterization:

Rx sinϕ+
√

1− 2Rx sinψ +R2x2 = sinϕ sinψ − y sinϕ cosψ +
√
1 + y2 cosψ.

We can easily observe that if we again reparameterize as y = sinh θ, we can write as

sinϕ sinψ − sinϕ cosψ · sinh θ + cosψ · cosh θ = sinϕ sinψ + cosψ (cosh θ − sinϕ · sinh θ) . (32)

The derivative of (32) with respect to θ is equal to

cosψ (sinh θ − sinϕ · cosh θ) . (33)

As the second derivative of (32) satisfies cosψ (cosh θ − sinϕ · sinh θ) ≥ cosψ · (− sinh θ + cosh θ) ≥ 0, we have that
(33) is an increasing function. Therefore, the minimizer of (32) must be equal to the point where (33) is zero, which is7

y⋆ = sinh θ⋆ =
sinϕ√

1− sin2 ϕ
=

sinϕ

cosϕ
= tanϕ.

Note that we have cosϕ > 0 since ϕ ∈ [0, 2
π ), and using the square root expression above, we can compute

cosh θ⋆ − sinϕ · sinh θ⋆ =
1√

1− sin2 ϕ
− sin2 ϕ√

1− sin2 ϕ
=

√
1− sin2 ϕ = cosϕ. (34)

The range of y contains y⋆, since ϕ < ψ implies tanϕ ∈ [−∞, tanψ). We can substitute back as

x⋆ =
1

R
(sinψ − tanϕ cosψ) =

1

R cosϕ
(cosϕ sinψ − sinϕ cosψ) =

1

R cosϕ
sin(ψ − ϕ).

By using the trigonometric identity:

sinψ − sinϕ

cosψ + cosϕ
=

2 cos
(
ψ+ϕ
2

)
sin
(
ψ−ϕ
2

)
2 cos

(
ψ+ϕ
2

)
cos
(
ψ−ϕ
2

) = tan

(
ψ − ϕ

2

)
, (35)

we can compute

sin(ψ − ϕ) =
2 tan

(
ψ−ϕ
2

)
1 + tan2

(
ψ−ϕ
2

) =
2(cosψ + cosϕ)(sinψ − sinϕ)

(cosψ + cosϕ)2 + (sinψ − sinϕ)2
,

and combined with D = R cosϕ we can conclude that

x⋆ =
1

D
· 2(C +D)(B −A)

(C +D)2 + (B −A)2
.

Also, by (34), the minimum value can also be computed as

f⋆ = sinϕ sinψ + cosψ (cosh θ⋆ − sinϕ · sinh θ⋆) = sinϕ sinψ + cosϕ cosψ = cos(ψ − ϕ).

7To clarify, we are just using the fact that a sinh t− b cosh t = 0 if sinh t = b√
a2−b2

.
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By using the trigonometric identity in (35), we can compute

cos(ψ − ϕ) =
1− tan2

(
ψ−ϕ
2

)
1 + tan2

(
ψ−ϕ
2

) =
(cosψ + cosϕ)2 − (sinψ − sinϕ)2

(cosψ + cosϕ)2 + (sinψ − sinϕ)2
,

and we can conclude that

f⋆ =
(cosψ + cosϕ)2 − (sinψ − sinϕ)2

(cosψ + cosϕ)2 + (sinψ − sinϕ)2
=

(C +D)2 − (B −A)2

(C +D)2 + (B −A)2

as desired.

B.4.5. PROOF OF LEMMA B.7

Here we prove Lemma B.7, restated below for the sake of readability.

Lemma B.7. Suppose that A1, A2, B1, B2, C ≥ 0 satisfies A1 ≤ B1, A2 ≤ B2, and A2 −A1 = B2 −B1 ≥ 0. Then for
the functions f1, f2 : (0,∞) → (0,∞) of the following form:

f1(x) = A1x+
√
(1−B1x)2 + C2x2, f2(x) = A2x+

√
(1−B2x)2 + C2x2,

we have f1(x) ≤ f2(x) for all x > 0.

Proof. We must show that for all x > 0 we have f1(x) ≤ f2(x), i.e.,

A1x+

√
(1−B1x)

2
+ C2x2 ≤ A2x+

√
(1−B2x)

2
+ C2x2,

which is equivalent to √(
1

x
−B1

)2

+ C2 −

√(
1

x
−B2

)2

+ C2 ≤ A2 −A1.

Let us substitute as follows:

D = A2 −A1 = B2 −B1, s =
1

x
− B1 +B2

2
,

where D ≥ 0 and s > −B1+B2

2 by assumption. We are left to show that√(
s+

D

2

)2

+ C2 −

√(
s− D

2

)2

+ C2 ≤ D. (36)

If D = 0, then we can observe that both sides become 0 and hence (36) is indeed true.

If D > 0, the LHS of (36) as a function of s is a (monotonically) increasing function. Moreover, since

lim
s→−∞

√(
s+

D

2

)2

+ C2 −

√(
s− D

2

)2

+ C2 = −D,

lim
s→∞

√(
s+

D

2

)2

+ C2 −

√(
s− D

2

)2

+ C2 = D,

the range of the LHS is equal to (−D,D), including when C = 0, which completes the proof.
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C. Proofs used in Section 4
Here we prove all theorems related to Alt-GDA presented in Section 4.

• In Appendix C.1 we prove Theorem 4.1 which yields a contraction inequality for Alt-GDA.

• In Appendix C.2 we prove Corollary 4.2 which derives the corresponding iteration complexity upper bound.

• In Appendix C.3 we prove the two main propositions introduced in Appendix C.

Notations. For notational simplicity, in Appendix B we define and use the following notations for gradients:

gxij := ∇xf(xi,yj), gyij := ∇yf(xi,yj).

In particular, we will use indices i, j ∈ {0, 1, ⋆} throughout the proof.

C.1. Proof of Theorem 4.1

Here we prove Theorem 4.1 of Section 4, restated below for the sake of readability.

Theorem 4.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy) and we run Alt-GDA with step sizes α, β > 0 that satisfy

α ≤ 1

2
·min

{
1

Lx
,

√
µy

Lxy
√
Lx

}
,

β ≤ 1

2
·min

{
1

Ly
,

√
µx

Lxy
√
Ly

}
.

Then ΨAlt
k is valid, and satisfies ΨAlt

k+1 ≤ rΨAlt
k with

r = max

{
1
α − µx

1
α − 2β2LyL2

xy

,

1
β − µy

1
β − α2LxL2

xy

,
1
α − µx

1
α

}
,

where we have 0 < r < 1.

Proof. Note that the Lyapunov function ΨAlt
k for Alt-GDA can be written as

ΨAlt
k =

(
1

α
− µx

)
∥xk − x⋆∥2 + 2

(
1

β
− µy

)
∥yk − y⋆∥2

+

(
1

α
− µx

)
∥xk+1 − x⋆∥2 − α(1− αLx)∥∇xf(xk,yk)∥2.

(37)

The proof consists of two steps; in STEP 1 we prove that ΨAlt
k is a valid Lyapunov function, and in STEP 2 we show that

ΨAlt
k+1 ≤ rΨAlt

k holds for the contraction rate r given as in Theorem 4.1. For notational simplicity, W.L.O.G. we equivalently
show that the statement holds for k = 0 and any choice of initialization (x0,y0). (This is indeed safe because we can apply
the results to each of the iterates of the whole sequence {(xk,yk)}k≥0 generated by Alt-GDA.)

STEP 1. VALIDITY OF LYAPUNOV FUNCTION

Here we show that there exists some constant AAlt such that we have ΨAlt
0 ≥ AAlt

(
∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

)
for any

choice of initialization (x0,y0), which is equivalent to showing that ΨAlt
k is a valid Lyapunov function. Proposition C.1

yields a lower bound inequality from which we can derive such a constant AAlt.

Proposition C.1. For f ∈ F(µx, µy, Lx, Ly, Lxy) and Alt-GDA with step sizes given as in Theorem 4.1, we have

ΨAlt
0 ≥

(
1

2α
− µx

)
∥x0 − x⋆∥2 + 2

(
3

4β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2. (38)

for any choice of initialization (x0,y0).
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While we defer the proof of Proposition C.1 to Appendix C.3.1, here we see that(
1

2α
− µx

)
∥x0 − x⋆∥2 + 2

(
3

4β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2 ≥ AAlt (∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

)
shows the validity of ΨAlt

0 for AAlt = min
{

1
2α − µx, 2

(
3
4β − µy

)}
> 0.

(Note that α ≤ 1
2Lx

< 1
2µx

and β ≤ 1
2Ly

< 1
2µy

< 3
4µy

implies AAlt > 0.)

STEP 2. CONTRACTION INEQUALITY

Here we show that ΨAlt
1 ≤ rΨAlt

0 for any choice of initialization (x0,y0), which is equivalent to showing that ΨAlt
k+1 ≤ rΨAlt

k

for all k. Proposition C.2 yields a one-step contraction inequality that applies to Alt-GDA with α < 1
2Lx

and β < 1
2Ly

, i.e.,
when the step sizes are small enough.

Proposition C.2. For f ∈ F(µx, µy, Lx, Ly, Lxy) and Alt-GDA with step sizes α ≤ 1
2Lx

and β ≤ 1
2Ly

, we have(
1

α
− 2β2LyL

2
xy

)
∥x1 − x⋆∥2 + 2

(
1

β
− α2LxL

2
xy

)
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2 − α(1− αLx)∥gx11∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2 − α(1− αLx)∥gx00∥2

(39)

for all x0 ∈ Rdx ,y0 ∈ Rdy .

We prove Proposition C.2 in Appendix C.3.2.

Note that the choices of step sizes in Theorem 4.1 indeed satisfy α ≤ 1
2Lx

and β ≤ 1
2Ly

. Assume W.L.O.G. that x⋆ = 0

(∈ Rdx) and y⋆ = 0 (∈ Rdy ). Observing that the RHS of (39) is exactly ΨAlt
0 , it is enough to show that

ΨAlt
1 =

(
1

α
− µx

)
∥x1 − x⋆∥2 + 2

(
1

β
− µy

)
∥y1 − y⋆∥2 +

(
1

α
− µx

)
∥x2 − x⋆∥2 − α(1− αLx)∥gx11∥2

≤ r

(
1

α
− 2β2LyL

2
xy

)
∥x1 − x⋆∥2 + 2r

(
1

β
− α2LxL

2
xy

)
∥y1 − y⋆∥2 +

r

α
∥x2 − x⋆∥2 − rα(1− αLx)∥gx11∥2,

(40)

after which we can combine the results as r · (39) + (40) to obtain ΨAlt
1 ≤ rΨAlt

0 .

Since r ≥
1
α−µx

1
α−2β2LyL2

xy
, we have(

1

α
− µx

)
∥x1 − x⋆∥2 ≤ r

(
1

α
− 2β2LyL

2
xy

)
∥x1 − x⋆∥2.

Since r ≥
1
β−µy

1
β−α2LxL2

xy
, we have

2

(
1

β
− µy

)
∥y1 − y⋆∥2 ≤ 2r

(
1

β
− α2LxL

2
xy

)
∥y1 − y⋆∥2.

Since r ≥
1
α−µx

1
α

, we have (
1

α
− µx

)
∥x2 − x⋆∥2 ≤ r

α
∥x2 − x⋆∥2.

Also, we can observe that α ≤ 1
2Lx

and β ≤ 1
2

√
µx

Ly
· 1
Lxy

implies

αβ2 ≤ 1

2Lx
· µx
4LyL2

xy

<
1

2LyL2
xy

∧ 2β2LyL
2
xy < 4β2LyL

2
xy ≤ µx ⇒

1
α − µx

1
α − 2β2LyL2

xy

∈ (0, 1),
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and that α ≤ 1
2

√
µy

Lx
· 1
Lxy

and β ≤ 1
2Ly

implies

α2β ≤ µy
4LxL2

xy

· 1

2Ly
<

1

LxL2
xy

∧ α2LxL
2
xy < 4α2LxL

2
xy ≤ µy ⇒

1
β − µy

1
β − α2LxL2

xy

∈ (0, 1).

Since it is obvious that
1
α−µx

1
α

∈ (0, 1), we can observe that

r = max

{
1
α − µx

1
α − 2β2LyL2

xy

,

1
β − µy

1
β − α2LxL2

xy

,
1
α − µx

1
α

}
∈ (0, 1)

and therefore

−α(1− αLx)∥gx11∥2 ≤ −rα(1− αLx)∥gx11∥2,

which shows r ∈ (0, 1) and (40), and–altogether with Proposition C.2–proves the given statement.

C.2. Proof of Corollary 4.2

Here we prove Corollary 4.2 of Section 4, restated below for the sake of readability.

Corollary 4.2. For step sizes given by the maximum possible values in Theorem 4.1, Alt-GDA linearly converges with
iteration complexity

O
((
κx + κy + κxy(

√
κx +

√
κy)
)
· log ΨAlt

0

AAltϵ

)
,

where AAlt = min
{

1
2α − µx, 2

(
3
4β − µy

)}
> 0.

Proof. From Theorem 4.1, we have

1

1− r
= max

{
1
α − 2β2LyL

2
xy

µx − 2β2LyL2
xy

,

1
β − α2LxL

2
xy

µy − α2LxL2
xy

,
1

αµx

}
.

From β ≤ 1
2 ·
√

µx

Ly
· 1
Lxy

, we have

1
α − 2β2LyL

2
xy

µx − 2β2LyL2
xy

≤
1
α − 1

2µx

µx − 1
2µx

≤ 2

αµx
.

From α ≤ 1
2 ·
√

µy

Lx
· 1
Lxy

, we have

1
β − α2LxL

2
xy

µy − α2LxL2
xy

≤
1
β − 1

4µy

µy − 1
4µy

≤ 4

3βµy
.

We can deduce that

1

1− r
≤ max

{
2

αµx
,

4

3βµy

}
= max

{
Θ(κx + κxy

√
κx) , Θ

(
κy + κxy

√
κy
)}

= Θ
(
κx + κy + κxy(

√
κx +

√
κy)
)
.

Therefore it is sufficient to take

K = O
((
κx + κy + κxy(

√
κx +

√
κy)
)
· log ΨAlt

0

AAltϵ

)
iterations to ensure that ∥zK − z⋆∥2 ≤ ϵ.

Finally, we can check that α ≤ 1
2Lx

< 1
2µx

and β ≤ 1
2Ly

< 1
2µy

< 3
4µy

implies AAlt > 0.
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C.3. Proofs used in Appendix C

Here we prove the propositions introduced in Appendix C.

C.3.1. PROOF OF PROPOSITION C.1

Here we prove Proposition C.1, restated below for the sake of readability.

Proposition C.1. For f ∈ F(µx, µy, Lx, Ly, Lxy) and Alt-GDA with step sizes given as in Theorem 4.1, we have

ΨAlt
0 ≥

(
1

2α
− µx

)
∥x0 − x⋆∥2 + 2

(
3

4β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2. (38)

for any choice of initialization (x0,y0).

Proof. For simplicity let us assume W.L.O.G. that x⋆ = 0 (∈ Rdx) and y⋆ = 0 (∈ Rdy ).

By triangle inequality and Lipschitz gradients, we have

∥gx00∥2 ≤ 2∥gx00 − gx⋆0∥2 + 2∥gx⋆0∥2 ≤ 2L2
x∥x0∥2 + 2L2

xy∥y0∥2.

Therefore, we can obtain(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2 − α(1− αLx)∥gx00∥2

≥
(
1

α
− µx − 2α(1− αLx)L

2
x

)
∥x0∥2 + 2

(
1

β
− µy − α(1− αLx)L

2
xy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2.

Since α ≤ 1
2Lx

, we have

1

α
− µx − 2α(1− αLx)L

2
x ≥ 1

α
− µx − 2αL2

x ≥ 1

α
− µx −

1

2α
=

1

2α
− µx.

Since α ≤ 1
2

√
µy

Lx
· 1
Lxy

and β ≤ 1
2

√
µx

Ly
· 1
Lxy

, we have

1

β
− µy − α(1− αLx)L

2
xy ≥ 1

β
− µy − αL2

xy ≥ 1

β
− µy −

1

4β

√
µy
Lx

·
√
µx
Ly

≥ 1

β
− µy −

1

4β
=

3

4β
− µy.

Therefore we have(
1

α
− µx − 2α(1− αLx)L

2
x

)
∥x0∥2 + 2

(
1

β
− µy − α(1− αLx)L

2
xy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

≥
(

1

2α
− µx

)
∥x0∥2 + 2

(
3

4β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2,

which proves that (38) is indeed true.

C.3.2. PROOF OF PROPOSITION C.2

Here we prove Proposition C.2, restated below for the sake of readability.

Proposition C.2. For f ∈ F(µx, µy, Lx, Ly, Lxy) and Alt-GDA with step sizes α ≤ 1
2Lx

and β ≤ 1
2Ly

, we have(
1

α
− 2β2LyL

2
xy

)
∥x1 − x⋆∥2 + 2

(
1

β
− α2LxL

2
xy

)
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2 − α(1− αLx)∥gx11∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2 − α(1− αLx)∥gx00∥2

(39)

for all x0 ∈ Rdx ,y0 ∈ Rdy .
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Proof. Recall that Alt-GDA takes updates of the form:

x1 = x0 − α∇xf(x0,y0) = x0 − αgx00,

y1 = y0 + β∇yf(x1,y0) = y0 + βgy10.

From this, we can deduce that

1

α
∥x1 − x⋆∥2 =

1

α
∥x0 − x⋆∥2 +

2

α
⟨x1 − x0,x1 − x⋆⟩ −

1

α
∥x1 − x0∥2

=
1

α
∥x0 − x⋆∥2 − 2 ⟨gx00,x1 − x⋆⟩ − α∥gx00∥2,

2

β
∥y1 − y⋆∥2 =

2

β
∥y0 − y⋆∥2 +

2

β
⟨y1 − y0, (y0 − y⋆) + (y1 − y⋆)⟩

=
2

β
∥y0 − y⋆∥2 + 2 ⟨gy10,y0 − y⋆⟩+ 2 ⟨gy10,y1 − y⋆⟩ ,

1

α
∥x2 − x⋆∥2 =

1

α
∥x1 − x⋆∥2 +

2

α
⟨x2 − x1,x1 − x⋆⟩+

1

α
∥x2 − x1∥2

=
1

α
∥x1 − x⋆∥2 − 2 ⟨gx11,x1 − x⋆⟩+ α∥gx11∥2,

which sums up to

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

=
1

α
∥x0 − x⋆∥2 +

2

β
∥y0 − y⋆∥2 +

1

α
∥x1 − x⋆∥2 − α∥gx00∥2 + α∥gx11∥2

− 2 ⟨gx00,x1 − x⋆⟩+ 2 ⟨gy10,y0 − y⋆⟩+ 2 ⟨gy10,y1 − y⋆⟩ − 2 ⟨gx11,x1 − x⋆⟩ .

