
Under review as a conference paper at ICLR 2022

COMPARING REPRESENTATIONS OF BIOLOGICAL DATA
LEARNED WITH DIFFERENT AI PARADIGMS,
AUGMENTING AND CROPPING STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in computer vision and robotics enabled automated large-scale
biological image analysis. Various machine learning approaches have been suc-
cessfully applied to phenotypic profiling. However, it remains unclear how they
compare in terms of biological feature extraction. In this study, we propose a
simple CNN architecture and implement weakly-supervised, self-supervised, un-
supervised and regularized learning of image representations. We train 16 deep
learning setups on the 770k image dataset under identical conditions, using differ-
ent augmenting and cropping strategies. We compare the learned representations
by evaluating multiple metrics for each of three downstream tasks: i) distance-
based similarity analysis of known drugs, ii) classification of drugs versus con-
trols, iii) clustering within cell lines. We also compare training times and memory
usage. Among all tested setups, multi-crops and random augmentations generally
improved performance across tasks. We show that self-supervised models have
competitive performance and can be trained up to 11 times faster than others. We
demonstrate pros and cons of using regularized learning. We observe that no sin-
gle combination of augmenting and cropping strategies consistently delivered top
performance across tasks and recommend prospective research directions.

1 INTRODUCTION

With recent advances in robotics and deep learning methods, automated large-scale biological im-
age analysis has become possible. Different microscopy technologies allow to collect imaging data
of samples under various treatment conditions. Then, images are processed to extract meaningful
biological features and compare samples across cohorts. As opposed to carefully engineered fea-
tures used in the past, deep learning approaches are widespread and automatically distil relevant
information directly from the data (Moen et al., 2019).

A lot of approaches, following different paradigms of machine learning, have been successfully ap-
plied to image-based phenotypic profiling: from fully supervised approaches (Godinez et al., 2017;
Kraus et al., 2017) to generative adversarial learning (Hu et al., 2019; Goldsborough et al., 2017;
Radford et al., 2016) and self-supervision (Robitaille et al., 2021; Zhang et al., 2020). However, it
remains unclear how these approaches align with each other in terms of biological feature extraction.
The direct comparison is close to impossible, as many aspects differ between the studies: imaging
technologies, datasets, learning approaches and model architectures, implementations and hardware.

In the emergent field of self-supervised learning, a key role of random data augmentations and mul-
tiple image views has recently been shown (Caron et al., 2021). Their synergetic impact on learning
image representations has not yet been rigorously studied. In this paper, we compare different deep
learning setups in their ability to learn representations of drug-treated cancer cells. We propose
a simple CNN architecture and implement four approaches to learn representations: the weakly-
supervised, the unsupervised (with and without regularization) and the self-supervised. We train the
models on the same dataset of 770k cell images with and without random image augmentations, with
single and multi-crops. The other training conditions are kept identical. We compare the learned
representations in the three downstream analysis tasks, discuss their performance and provide the
comparison summary table.
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Our main contributions are:

• implementations of 16 deep learning setups, including state-of-the-art methods trainable
within limited resources,

• a systematic comparison of learned representations.

2 RELATED WORK

Weak supervision has been a popular choice to learn medical image representations and has proven
its efficiency (Caicedo et al., 2018; Lu et al., 2020). When analyzing samples corresponding to
different treatments, patients, or any experimental conditions, those are often used as weak labels.
In our case, there are 693 conditions with different combinations of drugs and cell lines. However,
the effects of those combinations are largely unknown, so we restrict ourselves into using two labels
only: drug vs control (supposedly, effect vs no effect).

A recent approach to understand morphological features of cancer cells by Longden et al. (2021)
follows an unsupervised perspective. The authors apply a deep autoencoder to learn 27 continuous
morphological features. However, their model does not work with raw images. It uses 624 extracted
numerical features as input, and applies a series of linear layers to reconstruct them. Here, we use a
convolutional autoencoder instead, to learn more features directly from the data.

