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ABSTRACT

This paper studies the transfer reinforcement learning (RL) problem where mul-
tiple RL problems have different reward functions but share the same underlying
transition dynamics. In this setting, the Q-function of each RL problem (a.k.a. a
task) can be decomposed into a successor feature (SF) and a reward mapping: the
former characterizes the transition dynamics, and the latter characterizes the task-
specific reward function. This Q-function decomposition, coupled with a policy
improvement operator known as generalized policy improvement (GPI), reduces
the search space of finding the optimal Q-function, and the SF & GPI framework
exhibits promising empirical performance compared to traditional RL methods
like Q-learning. However, its theoretical foundations remain largely unestab-
lished, especially when learning successor features using deep neural networks
(SFs-DQN). This paper studies the provable knowledge transfer using SFs-DQN
in transfer RL problems. We establish the first convergence analysis with provable
generalization guarantees for SF-DQN with GPI. The theory reveals that SF-DQN
with GPI outperforms conventional RL approaches, such as deep Q-network, in
terms of both faster convergence rate and better generalization. Numerical experi-
ments on real and synthetic RL tasks support the superior performance of SF-DQN
& GPI, quantitatively aligning with our theoretical findings.

1 INTRODUCTION

In reinforcement learning (RL), the goal is to train an agent to perform a task within an environ-
ment in a desirable manner by allowing the agent to interact with the environment. Here, the agent
is guided towards the desirable behavior by the rewards, and the optimal policy is derived from a
learned value function (Q-function) in selecting the best actions to maximize the immediate and fu-
ture rewards. This framework can effectively capture a wide array of real-world applications, such as
gaming(Mnih et al., 2013; Silver et al., 2017), robotics (Kalashnikov et al., 2018), autonomous ve-
hicles (Shalev-Shwartz et al., 2016; Schwarting et al., 2018), healthcare (Coronato et al., 2020), and
natural language processing (Tenney et al., 2018). However, RL agents require a significant amount
of interactions with the environment to tackle complex tasks, especially when RL is equipped with
deep neural networks (DNNs). For example, AlphaGo (Silver et al., 2017) required 29 million
matches and 5000 TPUs at a cost exceeding $35 million, which is time-consuming and memory-
intensive. Nevertheless, many complex real-world problems can naturally decompose into multiple
interrelated sub-problems, all sharing the same environmental dynamics (Sutton et al., 1999; Bacon
et al., 2017; Kulkarni et al., 2016a). In such scenarios, it becomes highly advantageous for an agent
to harness knowledge acquired from previous tasks to enhance its performance in tackling new but
related challenges. This practice of leveraging knowledge from one task to improve performance in
others is known as transfer learning (Lazaric, 2012; Taylor & Stone, 2009; Barreto et al., 2017).

This paper focuses on an RL setting with learning multiple tasks, where each task is associated with
a different reward function but shares the same environment. This setting naturally arises in many
real-world applications such as robotics (Yu et al., 2020). We consider exploring the knowledge
transfer among multiple tasks via the successor feature (SF) framework (Barreto et al., 2017) which
disentangles the environment dynamic from the reward function at an incremental computational
cost. The SF framework is derived from successor representation (SR) (Dayan, 1993) by introduc-
ing the value function approximation. Specifically, SR (Dayan, 1993) decouples the value function
into a future state occupancy measure and a reward mapping. Here, the future state occupancy
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characterizes the transition dynamics of the environment, and the reward mapping characterizes the
reward function of the task. SF is a natural application of SR in solving value function approxima-
tion. Furthermore, Barreto et al. (2017) propose a generalization of the classic policy improvement,
termed generalized policy improvement (GPI), enabling smooth knowledge transfer across learned
policies. In contrast to traditional policy improvement, which typically considers only a single pol-
icy, Generalized Policy Improvement (GPI) operates by maintaining a set of policies, each associated
with a distinct skill the agent has acquired. This approach enables the agent to switch among these
policies based on the current state or task requirements, providing a flexible and adaptive framework
for decision-making. Empirical findings presented in (Barreto et al., 2017) highlight the superior
transfer performance of SF & GPI in deep RL when compared to conventional methods like Deep
Q-Networks (DQNs). Subsequent works further justified the improved performance of SF in subgoal
identification (Kulkarni et al., 2016b) and real-world robot navigation (Zhang et al., 2017).

While performance guarantees of SF-based learning are provided in the simple tabular setting (Bar-
reto et al., 2017; 2018), less is known for such approaches in the widely used function approximation
setting. In this context, this paper aims to close this gap by providing theoretical guarantees for SF
learning in the context of DNNs. Our objective is to explore the convergence and generalization
analysis of SF when paired with DNN approximation. We also seek to delineate the conditions
under which SF learning can offer more effective knowledge transfer among tasks when contrasted
with classical deep reinforcement learning (DRL) approaches, e.g., DQN (Mnih et al., 2013).