(41)

Then µx-strong convexity and Lx-Lipschitz gradients8 of f(·,y0) yields:

2 ⟨gx00,x⋆ − x0⟩ = 2 ⟨∇xf(x0,y0),x⋆ − x0⟩ ≤ −µx∥x0 − x⋆∥2 − 2(f(x0,y0)− f(x⋆,y0)), (42)

2 ⟨gx00,x0 − x1⟩ = −2 ⟨∇xf(x0,y0),x1 − x0⟩ ≤ Lx∥x1 − x0∥2 + 2(f(x0,y0)− f(x1,y0)). (43)

Similarly, µy-strong concavity and Ly-Lipschitz gradients of f(x1, ·) yields:

2 ⟨gy10,y0 − y⋆⟩ = −2 ⟨∇yf(x1,y0),y⋆ − y0⟩ ≤ −µy∥y0 − y⋆∥2 − 2(f(x1,y⋆)− f(x1,y0)), (44)

2 ⟨gy10,y1 − y0⟩ = 2 ⟨∇yf(x1,y0),y1 − y0⟩ ≤ Ly∥y1 − y0∥2 + 2(f(x1,y1)− f(x1,y0)). (45)

Finally, µx-strong convexity of f(·,y1) yields:

2 ⟨gx11,x⋆ − x1⟩ = 2 ⟨∇xf(x1,y1),x⋆ − x1⟩ ≤ −µx∥x1 − x⋆∥2 − 2(f(x1,y1)− f(x⋆,y1)). (46)

From now, for simplicity we assume W.L.O.G. x⋆ = 0 (∈ Rdx) and y⋆ = 0 (∈ Rdy ).

From (42) + (43) we have

−2 ⟨gx00,x1⟩ = 2 ⟨gx00,x⋆ − x0⟩+ 2 ⟨gx00,x0 − x1⟩
≤ −µx∥x0∥2 + Lx∥x1 − x0∥2 + 2(f(x⋆,y0)− f(x1,y0))

= −µx∥x0∥2 + α2Lx∥gx00∥2 + 2(f(x⋆,y0)− f(x1,y0)).

From 2× (44) + (45) we have

2 ⟨gy10,y0⟩+ 2 ⟨gy10,y1⟩ = 4 ⟨gy10,y0 − y⋆⟩+ 2 ⟨gy10,y1 − y0⟩
≤ −2µy∥y0∥2 + Ly∥y1 − y0∥2 − 2(2f(x1,y⋆)− f(x1,y0)− f(x1,y1))

= −2µy∥y0∥2 + β2Ly∥gy10∥2 − 2(2f(x1,y⋆)− f(x1,y0)− f(x1,y1)).

8Note that the Lipschitz gradient conditions for Lx and Ly are equivalent to the widely used notion of smoothness in convex
optimization literature.
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Finally, (46) translates into

−2 ⟨gx11,x1⟩ = 2 ⟨gx11,x⋆ − x1⟩ ≤ −µx∥x1∥2 − 2(f(x1,y1)− f(x⋆,y1)).

We can properly plug in the above equations to Equation (41) to obtain

1

α
∥x1∥2 +

2

β
∥y1∥2 +

1

α
∥x2∥2 ≤

(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

− α(1− αLx)∥gx00∥2 + α∥gx11∥2 + β2Ly∥gy10∥2

− 2(2f(x1,y⋆)− f(x⋆,y0)− f(x⋆,y1)).

Since f is convex-concave and has Lipschitz gradients, we have

−2(f(x1,y⋆)− f(x⋆,y⋆)) ≤ − 1

Lx
∥∇xf(x1,y⋆)∥2 = − 1

Lx
∥gx1⋆∥2,

−2(f(x⋆,y⋆)− f(x⋆,y0)) ≤ − 1

Ly
∥∇yf(x⋆,y0)∥2 = − 1

Ly
∥gy⋆0∥2,

−2(f(x⋆,y⋆)− f(x⋆,y1)) ≤ − 1

Ly
∥∇yf(x⋆,y1)∥2 = − 1

Ly
∥gy⋆1∥2.

Therefore we have
1

α
∥x1∥2 +

2

β
∥y1∥2 +

1

α
∥x2∥2 ≤

(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

− α(1− αLx)∥gx00∥2 + α∥gx11∥2 −
2

Lx
∥gx1⋆∥2

+ β2Ly∥gy10∥2 −
1

Ly
∥gy⋆0∥2 −

1

Ly
∥gy⋆1∥2

=

(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

+ α2Lx∥gx11∥2 −
2

Lx
∥gx1⋆∥2 + β2Ly∥gy10∥2 −

1

Ly
∥gy⋆0∥2

− α(1− αLx)∥gx00∥2 + α(1− αLx)∥gx11∥2 −
1

Ly
∥gy⋆1∥2.

By triangle inequality and the Lipschitz gradient condition for Lxy , we have the following inequalities:

∥gy10∥2 − 2∥gy⋆0∥2 ≤ 2∥gy10 − gy⋆0∥2 ≤ 2L2
xy∥x1∥2,

∥gx11∥2 − 2∥gx1⋆∥2 ≤ 2∥gx11 − gx1⋆∥2 ≤ 2L2
xy∥y1∥2.

If α ≤ 1
2Lx

≤ 1√
2Lx

and β ≤ 1
2Ly

≤ 1√
2Ly

, then we have

α2Lx∥gx11∥2 −
1

Lx
∥gx1⋆∥2 + β2Ly∥gy10∥2 −

1

Ly
∥gy⋆0∥2 ≤ α2Lx

(
∥gx11∥2 − 2∥gx1⋆∥2

)
+ β2Ly

(
∥gy10∥2 − 2∥gy⋆0∥2

)
≤ 2α2LxL

2
xy∥y1∥2 + 2β2LyL

2
xy∥x1∥2,

and hence
1

α
∥x1∥2 +

2

β
∥y1∥2 +

1

α
∥x2∥2 ≤

(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

+ 2α2LxL
2
xy∥y1∥2 + 2β2LyL

2
xy∥x1∥2

− α(1− αLx)∥gx00∥2 + α(1− αLx)∥gx11∥2 −
1

Lx
∥gx1⋆∥2 −

1

Ly
∥gy⋆1∥2

≤
(
1

α
− µx

)
∥x0∥2 + 2

(
1

β
− µy

)
∥y0∥2 +

(
1

α
− µx

)
∥x1∥2

+ 2α2LxL
2
xy∥y1∥2 + 2β2LyL

2
xy∥x1∥2 − α(1− αLx)∥gx00∥2 + α(1− αLx)∥gx11∥2.

Rearranging terms, we immediately have (39).
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D. Proofs used in Section 5
Here we prove all theorems related to Alex-GDA on SCSC Lipschitz gradient problems presented in Section 5.

• In Appendix D.1 we prove Theorem 5.1 which yields a contraction inequality for Alex-GDA.

• In Appendix D.2 we prove Corollary 5.2 which derives the corresponding iteration complexity upper bound.

• In Appendix D.3 we prove Theorem 5.3 which yields a matching lower bound for Alex-GDA.

• In Appendix D.4 we prove Proposition 5.4 which shows that the same lower bound holds for EG.

• In Appendix D.5 we prove technical propositions and lemmas used throughout the proofs in Appendix D.

D.1. Proof of Theorem 5.1

Here we prove Theorem 5.1 of Section 5, restated below for the sake of readability.

Theorem 5.1. Suppose that f ∈ F(µx, µy, Lx, Ly, Lxy) and we run Alex-GDA with γ, δ > 1 and step sizes α, β > 0 that
satisfy

α ≤ C ·min

{
1

Lx
,

√
µy

Lxy
√
µx

}
,

β ≤ C ·min

{
1

Ly
,

√
µx

Lxy
√
µy

}
.

for some constant C > 0 (which only depends on γ and δ). Then ΨAlex
k is valid, and satisfies ΨAlex

k+1 ≤ rΨAlex
k with

r = max {1− αµx, 1− βµy} .

Proof. Before starting the main proof, we characterize the step size condition as follows.

Finer Step Size Condition. We assume that the step sizes α, β > 0 satisfy

α ≤ C1

Lx
, β ≤ C2

Ly
, α ≤ C3

Lxy

√
µy
µx
, β ≤ C4

Lxy

√
µx
µy

(47)

for constants C1, C2, C3, C4 > 0 satisfying

C1 ≤ γ − 1

2γ2
, C2 ≤ δ − 1

2δ2
,

C3 ≤ min

{
1

3γ − 2
,

δ − 1

2(γ − 1)δ
,

1

2(γ − 1)(δ − 1)

}
,

C4 ≤ min

{
1

3δ − 2
,

γ − 1

2γ(δ − 1)
,

1

2(γ − 1)(δ − 1)

}
.

(48)

(By choosing C = min{C1, C2, C3, C4}, we can obtain the simpler form given in the theorem statement.)

We show a few inequalities involving C1, C2, C3, C4 > 0 for future purposes.9

First, we have

C1 ≤ γ − 1

2γ2
≤ 1

2γ
≤ 1

2
, C2 ≤ δ − 1

2δ2
≤ 1

2δ
≤ 1

2
. (49)

9Note that all arguments in the upper bounds of the constants given in (48) are all strictly positive whenever γ > 1 and δ > 1.
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Since C1 ≤ γ−1
2γ2 ≤ γ−1

γ2 and C4 ≤ γ−1
2γ(δ−1) ≤

γ−1
γ(δ−1) , we have

γ2C1 + γ(δ − 1)C4 ≤ 2(γ − 1). (50)

Since C1 ≤ γ−1
2γ2 ≤ 1

γ+1 and C4 ≤ 1
3δ−2 , we have

(γ + 1)C1 + (3δ − 2)C4 ≤ 2. (51)

Therefore, by (50) + (γ − 1)× (51) we have

(2γ2 − 1)C1 + (4γδ − 3γ − 3δ + 2)C4 ≤ 4(γ − 1). (52)

Since C2 ≤ δ−1
2δ2 and C3 ≤ δ−1

2(γ−1)δ , we have

δ2C2 + (γ − 1)δC3 ≤ δ − 1. (53)

Since C2 ≤ δ−1
2δ2 ≤ 1

δ+1 and C3 ≤ 1
3γ−2 , we have

(δ + 1)C2 + (3γ − 2)C3 ≤ 2. (54)

Since C1 ≤ 1
2 and C3 ≤ 1

2(γ−1)(δ−1) , we have

C1 + (γ − 1)(δ − 1)C3 ≤ 1, (55)

and as C4 ≤ 1
2(γ−1)(δ−1) , we similarly have

C1 + (γ − 1)(δ − 1)C4 ≤ 1. (56)

We also note that since C3 ≤ δ−1
2(γ−1)δ and C4 ≤ γ−1

2γ(δ−1) , we have

C3C4 ≤ 1

4δγ
(57)

which, along with γ, δ > 1, directly implies the followings:

4C3C4 ≤ 1, (58)
4(δ − 1)C3C4 ≤ 1. (59)

Now we proceed to the main proof of Theorem 5.1.

For k ≥ 1, the Lyapunov function ΨAlex
k can be written as

ΨAlex
k =

1

α
∥xk − x⋆∥2 +

2

β
∥yk − y⋆∥2 +

1

α
∥xk+1 − x⋆∥2 − α∥∇xf(xk, ỹk)∥2

+ (δ − 1)β∥∇yf(x̃k,yk−1)∥2 +
(γ − 1)(δ − 1)αβ

1− αµx
· Lxy

√
µy
µx

· ∥∇xf(xk−1, ỹk−1)∥2,

and for k = 0 as

ΨAlex
0 =

1

α
∥x0 − x⋆∥2 +

2

β
∥y0 − y⋆∥2 +

1

α
∥x1 − x⋆∥2 − α∥∇xf(x0, ỹ0)∥2

+
(γ − 1)(δ − 1)αβ

(1− αµx)(1− βµy)
· Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2.

Similarly as in the proof of Theorem 4.1, the proof consists of two steps— in STEP 1 we prove that ΨAlt
k is a valid Lyapunov

function, and in STEP 2 we show that ΨAlt
k+1 ≤ rΨAlt

k holds for the contraction rate r given as in Theorem 5.1.
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STEP 1. VALIDITY OF LYAPUNOV FUNCTION

Here we show that there exists some constant AAlex such that we have ΨAlex
k ≥ AAlex

(
∥xk − x⋆∥2 + ∥yk − y⋆∥2

)
, i.e.,

ΨAlex
k is a valid Lyapunov function. Proposition D.1 yields a lower bound inequality from which we can derive such a

constant AAlex.

Proposition D.1. Suppose that we run Alex-GDA with γ, δ > 0 and step sizes α, β satisfying (47), and (48). Then we have

ΨAlex
k ≥ 1

2α
∥xk∥2 +

1

2β
∥yk∥2 +

1

α
∥xk+1∥2 (60)

for all (xk,yk), both when k ≥ 1 and k = 0.

While we defer the proof of Proposition D.1 to Appendix D.5.1, here we see that this implies

1

2α
∥xk∥2 +

1

β
∥yk∥2 +

1

α
∥xk+1∥2 ≥ AAlex (∥xk∥2 + ∥yk∥2

)
for AAlex = min

{
1
2α ,

1
β

}
> 0.

STEP 2. CONTRACTION INEQUALITY

Note that this time we can’t simply take k = 0 as in the proof of Theorem 4.1, since for Alex-GDA there exists a slight
difference between the first iterate and the rest, as we have briefly explained in Section 5.

To deal with this subtlety, here we allow ourselves to set k = 0 W.L.O.G. by focusing on a set of iterates given by

x̃0 = x0 − ξ(γ − 1)α∇xf(x−1, ỹ−1),

ỹ0 = y0 + ξ(δ − 1)β∇yf(x̃0,y−1),

x̃1 = x0 − γα∇xf(x0, ỹ0),

x1 = x0 − α∇xf(x0, ỹ0),

ỹ1 = y0 + δβ∇yf(x̃1,y0),

y1 = y0 + β∇yf(x̃1,y0),

x̃2 = x1 − γα∇xf(x1, ỹ1),

x2 = x1 − α∇xf(x1, ỹ1),

(61)

where we can have either ξ = 0 or 1.

If ξ = 0, then we simply have x0 = x̃0 and y0 = ỹ0, just as in the case of k = 0 of Alex-GDA. If ξ = 1, then we can bring
the iterates x̃0 and ỹ0 from the previous step, which corresponds to the case of k ≥ 1 of Alex-GDA. Therefore it is safe to
set k = 0 W.L.O.G., and it suffices to show a contraction inequality that holds for any iterates given by (61) (including both
cases of ξ = 0 and 1), which we can apply to all iterates of the algorithm including both k ≥ 1 and k = 0.

Proposition D.2 gives us the main inequality which leads to the desired contraction inequality.

Proposition D.2. For f ∈ F(µx, µy, Lx, Ly, Lxy) and iterates given by (61) with γ, δ > 0 and step sizes α, β satisfying
(47), and (48), we have the contraction inequality

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2,

(62)

where ξ = 0 or 1.
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We prove Proposition D.2 in Appendix D.5.2. Note that we can simplify the step size conditions as given in the theorem
statement by choosing C as the minimum of the upper bounds of the constants given in (48).

First, let us assume that ξ = 1. Note that by Proposition D.2 we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2 + (γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α∥∇xf(x0, ỹ0)∥2 + (γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2.

We can add 1
1−αµx

· (γ − 1)(δ − 1)α2βLxy
√
µxµy∥∇xf(x0, ỹ0)∥2 to both sides so that we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2 − α∥∇xf(x1, ỹ1)∥2

+ (δ − 1)β∥∇yf(x̃1,y0)∥2 +
(γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α

(
1− (γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µxµy

)
∥∇xf(x0, ỹ0)∥2 + (γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2.

(63)

Now let us define r as

r = max {1− αµx, 1− βµy} .

Since r ≥ 1− αµx and r ≥ 1− βµy , we have(
1

α
− µx

)
∥x0 − x⋆∥2 ≤ r · 1

α
∥x0 − x⋆∥2,

2

(
1

β
− µy

)
∥y0 − y⋆∥2 ≤ r · 2

β
∥y0 − y⋆∥2,(

1

α
− µx

)
∥x1 − x⋆∥2 ≤ r · 1

α
∥x1 − x⋆∥2.

(64)

Since r ≥ 1− αµx, we have

(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2 ≤ r
(γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2.

Now we will show that the following holds for the negative gradient terms:

−α
(
1− (γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µxµy

)
∥∇xf(x0, ỹ0)∥2 ≤ −rα∥∇xf(x0, ỹ0)∥2. (65)

Observe that

1

1− αµx
≤ 1

1− αLx
≤ 1

1− C1
. (66)
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Recalling inequality (56), we have

C1 + (γ − 1)(δ − 1)C4 ≤ 1,

which, combined with (66), gives

1

1− αµx
(γ − 1)(δ − 1)C4 ≤ 1

1− C1
(γ − 1)(δ − 1)C4 ≤ 1.

The condition β ≤ C4

Lxy

√
µx

µy
then yields

1− αµx
(γ − 1)(δ − 1)αβLxy

√
µxµy

≥ 1− αµx
(γ − 1)(δ − 1)C4αµx

≥ 1

αµx
.

Similarly, recalling inequality (55), we have

C1 + (γ − 1)(δ − 1)C3 ≤ 1,

which, combined with (66), gives

1

1− αµx
(γ − 1)(δ − 1)C3 ≤ 1

1− C1
(γ − 1)(δ − 1)C3 ≤ 1.

The conditions α ≤ C3

Lxy

√
µy

µx
then yields

1− αµx
(γ − 1)(δ − 1)αβLxy

√
µxµy

≥ 1− αµx
(γ − 1)(δ − 1)C3βµy

≥ 1

βµy
.

Therefore we have

1− αµx
(γ − 1)(δ − 1)αβLxy

√
µxµy

≥ 1

1− r
= max

{
1

αµx
,

1

βµy

}
,

or equivalently

1− (γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µxµy ≥ r,

from which (65) immediately follows. Finally, we can just add:

0 ≤ r(δ − 1)β∥∇yf(x̃0,y−1)∥2. (67)

Aggregating (63), (64), (65), and (67), we can obtain

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2 +
(γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤ r

(
1

α
∥x0 − x⋆∥2 +

2

β
∥y0 − y⋆∥2 +

1

α
∥x1 − x⋆∥2

)
− rα∥∇xf(x0, ỹ0)∥2 + r(δ − 1)β∥∇yf(x̃0,y−1)∥2 + r

(γ − 1)(δ − 1)αβ

1− αµx
Lxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2

which – as ξ = 1 corresponds to iterates of Alex-GDA for k ≥ 1 – concludes that ΨAlex
k+1 ≤ rΨAlex

k for k ≥ 1.