Several approaches for learning representations of cell images are based on generative adversarial
networks (Arjovsky et al., 2017; Gulrajani et al., 2017). Such models often have two components:
the generator and the discriminator network, trained simultaneously in a competitive manner. In
this work, we implement a similar idea in the form of regularization: we use a deep convolutional
autoencoder as generator, and a weakly-supervised classifier as discriminator. Both networks share
the same stack of layers, responsible for learning representations, while optimizing different loss
functions. In this setting, the computational time and memory usage remain comparable to the
aforementioned approaches.

Finally, self-supervision has recently emerged in bioinformatics to address problems like cell seg-
mentation, annotation and clustering (Lu et al., 2019; Santos-Pata et al., 2021). Most recently, a
self-supervised contrastive learning framework has been proposed by Ciortan & Defrance (2021)
to learn representations of scRNA-seq data. The authors follow SimCLR (Chen et al., 2020b) in
the implementation of contrastive loss and show that their approach compares favorably with state-
of-the-art (SOTA) methods in a downstream clustering task. Here, we train a self-supervised CNN
backbone, following BYOL (Grill et al., 2020). Unlike SimCLR, this approach does not need nega-
tive pairs, yet it was shown to have a superior performance.

In spite of the great interest in deep-learning-based approaches to learning representations of bio-
logical data, there have been very few attempts to fairly compare those. A comparison of AI-based
methods to predict cell function has come out lately (Padi et al., 2020). However, it was primarily
focused on collating traditional machine learning versus deep learning. Brief general comparisons
of recent AI approaches can be found in reviews and surveys (Moen et al., 2019; Chandrasekaran
et al., 2021; Nguyen et al., 2019), but they lack details and cannot inform decision making. Recently,
a thorough comparison of data-efficient image classification models has been published by Brigato
et al. (2021). The authors evaluated 10 models on 6 different datasets. Eventually, this analysis fo-
cuses on classification tasks only. Although we see papers illustrating how a single study can benefit
from multiple AI paradigms (Chen et al., 2020a), it remains unclear which approach is preferable
in a particular representation learning task. In this study, we attempt to address this question for
analysis of images of cancer cell lines growing in tissue cultures.

3 DATA

The initial dataset comprises 1.1M high-resolution grey-scale images of drug-treated cancer cell
populations growing adherently in vitro. It captures 693 unique combinations of 21 cell lines and 33
drugs at 5 different drug concentrations, multiple time points and biological replicates. Analyzing
such datasets often presents a challenge of identifying previously unknown drug-induced morpho-
logical patterns and is useful to inform future clinical applications (such as combination therapy).
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Figure 1: Typical examples of control and drug images (M14 cell
line). On the left, an early time point of the control (cells have not
grown yet) is shown against a strong drug effect (fragmented or
dead cells). On the right, the end time points for the control and
an ineffective drug are depicted. In the middle, an example of
intermediate growth of a control sample versus another cytotoxic
drug is given. Note the similarity between drugs and controls.

We carefully subset the initial
data to obtain a balanced dataset
of two labels: samples with sup-
posedly the strongest drug ef-
fect (i.e., the highest drug con-
centration, the latest time point)
and controls (no drugs, any time
point). We end up with about
770k image crops of size 64x64.
It is important to note that some
drugs did not provoke any ef-
fect on resistant cell lines, so the
corresponding images of drugs
and controls look similar. Some
other drugs showed growth ar-
rest, which resulted in drug-
treated images being similar to
early time point controls, where
the cells have not grown yet. By
balancing the dataset to contain
such cases (Fig. 1), we expected
the models to learn specific mor-
phological differences, instead
of superficial features like cell
location in the crop, cell population density, amount of grey, etc.