Contributions. This paper presents the first convergence analysis with generalization guarantees for
successor feature learning with deep neural network approximation (SF-DQN). This paper focuses
on estimating the optimal Q-value function through the successor feature decomposition, where the
successor feature decomposition component is approximated through a deep neural network. The
paper offers a comprehensive analysis of the convergence of deep Q-networks with successor feature
decomposition and provides insights into the improved performance of the learned Q-value function
derived from successor feature decomposition. The key contributions of this study are as follows:

C1. The convergence analysis of the proposed SF-DQN to the optimal Q-function with gener-
alization guarantees. By decomposing the reward into a linear combination of the transition feature
and reward mapping, we demonstrate that the optimal Q-function can be learned by alternately up-
dating the reward mapping and the successor feature using the collected data in online RL. This
learned Q-function converges to the optimal Q-function with generalization guarantees at a rate of
1/T , where T is the number of iterations in updating transition features and reward mappings.

C2. The theoretical characterization of enhanced performance by leveraging knowledge from
previous tasks through GPI. This paper characterizes the convergence rate with generalization
guarantees in transfer RL utilizing GPI. The convergence rate accelerates following the degree of
correlation between the source and target tasks.

C3. The theoretical characterization of the superior transfer learning performance with SF-
DQN over non-representation learning approach DQNs. This paper quantifies the transfer learn-
ing ability of SF-DQN and DQN algorithms by evaluating their generalization error when trans-
ferring knowledge from one task to another. Our results indicate that SF-DQN achieves improved
generalization compared to DQN, demonstrating the superiority of SF-DQN in transfer RL.

1.1 RELATED WORKS

Successor features in RL. In the pioneering work, (Dayan, 1993) introduced the concept of SR,
demonstrating that the value function can be decomposed into a reward mapping and a state repre-
sentation that measures the future state occupancy from a given state, with learning feasibility proof
in tabular settings. Subsequently, (Barreto et al., 2017) extended SR from three perspectives: (1)
the feature domain of SR is extended from states to state-action pairs, known as SF; (2) DNNs are
deployed as function approximators to represent the SF and reward mappings; (3) GPI algorithm is
introduced to accelerate policy transfer for multi-tasks. (Barreto et al., 2017; 2018) provided trans-
fer guarantees for Q-learning with SF and GPI in the tabular setting. Furthermore, (Kulkarni et al.,
2016b; Zhang et al., 2017) apply SF learning with DNN-based schemes to subgoal identification
(Kulkarni et al., 2016b) and robot navigation (Zhang et al., 2017). A comprehensive RL transfer
comparison using SF under different assumptions can be found in (Zhu et al., 2023).

RL with neural networks. Recent advancements in RL with neural network approximation mainly
include the Bellman Eluder dimension (Jiang et al., 2017; Russo & Van Roy, 2013), Neural Tangent
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Kernel (NTK) (Yang et al., 2020; Cai et al., 2019; Xu & Gu, 2020; Du et al., 2020), and Besov
regularity (Suzuki, 2019; Ji et al., 2022; Nguyen-Tang et al., 2022). However, each of these frame-
works has its own limitations. The Eluder dimension exhibits exponential growth even for shallow
neural networks (Dong et al., 2021), making it challenging to characterize sample complexity in
real-world applications of DRL. The NTK framework linearizes DNNs to bypass the non-convexity
derived from the non-linear activation function in neural networks. Nevertheless, it requires using
computationally inefficient, extremely wide neural networks (Yang et al., 2020). Moreover, the NTK
approach falls short in explaining the advantages of utilizing non-linear neural networks over linear
function approximation (Liu et al., 2022; Fan et al., 2020). The Besov space framework (Ji et al.,
2022; Nguyen-Tang et al., 2022; Liu et al., 2022; Fan et al., 2020) requires sparsity on neural net-
works and makes the impractical assumption that the algorithm can effectively identify the global
optimum, which is unfeasible for non-convex objective functions involving neural networks.

Theory of generalization in deep learning. The theory of generalization in deep learning has
been extensively developed in supervised learning, where labeled data is available throughout train-
ing. Generalization in learned models necessitates low training error and small generalization gap.
However, in DNNs, training errors and generalization gaps are analyzed separately due to their non-
convex nature. To ensure bounded generalization, it is common to focus on one-hidden-layer neural
networks (Safran & Shamir, 2018) in convergence analysis. Existing theoretical analysis tools in su-
pervised learning with generalization guarantees draw heavily from various frameworks, including
the Neural Tangent Kernel (NTK) framework (Jacot et al., 2018; Du et al., 2018; Lee et al., 2018),
model recovery techniques (Zhong et al., 2017; Ge et al., 2018; Bakshi et al., 2019; Soltanolkotabi
et al., 2018; Zhang et al., 2020), and the analysis of structured data (Li & Liang, 2018; Shi et al.,
2022; Brutzkus & Globerson, 2021; Allen-Zhu & Li, 2022; Karp et al., 2021; Wen & Li, 2021).