39



Fundamental Benefit of Alternating Updates in Minimax Optimization

Now suppose that ξ = 0. Then by Proposition D.2 we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2 − α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2 − α∥∇xf(x0, ỹ0)∥2.

Then, since 1− βµy ≤ r ≤ 1 and (64) holds for this case as well, we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2 +
(γ − 1)(δ − 1)αβ

1− αµx
· Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α∥∇xf(x0, ỹ0)∥2 +
(γ − 1)(δ − 1)αβ

1− αµx
· Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤ r

(
1

α
∥x0 − x⋆∥2 +

2

β
∥y0 − y⋆∥2 +

1

α
∥x1 − x⋆∥2

)
− rα∥∇xf(x0, ỹ0)∥2 +

r

1− βµy
· (γ − 1)(δ − 1)αβ

1− αµx
· Lxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

which – as ξ = 0 corresponds to the iterate of Alex-GDA for k = 0 – concludes that ΨAlex
1 ≤ rΨAlex

0 .

D.2. Proof of Corollary 5.2

Here we prove Corollary 5.2 of Section 5, restated below for the sake of readability.

Corollary 5.2. For step sizes given by the maximum possible values in Theorem 5.1, Alex-GDA linearly converges with
iteration complexity

O
(
(κx + κy + κxy) · log

ΨAlex
0

AAlexϵ

)
,

where AAlex = min
{

1
2α ,

1
β

}
> 0.

Proof. In Theorem 5.1 we have shown that ΨAlex
k+1 ≤ rΨAlex

k for all k ≥ 0 with r = max {1− αµx, 1− βµy}.

Since we choose α = Θ(min
{

1
Lx
,

√
µy

Lxy
√
µx

}
) and β = Θ(min

{
1
Ly
,

√
µx

Lxy
√
µy

}
), we have

1

1− r
= max

{
1

αµx
,

1

βµy

}
= Θ

(
max

{
Lx
µx
,
Ly
µy
,
Lxy√
µxµy

})
= Θ(κx + κy + κxy) .

Therefore it is sufficient to run

K = O
(
(κx + κy + κxy) · log

ΨAlex
0

AAlexϵ

)

iterations to ensure that ∥zK − z⋆∥2 ≤ ϵ, where AAlex = min
{

1
2α ,

1
β

}
.
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D.3. Proof of Theorem 5.3

Here we prove Theorem 5.3 of Section 5, restated below for the sake of readability.
Theorem 5.3. There exists a 6-dimensional function f ∈ F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of Alex-GDA with γ, δ > 1 requires an iteration complexity of

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

Proof. We use the same worst-case function as in Theorem 3.3:

f(x,y) =
1

2


x
s
t
y
u
v



⊤ 
µx 0 0 Lxy 0 0
0 µx 0 0 0 0
0 0 Lx 0 0 0
Lxy 0 0 −µy 0 0
0 0 0 0 −µy 0
0 0 0 0 0 −Ly




x
s
t
y
u
v

 ,

where x = (x, s, t) and y = (y, u, v). It can be easily checked that f is a quadratic function (i.e., Hessian is constant) such
that f ∈ F(µx, µy, Lx, Ly, Lxy) and x⋆ = y⋆ = 0 ∈ R3.

We first observe that if we let

A =

µx 0 0
0 µx 0
0 0 Lx

 , B =

Lxy 0 0
0 0 0
0 0 0

 , C =

µy 0 0
0 µy 0
0 0 Ly

 ,
then the k-th step of Alex-GDA satisfies

xk+1

x̃k+1

yk+1

ỹk+1

 =


I 0 0 0
0 I 0 0
0 βB⊤ I − βC 0
0 δβB⊤ I − δβC 0



I − αA 0 0 −αB
I − γαA 0 0 −γαB

0 0 I 0
0 0 0 I



xk
x̃k
yk
ỹk



=


I − αA 0 0 −αB
I − γαA 0 0 −γαB

βB⊤(I − αA) 0 I − βC −γαβB⊤B
δβB⊤(I − γαA) 0 I − δβC −γδαβB⊤B



xk
x̃k
yk
ỹk

 .
Therefore we have the following coordinate-wise updates:

xk+1

x̃k+1

yk+1

ỹk+1

 =


1− αµx 0 0 −αLxy
1− γαµx 0 0 −γαLxy

βLxy(1− γαµx) 0 1− βµy −γαβL2
xy

δβLxy(1− γαµx) 0 1− δβµy −γδαβL2
xy


︸ ︷︷ ︸

≜P


xk
x̃k
yk
yk

 , (68)

sk+1 = (1− αµx)sk, s̃k+1 = (1− γαµx)sk, (69)

tk+1 = (1− αLx)tk, t̃k+1 = (1− γαLx)tk, (70)
uk+1 = (1− βµy)uk, ũk+1 = (1− δβµy)uk, (71)
vk+1 = (1− βLy)vk, ṽk+1 = (1− δβLy)vk. (72)

To assure the convergence of iterations (70) and (72), the step sizes α and β are required to be

α <
2

Lx
and β <

2

Ly
. (73)
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Also, to guarantee ∥xK∥2 + ∥yK∥2 < ϵ, we need from (69) and (71) that s2K < O(ϵ) and u2K < O(ϵ), respectively. These
two necessary conditions require an iteration number of at least:

K = Ω

((
1

αµx
+

1

βµy

)
· log 1

ϵ

)
, (74)

and αLx, βLy = O(1) from (74) yields

1

αµx
+

1

βµy
= Ω(κx + κy). (75)

Now, in order to ensure convergence of iteration (68), we need the following matrix

P =


1− αµx 0 0 −αLxy
1− γαµx 0 0 −γαLxy

βLxy(1− γαµx) 0 1− βµy −γαβL2
xy

δβLxy(1− γαµx) 0 1− δβµy −γδαβL2
xy


to have a spectral radius smaller than one. Hence it suffices to show that ρ(P ) < 1 implies that 1

αµx
+ 1

βµy
= Ω(κxy).

Suppose that λ is an eigenvalue of P . Then we must have

det(λI − P ) =

∣∣∣∣∣∣∣∣
(1− λ)− αµx 0 0 −αLxy

1− γαµx −λ 0 −γαLxy
βLxy(1− γαµx) 0 (1− λ)− βµy −γαβL2

xy

δβLxy(1− γαµx) 0 1− δβµy −λ− γδαβL2
xy

∣∣∣∣∣∣∣∣
= −λ ·

∣∣∣∣∣∣
(1− λ)− αµx 0 −αLxy
βLxy(1− γαµx) (1− λ)− βµy −γαβL2

xy

δβLxy(1− γαµx) 1− δβµy −λ− γδαβL2
xy

∣∣∣∣∣∣ = 0.

We can compute ∣∣∣∣∣∣
(1− λ)− αµx 0 −αLxy
βLxy(1− γαµx) (1− λ)− βµy −γαβL2

xy

δβLxy(1− γαµx) 1− δβµy −λ− γδαβL2
xy.

∣∣∣∣∣∣
= ((1− λ)− αµx) ((1− λ)− βµy)

(
−λ− γδαβL2

xy

)
− αβL2

xy(1− γαµx)(1− δβµy)

+ δαβL2
xy(1− γαµx) ((1− λ)− βµy) + γαβL2

xy(1− δβµy) ((1− λ)− αµx) .

Substituting λ = 1− t and ϕ = αβL2
xy , we can obtain a simpler expression:

(t− αµx) (t− βµy) (t− 1− γδϕ)− ϕ(1− γαµx)(1− δβµy)

+ δϕ(1− γαµx) (t− βµy) + γϕ(1− δβµy) (t− αµx)

= (t− αµx) (t− βµy) (t− 1)− γδϕ (t− αµx) (t− βµy)− ϕ(1− γαµx)(1− δβµy)

+ δϕ(1− γαµx) (t− βµy) + γϕ(1− δβµy) (t− αµx)

= (t− αµx) (t− βµy) (t− 1)− ϕ ((1− γαµx)− γ (t− αµx)) ((1− δβµy)− δ (t− βµy))

= (t− αµx) (t− βµy) (t− 1)− ϕ(1− γt)(1− δt).

Therefore the eigenvalue λ must be 0 or take the form of 1− t∗, where t∗ is a root of the following cubic equation:

(t− αµx) (t− βµy) (t− 1)− ϕ(1− γt)(1− δt) = 0.

We can expand as

t3 − (1 + αµx + βµy + γδϕ)t2 + (αµx + βµy + αβµxµy + (γ + δ)ϕ)t− (αβµxµy + ϕ) = 0.
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Hence we have a cubic equation of the form t3 − pt2 + qt− r = 0 with coefficients given by

p = 1 + αµx + βµy + γδϕ,

q = αµx + βµy + αβµxµy + (γ + δ)ϕ,

r = αβµxµy + ϕ.

(76)

Note that we obviously have p, q, r > 0.

There exists a well-known characterization of cubic polynomials having roots with absolute values less than one.

Proposition D.3 (Grove & Ladas (2004), Theorem 1.4). Consider a cubic polynomial x3 + a2x
2 + a1x+ a0, where a0, a1,

and a2 are real numbers. Then a necessary and sufficient condition that all roots of the polynomial are contained in the
open disk |x| < 1 is

|a2 + a0| < 1 + a1, |a2 − 3a0| < 3− a1, a0(a0 − a2) + a1 − 1 < 0. (77)

Also, the following corollary suggests that the coefficients are all bounded (by constants) for such cases.

Corollary D.4. For coefficients a0, a1, a2 satisfying (77), we have |a2| < 3, |a1| < 3, and |a0| < 1.

Proof. It is easy to see that −1 < a1 < 3 from the first two conditions.

Also, the first and the last condition together imply that

|a2 + a0| − 1 < a1 < a0(a2 − a0) + 1.

This is a subset of the region

|a2 + a0| < 4 ∧ |a2 + a0| < a0(a2 − a0) + 2.

The range of such (a2, a0) is equal to a parallelogram with endpoints (−3,−1), (1,−1), (−1, 1), (3, 1), which implies
|a2| < 3 and |a0| < 1.

Plugging back in t = 1− λ, we can write the cubic polynomial in terms of p, q, r, and λ as

(1− λ)3 − p(1− λ)2 + q(1− λ)− r = 0

⇔ λ3 + (−3 + p)λ2 + (3− 2p+ q)λ+ (−1 + p− q + r) = 0.

By Corollary D.4, we can observe that a necessary condition for ρ(P ) < 1 is that

|3− p| < 3, |3− 2p+ q| < 3, |1− p+ q − r| < 1.

We can simply deduce that p < 6, which implies q < 12 and finally r < 14.

Therefore we can conclude that all of the coefficients in (76) are of order O(1). In particular, this implies ϕ = αβL2
xy = O(1)

in order to assure convergence, which concludes that

1

αµx
+

1

βµy
≥ 2√

αβµxµy
=

2κxy√
αβL2

xy

= Ω(κxy). (78)

Combining (75) and (78), we have

1

αµx
+

1

βµy
= Ω(κx + κy + κxy)

and therefore from (74) we can show a lower bound of

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
.
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D.4. Proof of Proposition 5.4

Here we prove Proposition 5.4 of Section 5, restated below for the sake of readability.

Proposition 5.4. There exists a 6-dimensional function f ∈ F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of EG requires an iteration complexity of rate at least

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

Proof. Recall that EG takes updates of the form:

xk+ 1
2
= xk − α∇xf(xk,yk),

yk+ 1
2
= yk + β∇yf(xk,yk),

xk+1 = xk − α∇xf(xk+ 1
2
,yk+ 1

2
),

yk+1 = yk + β∇yf(xk+ 1
2
,yk+ 1

2
).

We use the same worst-case function as in Theorem 3.3:

f(x,y) =
1

2


x
s
t
y
u
v



⊤ 
µx 0 0 Lxy 0 0
0 µx 0 0 0 0
0 0 Lx 0 0 0
Lxy 0 0 −µy 0 0
0 0 0 0 −µy 0
0 0 0 0 0 −Ly




x
s
t
y
u
v

 ,

where x = (x, s, t) and y = (y, u, v). It can be easily checked that f is a quadratic function (i.e., Hessian is constant) such
that f ∈ F(µx, µy, Lx, Ly, Lxy) and x⋆ = y⋆ = 0 ∈ R3.

Let us define

A =

µx 0 0
0 µx 0
0 0 Lx

 , B =

Lxy 0 0
0 0 0
0 0 0

 , C =

µy 0 0
0 µy 0
0 0 Ly

 .
We first observe that the k-th step of EG satisfies[

xk+ 1
2

yk+ 1
2

]
=

[
I − αA −αB
βB⊤ I − βC

]
︸ ︷︷ ︸

≜MSim

[
xk
yk

]
,

[
xk+1

yk+1

]
=

[
xk
yk

]
+

[
−αA −αB
βB⊤ −βC

] [
xk+ 1

2

yk+ 1
2

]
=

[
xk
yk

]
+

[
−αA −αB
βB⊤ −βC

] [
I − αA −αB
βB⊤ I − βC

] [
xk
yk

]
= (I + (MSim − I)MSim)

[
xk
yk

]
= (I −MSim +M2

Sim︸ ︷︷ ︸
≜MEG

)

[
xk
yk

]
.

Hence we have that λSim is an eigenvalue of MSim if and only if λEG = 1− λSim + λ2Sim is an eigenvalue of MEG. Note that
the matrix MSim is identical to the updates made by Sim-GDA on the same lower bound function f , which allows us to
utilize some results from Appendix B.3.
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Let us define

P ≜

[
1− αµx −αLxy
βLxy 1− βµy

]
.

Then the k-th step of EG satisfies [
xk+1

yk+1

]
= (I − P + P 2)

[
xk
yk

]
, (79)

sk+1 = (1− αµx + α2µ2
x)sk, (80)

tk+1 = (1− αLx + α2L2
x)tk, (81)

uk+1 = (1− βµy + β2µ2
y)uk, (82)

vk+1 = (1− βLy + β2L2
y)vk. (83)

We can see that the eigenvalues of MEG must be either λEG = 1− λP + λ2P , where λP is an eigenvalue of P , which can be
explicitly computed as

λP = 1− αµx + βµy
2

±

√(
αµx − βµy

2

)2

− αβL2
xy (84)

or among the following values:

1− αµx, 1− αLx, 1− βµy, and 1− βLy. (85)

For the (real) eigenvalues in (85), we can deduce that the corresponding eigenvalues of MEG are

1− αµx + α2µ2
x, 1− αLx + α2L2

x, 1− βµy + β2µ2
y, and 1− βLy + β2L2

y,

all being strictly larger than the corresponding values in (85). Hence, for the convergence of iterations (81) and (83), the
step sizes α and β are required to satisfy

0 < αLx(1− αLx) < 2 and 0 < βLy(1− βLy) < 2,

which (as α, β > 0) is simply equivalent to

α <
1

Lx
and β <

1

Ly
. (86)

Also, to guarantee ∥xK∥2 + ∥yK∥2 < ϵ, we need from (80) and (82) that s2K < O(ϵ) and u2K < O(ϵ), respectively. These
two necessary conditions require an iteration number of at least:

K = Ω

((
1

αµx(1− αµx)
+

1

βµy(1− βµy)

)
· log 1

ϵ

)
= Ω

((
1

αµx
+

1

βµy

)
· log 1

ϵ

)
. (87)

Note that (86) automatically yields

1

αµx
+

1

βµy
= Ω(κx + κy). (88)

Now we focus on the x, y coordinates to complete the proof. We do a similar case-by-case analysis as in our proof of
Theorem 3.3 in Appendix B.3, based on whether the eigenvalues in (84) are real or complex.

Case 1. If the eigenvalues λP in (84) are real, then we have∣∣∣∣∣
√
αµx
βµy

−

√
βµy
αµx

∣∣∣∣∣ > 2κxy

as in (23) of Appendix B.3. By the same logic as in Case 2 of Appendix B.3, we have

1

αµx
+

1

βµy
= Ω(κx + κy + κ2xy) = Ω(κx + κy + κxy). (89)
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Case 2. Suppose that the eigenvalues in (84) are complex. If we substitute as

s =
αµx + βµy

2
, p =

√
αβµxµy, K = κ2xy,

then (84) can be written as:

λP = 1− s± i
√

(K + 1)p2 − s2.

As we consider the case when the eigenvalues are complex, here we must have

s2 ≤ (K + 1)p2.

We can explicitly compute

λEG = λP + (1− λP )
2

= 1− s± i
√
(K + 1)p2 − s2 +

(
s∓ i

√
(K + 1)p2 − s2

)2
= 1− s+ s2 − ((K + 1)p2 − s2)± i

(
(1− 2s)

√
(K + 1)p2 − s2

)
Therefore |λEG|2 can be expressed as(

1− s+ s2 − ((K + 1)p2 − s2)
)2

+ (1− 2s)2((K + 1)p2 − s2)

= (1− s+ s2)2 − 2(1− s+ s2)((K + 1)p2 − s2) + ((K + 1)p2 − s2)2 + (1− 2s)2((K + 1)p2 − s2)

= (1− s+ s2)2 − (2(1− s+ s2)− (1− 2s)2)((K + 1)p2 − s2) + ((K + 1)p2 − s2)2

= (1− s+ s2)2 − (1 + 2s− 2s2)((K + 1)p2 − s2) + ((K + 1)p2 − s2)2

= (1− s+ s2)2 + ((K + 1)p2 + s2 − 2s− 1)((K + 1)p2 − s2)

= (1− s+ s2)2 + (K + 1)2p4 − s4 − (2s+ 1)((K + 1)p2 − s2)

= (1− s+ s2)2 + (2s+ 1)s2 − s4 − (K + 1)p2(2s+ 1) + (K + 1)2p4

= 1− 2s+ 4s2 − (K + 1)p2(2s+ 1) + (K + 1)2p4.

Note that |λEG| < 1 is equivalent to

−(K + 1)p2(2s+ 1) + (K + 1)2p4 < 2s− 4s2.

If this is true, then substituting t = (K + 1)p2 we obtain the following region:

t2 − t(2s+ 1) + 4s2 − 2s < 0, s2 ≤ t

which is the upper region of the interior of an ellipse cut by a parabola. This region is bounded, and we can compute the
range of t as 0 < t < 1 + 2/

√
3. Therefore we have t = O(1), and since we can substitute back as

t = (K + 1)p2 = (κ2xy + 1)αβµxµy,

we can observe that (κ2xy + 1)αβµxµy = O(1), and therefore

1

αµx
+

1

βµy
≥ 2√

αβµxµy
=

2
√

(κ2xy + 1)√
(κ2xy + 1)αβµxµy

= Ω(κxy).