4 METHODS

4.1 MODEL ARCHITECTURES
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Figure 2: Graphical overview of models. a. A weakly-supervised deep classifier with a categorical
cross-entropy discrimination loss (drug vs control). b. A convolutional autoencoder with a binary
cross-entropy reconstruction loss. c. A regularized convolutional autoencoder: models a and b,
sharing the CNN backbone, trained simultaneously. d. A self-supervised CNN backbone with a
mean-squared error difference loss (BYOL).

To learn image representations, we applied four machine learning paradigms:

a. weakly-supervised learning: a classifier (with two labels only),

b. unsupervised learning: an autoencoder (with classic encoder-decoder architecture),

c. regularized learning: a combination of models a and b (with encoder-classifier-decoder
architecture),
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d. self-supervised learning: the CNN backbone, trained following BYOL (Grill et al., 2020).

As seen on Figure 2, the four architectures contain the same CNN backbone, which is used to pro-
duce image representations for the downstream analysis. It was important to use the same stack
of layers to ensure fair comparison of methods in retrieving relevant biological information. How-
ever, image representations are learned solving substantially different tasks: discrimination between
drug and control images (model a), reconstruction of images (models b-c), minimization of image
representation difference between the online and the target networks (model d).

For the regularized model, we adopted a particular implementation where a classifier and an autoen-
coder are trained in turns, optimizing different loss functions (Fig. 2c). Our idea was to encourage
the autoencoder to learn representations that would bear differences between drug and control im-
ages, while still delivering high quality image reconstructions. In this formulation, the classifier acts
as a regularizer. Although similar models have been utilized in chemo- and bioinformatics tasks
(Gómez-Bombarelli et al., 2018; Rong et al., 2020), to our knowledge this implementation has not
been tested previously in the analysis of biological images.

4.2 TRAINING SETUPS

Each model was trained under 4 conditions of presence and absence of random image augmentations
and multi-crops, giving rise to 16 training setups in total. Since the dataset is naturally grayscale,
we only applied random resized crops, horizontal flips and Gaussian blurs to augment. Note that
data augmentations are intrinsic to the self-supervised approach. Therefore, we tested single and
double augmenting (while preprocessing and/or while training) for model d. In the one-crop setting,
we used single 64x64 images. For multi-crop, we added 4 random resized crops applied to 64x64
images: 2 of about half-size, and 2 more of about quarter-size (5 crops in total).

We implemented the 16 described setups and trained them using Nvidia GeForce RTX 2060 with
6 GB of memory only. We chose the CNN backbone architecture, batch size and other common
hyperparameters by running grid search and finding the best average performance across models,
achievable within reasonable training time and hardware memory constraints.

For the self-supervised model, we additionally optimized three BYOL parameters: projection size,
projections hidden size and moving average decay. We trained the model 100 times, sampling pa-
rameters from predefined ranges. We found that the model with an equal number of neurons for
hidden and projection layers worked consistently and achieved the lowest MSE loss for our data
among testable parameter sets. That parameter set was used for final training and evaluation.

The classifiers in a and c were trained by optimizing categorical cross-entropy loss. The autoen-
coders in b and c were trained with binary cross-entropy loss and softmax activation. We trained all
models for 50 epochs, using Adam optimizer with a constant learning rate of 0.0001. A batch size
of 256 was used. We defined the same early stopping criterion, which checks a simple divergence
condition on the loss function. We used the same data splits with 10% for the validation set to test
classification accuracy and reconstruction quality, while training.

4.3 VALIDATION AND EVALUATION

We validated the models by monitoring the corresponding loss functions, classification accuracy
and image reconstruction quality for training and validation sets (see Supplementary materials).
For each of three downstream tasks, we evaluated several metrics as described below.

4.3.1 DISTANCE METRICS

First, we compared the learned representations in their ability to capture similarity of known drugs.
Let S1 and S2 be the sets of images of two drugs, known to have similar effects, and C be the set of
control images. We calculate the following two metrics to quantify similarity between S1 and S2:

• D(S1, S2) = median
u∈S1,v∈S2

(||u− v||),

i.e., the median Euclidean distance between any two images (u, v) of two sets.
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• d(S1, S2) =
D̂−D(S1,S2)

D̂
, where D̂ = 1

2 [D(S1, C) +D(S2, C)],
i.e., the normalized difference between drug-to-control and drug-to-drug distances.