2 PRELIMINARIES

In this paper, we address the learning problem involving multiple tasks {Ti}ni=1 and aim to find the
optimal policy π⋆i for each task Ti. We begin by presenting the preliminaries for a single task and
then elaborate on our algorithm for learning with multiple tasks in the following section.

Markov decision process and Q-learning. The Markov decision process (MDP) is defined as a
tuple (S,A,P, r, γ), where S is the state space and A is the set of possible actions. The transition
operator P : S×A → ∆(S) gives the probability of transitioning from the current state s and action
a to the next state s′. The function r : S × A × S → [−Rmax, Rmax] measures the reward for a
given state-action pair. The discount factor γ ∈ [0, 1) determines the significance of future rewards.

For the i-th task, the goal of the agent is to find the optimal policy π⋆i with at = π⋆i (st) at each time
step t. The aim is to maximize the expected discounted sum of reward as

∑∞
t=0 γ

t · ri(st, at, st+1),
where ri denotes the reward function for the i-th task. For any state-action pair (s, a), we define the
action-value function Qπi given a policy π as

Qπ
i (s, a) =Eπ,P

[∑∞
t=0 γ

tri(st, at, st+1) | s0 = s, a0 = a
]
. (1)

Then, the optimal Q-function, denoted as Qπ
⋆

i or Q⋆i , satisfies

Q⋆
i (s, a) := max

π
Qπ

i (s, a) = Es′|s,a ri(s, a, s
′) + γmax

a′
Qπ⋆

i (s′, a′), (2)

where (2) is also known as the Bellman equation. Through the optimal action-value function Q⋆i ,
the agent can derive the optimal policy (Watkins & Dayan, 1992; Sutton & Barto, 2018) following

π⋆i (s) = argmaxaQ
⋆
i (s, a). (3)

Deep Q-networks (DQNs). The DQN utilizes a DNN parameterized with weights ω, denoted as
Qi(s, a;ω) : Rd → R for the i-th task, to approximate the optimal Q-value function Q⋆i in (2).
Specifically, given input feature x := x(s, a), the output of the L-hidden-layer DNN is defined as

Qi(s, a;ω) := ω⊤
L+1/K · σ

(
ω⊤
L · · ·σ(ω⊤

1 x)
)
, (4)

where x = x(s, a) and σ(·) is the ReLU activation function, i.e., σ(z) = max{0, z}.

Successor feature. For i-the task, suppose the expected one-step reward associated with the transi-
tion (s, a, s′) can be computed as

ri(s, a, s
′) = ϕ(s, a, s′)⊤w⋆

i , with ϕ,w⋆
i ∈ Rd, (5)
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where ϕ remains the same for all the task. With the reward function in (5), the Q-value function in
(1) can be rewritten as

Qπ
i (s, a) = Eπ,P

[∑∞
t=0 γ

tϕ(st, at, st+1) | (s0, a0)
]⊤

w⋆
i := ψπ

i (s, a)
⊤w⋆

i . (6)

Then, the optimal Q function satisfies
Q⋆

i (s, a) = Eπ⋆i ,P
[∑∞

i=0 γ
iϕ(si, ai, si+1) | (s0, a0)

]⊤
w⋆

i := ψ⋆
i (s, a)

⊤w⋆
i . (7)

3 PROBLEM FORMULATION AND ALGORITHM

Problem formulation. Without loss of generality, the data is assumed to be collected from the tasks
in the order of T1 to Tn during the learning process. The goal is to utilize the collected data for each
task, e.g., Tj , and the learned knowledge from previous tasks {Ti}j−1

i=1 to derive the optimal policy
π⋆j for Tj . These tasks share the same environment dynamic but the reward function changes across
the task as shown in (5). For each task Ti, we denote its reward as

ri = ϕ ·w⋆
i , with ∥ϕ∥2 ≤ ϕmax, (8)

where ϕ is the transition feature across all the tasks and w⋆
i is the reward mapping.

From (7), the learning of optimal Q-function for the i-th task is decomposed as two sub-tasks:
learning SF ψ⋆i (s, a) and learning reward w⋆

i .

Reward mapping. To find the optimal w⋆
i , we utilize the information from ϕ(s, a, s′) and

ri(s, a, s
′). The value of w⋆ can be obtained by solving the optimization problem

minwi ∥ri − ϕ ·wi∥2. (9)
Successor features. We use ψπi to denote the successor feature for the i-th task, and ψπi satisfies

ψπi (s, a) = Es′|s,a ϕ(s, a, s′) + γ · ψπi
(
s′, π(s′)

)
. (10)

The expression given by (10) aligns perfectly with the Bellman equation in (2), where ϕ acts as the
reward. Therefore, following DQNs, we utilize a function ψ(s, a) parameterized using the DNN as

ψi(Θi; s, a) = H
(
Θi;x(s, a)