Aggregating with (88), we can observe that

1

αµx
+

1

βµy
= Ω(κx + κy + κxy),

and hence the lower bound iteration complexity holds for all possible cases of convergence.
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D.5. Proofs used in Appendix D

Here we prove some technical propositions and lemmas used throughout Appendix D.

D.5.1. PROOF OF PROPOSITION D.1

Here we prove Proposition D.1, restated below for the sake of readability.
Proposition D.1. Suppose that we run Alex-GDA with γ, δ > 0 and step sizes α, β satisfying (47), and (48). Then we have

ΨAlex
k ≥ 1

2α
∥xk∥2 +

1

2β
∥yk∥2 +

1

α
∥xk+1∥2 (60)

for all (xk,yk), both when k ≥ 1 and k = 0.

Proof. For simplicity let us assume W.L.O.G. that x⋆ = 0 (∈ Rdx) and y⋆ = 0 (∈ Rdy ).

For k ≥ 1, we have

ΨAlex
k ≥ 1

α
∥xk∥2 +

2

β
∥yk∥2 +

1

α
∥xk+1∥2 − α∥∇xf(xk, ỹk)∥2 + (δ − 1)β∥∇yf(x̃k,yk−1)∥2.

By triangle inequality and Lipschitz gradients, we have

∥∇xf(xk, ỹk)∥2 ≤ 2∥∇xf(xk, ỹk)−∇xf(x⋆, ỹk)∥2 + 2∥∇xf(x⋆, ỹk)∥2

≤ 2L2
x∥xk∥2 + 2L2

xy∥ỹk∥2

≤ 2L2
x∥xk∥2 + 4L2

xy∥yk∥2 + 4L2
xy∥ỹk − yk∥2

≤ 2L2
x∥xk∥2 + 4L2

xy∥yk∥2 + 4(δ − 1)2β2L2
xy∥∇yf(x̃k,yk−1)∥2

Therefore, we can obtain

1

α
∥xk∥2 +

2

β
∥yk∥2 +

1

α
∥xk+1∥2 − α∥∇xf(xk, ỹk)∥2 + (δ − 1)β∥∇yf(x̃k,yk−1)∥2

≥
(
1

α
− 2αL2

x

)
∥xk∥2 + 2

(
1

β
− 2αL2

xy

)
∥yk∥2 +

1

α
∥xk+1∥2

+ (δ − 1)β
(
1− 4(δ − 1)αβL2

xy

)
∥∇yf(x̃k,yk−1)∥2.

Since α ≤ C1

Lx
and C1 ≤ 1

2 (by (49)), we have

1

α
− 2αL2

x ≥ 1

α
− 2C2

1

α
≥ 1

2α
.

Since α ≤ C3

Lxy

√
µy

µx
, β ≤ C4

Lxy

√
µx

µy
, and 4C3C4 ≤ 1 (by (58)), we have

1

β
− 2αL2

xy ≥ 1

β
− 2C3C4

β

√
µy
µx

·
√
µx
µy

=
1

β
− 2C3C4

β
≥ 1

2β
.

Finally, since 4(δ − 1)C3C4 ≤ 1 (by (59)), we have

4(δ − 1)αβL2
xy ≤ 4(δ − 1)C3C4 ≤ 1

and therefore we can cancel out the last term by

(δ − 1)β
(
1− 4(δ − 1)αβL2

xy

)
∥∇yf(x̃k,yk−1)∥2 ≥ 0.

Therefore we have
1

α
∥xk∥2 +

2

β
∥yk∥2 +

1

α
∥xk+1∥2 − α∥∇xf(xk, ỹk)∥2 + (δ − 1)β∥∇yf(x̃k,yk−1)∥2

≥ 1

2α
∥xk∥2 +

1

β
∥yk∥2 +

1

α
∥xk+1∥2,
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which implies that (60) is indeed true for k = 1.

For k = 0, we have

ΨAlex
0 ≥ 1

α
∥x0∥2 +

2

β
∥y0∥2 +

1

α
∥x1∥2 − α∥∇xf(x0,y0)∥2,

where we note that ỹ0 = y0. By triangle inequality and Lipschitz gradients, we have

∥∇xf(x0,y0)∥2 ≤ 2∥∇xf(x0,y0)−∇xf(x⋆,y0)∥2 + 2∥∇xf(x⋆,y0)∥2 ≤ 2L2
x∥x0∥2 + 2L2

xy∥y0∥2.

Therefore, we can obtain

1

α
∥x0∥2 +

2

β
∥y0∥2 +

1

α
∥x1∥2 − α∥∇xf(x0,y0)∥2 ≥

(
1

α
− 2αL2

x

)
∥x0∥2 + 2

(
1

β
− αL2

xy

)
∥y0∥2 +

1

α
∥x1∥2.

Since α ≤ C1

Lx
and C1 ≤ 1

2 (by (49)), we have

1

α
− 2αL2

x ≥ 1

α
− 2C2

1

α
≥ 1

2α
.

Since α ≤ C3

Lxy

√
µy

µx
, β ≤ C4

Lxy

√
µx

µy
, and C3C4 ≤ 1

4 (by (58)), we have

1

β
− 2αL2

xy ≥ 1

β
− 2C3C4

β

√
µy
µx

·
√
µx
µy

=
1

β
− 2C3C4

β
≥ 1

2β
.

Therefore we have

1

α
∥x0∥2 +

2

β
∥y0∥2 +

1

α
∥x1∥2 − α∥∇xf(x0,y0)∥2 ≥ 1

2α
∥x0∥2 +

1

β
∥y0∥2 +

1

α
∥x1∥2,

which implies that (60) is indeed true for k = 0.

D.5.2. PROOF OF PROPOSITION D.2

Here we prove Proposition D.2, restated below for the sake of readability.

Proposition D.2. For f ∈ F(µx, µy, Lx, Ly, Lxy) and iterates given by (61) with γ, δ > 0 and step sizes α, β satisfying
(47), and (48), we have the contraction inequality

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2 + (δ − 1)β∥∇yf(x̃1,y0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2,

(62)

where ξ = 0 or 1.

Proof. While the proof of the proposition is quite technical and complicated, we can largely divide the proof into three
large steps. In STEP 1, we use the basic notions of strong convexity (and/or strong concavity) and the Lipschitz gradient
conditions involving Lx and Ly (i.e., smoothness in convex optimization literature) to obtain an inequality between terms
from the previous and next iterates. In STEP 2, we use the Lxy-Lipschitz gradient conditions to cope with the intermediate
inner product terms. In STEP 3, we use the given step size conditions to cancel out the gradient norm terms as much as
possible, which leaves us with the inequality given in the proposition statement.
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STEP 1. BASIC TRANSFORMATIONS

We start with

1

α
∥x1 − x⋆∥2 =

1

α
∥x0 − x⋆∥2 +

2

α
⟨x1 − x0,x0 − x⋆⟩+

1

α
∥x1 − x0∥2

=
1

α
∥x0 − x⋆∥2 − 2 ⟨∇xf(x0, ỹ0),x0 − x⋆⟩+ α∥∇xf(x0, ỹ0)∥2,

2

β
∥y1 − y⋆∥2 =

2

β
∥y0 − y⋆∥2 +

4

β
⟨y1 − y0,y0 − y⋆⟩+

2

β
∥y1 − y0∥2

=
2

β
∥y0 − y⋆∥2 + 4 ⟨∇yf(x̃1,y0),y0 − y⋆⟩+ 2β∥∇yf(x̃1,y0)∥2,

1

α
∥x2 − x⋆∥2 =

1

α
∥x1 − x⋆∥2 +

2

α
⟨x2 − x1,x1 − x⋆⟩+

1

α
∥x2 − x1∥2

=
1

α
∥x1 − x⋆∥2 − 2 ⟨∇xf(x1, ỹ1),x1 − x⋆⟩+ α∥∇xf(x1, ỹ1)∥2.

(90)

By strong convexity (concavity), we have

−2 ⟨∇xf(x0, ỹ0),x0 − x⋆⟩ ≤ −µx∥x0 − x⋆∥2 − 2(f(x0, ỹ0)− f(x⋆, ỹ0)),

4 ⟨∇yf(x̃1,y0),y0 − y⋆⟩ ≤ −2µy∥y0 − y⋆∥2 + 4(f(x̃1,y0)− f(x̃1,y⋆)),

−2 ⟨∇xf(x1, ỹ1),x1 − x⋆⟩ ≤ −µx∥x1 − x⋆∥2 − 2(f(x1, ỹ1)− f(x⋆, ỹ1)).

(91)

Since f has Lipschitz gradients, we have

2 ⟨∇xf(x0, ỹ0),x0 − x̃1⟩ ≤ Lx∥x0 − x̃1∥2 + 2(f(x0, ỹ0)− f(x̃1, ỹ0)),

−2 ⟨∇yf(x̃1,y0),y0 − ỹ0⟩ ≤ Ly∥y0 − ỹ0∥2 − 2(f(x̃1,y0)− f(x̃1, ỹ0)),

−2 ⟨∇yf(x̃1,y0),y0 − ỹ1⟩ ≤ Ly∥y0 − ỹ1∥2 − 2(f(x̃1,y0)− f(x̃1, ỹ1)),

2 ⟨∇xf(x1, ỹ1),x1 − x̃1⟩ ≤ Lx∥x1 − x̃1∥2 + 2(f(x1, ỹ1)− f(x̃1, ỹ1)).

(92)

Rearranging the above conditions, we have

−2(f(x0, ỹ0)− f(x̃1, ỹ0)) ≤ −γα(2− γαLx)∥∇xf(x0, ỹ0)∥2,
2(f(x̃1,y0)− f(x̃1, ỹ0)) ≤ −2ξ(δ − 1)β ⟨∇yf(x̃1,y0),∇yf(x̃0,y−1)⟩+ ξ2(δ − 1)2β2Ly∥∇yf(x̃0,y−1)∥2,
2(f(x̃1,y0)− f(x̃1, ỹ1)) ≤ −δβ(2− δβLy)∥∇yf(x̃1,y0)∥2,

−2(f(x1, ỹ1)− f(x̃1, ỹ1)) ≤ −2(γ − 1)α ⟨∇xf(x1, ỹ1),∇xf(x0, ỹ0)⟩+ (γ − 1)2α2Lx∥∇xf(x0, ỹ0)∥2.

(93)

Since f is convex, we have

2(f(x⋆, ỹ0)− f(x⋆,y⋆)) ≤ 0, −4(f(x̃1,y⋆)− f(x⋆,y⋆)) ≤ 0, 2(f(x⋆, ỹ1)− f(x⋆,y⋆)) ≤ 0. (94)

Summing up (90), (91), (93), and (94), we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

+ α∥∇xf(x0, ỹ0)∥2 + 2β∥∇yf(x̃1,y0)∥2 + α∥∇xf(x1, ỹ1)∥2

− γα(2− γαLx)∥∇xf(x0, ỹ0)∥2 + ξ2(δ − 1)2β2Ly∥∇yf(x̃0,y−1)∥2

− δβ(2− δβLy)∥∇yf(x̃1,y0)∥2 + (γ − 1)2α2Lx∥∇xf(x0, ỹ0)∥2

− 2(γ − 1)α ⟨∇xf(x1, ỹ1),∇xf(x0, ỹ0)⟩ − 2ξ(δ − 1)β ⟨∇yf(x̃1,y0),∇yf(x̃0,y−1)⟩ .

(95)
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STEP 2. USING THE Lxy CONDITIONS

By definition, the Lipschitz gradient condition for Lx and Ly yields the following inequalities:

∥∇xf(x0, ỹ0)−∇xf(x1, ỹ0)∥ ≤ Lx∥x0 − x1∥,
∥∇yf(x̃0,y−1)−∇yf(x̃0,y0)∥ ≤ Ly∥y−1 − y0∥,

which implies

⟨∇xf(x0, ỹ0)−∇xf(x1, ỹ0),x0 − x1⟩ ≤ Lx∥x0 − x1∥2,
−⟨∇yf(x̃0,y−1)−∇yf(x̃0,y0),y−1 − y0⟩ ≤ Ly∥y−1 − y0∥2,

or equivalently,

(1− αLx)∥∇xf(x0, ỹ0)∥2 ≤ ⟨∇xf(x0, ỹ0),∇xf(x1, ỹ0)⟩ ,
ξ2(1− βLy)∥∇yf(x̃0,y−1)∥2 ≤ ξ ⟨∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩ .

Note that since ξ2 = ξ for both ξ = 0 or 1, the inequality for the y side is equivalent to

ξ(1− βLy)∥∇yf(x̃0,y−1)∥2 ≤ ξ ⟨∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩ .

Therefore we can obtain the below inequalities:

−2(γ − 1)α ⟨∇xf(x0, ỹ0),∇xf(x1, ỹ0)⟩ ≤ −2(γ − 1)α(1− αLx)∥∇xf(x0, ỹ0)∥2,
−2ξ(δ − 1)β ⟨∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩ ≤ −2ξ(δ − 1)β(1− βLy)∥∇yf(x̃0,y−1)∥2.

Now we can use the Lipschitz gradient condition for Lxy to obtain

− 2 ⟨∇xf(x1, ỹ1)−∇xf(x1, ỹ0),∇xf(x0, ỹ0)⟩
≤ 2∥∇xf(x1, ỹ1)−∇xf(x1, ỹ0)∥ · ∥∇xf(x0, ỹ0)∥
≤ 2Lxy∥ỹ1 − ỹ0∥ · ∥∇xf(x0, ỹ0)∥
= 2Lxy∥(ỹ1 − y0)− (ỹ0 − y0)∥ · ∥∇xf(x0, ỹ0)∥
= 2Lxy∥δβ∇yf(x̃1,y0)− ξ(δ − 1)β∇yf(x̃0,y−1)∥ · ∥∇xf(x0, ỹ0)∥
≤ 2δβLxy∥∇yf(x̃1,y0)∥ · ∥∇xf(x0, ỹ0)∥+ 2ξ(δ − 1)βLxy∥∇yf(x̃0,y−1)∥ · ∥∇xf(x0, ỹ0)∥

≤ δβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃1,y0)∥2
)

+ ξ(δ − 1)βLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)
,

where we use AM-GM for the last inequality.

Similarly, we can obtain

− 2ξ ⟨∇yf(x̃1,y0)−∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩
≤ 2ξ∥∇yf(x̃1,y0)−∇yf(x̃0,y0)∥ · ∥∇yf(x̃0,y−1)∥
≤ 2ξLxy∥x̃1 − x̃0∥ · ∥∇yf(x̃0,y−1)∥
= 2ξLxy∥(x̃1 − x0)− (x̃0 − x0)∥ · ∥∇yf(x̃0,y−1)∥
= 2ξLxy ∥γα∇xf(x0, ỹ0)− ξ(γ − 1)α∇xf(x−1, ỹ−1)∥ · ∥∇yf(x̃0,y−1)∥
= 2ξLxy ∥γα∇xf(x0, ỹ0)− (γ − 1)α∇xf(x−1, ỹ−1)∥ · ∥∇yf(x̃0,y−1)∥
≤ 2ξγαLxy∥∇xf(x0, ỹ0)∥ · ∥∇yf(x̃0,y−1)∥+ 2ξ(γ − 1)αLxy∥∇xf(x−1, ỹ−1)∥ · ∥∇yf(x̃0,y−1)∥

≤ γξαLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)

+ (γ − 1)ξαLxy

(√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)
,
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where the third equality is true for both ξ = 1 and ξ = 0 (where everything just becomes zero).

From this, we can deduce that

− 2(γ − 1)α ⟨∇xf(x1, ỹ1),∇xf(x0, ỹ0)⟩ − 2ξ(δ − 1)β ⟨∇yf(x̃1,y0),∇yf(x̃0,y−1)⟩
= −2(γ − 1)α ⟨∇xf(x1, ỹ0),∇xf(x0, ỹ0)⟩ − 2ξ(δ − 1)β ⟨∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩
− 2(γ − 1)α ⟨∇xf(x1, ỹ1)−∇xf(x1, ỹ0),∇xf(x0, ỹ0)⟩
− 2ξ(δ − 1)β ⟨∇yf(x̃1,y0)−∇yf(x̃0,y0),∇yf(x̃0,y−1)⟩

≤ −2(γ − 1)α(1− αLx)∥∇xf(x0, ỹ0)∥2 − 2ξ(δ − 1)β(1− βLy)∥∇yf(x̃0,y−1)∥2

+ (γ − 1)δαβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃1,y0)∥2
)

+ ξ(γ − 1)(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)

+ ξγ(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)

+ ξ(γ − 1)(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)
.

Applying this to (95), we have

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

+ α∥∇xf(x0, ỹ0)∥2 + 2β∥∇yf(x̃1,y0)∥2 + α∥∇xf(x1, ỹ1)∥2

− γα(2− γαLx)∥∇xf(x0, ỹ0)∥2 + ξ2(δ − 1)2β2Ly∥∇yf(x̃0,y−1)∥2

− δβ(2− δβLy)∥∇yf(x̃1,y0)∥2 + (γ − 1)2α2Lx∥∇xf(x0, ỹ0)∥2

− 2(γ − 1)α(1− αLx)∥∇xf(x0, ỹ0)∥2 − 2ξ(δ − 1)β(1− βLy)∥∇yf(x̃0,y−1)∥2

+ (γ − 1)δαβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃1,y0)∥2
)

+ ξ(γ − 1)(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)

+ ξγ(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)

+ ξ(γ − 1)(δ − 1)αβLxy

(√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2 +
√
µx
µy

· ∥∇yf(x̃0,y−1)∥2
)
.

(96)

STEP 3. SIMPLIFY USING STEP SIZE CONDITIONS

Let us gather all ∇x terms in (96), and define the sum of all such terms as

Sx = α∥∇xf(x0, ỹ0)∥2 + α∥∇xf(x1, ỹ1)∥2 − γα(2− γαLx)∥∇xf(x0, ỹ0)∥2

+ (γ − 1)2α2Lx∥∇xf(x0, ỹ0)∥2 − 2(γ − 1)α(1− αLx)∥∇xf(x0, ỹ0)∥2

+ (γ − 1)δαβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

+ ξγ(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2.

51



Fundamental Benefit of Alternating Updates in Minimax Optimization

Rearranging terms, we have

Sx = α∥∇xf(x1, ỹ1)∥2 − α∥∇xf(x0, ỹ0)∥2

− ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2

+
(
2α− γα(2− γαLx) + (γ − 1)2α2Lx − 2(γ − 1)α(1− αLx)

)
∥∇xf(x0, ỹ0)∥2

+ ((γ − 1)δ + ξ(3γ − 2)(δ − 1))αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

= α∥∇xf(x1, ỹ1)∥2 − α∥∇xf(x0, ỹ0)∥2

− ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2

− α

(
4(γ − 1)− (2γ2 − 1)αLx − ((γ − 1)δ + ξ(3γ − 2)(δ − 1))βLxy

√
µy
µx

)
· ∥∇xf(x0, ỹ0)∥2

≤ α∥∇xf(x1, ỹ1)∥2 − α∥∇xf(x0, ỹ0)∥2

− ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2

− α
(
4(γ − 1)− (2γ2 − 1)C1 − ((γ − 1)δ + ξ(3γ − 2)(δ − 1))C4

)
∥∇xf(x0, ỹ0)∥2,

where we use α ≤ C1

Lx
and β ≤ C4

Lxy

√
µx

µy
.