4.3.2 CLASSIFICATION METRICS

Next, we compared the learned features by their performance in the binary classification task, de-
fined initially for the weakly-supervised model. We used a pretrained stack of layers of each model
to generate codes and then trained a classifier with two linear layers to differentiate between drugs
and controls. We used the same data splits for all models and trained them for 25 epochs with SGD
optimizer and batch size of 1024. We ran grid search over learning rate, momentum and weight
decay parameters to achieve the best training and validation accuracy. To comprehensively evaluate
the performance of classifiers, we calculated the following metrics for each cell line individually:
accuracy, precision, recall and area under ROC.

4.3.3 CLUSTERING METRICS

Figure 3: D(MTX, PTX), D(MTX, DMSO),
D(PTX, DMSO) for M14 cell line. The four
model architectures are organized in rows (from
top to down): the unsupervised, the self-
supervised , the weakly-supervised, the regular-
ized. In columns, the four different setups are
given (from left to right): augmentations + multi-
crops, augmentations + single crops, no augmen-
tations + multi-crops, no augmentations + single
crops.

Finally, we compared the learned features in the
clustering task. For each cell line, we pulled
the corresponding images from the validation
set, obtained their representations and further
reduced dimensionality with UMAP (McInnes
et al., 2020). We clustered the resulting embed-
dings with HDBSCAN (McInnes et al., 2017)
and evaluated several metrics: number of iden-
tified clusters and percent of noise points, Sil-
houette score and Davies-Bouldin similarity
measure.

For each cell line, we ran the analysis
multiple times, varying two parameters: i)
n neighbors, responsible for constraining the
size of the local neighborhood in UMAP, and
ii) min cluster size, representing the smallest
grouping size in HDBSCAN. We adopted the
following procedure to find the best partitions:

i. select Silhouette scores above median,
ii. for those, select Davies-Bouldin

scores below median,
iii. within the rest, select the lowest per-

cent of noise,
iv. if multiple parameter sets are left, pick

the one of max number of clusters.

This logic was motivated by zero correlation
between the Silhouette and the Davies-Bouldin
measures, and by the objective to find as many “clean” clusters as possible.

5 RESULTS

5.1 DISTANCE-BASED DRUG SIMILARITY ANALYSIS

Pemetrexed (PTX) and Methotrexate (MTX) are two drugs that have similar chemical structures
and both inhibit folate-related enzymes. Over the years, they have been successfully applied to
cure many types of cancer (non-small cell lung cancer, pleural mesothelioma, lymphoma, etc.
(Ruszkowski et al., 2019)) We applied distance-based analysis to evaluate how close PTX and MTX
are to each other in terms of learned features, and how distant they both are from controls (images
of cells under no treatment).
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In order to do that, we picked all images related to PTX and MTX drugs from the validation
set. Then, we randomly picked the same number of control images (DMSO). We calculated
D(MTX, PTX), D(MTX, DMSO), D(PTX, DMSO) on image representations, which resulted in
around 3600 distances for each cell line and pair on average. Based on a-priori knowledge of effi-
ciency and similarity of the drugs, we expected MTX-PTX distances to be consistently lower than
of MTX-DMSO and PTX-DMSO. That expectation was not met by all models, as shows Figure 3.

Analyzing distances for M14 cell line, we observed that in the latent space the two drugs (PTX
and MTX) were closer to each other than either of them to controls (DMSO) for two models only:
the unsupervised (Fig. 3, row #1) and the regularized (row #4) ones. The distances for the self-
supervised and the weakly-supervised models (rows #2-3) were rather on the same level. Strikingly,
the one-crop setup for both of them (columns #2 and #4) resulted in distances close to zero, which
implies that information in the learned representations was insufficient to characterize drug effects.
Multi-crop setting, in turns, caused large increase in distances, which suggests information gain.
Nonetheless, it was not enough to capture dissimilarity between drugs and controls in this case.