)
, (11)

where x : S × A −→ Rd is the feature mapping of the state-action pair. Without loss of generality,
we assume |x(s, a)| ≤ 1. Then, find ψ⋆ is to minimize the mean squared Bellman error (MSBE)

min
Θi

: f(Θi) := E(s,a)∼π⋆
[
Es′|s,a ψi(Θi; s, a)− ϕ(s, a, s′)− γ · ψi

(
Θi; s

′, π⋆(s′)
)]2

. (12)

It is worth mentioning that although (12) and (9) appear to be independent of each other, the update
of wi does affect the update of ψi through the shift in data distribution. The collected data is
estimated based on the policy depending on the current estimated values of ψi and wi, which shifts
the distribution of the collected data away from π⋆i . This, in turn, leads to a bias depending on the
value of wi in the calculation of the gradient of Θi in minimizing (12).

Generalized policy improvement (GPI). Suppose we have acquired knowledge about the optimal
successor features for the previous n tasks, and we use ψ̂i to denote the estimated successor feature
function for the i-th task. Now, let’s consider a new task Tn+1 with the reward function defined as
rn+1 = ϕw⋆

n+1. Instead of training from scratch, we can leverage the knowledge acquired from
previous tasks to improve our approach. We achieve this by deriving the policy follows

π(a|s) = argmax
a

max
1≤i≤n+1

ψ̂i(s, a)
⊤w⋆

n+1. (13)

This strategy tends to yield better performance than relying solely on ψ̂n+1(s, a)
⊤w⋆

n+1, especially
when ψ̂n+1 has not yet converged to the optimal successor feature ψ⋆n+1 during the early learning
stage, while some task is closely related to the new tasks, i.e., some w⋆

i is close to w⋆
n+1. This

policy improvement operator is derived from Bellman’s policy improvement theorem (Bertsekas &
Tsitsiklis, 1996) and (2). When the reward is fixed across different policies, e.g., {πi}ni=1, and given
that the optimal Q-function represents the maximum across the entire policy space, the maximum of
multiple Q-functions corresponding to different policies, max1≤i≤nQ

πn , is expected to be closer
to Q⋆ than any individual Q-function, Qπi . In this paper, the parameter ϕ in learning the successor
feature is analogous to the reward in learning the Q-function. As ϕ remains the same for different
tasks, this analogy has inspired the utilization of GPI in our setting, even where the rewards change.
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3.1 SUCCESSOR FEATURE DEEP Q-NETWORK

The goal is to find wi and Θi by solving the optimization problems in (9) and (12) for each task
sequentially, and the optimization problems are solved by mini-batch stochastic gradient descent
(mini-batch SGD). Algorithm 1 contains two loops, and the outer loop number n is the number of
tasks and inner loop number T is the maximum number of iterations in solving (9) and (12) for each
task. At the beginning, we initialize the parameters as Θ(0) and w

(0)
i for task i with 1 ≤ i ≤ n. In

t-th inner loop for the i-th task, let st be the current state, and θc be the learned weights for task c.
The agent selects and executes actions according to

a = πβ(maxc∈[i] ψ(Θc; st, a)
⊤w

(t)
i ), (14)

where πβ(Q(st, a)) is the policy operator based on the function Q(st, a), e.g., greedy,
ε-greedy, and softmax. For example, if πβ(·) stands for greedy policy, then a =

argmaxamaxc∈[i] ψ(Θc; st, a)
⊤w

(t)
i . The collected data are stored in a replay buffer with size

N . Then, we sample a mini-batch of samples from the replay buffer and denote the samples as Dt.
Algorithm 1 Successor Feature Deep Q-Network (SF-DQN)

1: Input: Number of iterations T , and experience replay buffer size N , step size {ηt, κt}Tt=1.
2: Initialize {Θ(0)

i }ni=1 and {w(0)
i }ni=1.

3: for Task i = 1, 2, · · · , n do
4: for t = 0, 1, 2, · · · , T − 1 do
5: Collect data and store in the experience replay buffer Dt following a behavior policy πt in (14).
6: Perform gradient descent steps on Θ

(t)
i and w(t) following (15).

7: end for
8: Return Qi = ψi(Θ

(T )
i )⊤w

(T )
i for i = 1, 2, ·, n.

9: end for
Next, we update the current weights using a mini-batch gradient descent algorithm following

w(t+1) = w(t) − κt ·
∑

m∈Dt

(
ϕ(sm, am, s

′
m)⊤w(t) − r(sm, am, s

′
m)

)
· ϕ(sm, am, s

′
m)

Θ
(t+1)
i = Θ

(t)
i − ηt ·

∑
m∈Dt

(
ψ(Θ

(t)
i ; sm, am)− ϕ(sm, am, s

′
m)− γ · ψ(Θ(t)

i ; s′
m, a

′)
)

·∇Θiψ(Θ
(t)
i ; sm, am),

(15)

where ηt and κt are the step sizes, and a′ = argmaxamaxc∈[i] ψ(Θc; s
′
m, a)

⊤w
(t)
i . The gradient

for Θ(t)
i in (15) can be viewed as the gradient of∑

(sm,am)∼Dt

(
ψi(Θi; s, a)− ϕ− Es′|s,a max

a′
ψi(Θ

(t)
i ; s′, a′)

)2
, (16)

which is the approximation to (12) via replacing maxa′ ψ
⋆
i with maxa′ ψi(Θ

(t)
i ).