Since we have from (52):

4(γ − 1) ≥ (2γ2 − 1)C1 + (4γδ − 3γ − 3δ + 2)C4

= (2γ2 − 1)C1 + ((γ − 1)δ + (3γ − 2)(δ − 1))C4

≥ (2γ2 − 1)C1 + ((γ − 1)δ + ξ(3γ − 2)(δ − 1))C4,

we can deduce that

−α
(
4(γ − 1)− (2γ2 − 1)C1 − ((γ − 1)δ + ξ(3γ − 2)(δ − 1))C4

)
∥∇xf(x0, ỹ0)∥2 ≤ 0

and therefore

Sx ≤ α∥∇xf(x1, ỹ1)∥2 − α∥∇xf(x0, ỹ0)∥2

− ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2.
(97)

Similarly, Let us gather all ∇y terms in (96), and define the sum all such terms as

Sy = 2β∥∇yf(x̃1,y0)∥2 + ξ2(δ − 1)2β2Ly∥∇yf(x̃0,y−1)∥2

− δβ(2− δβLy)∥∇yf(x̃1,y0)∥2 − 2ξ(δ − 1)β(1− βLy)∥∇yf(x̃0,y−1)∥2

+ (γ − 1)δαβLxy

√
µx
µy

· ∥∇yf(x̃1,y0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µx
µy

· ∥∇yf(x̃0,y−1)∥2

+ ξγ(δ − 1)αβLxy

√
µx
µy

· ∥∇yf(x̃0,y−1)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µx
µy

· ∥∇yf(x̃0,y−1)∥2.
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Rearranging terms, we have

Sy =

(
2β − δβ(2− δβLy) + (γ − 1)δαβLxy

√
µx
µy

)
· ∥∇yf(x̃1,y0)∥2

+

(
ξ2(δ − 1)2β2Ly − 2ξ(δ − 1)β(1− βLy) + ξ(3γ − 2)(δ − 1)αβLxy

√
µx
µy

)
· ∥∇yf(x̃0,y−1)∥2

= −β
(
2(δ − 1)− δ2βLy − (γ − 1)δαLxy

√
µx
µy

)
∥∇yf(x̃1,y0)∥2

− ξ(δ − 1)β

(
2− (ξ(δ − 1) + 2)βLy − (3γ − 2)αLxy

√
µx
µy

)
∥∇yf(x̃0,y−1)∥2

≤ −β
(
2(δ − 1)− δ2C2 − (γ − 1)δC3

)
∥∇yf(x̃1,y0)∥2

− ξ(δ − 1)β (2− (ξ(δ − 1) + 2)C2 − (3γ − 2)C3) ∥∇yf(x̃0,y−1)∥2,

where we use β ≤ C2

Ly
and α ≤ C3

Lxy

√
µy

µx
.

Since we have from (53) and (54):

δ − 1 ≥ δ2C2 + (γ − 1)δC3,

2 ≥ (δ + 1)C2 + (3γ − 2)C3 ≥ (ξ(δ − 1) + 2)C2 + (3γ − 2)C3,

we can deduce that

Sy ≤ −(δ − 1)β∥∇yf(x̃1,y0)∥2. (98)

By (97) and (98), we can observe that (96) boils down to

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2 + Sx + Sy

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

+ α∥∇xf(x1, ỹ1)∥2 − α∥∇xf(x0, ỹ0)∥2

− ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2

− (δ − 1)β∥∇yf(x̃1,y0)∥2,

or equivalently

1

α
∥x1 − x⋆∥2 +

2

β
∥y1 − y⋆∥2 +

1

α
∥x2 − x⋆∥2

− α∥∇xf(x1, ỹ1)∥2+(δ − 1)β∥∇yf(x̃1,y0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x0, ỹ0)∥2

≤
(
1

α
− µx

)
∥x0 − x⋆∥2 + 2

(
1

β
− µy

)
∥y0 − y⋆∥2 +

(
1

α
− µx

)
∥x1 − x⋆∥2

− α∥∇xf(x0, ỹ0)∥2 + ξ(γ − 1)(δ − 1)αβLxy

√
µy
µx

· ∥∇xf(x−1, ỹ−1)∥2,

which is identical to (62) and therefore concludes the proof.
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E. Proofs used in Section 6
Here we prove all theorems related to Alex-GDA on bilinear problems presented in Section 6.

• In Appendix E.1 we prove Theorem 6.1 which shows the exact condition for linear convergence of Alex-GDA on
bilinear problems.

• In Appendix E.2 we prove Theorem 6.2 which obtains iteration complexity of Alex-GDA for bilinear problems.

• In Appendix E.3 we prove technical propositions and lemmas used throughout the proofs in Appendix E.

E.1. Proof of Theorem 6.1

Here we prove Theorem 6.1 of Section 6, restated below for the sake of readability.

Theorem 6.1. With a proper choice of step sizes α and β, Alex-GDA linearly converges to a Nash equilibrium of a bilinear
problem if and only if γ + δ > 2. In this case, the exact conditions for convergent step sizes α and β are:{

αβ< 4
(2γ−1)(2δ−1)L2

xy
, if 4γδ−3(γ+δ)+2 ≥ 0,

αβ< γ+δ−2
−(γ−1)(δ−1)(γ+δ−1)L2

xy
, if 4γδ−3(γ+δ)+2 < 0.

Proof. For a bilinear problem f(x,y) = x⊤By, each iteration (k ≥ 0) of Alex-GDA is written as ỹ0 = y0 and

xk+1 = xk − αBỹk,

x̃k+1 = xk − γαBỹk,

yk+1 = yk + βB⊤x̃k+1 = βB⊤xk + yk − γαβB⊤Bỹk,

ỹk+1 = yk + δβB⊤x̃k+1 = δβB⊤xk + yk − γαδβB⊤Bỹk.

This can be represented in the following matrix iteration:

wk+1 =

xk+1

yk+1

ỹk+1

 =

 I 0 −αB
βB⊤ I −γαβB⊤B
δβB⊤ I −γαδβB⊤B

xkyk
ỹk

 = Mwk. (99)

Consider a reduced form of singular value decomposition (SVD) of B = UΣV ⊤: U ∈ Rdx×s,V ∈ Rdy×s,Σ ∈ Rs×s
where s = rank(B). Note that U⊤U = I , V ⊤V = I , and Σ = diag(σ1, . . . , σs) is a diagonal matrix with non-zero
diagonal entries (0 < µxy ≤ σi ≤ Lxy for all i = 1, . . . , s). Then the power of the matrix M defined in Equation (99) can
be decomposed as follows for k ≥ 1.

Mk =

U 0 0
0 V 0
0 0 V


︸ ︷︷ ︸

=:W

 I 0 −αΣ
βΣ I −γαβΣ2

δβΣ I −γαδβΣ2

k
︸ ︷︷ ︸

=:M̃k

U⊤ 0 0
0 V ⊤ 0
0 0 V ⊤

+

I −UU⊤ 0 0
0 I − V V ⊤ 0
0 I − V V ⊤ 0



From this matrix decomposition, a decomposition of the ambient space Rdx+dy+dy naturally arises: a space N =
null(B) × null(B⊤) × null(B⊤) and its orthogonal complement N⊥ = row(B) × row(B⊤) × row(B⊤). The N -
component of the iterate wk is always fixed as (I −UU⊤)x0

(I − V V ⊤)y0

(I − V V ⊤)y0


and does not move at all, while the N⊥-component of wk belong to N⊥ even after each iteration. Since null(B)×null(B⊤)
is the space of all Nash equilibria of the bilinear problem, now it is enough to show that the N⊥-component converges to
the origin; as a result, the iterates (xk,yk) converge to a Nash equilibrium

z⋆ := ((I −UU⊤)x0, (I − V V ⊤)y0). (100)
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To this end, we may assume that the initial iterate w0 belongs to N⊥ from now on. Then, by reasoning above, every iterate
wk belongs to N⊥ and satisfies

wk = WM̃kW⊤w0. (101)

We first claim that it suffices to show ρ(M̃) < 1 to obtain (the necessary and sufficient condition for) the convergence
wk → 0. To prove the claim, let w̃k := W⊤wk. Then we have w̃k = M̃kw̃0. By applying the theory of matrix iteration
(Proposition B.4), ρ(M̃) < 1 if and only if w̃k → 0. Moreover, since wk ∈ N⊥, Ww̃k = WW⊤wk = wk, and thus
w̃k → 0 if and only if wk → 0. Therefore, the rest of the proof is dedicated to finding the condition for ρ(M̃) < 1.

Note that the matrix M̃ ∈ R3s×3s does not have 1 as an eigenvalue. If it does, there exist vectors a, b, c ∈ Rs such that
M̃
[
a⊤ b⊤ c⊤

]⊤
=
[
a⊤ b⊤ c⊤

]⊤
. It implies that

a− αΣc = a,

βΣa+ b− γαβΣ2c = b,

δβΣa+ b− γαδβΣ2c = c,

which implies that a = b = c = 0 because Σ is nonsingular. Thus, 1 cannot have an associated nonzero eigenvector of M .

To inspect the eigenvalues of M̃ , we now apply the theory of Schur complement (Haynsworth, 1968; Zhang, 2006): namely,

det

([
A B
C D

])
= det(A) det(D − CA−1B). Writing the characteristic polynomial of M̃ ,

det(λI − M̃) = det

(λ− 1)I 0 αΣ
−βΣ (λ− 1)I γαβΣ2

−δβΣ −I λI + γαδβΣ2


= det

([
(λ− 1)I 0
−βΣ (λ− 1)I

])
det

(
λI + γαδβΣ2 +

α

λ− 1

[
δβΣ I

] [ I 0

− β
λ−1Σ I

]−1 [
Σ

γβΣ2

])

= (λ− 1)2s det

(
λI + γαδβΣ2 +

α

λ− 1

[
δβΣ I

] [ I 0
β
λ−1Σ I

] [
Σ

γβΣ2

])
= det

(
λ(λ− 1)2I + αβ (γ(λ− 1) + 1) (δ(λ− 1) + 1)Σ2

)
= 0.

Hence, for each eigenvalue σ2
i of Σ2, the roots λ of a cubic polynomial

Pi(λ) := λ(λ− 1)2 + αβσ2
i (γ(λ− 1) + 1) (δ(λ− 1) + 1) (102)

= λ3 − (2− ϕiγδ)λ
2 + {1− ϕi(2γδ − γ − δ)}λ+ ϕi(γ − 1)(δ − 1)

are eigenvalues of M̃ , where ϕi := αβσ2
i > 0. To obtain a necessary and sufficient condition of |λ| < 1, we apply

Proposition D.3:

ϕiγδ − 2 + ϕi(γ − 1)(δ − 1) < 2− ϕi(2γδ − γ − δ), (103)
ϕiγδ − 2 + ϕi(γ − 1)(δ − 1) > −2 + ϕi(2γδ − γ − δ), (104)
ϕiγδ − 2− 3ϕi(γ − 1)(δ − 1) < 2 + ϕi(2γδ − γ − δ), (105)
ϕiγδ − 2− 3ϕi(γ − 1)(δ − 1) > −2− ϕi(2γδ − γ − δ), (106)

ϕi(γ − 1)(δ − 1)(ϕi(γ − 1)(δ − 1)− ϕiγδ + 2) + 1− ϕi(2γδ − γ − δ) < 1, (107)
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which are equivalent to

ϕi
(104)
> 0, (which is already true,) (108)

γ + δ
(106)
>

3

2
, (109)

ϕi(2γ − 1)(2δ − 1)
(103)
< 4, (110)

ϕi(1− 4(γ − 1)(δ − 1))
(105)
< 4, (111)

−(γ − 1)(δ − 1)(γ + δ − 1)ϕi
(107)
< γ + δ − 2. (112)

To make these conditions more concise and interpretable, we conduct a case analysis on γ and δ to know which condition
among them is essential for having |λ| < 1 (in fact, γ + δ > 3

2 is not enough yet!) and to identify what condition on ϕi
should suffice for each case.

Case 1. (γ−1)(δ−1) ≥ 0 and γ+δ > 2. Note that Equation (112) is true. Also, (2γ−1)(2δ−1) > 1−4(γ−1)(δ−1)
since

(2γ − 1)(2δ − 1)− 1 + 4(γ − 1)(δ − 1) = 2(4γδ − 3(γ + δ) + 2)

= 8(γ − 1)(δ − 1) + 2(γ + δ − 2) > 0.

Thus, Equation (110) implies Equation (111). It means that Equation (110) alone is enough: |λ| < 1 if

ϕi <
4

(2γ − 1)(2δ − 1)
.

Case 2. (γ − 1)(δ − 1) ≥ 0 and 3
2 < γ + δ ≤ 2. For this case, it is impossible to satisfy all four conditions (109)–(112)

at the same time. We prove it by contradiction. Note that 0 < (2γ − 1)(2δ − 1) < 1− 4(γ − 1)(δ − 1) since

(2γ − 1)(2δ − 1) = 4(γ − 1)(δ − 1) + 2(γ + δ)− 3 > 0,

(2γ − 1)(2δ − 1)− 1 + 4(γ − 1)(δ − 1) = 2(4γδ − 3(γ + δ) + 2)

≤ 2((γ + δ)2 − 3(γ + δ) + 2)

= 2(γ + δ − 1)(γ + δ − 2) < 0.

From Equation (111) and Equation (112), it must hold that

2− γ − δ

(γ − 1)(δ − 1)(γ + δ − 1)
< ϕi <

4

1− 4(γ − 1)(δ − 1)
.

However, it implies that

4(γ − 1)(δ − 1)(γ + δ − 1)− (2− γ − δ)(1− 4(γ − 1)(δ − 1))

= 4γδ − 3(γ + δ) + 2 > 0,

which is a contradiction.

Case 3. (γ − 1)(δ − 1) < 0 and 3
2 < γ + δ ≤ 2. This case is also impossible since it contradicts Equation (112).

Case 4. (γ − 1)(δ − 1) < 0, γ + δ > 2, and 4γδ − 3(γ + δ) + 2 ≥ 0. In this case, it holds that

0 <
−(γ − 1)(δ − 1)(γ + δ − 1)

γ + δ − 2
≤ 1− 4(γ − 1)(δ − 1)

4
≤ (2γ − 1)(2δ − 1)

4

since

(2γ − 1)(2δ − 1)− 1 + 4(γ − 1)(δ − 1) = 2(4γδ − 3(γ + δ) + 2) ≥ 0
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and

4(γ − 1)(δ − 1)(γ + δ − 1) + (γ + δ − 2)(1− 4(γ − 1)(δ − 1))

= 4γδ − 3(γ + δ) + 2 ≥ 0.

Thus, Equation (110) implies Equation (111) and Equation (112). Since the rightmost term is positive, we have |λ| < 1 if

ϕi <
4

(2γ − 1)(2δ − 1)
.

Case 5. (γ − 1)(δ − 1) < 0, γ + δ > 2, and 4γδ − 3(γ + δ) + 2 < 0. In this case, it holds that

(2γ − 1)(2δ − 1)

4
<

1− 4(γ − 1)(δ − 1)

4
<

−(γ − 1)(δ − 1)(γ + δ − 1)

γ + δ − 2

Thus, Equation (112) implies Equation (110) and Equation (111). Since the rightmost term is positive, we have |λ| < 1 if

ϕi <
γ + δ − 2

−(γ − 1)(δ − 1)(γ + δ − 1)
.

Combining all these five cases,

1. (Case 2 + Case 3) If γ + δ ≤ 2, the polynomial Pi(λ) must have a root outside of the open unit disk; hence, the matrix
iteration in Equation (101) diverges.

2. (Case 1 + Case 4) If γ + δ > 2 and 4γδ− 3(γ + δ) + 2 ≥ 0 (which includes the case of γ + δ > 2, γ ≥ 1, and δ ≥ 1),
all the roots of the polynomial Pi(λ) lie on the open unit disk |λ| < 1 if

ϕi <
4

(2γ − 1)(2δ − 1)
.

Hence if we choose step sizes α and β such that

αβ <
4

(2γ − 1)(2δ − 1)L2
xy

,

then all the eigenvalues of M̃ lie on the open unit disk; the matrix iteration in Equation (101) does converge.

3. (Case 5) If γ + δ > 2 and 4γδ − 3(γ + δ) + 2 < 0, all the roots of the polynomial Pi(λ) lie on the open unit disk
|λ| < 1 if

ϕi <
γ + δ − 2

−(γ − 1)(δ − 1)(γ + δ − 1)
.

Hence if we choose step sizes α and β such that

αβ <
γ + δ − 2

−(γ − 1)(δ − 1)(γ + δ − 1)L2
xy

,

then all the eigenvalues of M̃ lie on the open unit disk; the matrix iteration in Equation (101) does converge.

This proves the theorem.
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E.2. Proof of Theorem 6.2

Here we prove Theorem 6.2 of Section 6, restated below for the sake of readability.
Theorem 6.2. For general γ ≥ 1 and δ ≥ 1 such that γ + δ > 2, If we choose the step sizes α and β so that αβ = 1

Cγ,δL2
xy

where Cγ,δ > 0 is a constant that only depends on γ and δ, an iteration complexity upper bound of Alex-GDA is

O

(
Cγ,δ

γ + δ − 2
·
(
Lxy
µxy

)2
· log

(
∥w0∥2

ϵ

))
,

where ∥w0∥2=∥x0−x⋆∥2+2∥y0−y⋆∥2 and z⋆=(x⋆,y⋆) is a uniquely determined Nash equilibrium if z0 is given.

If δ = 1, the optimal rate exponent of Alex-GDA is

lim
k→∞

∥zk − z⋆∥
∥zk−1 − z⋆∥

=

√
L2
xy − µ2

xy

L2
xy + µ2

xy

,

where the optimal choice of parameters are

αβ =
2µ2

xy/L
2
xy

L2
xy + µ2

xy

, γ = 1 +
L2
xy

µ2
xy

.

Proof. Recall that the Nash equilibrium that the iterates converges to is already characterized in Equation (100). So, as in
the proof in Appendix E.2, we again assume that w0 (defined in Equation (99)) belongs to N⊥ = row(B)× row(B⊤)×
row(B⊤) and we inspect the convergence (to 0) of the sequence (101). For this reason, we analyze the spectral radius
of the matrix M̃ (defined in Equation (99)). This will directly give us a convergence rate as well as iteration complexity
(Õ
(

1

1−ρ(M̃)

)
).