We repeated the same analysis for each of 21 cell lines. We found that with the exception of weakly-
supervised models, all produced lower average MTX-PTX distances, compared to MTX-DMSO
and PTX-DMSO. Also, the median normalized differences d turned out to be the largest for the self-
supervised model (Tab. 2). This suggests that the space of learned features of weakly-supervised
models is likely to contain more trivial information about the drug effects, rather than features of
altered morphology.

5.2 CLASSIFICATION OF DRUGS VERSUS CONTROLS

Figure 4: Binary classification accuracy (drug vs
control) for three picked cell lines: HT29, HCT15,
ACHN. The four model architectures are orga-
nized in rows (from top to down): the unsuper-
vised, the self-supervised , the weakly-supervised,
the regularized. In columns, the four different se-
tups are given (from left to right): augmentations
+ multi-crops, augmentations + single crops, no
augmentations + multi-crops, no augmentations +
single crops.

Figure 4 shows classification results for a few
picked cell lines. All models show comparable
performance, crossing 0.6 accuracy bottom line
and reaching 0.7 in many cases. However, it
is only the weakly-supervised model (row #3)
that achieved 0.8 accuracy for the HT29 cell
line and delivered consistently higher perfor-
mance in all setups. This was expected due to
identical problem formulation in representation
learning. Interestingly, the other three models
have also shown rather high, rival performance
on this task. That implies that all models have a
potential in detecting drug effects in time-series
imaging data (e.g., to predict drug onset times
for different concentrations).

Table 2 contains four classification metrics for
each training setup, evaluated on the entire
dataset. Median performance for 21 cell lines
is reported. The regularized model with sin-
gle crops and augmentations showed the high-
est overall accuracy (0.76 ± 0.07) and ROAUC
(0.76 ± 0.06), though the weakly-supervised
model was the most robust across settings.
Both, the weakly- and self-supervised models
delivered their best performance under multi-
crop setting.

5.3 CLUSTERING ANALYSIS WITHIN CELL
LINES

Figure 5A presents mean numbers of identified clusters across models and settings. Varying the
clustering parameters to encourage smaller or bigger partitions resulted in relatively large confidence
intervals. However, even the lower bounds exceeded n=2 clusters, which would correspond to the
trivial case of differentiating between drugs and controls (effect vs no effect), in the majority of
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cases. That indicates that the learned representations allow studying the data in more depth (e.g.,
finding similarities in concentration-dependent morphological drug effects).

Although mean numbers of clusters look similar, the quality of partitions differed substantially
across cell lines, as follows from the Silhouette score barplots (Fig. 5B). The weakly-supervised
model produced the poorest scores for the three picked cell lines. Close-to-zero and even negative
values suggest that the clusters were mainly overlapping. In such cases, obtained partitions are far
less trustworthy and any follow-up analysis on them is controversial. The self-supervised model de-
livered better scores, though the top competitive performance was shown by the other two models:
the unsupervised and the regularized ones. Interestingly, the highest scores for the COLO205 cell
line appear with low numbers of identified clusters, suggesting there is only a few morphological
patterns to be found in this cell line. The mean statistics across all cell lines are given in Table 2.

A B

Figure 5: Clustering analysis for three picked cell lines: SKMEL2, SW620, COLO205. Mean num-
bers of identified clusters (A) and mean Silhouette scores (B) are shown with confidence intervals.
The four model architectures are organized in rows (from top to down): the unsupervised, the self-
supervised , the weakly-supervised, the regularized. In columns, the four different setups are given
(from left to right): augmentations + multi-crops, augmentations + single crops, no augmentations
+ multi-crops, no augmentations + single crops.