4 THEORETICAL RESULTS

4.1 SUMMARY OF MAJOR THEORETICAL FINDINGS

To the best of our knowledge, our results in Section 4.3 provide the first theoretical characterization
for SF-DQN with GPI, including a comparison with the conventional Q-learning under commonly
used assumptions. Before formally presenting them, we summarize the highlights as follows.

Table 1: Important Notations

K Number of neurons in the hidden layer. L Number of the hidden layers.
d Dimension of the feature mapping of (s, a). T Number of iterations.

Θ⋆i ,w⋆i The global optimal to (12) and (9) for i-th task. N Replay buffer size.
ρ1 The smallest eigenvalue of E∇ψi(Θ⋆i )∇ψi(Θ

⋆
i )

⊤. ρ2 The smallest eigenvalue of Eϕ(s, a)ϕ(s, a)⊤.
q⋆ A variable indicates the relevance between current and pre-

vious tasks.
C⋆ A constant related to the distribution shift between the be-

havior and optimal policies.

(T1) Leaned Q-function converges to the optimal Q-function at a rate of 1/T with general-
ization guarantees. We demonstrate that the learned parameters Θ(T )

i and w
(T )
i converge towards

their respective ground truths, Θ⋆i and w⋆
i , indicating that SF-DQN converges to optimal Q-function

at a rate of 1/T as depicted in (23) (Theorem 1). Moreover, the generalization error of the learned
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Q-function scales on the order of ∥w(0)−w⋆∥2

1−γ−Ω(N−1/2)−Ω(C⋆)
· 1
T . By employing a large replay buffer

N , minimizing the data distribution shift factor C⋆, and improving the estimation of task-specific
reward weights w(0), we can achieve a lower generalization error.

(T2) GPI enhances the generalization of the learned model with respect to the task relevance
factor q⋆. We demonstrate that, when GPI is employed, the learned parameters exhibit improved
estimation error with a reduction rate at 1−c

1−c·q⋆ for some constant c < 1 (Theorem 2), where q⋆ is
defined in (24). From (24), it is clear that q⋆ decreases as the distances between task-specific reward
weights, denoted as ∥w⋆

j −w⋆
i ∥2, become smaller. This indicates a close relationship between the

previous tasks and the current task, resulting in a smaller q⋆ and, consequently, a larger improvement
through the usage of GPI.

(T3) SF-DQN achieves a superior performance over conventional DQN by a factor of 1+γ
2 for

the estimation error of the optimal Q-function. When we directly transfer the learned knowledge
of the Q-function to a new task without any additional training, our results demonstrate that SF-DQN
always outperforms its conventional counterpart, DQN, by a factor of 1+γ

2 (Theorems 3 and 4). As γ
approaches one, we raise the emphasis on long-term rewards, making the accumulated error derived
from the incorrect Q-function more signficant. Consequently, this leads to reduced transferability
between the source tasks and the target task. Conversely, when γ is small, indicating substantial
potential for transfer learning between the source and target tasks, we observe a more significant
improvement when using SF-DQN.

4.2 ASSUMPTIONS

We propose the assumptions in deriving our major theoretical results. These assumptions are com-
monly used in existing RL and neural network learning theories to simplify the presentation.
Assumption 1. There exists a deep neural network with weights Θ⋆i such that it minimizes (12) for
the i-th task, i.e, f(Θ⋆i ) = 0.

Assumption 1 assumes a substantial expressive power of the deep neural network, allowing it to
effectively represent ψ⋆ in the presence of an unknown ground truth Θ⋆.
Assumption 2. At any fixed outer iteration t, the behavior policy πt and its corresponding transition
kernel Pt satisfy

sups∈S dTV
(
P(sτ ∈ ·) | s0 = s),Pt

)
≤ λντ , ∀ τ ≥ 0 (17)

for some constant λ > 0 and ν ∈ (0, 1), where dTV denotes the total-variation distance.

Assumption 2 assumes the Markov chain {sn, an, sn+1} induced by the behavior policy is uni-
formly ergodic with the corresponding invariant measure Pt. This assumption is standard in Q-
learning (Xu & Gu, 2020; Zou et al., 2019; Bhandari et al., 2018), where the data are non-i.i.d.