We divide the proof into two parts: the case of general parameters γ ≥ 1 and δ ≥ 1, and the case of δ = 1. Throughout the
proof, we keep the notation consistent with the proof of Theorem 6.1 in Appendix E.1.

E.2.1. THE CASE OF GENERAL γ ≥ 1 AND δ ≥ 1

We have to find an upper bound of |λ| which is strictly smaller than 1, whose difference with 1 is not negligible. Hence, we
use a slightly smaller bound ϕi ≤ 2

(2γ−1)(2δ−1) than that in Theorem 6.1.

With some substitutions

ψi := αβγδσ2
i = γδϕi > 0, Γ := 1− 1

γ
∈ [0, 1), ∆ := 1− 1

δ
∈ [0, 1),

we can rewrite the polynomial Pi(λ) as

Pi(λ) = λ(λ− 1)2 + ψi(λ− Γ)(λ−∆) (113)

= λ3 − (2− ψi)λ
2 + {1− ψi(Γ + ∆)}λ+ ψiΓ∆.

Since Pi(0) = ψiΓ∆ ≥ 0 and

Pi

(
−1

2

)
= −9

8
+ ψi

(
Γ +

1

2

)(
∆+

1

2

)
< 0

holds because

ψi ≤
2

(Γ + 1)(∆ + 1)
=

2γδ

(2γ − 1)(2δ − 1)
=

9γδ

2
(
3γ − 3

2

) (
3δ − 3

2

)
<

9γδ

2 (3γ − 2) (3δ − 2)
=

9

8
(
Γ + 1

2

) (
∆+ 1

2

) .
Thus, there exists a non-positive real root −r ∈ (− 1

2 , 0].

We can show that there is no positive real root if ψi is small enough.

58



Fundamental Benefit of Alternating Updates in Minimax Optimization

Proposition E.1. The polynomial Pi(λ) defined in Equation (113) has no positive real root if

ψi|Γ−∆| ≤ min
{
(1− Γ)2, (1−∆)2

}
.

The proof of this proposition can be found in Appendix E.3.1. From the root coefficient relationship, we know that the sum
of three roots of Pi(λ) equals 2− ψi > 0, which holds because ψi ≤ 2

(Γ+1)(∆+1) < 2. Hence, Pi(λ) must have a single
real root −r ≤ 0 and two complex conjugate roots c and c̄, where ℜ[c] > 0.

Note that we have another bound for the unique real root. Plugging in λ = −r to Pi(λ) = 0, we have

{1− ψi(Γ + ∆)} (−r) + ψiΓ∆ = r3 + (2− ψi)r
2 ≥ 0,

∴ r ≤ ψiΓ∆

1− ψi(Γ + ∆)
. (114)

Again from the root coefficient relationship, we know that

−r + 2ℜ[c] = 2− ψi,

−2rℜ[c] + |c|2 = 1− ψi(Γ + ∆).

Plugging one into another, we have an expression of the squared absolute value of a complex root in terms of r as

|c|2 = 1− ψi(Γ + ∆) + r(2− ψi + r)

(114)
≤ 1− ψi(Γ + ∆) +

ψiΓ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)
= 1− ψi

{
Γ +∆− Γ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)} (115)

To show that |c|2 is strictly smaller than 1, we want to show that

Γ +∆− Γ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)
> 0.

In fact, this is shown in the following proposition.

Proposition E.2.

Γ +∆− Γ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)
≥ 1

4
(Γ +∆− 2Γ∆) > 0

if ψi ≤ Γ+∆−2Γ∆
2(Γ+∆)2 .

The proof of this proposition can be found in Appendix E.3.2. Therefore, gathering the fact that | − r|2 < 1
4 , Equation (115),

and Proposition E.2, for every root λ of the polynomial Pi(λ),

|λ|2 < max

{
1

4
, 1− ψi

4
(Γ +∆− 2Γ∆)

}
= max

{
1

4
, 1− 1

4
αβσ2

i (γ + δ − 2)

}
,

(116)

where

ψi ≤ min

{
2

(Γ + 1)(∆ + 1)
,
min

{
(1− Γ)2, (1−∆)2

}
|Γ−∆|

,
Γ +∆− 2Γ∆

2(Γ +∆)2

}
,
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or equivalently,

αβσ2
i ≤ 1

Cγ,δ
,

where Cγ,δ := max

{
(2γ − 1)(2δ − 1)

2
, |γ − δ|max {γ, δ}2 , 2(2γδ − γ − δ)2

γ + δ − 2

}
. (117)

Hence, if we choose step sizes α and β such that αβ = 1
Cγ,δL2

xy
, the bound in Equation (116) holds for all i = 1, ..., s,

thereby we obtain a strict upper bound of spectral radius of the matrix M̃ as follows:

ρ(M̃)2 < max

{
1

4
, 1− 1

4
αβµ2

xy(γ + δ − 2)

}
,

= max

{
1

4
, 1− γ + δ − 2

4Cγ,δ

µ2
xy

L2
xy

}
.

In conclusion, the matrix iteration in Equation (101) can satisfy ∥wk∥2 < ϵ with

k = O

(
max

{
1,

Cγ,δ
γ + δ − 2

·
L2
xy

µ2
xy

}
log

(
∥w0∥2

ϵ

))

iterations.

Remark E.3. One may notice that the constant Cγ,δ defined in Equation (117) may grow as γ3 or δ3, which can make the
range of step size with certified convergence rate shrink and degrade the iteration complexity. However, when δ = 1, our
analysis gets simpler and we can choose an optimal set of parameters α, β, and γ to “optimize” the spectral radius (and thus
the convergence rate).

E.2.2. THE CASE OF δ = 1 (γ > 1)

Let us go back to the polynomial Pi(λ) (Equation (102)). If δ = 1 (and thus we choose γ > 1), the polynomial becomes

P
(δ=1)
i (λ) = λ

{
(λ− 1)2 + αβσ2

i (γλ− (γ − 1))
}
.

So, we know one root exactly: λ = 0. Since we want a small absolute value of eigenvalues but 0 is a trivial lower bound of
|λ|, we only have to care about the other two roots: (λ− 1)2 + αβσ2

i (γλ− (γ − 1)) = 0, or

λ0 := 1−
γαβσ2

i −
√
(2− γαβσ2

i )
2 − 4(1− (γ − 1)αβσ2

i )

2
,

λ1 := 1−
γαβσ2

i +
√

(2− γαβσ2
i )

2 − 4(1− (γ − 1)αβσ2
i )

2
.

The maximum absolute value of eigenvalues can be calculated as

max {|λ0|, |λ1|}

=


√
1− (γ − 1)αβσ2

i if (2− γαβσ2
i )

2 ≤ 4(1− (γ − 1)αβσ2
i ),∣∣∣∣1− γαβσ2

i

2

∣∣∣∣+
√
(2− γαβσ2

i )
2 − 4(1− (γ − 1)αβσ2

i )

2
if (2− γαβσ2

i )
2 > 4(1− (γ − 1)αβσ2

i ).

=


√
1− (γ − 1)αβσ2

i if γ2αβσ2
i ≤ 4,∣∣∣∣1− γαβσ2

i

2

∣∣∣∣+
√
(γ2αβσ2

i − 4)αβσ2
i

2
if γ2αβσ2

i > 4.
(118)

=: r(α, β, γ, σ2
i )
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Thus, if we want to optimize the spectral radius ρ(M̃) (which directly gives the convergence rate exponent) by choosing
parameters α, β, and γ, we have to solve the following minimax problem:

min
α,β,γ

max
i=1,...,s

r(α, β, γ, σ2
i ).

Suppose Lxy = σ1 ≥ · · · ≥ σs = µxy . We consider 3 cases:

Case 1. γ2αβL2
xy ≤ 4. In this case, γ2αβσ2

i ≤ 4 holds for all i = 1, . . . , s, and then r(α, β, γ, σ2
i ) =√

1− (γ − 1)αβσ2
i is a decreasing function of σ2

i . Hence, it suffices to minimize
√
1− (γ − 1)αβµ2

xy over α, β, and γ.

The optimal choice of αβ is 4
γ2L2

xy
which comes from the condition γ2αβL2

xy ≤ 4, so we minimize
√

1− 4(γ−1)µ2
xy

γ2L2
xy

over

γ. The optimal γ is 2, so the optimal spectral radius is
√
1− µ2

xy

L2
xy

, which can be obtained with αβ = 1
L2

xy
and γ = 2.

Case 2. γ2αβµ2
xy ≥ 4. Note that

∣∣∣∣1− γαβσ2
i

2

∣∣∣∣+
√

(γ2αβσ2
i − 4)αβσ2

i

2

is an increasing function in terms of σ2
i ≥ 4

γ2αβ . This can be shown by proving that

1− γαβσ2
i

2
+

√
(γ2αβσ2

i − 4)αβσ2
i

2

and

−1 +
γαβσ2

i

2
+

√
(γ2αβσ2

i − 4)αβσ2
i

2

are both increasing functions in terms of σ2
i . The latter case is easy, so we show for the former one: using the derivative in

σ2
i ,

d

dσ2
i

(
−γαβσ2

i +
√

(γ2αβσ2
i − 4)αβσ2

i

)
= −γαβ +

γ2α2β2σ2
i − 2αβ√

γ2α2β2σ4
i − 4αβσ2

i

> 0,

So it suffices to minimize ∣∣∣∣∣1− γαβL2
xy

2

∣∣∣∣∣+
√
(γ2αβL2

xy − 4)αβL2
xy

2

over α, β, and γ. In fact, this is also an increasing function in terms of αβ ≥ 4
γ2µ2

xy
and the optimal choice of αβ is 4

γ2µ2
xy

(which comes from the condition γ2αβµ2
xy ≥ 4). So it is left to minimize∣∣∣∣∣1− 2L2

xy

γµ2
xy

∣∣∣∣∣+ 2Lxy
γµxy

√
L2
xy

µ2
xy

− 1

over γ. This has a minimum
√
1− µ2

xy

L2
xy

at γ =
2L2

xy

µ2
xy

. Hence, the optimal spectral radius is
√
1− µ2

xy

L2
xy

, which is achieved

with γ =
2L2

xy

µ2
xy

and αβ =
µ2
xy

L4
xy

.
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Case 3. γ2αβµ2
xy ≤ 4 ≤ γ2αβL2

xy . Maximizing r(α, β, γ, σ2
i ) over i = 1, . . . , s, we only need to obtain

min
α,β,γ

max

√1− (γ − 1)αβµ2
xy,

∣∣∣∣∣1− γαβL2
xy

2

∣∣∣∣∣+
√
(γ2αβL2

xy − 4)αβL2
xy

2

 .

For a fixed γ, the optimal X := αβ is uniquely attained when

√
1− (γ − 1)µ2

xyX =

∣∣∣∣∣1− γL2
xyX

2

∣∣∣∣∣+
√
γ2L4

xyX
2 − 4L2

xyX

2
, (119)

because the left hand side decreases in X but the right hand side increases in X , as well as

√
1− (γ − 1)µ2

xy

4

γ2L2
xy

≥

∣∣∣∣∣1− γL2
xy

2

4

γ2L2
xy

∣∣∣∣∣+ 0 (120)

and

√
1− (γ − 1)µ2

xy

4

γ2µ2
xy

≤

∣∣∣∣∣1− γL2
xy

2

4

γ2µ2
xy

∣∣∣∣∣+
√
γ2L4

xy

(
4

γ2µ2
xy

)2
− 4L2

xy

(
4

γ2µ2
xy

)
2

. (121)

Equation (120) can be shown as

(
1− (γ − 1)µ2

xy

4

γ2L2
xy

)
−
(
1− 2

γ

)2

=
4(γ − 1)

γ2

(
1−

µ2
xy

L2
xy

)
≥ 0.

In addition, Equation (121) can be shown as the following case analysis: if γ ≤ L2
xy

µ2
xy

+ 1 then

∣∣∣∣∣1− 2L2
xy

γµ2
xy

∣∣∣∣∣
2

−
(
1− 4(γ − 1)

γ2

)
=

4

γ2

(
L2
xy

µ2
xy

− 1

)(
L2
xy

µ2
xy

+ 1− γ

)
≥ 0,

if
L2

xy

µ2
xy

+ 1 < γ ≤ 2L2
xy

µ2
xy

then

2Lxy
γµxy

√
L2
xy

µ2
xy

− 1 +

(
2L2

xy

γµ2
xy

− 1

)
−
(
1− 2

γ

)
≥ 2

γ

{
Lxy
µxy

√
L2
xy

µ2
xy

− 1−

(
L2
xy

µ2
xy

− 1

)}
≥ 0,

and if γ >
2L2

xy

µ2
xy

,

2Lxy
γµxy

√
L2
xy

µ2
xy

− 1 +

(
1−

2L2
xy

γµ2
xy

)
−
(
1− 2

γ

)
=

2

γ

{
Lxy
µxy

√
L2
xy

µ2
xy

− 1−

(
L2
xy

µ2
xy

− 1

)}
≥ 0.
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Solving Equation (119),

1− (γ − 1)µ2
xyX = 1− γL2

xyX +
γ2L4

xy

4
X2 +

γ2L4
xyX

2 − 4L2
xyX

4
+ 2

∣∣∣∣∣1− γL2
xyX

2

∣∣∣∣∣
√
γ2L4

xyX
2 − 4L2

xyX

2
,

{
(γ + 1)L2

xy − (γ − 1)µ2
xy

}
X −

γ2L4
xy

2
X2 =

∣∣∣∣∣1− γL2
xyX

2

∣∣∣∣∣√γ2L4
xyX

2 − 4L2
xyX,

{
(γ + 1)L2

xy − (γ − 1)µ2
xy

}2
X2 −

{
(γ + 1)L2

xy − (γ − 1)µ2
xy

}
γ2L4

xyX
3 +

γ4L8
xy

4
X4

=

(
1− γL2

xyX +
γ2L4

xyX
2

4

)(
γ2L4

xyX
2 − 4L2

xyX
)

= −4L2
xyX +

(
γ2 + 4γ

)
L4
xyX

2 −
(
γ3 + γ2

)
L6
xyX

3 +
γ4L8

xy

4
X4,

4L2
xy −

(
(2γ − 1)L4

xy + 2(γ2 − 1)L2
xyµ

2
xy − (γ − 1)2µ4

xy

)︸ ︷︷ ︸
=:B(γ)

X + (γ3 − γ2)L4
xyµ

2
xyX

2 = 0. (122)

The discriminant equals

B(γ)2 − 16(γ3 − γ2)L6
xyµ

2
xy

=
(
L2
xy − (γ − 1)µ2

xy

)2 (
(2γ − 1)2L4

xy − 2L2
xyµ

2
xy(2γ

2 − γ − 1) + (γ − 1)2µ4
xy

)
=
(
L2
xy − (γ − 1)µ2

xy

)2 {(
(2γ + 1)L2

xy − (γ − 1)µ2
xy

)2 − (2
√
2γL2

xy)
2
}
≥ 0,

(123)

where the last inequality is due to

(2γ + 1)L2
xy − (γ − 1)µ2

xy ≥ (γ + 2)L2
xy ≥ 2

√
2γL2

xy.

Solving the quadratic equation in Equation (122), there are two possible optimal choices of X .

X =
B(γ)±

√
B(γ)2 − 16(γ3 − γ2)L6

xyµ
2
xy

2(γ3 − γ2)L4
xyµ

2
xy

Nevertheless, we take only the minus sign to maximize the value of
√
1− (γ − 1)µ2

xyX among possible X’s. This is
because, if we took the plus sign, the X would be a solution of

√
1− (γ − 1)µ2

xyX = −

∣∣∣∣∣1− γL2
xyX

2

∣∣∣∣∣+
√
γ2L4

xyX
2 − 4L2

xyX

2
,

but would not be a solution of Equation (119). In other words, the optimal choice of X given a fixed γ is

X∗(γ) :=
B(γ)−

√
B(γ)2 − 16(γ3 − γ2)L6

xyµ
2
xy

2(γ3 − γ2)L4
xyµ

2
xy

. (124)

Putting this into the left hand side of Equation (119), now we need to minimize√√√√
1−

B(γ)−
√
B(γ)2 − 16(γ3 − γ2)L6

xyµ
2
xy

2γ2L4
xy

.

Here we utilize the following fact.
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Proposition E.4. Recall that B(γ) = (2γ − 1)L4
xy + 2(γ2 − 1)L2

xyµ
2
xy − (γ − 1)2µ4

xy . Then,

h(γ) :=
B(γ)−

√
B(γ)2 − 16(γ3 − γ2)L6

xyµ
2
xy

γ2

is increasing for γ ∈
[
1, 1 +

L2
xy

µ2
xy

]
and decreasing for γ ∈

[
1 +

L2
xy

µ2
xy
,∞
)

.

The proof can be found in Appendix E.3.3. Thus, the optimal value of γ is

γ∗ = 1 +
L2
xy

µ2
xy

.

In this case,

B(γ∗) =

(
2L2

xy

µ2
xy

+ 1

)
L4
xy + 2

(
L2
xy

µ2
xy

+ 2

)
L4
xy − L4

xy

= 4

(
L2
xy

µ2
xy

+ 1

)
L4
xy,

from which we can check

B(γ∗)
2 − 16(γ3∗ − γ2∗)L

6
xyµ

2
xy = 0.

Therefore, the optimal X in Equation (124) becomes much simpler:

X∗(γ∗) =
B(γ∗)

2(γ3∗ − γ2∗)L
4
xyµ

2
xy

=
4
(
L2

xy

µ2
xy

+ 1
)
L4
xy

2
(
1 +

L2
xy

µ2
xy

)2
L6
xy

=
2µ2

xy

L2
xy(L

2
xy + µ2

xy)
,

and the corresponding spectral radius is

√
1− (γ∗ − 1) ·X∗(γ∗) · µ2

xy =

√
1−

2µ2
xy

L2
xy + µ2

xy

=

√
L2
xy − µ2

xy

L2
xy + µ2

xy

which is an even better (i.e., smaller) spectral radius than those in Case 1 and Case 2. This concludes the proof.

E.3. Proofs used in Appendix E

Here we prove some technical propositions and lemmas used throughout Appendix E.

E.3.1. PROOF OF PROPOSITION E.1

Here we prove Proposition E.1, restated below for the sake of readability.