Assumption 3. For any Θ(t,0) ∈ Rn and w(t,0) ∈ Rd, the greedy policy πt at the t-th outer loop,
i.e., πt(a|s) = argmaxa′ Qt(s, a

′), satisfies∣∣πt(a|s)− π⋆(a|s)
∣∣∣ ≤ C · sup(s,a) ∥Qt(s, a)−Q⋆(s, a)∥F , (18)

where C is a positive constant. Equivalently, when Qt = ψ(Θ(t))⊤w(t), we have∣∣πt(a|s)− π⋆(a|s)
∣∣∣ ≤ C ·

(
∥Θ(t) −Θ⋆∥2 + ∥w(t) −w⋆∥2

)
. (19)

Assumption 3 indicates the policy difference between the behavior policy and the optimal policy.
Moreover, (19) can be considered as a more relaxed variant of condition (2) in Zou et al. (2019) as
(19) only necessitates the constant to hold for the distance of an arbitrary function from the ground
truth, rather than the distance between two arbitrary functions.

4.3 MAIN THEORETICAL FINDINGS

4.3.1 CONVERGENCE ANALYSIS OF SF-DQN

Theorem 1 demonstrates that the learned Q function converges to the optimal Q function when using
SF-DQN for Task 1. Notably, GPI is not employed for the initial task, as we lack prior knowledge
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about the environment. Specifically, given conditions (i) the initial weights for ψ are close to the
ground truth as shown in (20), (ii) the replay buffer is large enough as in (21), and (iii) the distribution
shift between the behavior policy and optimal policy is bounded (as shown in Remark), the learned
parameters from Algorithm (1) for task 1, ψ1(Θ1) and w1, converge to the ground truth ψ⋆1 and w⋆

1
as in (22), indicating that the learned Q function converges to the optimal Q function as in (23).
Theorem 1 (Convergence analysis of SF-DQN without GPI). Suppose the assumptions in Section
4.2 hold and the initial neuron weights of the SF of task 1 satisfy

∥Θ(0)
1 −Θ⋆

1∥F
∥Θ⋆

1∥F
≤ (1− cN ) · ρ1

K2
, (20)

for some positive cN . When we select the step size as ηt = 1
t+1 , and the size of the replay buffer is

N = Ω(c−2
N ρ−1

1 ·K2 · L2d log q). (21)

Then, with the high probability of at least 1− q−d, the weights θ(T ) from Algorithm 1 satisfy

∥Θ(T )
1 −Θ⋆

1∥2 ≤ C1 + C⋆ · ∥w(0)
1 −w⋆

1∥2
(1− γ − cN )(1− γ)ρ1 − C⋆

· log
2 T

T
,

∥w(T )
1 −w⋆

1∥2 ≤
(
1− ρ2

ϕmax

)T

∥w(0)
1 −w⋆

1∥2,
(22)

where C1 = (2 + γ) · Rmax, and C⋆ = |A| · Rmax · (1 + logν λ
−1 + 1

1−ν ) · C. Specifically, the
learned Q-function satisfies

max
s,a

∣∣∣Q1 −Q⋆
∣∣∣ ≤ C1 + ∥w(0)

1 −w⋆
1∥2

(1− γ − cN )(1− γ)ρ1 − 1
· log

2 T

T
+

∥w(0)
1 −w⋆

1∥2Rmax

1− γ

(
1− ρ2

ϕmax

)T

. (23)

Remark 1 (upper bound of C): To ensure the meaningfulness of the upper bound in (23),
specifically that the denominator needs to be greater than 0, C has an explicit upper bound as
C ≤ (1−γ−cN )(1−γ)ρ1

|A|·Rmax
. Considering the definition of C in Assumption 3, it implies that the dif-

ference between the behavior policy and the optimal policy is bounded. In other words, the fraction
of bad tuples in the collected samples is constrained.

Remark 2 (Initialization): Note that (20) requires a good initialization. Firstly, it is still a state-of-
the-art practice in analyzing Q-learning via deep neural network approximation. Secondly, accord-
ing to the NTK theory (Jacot et al., 2018), there always exist some good local minima, which is
almost as good as the global minima, near some random initialization. Finally, such a good initial-
ization can also be adapted from some pre-trained models.

4.3.2 IMPROVED PERFORMANCE WITH GENERALIZED POLICY IMPROVEMENT

Theorem 2 establishes that the estimated Q function converges towards the optimal solution with
the implementation of GPI as shown in (25), leveraging the prior knowledge learned from previous
tasks. The enhanced performance associated with GPI finds its expression as q⋆ defined in (24).
Notably, when tasks i and j exhibit a higher degree of correlation, meaning that the distance be-
tween w⋆

i and w⋆
j for tasks i and j is minimal, we can observe a more substantial enhancement by

employing GPI in the process of transferring knowledge from task i to task j from (25).
Theorem 2 (Convergence analysis of SF-DQN with GPI). Let us define

q⋆ =
(1 + γ)Rmax

1− γ
·
min1≤i≤j−1 ∥w⋆

i −w⋆
j ∥2

∥Θ(0)
j −Θ⋆

j∥2
. (24)

Then, with the probability of at least 1− q−d, the neuron weights Θ(T )
j for the j-th task satisfy

∥Θ(T )
j −Θ⋆

j∥2 ≤
C1 + C⋆∥w(0)

j −w⋆
j ∥2

(1− γ − cN )(1− γ)ρ1 −min{q⋆, 1} · C⋆
· log

2 T

T
. (25)

Remark 3 (Improvement via GPI): Utilizing GPI enhances the convergence rate from in the order
of 1

1−C⋆ ·
1
T to in the order of 1

1−q⋆·C⋆ ·
1
T . When the distance between the source task and target tasks

is small, q⋆ can approach zero, indicating an improved generalization error by a factor of 1 − C⋆,
where C⋆ is proportional to the fraction of bad tuples. The improvement achieved through GPI
is derived from the reduction of the distance between the behavior policy and the optimal policy,
subsequently decreasing the fraction of bad tuples in the collected data. Here, C⋆ is proportional to
the fraction of bad tuples without using GPI, and q⋆ ·C⋆ is proportional to the fraction of bad tuples
when GPI is employed.
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4.3.3 BOUNDS FOR TRANSFER REINFORCEMENT LEARNING

From Theorems 1 and 2, we have successfully estimatedQπ
⋆
i
i for task i using our proposed SF-DQN.

When the reward changes to rn+1(s, a, s
′) = ϕ⊤(s, a, s′)w⋆

n+1 for a new task Tn+1, as long as we
have estimated w⋆

n+1, we can calculate the estimated Q-value function for Tn+1 simply by setting
Q

πn+1
n+1 (s, a) = max

1≤j≤n
ψ(Θ

(T )
j ; s, a)w⋆

n+1. (26)

As w
(t)
n+1 experiences linear convergence to its optimal w⋆, which is significantly faster than the

sublinear convergence of Θ(t)
(n+1), as shown in (22), this derivation of Qn+1 in (26) simplifies the

computation of Θ⋆n+1 into a much more manageable supervised setting for approximatingw⋆n+1 with
only a modest performance loss as shown in (27). This is demonstrated in the following Theorem 3.
Theorem 3 (Transfer learning via SF-DQN). For the (n+1)-th task with rn+1 = ϕ⊤w⋆n+1, suppose
the Q-value function is derived based on (26), we have

max |Qπn+1
n+1 −Q⋆

n+1| ≤
1 + γ

1− γ
ϕmax min

j∈[n]
∥w⋆

j −w⋆
n+1∥2 +

∥w⋆
n+1∥2

(1− γ) · T . (27)

Remark 4 (Connection with existing works): The second term of the upper bound in (27),
∥w⋆n+1∥2

(1−γ)·T , can be explained as ϵ in Barreto et al. (2017), which results from the approximation error
of the optimal Q-functions in the previous tasks.

Without the SF decomposition as shown in (7), one can apply a similar strategy in (26) for DQN as
Q

π′
n+1

n+1 (s, a) = max
1≤j≤n

Q(ω
(T )
j ; s, a). (28)

In Theorem 4, (29) illustrates the performance of (28) through DQN. Compared to Theorem 3,
transfer learning via DQN is worse than that via SF-DQN by a factor of 1+γ

2 when comparing the
estimation error of the optimal function Q⋆n+1 in (27) and (29), indicating the advantages of using
SFs in transfer reinforcement learning.
Theorem 4 (Transfer learning via DQN). For the (n+1)-th task with rn+1 = ϕ ·w⋆n+1, suppose the
Q-value function is derived based on (28), we have

max |Qπ′
n+1

n+1 −Q⋆
n+1| ≤

2

1− γ
ϕmax · min

j∈[n]
∥w⋆

j −w⋆
n+1∥2 +

∥w⋆
n+1∥2

(1− γ) · T . (29)

Remark 5 (Improvement by a factor of 1+γ
2 ): Transfer learning performance in SF-DQN is influ-

enced by the knowledge gap between previous and current tasks, primarily attributed to differences
in rewards and data distribution. In SF-DQN, the impact of reward differences is relatively small
since ϕ that plays the role of reward remains fixed. The parameter γ affects the influence of data
distribution differences. A small γ prioritizes immediate rewards, thereby the impact of data dis-
tribution on the knowledge gap is not significant. With a small γ, the impact of reward difference
dominates, resulting in a high gap between SF-DQN and DQN in transfer learning.

4.4 TECHNICAL CHALLENGES, COMPARISON WITH EXISTING WORKS

Beyond deep learning theory: Challenges in deep reinforcement learning. The proof of The-
orem 1 is inspired from the convergence analysis of one-hidden-layer neural networks within the
(semi-)supervised learning domain (Zhong et al., 2017; Zhang et al., 2022). This proof tackles two
primary objectives: i) the first objective involves characterizing the local convex region of the objec-
tive functions presented in (12) and (9); ii) the second objective focuses on quantifying the distance
between the gradient defined in (15) and the gradient of the objective functions in (12) and (9).