Proposition E.1. The polynomial Pi(λ) defined in Equation (113) has no positive real root if

ψi|Γ−∆| ≤ min
{
(1− Γ)2, (1−∆)2

}
.
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Proof. Without loss of generality, suppose 0 ≤ Γ ≤ ∆ < 1. Let p(λ) = λ(λ − 1)2 and q(λ) = −ψi(λ − Γ)(λ − ∆);
simply Pi(λ) = p(λ)− q(λ). Since p(λ) ≥ 0 for λ ≥ 0 and q(λ) ≥ 0 only if λ ∈ [Γ,∆] ⊂ [0, 1], Pi(λ) can have a positive
root only in the interval [Γ,∆]. So it suffices to show that Pi(λ) > 0 for λ ∈ [Γ,∆] for proving the proposition.

Note that, for λ ∈ [Γ,∆], Pi(λ) ≥ λ(1 − ∆)2 + ψi(λ − Γ)(λ − ∆) =: Q(λ). Now it suffices to show Q(λ) > 0 for
λ ∈ [Γ,∆].

Note that Q(λ) is a quadratic polynomial and

Q(λ) = ψi

(
λ− ψi(Γ + ∆)− (1−∆)2

2ψi

)2

−
{
ψi(Γ + ∆)− (1−∆)2

}2
4ψi

+ ψiΓ∆.

Since 0 < Q(Γ) = Γ(1−∆)2 ≤ Q(∆) = ∆(1−∆)2, we can ensure Q(λ) > 0 on [Γ,∆] if ψi(Γ+∆)−(1−∆)2

2ψi
≤ Γ. It is

equivalent to ψi(∆− Γ) ≤ (1−∆)2, which proves the proposition.

E.3.2. PROOF OF PROPOSITION E.2

Here we prove Proposition E.2, restated below for the sake of readability.

Proposition E.2.

Γ +∆− Γ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)
≥ 1

4
(Γ +∆− 2Γ∆) > 0

if ψi ≤ Γ+∆−2Γ∆
2(Γ+∆)2 .

Proof. Since 1− ψi(Γ + ∆) ∈ (0, 1], the left hand side can be lower bounded as

Γ +∆− Γ∆

1− ψi(Γ + ∆)

(
2− ψi +

ψiΓ∆

1− ψi(Γ + ∆)

)
=

(Γ +∆)(1− ψi(Γ + ∆))2 − Γ∆((2− ψi)(1− ψi(Γ + ∆)) + ψiΓ∆)

(1− ψi(Γ + ∆))2

≥ (Γ + ∆)(1− ψi(Γ + ∆))2 − Γ∆((2− ψi)(1− ψi(Γ + ∆)) + ψiΓ∆) ,

(125)

Which is a quadratic polynomial of ψi. Let

R(x) := (Γ +∆)(1− x(Γ + ∆))2 − Γ∆((2− x)(1− x(Γ + ∆)) + xΓ∆)

=
{
(Γ + ∆)

(
Γ2 + Γ∆+∆2

)}︸ ︷︷ ︸
=a>0

x2 −
{
(Γ + ∆− Γ∆)2 + Γ2 + Γ∆+∆2

}︸ ︷︷ ︸
=b>0

x+ {Γ +∆− 2Γ∆}︸ ︷︷ ︸
=c>0

.

The discriminant of R(x) is

D = b2 − 4ac

=
{
(Γ + ∆− Γ∆)2 + Γ2 + Γ∆+∆2

}2 − 4(Γ +∆)
(
Γ2 + Γ∆+∆2

)
{Γ +∆− 2Γ∆}

= Γ2∆2
{
8(Γ +∆)2 + (−1 + Γ∆)2 − 4(Γ +∆)(1 + Γ∆)

}
= Γ2∆2

{
Γ2(∆2 − 4∆ + 8)− 2Γ(2∆2 − 7∆ + 2) + 8∆2 − 4∆ + 1

}
= Γ2∆2

{
(∆2 − 4∆ + 8)

(
Γ− 2∆2 − 7∆ + 2

∆2 − 4∆ + 8

)2

+
(∆2 − 4∆ + 8)(8∆2 − 4∆ + 1)− (2∆2 − 7∆ + 2)2

∆2 − 4∆ + 8

}

= Γ2∆2

{
((∆− 2)2 + 4)

(
Γ− 2∆2 − 7∆ + 2

∆2 − 4∆ + 8

)2

+
4(∆2 + 1)(∆− 1)2 + 16∆2

(∆− 2)2 + 4

}
≥ 0,

65



Fundamental Benefit of Alternating Updates in Minimax Optimization

so R(x) must have two (possibly identical) positive real roots. This means that if we find a lower bound x̄ > 0 for the roots,
we can confirm that R(x) ≥ R(x̄) for all x ∈ [0, x̄]. Using the fact

√
1− x ≤ 1− x

2 for all x ≤ 1, we have

b−
√
b2 − 4ac

2a
≥ b

2a

(
1− 1 +

2ac

b2

)
=
c

b

=
Γ +∆− 2Γ∆

(Γ +∆− Γ∆)2 + Γ2 + Γ∆+∆2

>
Γ +∆− 2Γ∆

2(Γ +∆)2
=: x̄.

Continuing from Equation (125), since we assumed ψi ≤ x̄,

R(ψi) ≥ R(x̄)

= (Γ +∆)

(
1− Γ +∆− 2Γ∆

2(Γ +∆)

)2

− Γ∆

((
2− Γ +∆− 2Γ∆

2(Γ +∆)2

)(
1− Γ +∆− 2Γ∆

2(Γ +∆)

)
+

Γ +∆− 2Γ∆

2(Γ +∆)2
Γ∆

)
=

(Γ +∆+ 2Γ∆)2

4(Γ +∆)
− Γ∆

((
2− Γ +∆− 2Γ∆

2(Γ +∆)2

)
Γ +∆+ 2Γ∆

2(Γ +∆)
+

Γ +∆− 2Γ∆

2(Γ +∆)2
Γ∆

)
≥ (Γ + ∆+ 2Γ∆)2

4(Γ +∆)
− Γ∆

(
Γ +∆+ 2Γ∆

Γ +∆
+

Γ +∆− 2Γ∆

2(Γ +∆)2
Γ∆

)
=

(Γ +∆+ 2Γ∆)(Γ +∆− 2Γ∆)

4(Γ +∆)
− Γ +∆− 2Γ∆

2(Γ +∆)2
Γ2∆2

=
Γ +∆− 2Γ∆

4(Γ +∆)2
{
(Γ + ∆+ 2Γ∆)(Γ +∆)− 2Γ2∆2

}
≥ 1

4
(Γ +∆− 2Γ∆) > 0.

which concludes the proof of the proposition.

E.3.3. PROOF OF PROPOSITION E.4

Here we prove Proposition E.4, restated below for the sake of readability.
Proposition E.4. Recall that B(γ) = (2γ − 1)L4

xy + 2(γ2 − 1)L2
xyµ

2
xy − (γ − 1)2µ4

xy . Then,

h(γ) :=
B(γ)−

√
B(γ)2 − 16(γ3 − γ2)L6

xyµ
2
xy

γ2

is increasing for γ ∈
[
1, 1 +

L2
xy

µ2
xy

]
and decreasing for γ ∈

[
1 +

L2
xy

µ2
xy
,∞
)

.

Proof. From the calculation in Equation (123),

h(γ) =
B(γ)−

∣∣L2
xy − (γ − 1)µ2

xy

∣∣√(2γ − 1)2L4
xy − 2L2

xyµ
2
xy(2γ

2 − γ − 1) + (γ − 1)2µ4
xy

γ2

= min {F (γ), G(γ)}

where

F (γ) =
B(γ)−

(
L2
xy − (γ − 1)µ2

xy

)√
(2γ − 1)2L4

xy − 2L2
xyµ

2
xy(2γ

2 − γ − 1) + (γ − 1)2µ4
xy

γ2
,

G(γ) =
B(γ) +

(
L2
xy − (γ − 1)µ2

xy

)√
(2γ − 1)2L4

xy − 2L2
xyµ

2
xy(2γ

2 − γ − 1) + (γ − 1)2µ4
xy

γ2
.
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We want to show that F (γ) is increasing and G(γ) is decreasing for γ ∈ [1,∞). Let

J(γ) :=
B(γ)

γ2
=

(
2γ − 1

γ2

)
L4
xy + 2

(
1− 1

γ2

)
L2
xyµ

2
xy −

(
1− 1

γ

)2

µ4
xy,

K(γ) :=
L2
xy − (γ − 1)µ2

xy

γ2
,

M(γ) := (2γ − 1)2L4
xy − 2L2

xyµ
2
xy(2γ

2 − γ − 1) + (γ − 1)2µ4
xy,

so that

F (γ) = J(γ)−K(γ)
√
M(γ),

G(γ) = J(γ) +K(γ)
√
M(γ).

Then,

J ′(γ) = −2

(
γ − 1

γ3

)
(L4

xy + µ4
xy) +

4

γ3
L2
xyµ

2
xy,

K ′(γ) =
−2L2

xy + (γ − 2)µ2
xy

γ3
,

M ′(γ) = 4(2γ − 1)L4
xy − 2(4γ − 1)L2

xyµ
2
xy + 2(γ − 1)µ4

xy.

So,

F ′(γ) =
2J ′(γ)

√
M(γ)− 2K ′(γ)M(γ)−K(γ)M ′(γ)

2
√
M(γ)

,

G′(γ) =
2J ′(γ)

√
M(γ) + 2K ′(γ)M(γ) +K(γ)M ′(γ)

2
√
M(γ)

.

We proceed the calculation with κ :=
Lxy

µxy
≥ 1.

γ3

2µ6
xy

F ′(γ)
√
M(γ) =

γ3

µ6
xy

(
1

2
J ′(γ)

√
M(γ)− 1

2
K ′(γ)M(γ)− 1

4
K(γ)M ′(γ)

)
=
(
−(γ − 1)(κ4 + 1) + 2κ2

)√
(2γ − 1)2κ4 − 2(2γ2 − γ − 1)κ2 + (γ − 1)2

− 1

2

(
−2κ2 + (γ − 2)

) (
(2γ − 1)2κ4 − 2(2γ2 − γ − 1)κ2 + (γ − 1)2

)
− γ

2

(
κ2 − (γ − 1)

) (
(4γ − 2)κ4 − (4γ − 1)κ2 + (γ − 1)

)
=
(
−(κ4 + 1)γ + (κ2 + 1)2

)√
(2κ2 − 1)2γ2 − (4κ4 − 2κ2 + 2)γ + (κ2 + 1)2

+ (2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3.
(126)

We show that this is indeed nonnegative for γ ≥ 1 and κ ≥ 1. To this end, note that,

(2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3

= 2γ2 + (κ2 + 1)
{
(2κ4 − κ2 − 1)γ2 − (3κ4 − κ2 + 2)γ + (κ2 + 1)2

}
≥ 2

{
(2κ4 − κ2)γ2 − (3κ4 − κ2 + 2)γ + (κ2 + 1)2

}
= 2

{
(2κ4 − κ2)

(
γ − 3κ4 − κ2 + 2

4κ4 − 2κ2

)2

− (3κ4 − κ2 + 2)2 − 4(κ2 + 1)2(2κ4 − κ2)

4(2κ4 − κ2)

}

= 2

{
(2κ4 − κ2)

(
γ − 3κ4 − κ2 + 2

4κ4 − 2κ2

)2

− κ8 − 18κ6 + 13κ4 + 4

4(2κ4 − κ2)

}
.
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Note that 2κ4 − κ2 > 0. Also, (i) if 1 ≤ κ < 4 then

κ8 − 18κ6 + 13κ4 + 4 = (κ− 1)(κ+ 1)(κ3 − 5κ2 + 4κ− 2)(κ3 + 5κ2 + 4κ+ 2)

= (κ− 1)(κ+ 1) ((κ− 4)(κ− 1)κ− 2) (κ3 + 5κ2 + 4κ+ 2) < 0;

(ii) if κ ≥ 4 then 3κ4−κ2+2
4κ4−2κ2 < 1 and

(2κ4 − κ2) · 12 − (3κ4 − κ2 + 2) · 1 + (κ2 + 1)2 = 2(κ2 − 1) + 1 > 0.

By (i) and (ii),

(2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3

≥ 2

{
(2κ4 − κ2)

(
γ − 3κ4 − κ2 + 2

4κ4 − 2κ2

)2

− κ8 − 18κ6 + 13κ4 + 4

4(2κ4 − κ2)

}
> 0.

(127)

So if 1 ≤ γ < (κ2+1)2

κ4+1 ,
(
−(κ4 + 1)γ + (κ2 + 1)2

)
≥ 0, which proves the non-negativity of Equation (126). In addition,

observe that the following inequality holds for all γ ≥ 1:{
(2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3

}2
−
(
(κ4 + 1)γ − (κ2 + 1)2

)2 {
(2κ2 − 1)2γ2 − (4κ4 − 2κ2 + 2)γ + (κ2 + 1)2

}
= 8κ6(κ2 − 1)2(γ4 − γ3) ≥ 0. (128)

This also proves the non-negativity of Equation (126) in the case of γ ≥ (κ2+1)2

κ4+1 . As a result, we just showed that F ′(γ) ≥ 0
for γ ≥ 1 and κ ≥ 1. We now turn to prove G′(γ) ≤ 0.

γ3

2µ6
xy

G′(γ)
√
M(γ) =

γ3

µ6
xy

(
1

2
J ′(γ)

√
M(γ) +

1

2
K ′(γ)M(γ) +

1

4
K(γ)M ′(γ)

)
=
(
−(γ − 1)(κ4 + 1) + 2κ2

)√
(2γ − 1)2κ4 − 2(2γ2 − γ − 1)κ2 + (γ − 1)2

+
1

2

(
−2κ2 + (γ − 2)

) (
(2γ − 1)2κ4 − 2(2γ2 − γ − 1)κ2 + (γ − 1)2

)
+
γ

2

(
κ2 − (γ − 1)

) (
(4γ − 2)κ4 − (4γ − 1)κ2 + (γ − 1)

)
=
(
−(κ4 + 1)γ + (κ2 + 1)2

)√
(2κ2 − 1)2γ2 − (4κ4 − 2κ2 + 2)γ + (κ2 + 1)2

−
{
(2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3

}
.

We show that this is nonpositive for γ ≥ 1 and κ ≥ 1. To this end, note that again from Equation (127),

(2κ6 + κ4 − 2κ2 + 1)γ2 − (κ2 + 1)(3κ4 − κ2 + 2)γ + (κ2 + 1)3 ≥ 0.

Also, if 1 ≤ γ < (κ2+1)2

κ4+1 , Equation (128) still holds. On the other hand, if γ ≥ (κ2+1)2

κ4+1 ,
(
−(κ4 + 1)γ + (κ2 + 1)2

)
≤ 0.

These indeed prove that G′(γ) ≤ 0 for γ ≥ 1 and κ ≥ 1.

Now we conclude the proof by remarking that h(γ) = F (γ) if γ ∈
[
1, 1 +

L2
xy

µ2
xy

]
and h(γ) = G(γ) if γ ∈

[
1 +

L2
xy

µ2
xy
,∞
)

.
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F. Proof of Proposition A.1
Here we prove Proposition A.1 of Appendix A, restated below for the sake of readability.

Proposition A.1. There exists a 6-dimensional function f ∈ F(µx, µy, Lx, Ly, Lxy) with dx = dy = 3 such that for any
constant step sizes α, β > 0, the convergence of OGD requires an iteration complexity of rate at least

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
in order to have ∥zK − z⋆∥2 ≤ ϵ.

Proof. Recall that OGD takes updates of the form:

xk+1 = xk − 2α∇xf(xk,yk) + α∇xf(xk−1,yk−1),

yk+1 = yk + 2β∇yf(xk,yk)− β∇yf(xk−1,yk−1).

We use the same worst-case function as in Theorem 3.3:

f(x,y) =
1

2


x
s
t
y
u
v



⊤ 
µx 0 0 Lxy 0 0
0 µx 0 0 0 0
0 0 Lx 0 0 0
Lxy 0 0 −µy 0 0
0 0 0 0 −µy 0
0 0 0 0 0 −Ly




x
s
t
y
u
v

 ,

where x = (x, s, t) and y = (y, u, v). It can be easily checked that f is a quadratic function (i.e., Hessian is constant) such
that f ∈ F(µx, µy, Lx, Ly, Lxy) and x⋆ = y⋆ = 0 ∈ R3.

Let us define

A =

µx 0 0
0 µx 0
0 0 Lx

 , B =

Lxy 0 0
0 0 0
0 0 0

 , C =

µy 0 0
0 µy 0
0 0 Ly

 .
We first observe that the k-th step of OGD satisfies

xk+1

yk+1

xk
yk

 =


I − 2αA −2αB αA αB
2βB⊤ I − 2βC −βB⊤ βC

I 0 0 0
0 I 0 0




xk
yk

xk−1

yk−1

 .
Then the coordinate-wise updates on the k-th step of OGD must be

xk+1

yk+1

xk
yk

 =


1− 2αµx −2αLxy αµx αLxy
2βLxy 1− 2βµy −βLxy βµy

1 0 0 0
0 1 0 0


︸ ︷︷ ︸

≜P


xk
yk
xk−1

yk−1

 , (129)

sk+1 = (1− 2αµx)sk + αµxsk−1, (130)
tk+1 = (1− 2αLx)tk + αLxtk−1, (131)
uk+1 = (1− 2βµy)uk + βµyuk−1, (132)
vk+1 = (1− 2βLy)vk + βLyvk−1. (133)
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First, observing that the quadratic w2 − (1− 2c)w − c = 0 has (real) roots given by

w =
(1− 2c)±

√
(1− 2c)2 + 4c

2
,

a recurrence relation of the form wk+1 = (1− 2c)wk + cwk−1 converges if and only if

r =
|1− 2c|+

√
(1− 2c)2 + 4c

2
< 1,

which is again equivalent to 0 < c < 2
3 .

Moreover, if 0 < c ≤ 1
2 , then we have

1

1− r
=

1

1− 1−2c+
√

(1−2c)2+4c

2

=
2

1 + 2c−
√
1 + 4c2

=
1 + 2c+

√
1 + 4c2

2c
≥ 1

2c
= Ω

(
1

c

)
,

while if 1
2 < c < 2

3 , then we have

1

1− r
=

1

1− 2c−1+
√

(1−2c)2+4c

2

=
2

3− 2c−
√
1 + 4c2

≥ 2 +
√
2 ≥

(
1 +

1√
2

)
· 1
c
= Ω

(
1

c

)
which is because 2

3−2c−
√
1+4c2

is an increasing function in [ 12 ,
2
3 ).

For the convergence of iterations (131) and (133), the step sizes α and β are required to satisfy

0 < αLx <
2

3
and 0 < βLy <

2

3
, (134)

by setting c = αLx and/or c = βLy .

Also, to guarantee ∥xK∥2 + ∥yK∥2 < ϵ, we need from (130) and (132) that s2K < O(ϵ) and u2K < O(ϵ), respectively.