However, extending this approach from the (semi-)supervised learning setting to the deep reinforce-
ment learning domain introduces additional challenges. First, we expand our proof beyond the
scope of one-hidden-layer neural networks to encompass multi-layer neural networks. This exten-
sion requires new technical tools for characterizing the Hessian matrix and concentration bounds,
as outlined in Appendix F.1. Second, the approximation error bound deviates from the supervised
learning scenarios due to several factors: the non-i.i.d. of the collected data, the distribution shift
between the behavior policy and the optimal policy, and the approximation error incurred when uti-
lizing (16) to estimate (12). Addressing these challenges requires developing supplementary tools,
as mentioned in Lemma 7. Notably, this approximation does not exhibit scaling behavior propor-
tional to ∥Θi −Θ⋆i ∥2, resulting in a sublinear convergence rate.

Beyond DQN: challenges in GPI. The major challenges in proving Theorems 2-4 centers on de-
riving the improved performance by utilizing GPI. The intuition is as follows. Imagine we have two

8
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closely related tasks, labeled as i and j, with their respective optimal weight vectors, w⋆
i and w⋆

j ,
being close to each other. This closeness suggests that these tasks share similar rewards, leading to a
bounded distributional shift in the data, which, in turn, implies that their optimal Q-functions should
exhibit similarity. To rigorously establish this intuition, we aim to characterize the distance between
these optimal Q-functions, denoted as |Q⋆i − Q⋆j |, in terms of the Euclidean distance between their
optimal weight vectors, ||w⋆

i −w⋆
j ||2 (See details in Appendix G). Furthermore, we can only esti-

mate the optimal Q-function for previous tasks during the learning process, and such an estimation
error accumulates in the temporal difference learning, e.g., the case of the SF learning of ψ⋆. We
need to develop novel analytical tools to quantify the error accumulating in the temporal difference
learning (see details in Appendix C), which is unnecessary for supervised learning problems.

5 EXPERIMENTS

This section summarizes empirical validation for the theoretical results obtained in Section 4 using
a synthetic RL benchmark environment. The experiment setup and additional experimental results
for real-world RL benchmarks are summarized in Appendix E.

Convergence of SF-DQN with varied initialization. Figure 1 shows the performance of Algorithm
1 with different initial w(0)

1 to the ground truth w⋆
1 . When the initialization is close to the ground

truth, we observe an increased accumulated reward, which verifies our theoretical findings in (23)
that the estimation error of the optimal Q-function reduces as ∥w(0)

1 −w⋆∥2 decreases.
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Figure 1: Performance of SF-DQN presented
in Algorithm 1 on Task 1.
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Figure 2: Transfer comparison for SF-DQN
and DQN (with GPI)

Performance of SF-DQN with GPI when adapting to tasks with varying relevance. We con-
ducted experiments to investigate the impact of GPI with varied task relevance. Since the difference
in reward mapping impacts data distribution shift, rewards, and consequently the optimal Q-function,
we utilize the metric ∥w⋆

1−w⋆
2∥2 to measure the task irrelevance. The results summarized in Table 2

demonstrate that when tasks are similar (i.e., small ∥w⋆
1−w⋆

2∥), SF-DQN with GPI consistently out-
performs its counterpart without GPI. However, when tasks are dissimilar (i.e., large ∥w⋆

1 −w⋆
2∥),

both exhibit same or similar performance, indicating that GPI is ineffective when two tasks are
irrelevant. The observations in Table 2 validate our theoretical findings in (25), showing a more
significant improvement in using GPI as ∥w⋆

1 −w⋆
2∥2 decreases.

Table 2: Normalized average reward for SF-DQN with and without GPI.

∥w∗
1 − w∗

2∥ = 0.01 = 0.1 = 1 = 10
SF-DQN (w/ GPI) 0.986± 0.007 0.965± 0.007 0.827± 0.008 0.717± 0.012

SF-DQN (w/o GPI) 0.942± 0.004 0.911± 0.013 0.813± 0.009 0.707± 0.011

Comparison of the SF-DQN agent and DQN agent. From Figure 2, it is evident that the SF-DQN
agent consistently achieves a higher average reward (task 2) than the DQN when starting training on
task 2, where transfer learning occurs. These results strongly indicate the improved performance of
the SF-DQN agent over the DQN, aligning with our findings in (27) and (29). SF-DQN benefits from
reduced estimation error of the optimal Q-function compared to DQN when engaging in transfer
reinforcement learning for relevant tasks.
6 CONCLUSION
This paper analyzes the transfer learning performance of SF & GPI, with SF being learned us-
ing deep neural networks. Theoretically, we present a convergence analysis of our proposed SF-
DQN with generalization guarantees and provide theoretical justification for its superiority over
DQN without using SF in transfer reinforcement learning. We further verify our theoretical find-
ings through numerical experiments conducted in both synthetic and benchmark RL environments.
Future directions include exploring the possibility of learning ϕ using a DNN approximation and
exploring the combination of successor features with other deep reinforcement learning algorithms.
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