The two necessary conditions s2K < O(ϵ) and u2K < O(ϵ) require an iteration number of at least:

K = Ω

((
1

αµx
+

1

βµy

)
· log 1

ϵ

)
, (135)

by setting c = αµx and/or c = βµy .

Note that (134) automatically yields

1

αµx
+

1

βµy
= Ω(κx + κy). (136)

Now, in order to ensure convergence of iteration (129), we need the matrix P to have a spectral radius smaller than one.
Hence it suffices to show that ρ(P ) < 1 implies 1

αµx
+ 1

βµy
= Ω(κxy).

Suppose that λ is an eigenvalue of P . Then we must have

det(λI − P ) =

∣∣∣∣∣∣∣∣
(1− λ)− 2αµx −2αLxy αµx αLxy

2βLxy (1− λ)− 2βµy −βLxy βµy
1 0 −λ 0
0 1 0 −λ

∣∣∣∣∣∣∣∣ = 0.
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First, we observe that λ ̸= 0, since if we plug in λ = 0 we have

det(λI − P ) = det(P ) = αβ(µxµy + L2
xy) > 0.

Therefore we can compute∣∣∣∣∣∣∣∣
(1− λ)− 2αµx −2αLxy αµx αLxy

2βLxy (1− λ)− 2βµy −βLxy βµy
1 0 −λ 0
0 1 0 −λ

∣∣∣∣∣∣∣∣
=

1

λ2

∣∣∣∣∣∣∣∣
λ(1− λ)− 2λαµx −2λαLxy αµx αLxy

2λβLxy λ(1− λ)− 2λβµy −βLxy βµy
λ 0 −λ 0
0 λ 0 −λ

∣∣∣∣∣∣∣∣
=

1

λ2

∣∣∣∣∣∣∣∣
λ(1− λ)− (2λ− 1)αµx −(2λ− 1)αLxy αµx αLxy

(2λ− 1)βLxy λ(1− λ)− (2λ− 1)βµy −βLxy βµy
0 0 −λ 0
0 0 0 −λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣λ(1− λ)− (2λ− 1)αµx −(2λ− 1)αLxy
(2λ− 1)βLxy λ(1− λ)− (2λ− 1)βµy

∣∣∣∣
= (λ(1− λ)− (2λ− 1)αµx) (λ(1− λ)− (2λ− 1)βµy) + (2λ− 1)2αβL2

xy.

If we substitute a = αµx and b = βµy , then det(λI − P ) = 0 is equivalent to(
−λ2 + (1− 2a)λ+ a

) (
−λ2 + (1− 2b)λ+ b

)
+ (2λ− 1)2abκ2xy = 0, (137)

where we note that αβL2
xy = abκ2xy .

Hence we have a quartic equation of the form λ4 − pλ3 + qλ2 − rλ+ ℓ with coefficients given by

p = 2− 2(a+ b),

q = 1− 3a− 3b+ 4ab(κ2xy + 1),

r = −a− b+ 4ab(κ2xy + 1),

ℓ = ab(κ2xy + 1).

(138)

Note that we obviously have p, q, r, ℓ > 0.

There exists a well-known characterization of quartic polynomials having roots with absolute values less than one.

Proposition F.1 (Grove & Ladas (2004), Theorem 1.5). Consider a quartic polynomial x4+a3x3+a2x2+a1x+a0, where
a0, a1, a2, a3 are real numbers. Then a necessary and sufficient condition that all roots of the polynomial are contained in
the open disk |x| < 1 is

|a1 + a3| < 1 + a0 + a2, |a1 − a3| < 2(1− a0), a2 − 3a0 < 3,

a0 + a2 + a20 + a21 + a20a2 + a0a
2
3 < 1 + 2a0a2 + a1a3 + a0a1a3 + a30.

(139)

Also, the following corollary suggests that the coefficients are all bounded (by constants) for such cases.

Corollary F.2. For coefficients a0, a1, a2, a3 satisfying (139), we have |a3| < 6, |a2| < 6, |a1| < 6, |a0| < 1.

Proof. From the first three conditions, we can observe that

0 < 1 + a0 + a2, 0 < 2(1− a0), a2 − 3a0 < 3.

Hence (a0, a2) must be inside a triangle with endpoints (−1, 0), (1,−2), (1, 6), which implies |a2| < 6, |a0| < 1.
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Using this, we can also observe from the first two conditions that

|a1 + a3| < 1 + a0 + a2 < 8, |a1 − a3| < 2(1− a0) < 4.

Hence (a1, a3) must be inside a rectangle with endpoints (2, 6),(6, 2),(−2,−6),(−6,−2), implying |a3| < 6, |a1| < 6.

By Corollary F.2, we can observe that a necessary condition for ρ(P ) < 1 is that all coefficients in (138) are of order O(1).
In particular, this implies abκ2xy = αβL2

xy = O(1) in order to assure convergence, which concludes that

1

αµx
+

1

βµy
≥ 2√

αβµxµy
=

2κxy√
αβL2

xy

= Ω(κxy). (140)

Combining (136) and (140), we have

1

αµx
+

1

βµy
= Ω(κx + κy + κxy)

and therefore from (135) we can show a lower bound of

Ω

(
(κx + κy + κxy) · log

1

ϵ

)
.
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G. Details of Experiments
G.1. SCSC Quadratic Game (1): Small-scale

We run experiments on the following SCSC quadratic problem:

f(x,y) =
1

2
x⊤U⊤

µx 0 0
0 Lx 0
0 0 Lx

Ux+ x⊤U⊤

Lxy 0 0
0 Lxy 0
0 0 µxy

V y +
1

2
y⊤V ⊤

µy 0 0
0 Ly 0
0 0 Ly

V y,

where U ∈ R3×3 and V ∈ R3×3 are random orthogonal matrices (generated with QR-decompositions of random
Gaussian matrices). For a clear demonstration of optimization trajectories in Figure 1, we set U = V = I3×3. For the
problem parameters, we use Lx = Ly = Lxy = 1 and µx = µy = µxy = 0.2. We run each algorithm until it reaches
∥zk∥2 < ϵ = 10−50.

Implementation of EG. We use a general form of EG as follows:

xk+ 1
2
= xk − α0∇xf(xk,yk), yk+ 1

2
= yk + β0∇yf(xk,yk),

xk+1 = xk − α1∇xf(xk+ 1
2
,yk+ 1

2
), yk+1 = yk + β1∇yf(xk+ 1

2
,yk+ 1

2
),

where the step sizes at explorations step (k → k + 1/2) and at update step (k + 1/2 → k + 1) can differ.

Implementation of OGD. Also, we use a general form of OGD as follows:

xk+1 = xk − α0∇xf(xk,yk) + α1∇xf(xk−1,yk−1),

yk+1 = yk + β0∇yf(xk,yk)− β1∇yf(xk−1,yk−1),

Parameter tuning. We tuned step sizes and other parameters (like γ and δ of Alex-GDA) by grid search. Since this is a
quadratic problem (where the local convergence analysis directly applies), following the analysis by Zhang et al. (2022),
we choose µ/L2-scale step size for Sim-GDA and 1/L-scale step size for the other algorithms (L = max {Lx, Ly, Lxy},
µ = min {µx, µy, µxy}). To be more specific,

• Sim-GDA: (step size) = µ
CL2 , where C ∈ {0.5, 0.51, 0.52, · · · , 2.99, 3}. (If we apply 1

L -scale step size, it diverges.)

• Alt-GDA: (step size) = 1
CL , where C ∈ {1, 1.01, 1.02, · · · , 3.99, 4}.

• EG, OGD: α0 = β0 = 1
C0L

and α1 = β1 = 1
C1L

, where C0, C1 ∈ {0.5, 0.51, 0.52, · · · , 3.99, 4}

• Alex-GDA: (step size) = 1
CL , where C ∈ {1, 1.1, 1.2, · · · , 1.9, 2}, and γ, δ ∈ {1.1, 1.2, 1.3, · · · , 3.9, 4}

G.2. SCSC Quadratic Game (2): Higher Dimension, Extensive Comparisons

We generate the SCSC quadratic problems f : Rdx × Rdy → R as

f(x,y) =
1

2
x⊤U⊤AUx+ x⊤U⊤BV y +

1

2
y⊤V ⊤CV y,

where we randomly sample the matrices A ∈ Rdx×dx , B ∈ Rdx×dy , C ∈ Rdy×dy , U ∈ Rdx×dx , and V ∈ Rdy×dy :

A = diag(a1, . . . , adx), a1 = µx, a2 = Lx, ai ∼ Uniform(µx, Lx), (i = 3, . . . , dx)

B = diag(b1, . . . , bmin{dx,dy}), b1 = µxy, b2 = Lxy, bi ∼ Uniform(µxy, Lxy), (i = 3, . . . ,min{dx, dy})
C = diag(c1, . . . , cdy ), c1 = µy, c2 = Ly, ci ∼ Uniform(µy, Ly), (i = 3, . . . , dy)

while U ∈ Rdx×dx and V ∈ Rdy×dy are random orthogonal matrices.

For each combination of µ (= µx = µy), µxy , L (= Lx = Ly), and Lxy , we test 3 random initialization points (x0,y0) and
10 random instances of f(x,y).
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Algorithms. We follow a standard implementation of heavy-ball momentum as PyTorch’s implementation. We adopt
Azizian et al. (2020) for EG with Momentum, Ramirez et al. (2023) for OGD with Momentum (so-called OmegaM), and
Zhang & Yu (2020) for the alternating counterparts of EG and OGD (Alt-EG and Alt-OG, respectively).

Our implementation of Alex-GDA with momentum (Alex+M) is as in Algorithm 3.

Algorithm 3 Alex-GDA with Momentum
Input: Number of epochs K, step sizes α, β > 0, hyperparameters γ, δ ≥ 0, momentum parameters mx,my ∈ R
Initialize: (x0,y0) ∈ Rdx × Rdy and ỹ0 = y0 ∈ Rdy
for k = 0, . . . ,K − 1 do

vxk+1 = mxv
x
k +∇xf(xk, ỹk)

xk+1 = xk − αvxk+1

x̃k+1 = xk − γαvxk+1

vyk+1 = myv
y
k +∇yf(x̃k+1,yk)

yk+1 = yk + βvyk+1

ỹk+1 = yk + δβvyk+1

end for
Output: (xK ,yK) ∈ Rdx × Rdy

Computing gradient complexity. For most algorithms, the number of gradient computations equals the number of
iterations. However, EG and its alternating counterpart (Alt-EG) take multiple gradient computations per iteration. For EG
(with simultaneous updates), it takes two gradient computations per iteration. For Alt-EG, according to the implementation
by Zhang & Yu (2020), it takes three gradient computations per iteration. Hence, we computed the gradient complexity by
multiplying the number of iterations and the amount of gradient computation per iteration.

Parameter Tuning. Likewise in Appendix G.1, we choose µ
max{L2,L2

xy}
-scale step size for Sim-GDA and 1

max{L,Lxy} -
scale step size for the other algorithms. To be specific,

• Sim-GDA : (step size)= Cµ
max{L2,L2

xy}
where C ∈ {0.1, 0.2, . . . , 1.5},

• The other algorithms (including Sim-GDA with momentum): (step size)= C
max{L,Lxy} where C ∈ {0.1, 0.2, . . . , 1.5}.

We tune the momentum parameters mx,my ∈ {−0.99,−0.95,−0.9,−0.8,−0.7, . . . , 0.9, 0.95, 0.99}. Note that we
allow the negative momentum as per the work by Gidel et al. (2019b). We tune γ and δ for Alex-GDA as γ, δ ∈
{0.5, 0.6, 0.7, . . . , 3.0}. For the momentum variant of Alex-GDA (Algorithm 3), we slightly reduced the range of search as
γ, δ ∈ {1.0, 1.1, 1.2, . . . , 3.0}.

G.3. Generative Adversarial Networks: WGAN-GP

We name the combination of Adam (Kingma & Ba, 2015) and (the stochastic version of) Sim-/Alt-/Alex-GDA as Sim-/Alt-
/Alex-Adam, respectively. In Listing 1, we provide a brief Python code based on PyTorch (Paszke et al., 2019) for GAN train-
ing with Alex-Adam. The full code base can be found at github.com/HanseulJo/Alex-GDA/tree/main/gan.
In the code, we use the main models netD and netG (for which the weights correspond to x and y, respectively) and the
auxiliary models netD_ and netG_. The auxiliary models are for describing the ‘tilde’ variables x̃ and ỹ, i.e., the results
of the inter-/extrapolation steps.

Learning Rates. For MNIST (Deng, 2012), we tuned the step sizes for Alex-Adam ({10−4, 3× 10−4} for both generator
and discriminator) and applied the best step size (3× 10−4 for generator, 10−4 for discriminator) for the other algorithms.

For CIFAR-10 (Krizhevsky et al., 2009), we tuned the step sizes for algorithms ({10−4, 3× 10−4} for both generator and
discriminator). The best step sizes were (10−4 for both generator and discriminator) for Sim-Adam and (3× 10−4 for both
generator and discriminator) for Alt-Adam and Alex-Adam.

For LSUN-Bedroom 64×64 dataset (Yu et al., 2015), we fixed the step size as (10−4 for generator, 3×10−4 for discriminator)
following Heusel et al. (2017).
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Listing 1. PyTorch-based Python code for GAN Training with Alex-GDA + Adam optimizer (i.e., Alex-Adam)
from copy import deepcopy
import torch
from models import Discriminator, Generator # Custom library for modeling

# Create a Discriminator (x) and a Generator (y)
netD = Discriminator(...) # $x_0$
netG = Generator(...) # $y_0$
netG_ = deepcopy(netG) # $\tilde{y}_0$

# Define the optimizers
optimizerD = torch.optim.Adam(netD.parameters(), ...)
optimizerG = torch.optim.Adam(netG.parameters(), ...)

dataloader = ... # set of real images
num_epochs = ... # number of epochs
criterion = ... # loss function
label_real = ... # label for real image e.g. all ones
label_fake = ... # label for fake image e.g. all zeros
gamma = ... # Alex-GDA parameter
delta = ... # Alex-GDA parameter

for epoch in range(1, num_epochs+1):
for data in dataloader:

# Generate latent vectors
noise = torch.randn(...)

# Save $x_k$ to ‘netD_‘
netD_ = deepcopy(netD)

# Compute Discriminator error: $f(x_k, \tilde{y}_k)$
errD_real = criterion(netD(data), label_real)
errD_fake = criterion(netD(netG_(noise)), label_fake) # ‘netG_‘ == $\tilde{y}_k$
errD = errD_real + errD_fake

# Update Discriminator: $x_{k+1}$
optimizerD.zero_grad()
errD.backward()
optimizerD.step()

# Interpolation/Extrapolation step for x:
# Compute $\tilde{x}_{k+1} = \gamma * x_{k+1} + (1-\gamma) * x_k$ and save to ‘netD_‘
for online, target in zip(netD.parameters(), netD_.parameters()):

target.data = gamma * online.data + (1 - gamma) * target.data

# Save $y_k$ to ‘netG_‘
netG_ = deepcopy(netG)

# Compute Generator error: $f(\tilde{x}_{k+1}, y_k)$
errG = criterion(netD_(netG(noise)), label_real) # ‘netD_‘ == $\tilde{x}_{k+1}$

# Update Generator: $y_{k+1}$
optimizerG.zero_grad()
errG.backward()
optimizerG.step()

# Interpolation/Extrapolation step for y:
# Compute $\tilde{y}_{k+1} = \delta * y_{k+1} + (1-\delta) * y_k$ and save to ‘netG_‘
for online, target in zip(netG.parameters(), netG_.parameters()):

target.data = delta * online.data + (1 - delta) * target.data
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H. Guessing the Complexity Bound of Alt-GDA
We have found numerical evidence based on the performance estimation program (PEP) (Drori & Teboulle, 2014) that the
upper complexity bound can be strictly smaller than O(κ1.5) for Alt-GDA, which we formally state in Conjecture 8.1.

Reproducing the work by Das Gupta et al. (2023), we devised a PEP-based tool that automatically optimizes the convergence
rate of Sim-/Alt-GDA under SCSC and Lipschitz gradient assumptions. While the original PEP is a tool for finding the
worst-case convergence rate of a given algorithm (with fixed and known parameters like step sizes) by solving a semidefinite
programming problem, our tool tries to minimize this worst-case rate by finding optimal step sizes and optimal coefficients of
the performance measure. Here, the performance measure is a linear combination of (1) the squared distance from the current
iterate to the optimum, (2) the gradient norm at the current iterate, and (3) their interaction term (inner product between an
iterate-optimum gap and a gradient norm), where the coefficients of the linear combination are part of optimization variables.

Using this tool, we can obtain an optimized convergence rate r of Sim-/Alt-GDA for each set of problem parameters
(µx, µy, Lx, Ly, Lxy). (For convenience of exhibition, we set µ = µx = µy and L = Lx = Ly = Lxy and define κ = L/µ.)
Recall from Equation (3) that the complexity can be expressed as 1

1−r except for the logarithmic factor. Hence, if we
find how 1

1−r can be expressed as a function of κ, we will be able to guess the actual complexity in terms of κ. We draw
log-log plots between 1

1−r and κ and observe its slope, which would be the exponent of κ in the complexity. Here we tune
κ ∈ {101, 101.2, 101.4, . . . , 103}, and we compute the median slope of line segments, each of them connecting a pair of
adjacent points.

As shown in Figure 2, the graphs for both algorithms appear close to a straight line. For Sim-GDA, we observe the optimal
complexity is ≈ κ1.999: it is tight up to numerical error. On the other hand, for Alt-GDA, the observed lowest possible
complexity is ≈ κ1.385 (if we utilize a pair of consecutive iterates zk → zk+1): See Figure 2.

Figure 2. Guessing the complexity bound of Sim-/Alt-GDA. Left: log-log plot between κ = L/µ and the near-optimal worst-case
complexity. Right: Slope of the log-log plot. Each point corresponds to the slope of a line segment connecting a pair of adjacent points in
the left plot.

Nevertheless, we cannot assure that this proves that the tight complexity of Alt-GDA of rate O(κ1.385) is tight. This is
mainly because, in fact, our tool is not perfect in terms of the function class. Although our tool implements every condition
of SCSC and Lipschitz gradients as constraints of an optimization problem, it is not well understood (especially for minimax
problems) whether such an implementation can properly simulate the class of SCSC functions with Lipschitz gradients;
rather, it can only simulate a slightly larger function class including SCSC and Lipschitz-gradient functions (this is similar
to the case of monotone and Lipschitz operators (Ryu et al., 2020)). Thus, the numerical value 1.385 is not tight and the true
exponent can be smaller for the actual SCSC Lipschitz-gradient functions. In other words, the complexity can be smaller
than O(κ1.385). Nonetheless, our results altogether corroborate that the upper complexity bound of Alt-GDA must be
strictly smaller than O(κ1.5).
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