5.4 TRAINING TIMES AND MEMORY USAGE

All models were trained using Nvidia GeForce RTX 2060 with 6 GB memory. With batch size of
256, steady memory consumption was around 4.3 and 4.7 GB for single and multi-crops, respec-
tively. Batch size of 512 resulted in cuda-out-of-memory error in all setups.

Unlike memory usage, training times differed largely for 4 model architectures and cropping strate-
gies (Tab. 1). The self-supervised model was the only one to meet the early stopping criterion,
which resulted in remarkably small training times. The one crop training stopped after 16/50
epochs, whereas multi crop made 7/50 epochs only. The other models were trained for all 50
epochs.

Table 1: Training time (hours)

Unsupervised Self-supervised Weakly-supervised Regularized
one crop 7 1.5 2.5 9

multi crop 35 4 11 45
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5.5 SUMMARY OF COMPARISON

Table 2: Summary of comparison. Median distance and classification metrics are given with median
absolute deviations. Mean clustering metrics are given with standard deviations. All metrics satisfy
the-higher-the-better. Top performance for each model and task is highlighted in bold.

Unsupervised
aug no aug

multi crop one crop multi crop one crop
d(MTX, PTX) 0.17 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 0.20 ± 0.00

D−1(MTX, PTX) 0.11 ± 0.02 0.08 ± 0.01 0.11 ± 0.02 0.09 ± 0.01
Accuracy 0.72 ± 0.06 0.70 ± 0.06 0.72 ± 0.05 0.75 ± 0.07
Precision 0.80 ± 0.06 0.75 ± 0.05 0.75 ± 0.04 0.86 ± 0.06

Recall 0.66 ± 0.11 0.69 ± 0.10 0.72 ± 0.11 0.65 ± 0.12
ROAUC 0.72 ± 0.06 0.69 ± 0.06 0.70 ± 0.05 0.75 ± 0.06
# clusters 4 ± 2 4 ± 2 4 ± 2 3 ± 1

Not noise, % 93 ± 6 93 ± 5 94 ± 5 94 ± 5
Silhouette 0.32 ± 0.14 0.34 ± 0.17 0.35 ± 0.16 0.32 ± 0.08

(Davies-Bouldin)−1 0.92 ± 0.79 0.99 ± 0.83 0.94 ± 0.89 0.80 ± 0.27
Self-supervised

d(MTX, PTX) 0.27 ± 0.00 0.24 ± 0.00 0.25 ± 0.00 0.2 ± 0.00
D−1(MTX, PTX) 0.22 ± 0.02 0.69 ± 0.06 0.26 ± 0.02 0.64 ± 0.09

Accuracy 0.62 ± 0.05 0.60 ± 0.04 0.61 ± 0.04 0.61 ± 0.05
Precision 0.69 ± 0.05 0.63 ± 0.04 0.69 ± 0.05 0.69 ± 0.05

Recall 0.54 ± 0.14 0.63 ± 0.10 0.56 ± 0.12 0.55 ± 0.13
ROAUC 0.62 ± 0.04 0.59 ± 0.03 0.61 ± 0.04 0.61 ± 0.05
# clusters 5 ± 3 4 ± 3 4 ± 2 3 ± 1

Not noise, % 93 ± 4 94 ± 4 95 ± 5 95 ± 4
Silhouette 0.29 ± 0.09 0.32 ± 0.06 0.34 ± 0.09 0.34 ± 0.12

(Davies-Bouldin)−1 0.74 ± 0.15 0.75 ± 0.14 0.86 ± 0.47 0.92 ± 0.63
Weakly-supervised

d(MTX, PTX) -0.15 ± 0.00 0.03 ± 0.00 -0.18 ± 0.00 0.01 ± 0.00
D−1(MTX, PTX) 0.14 ± 0.03 1.47 ± 0.26 0.1 ± 0.02 1.20 ± 0.19

Accuracy 0.73 ± 0.05 0.73 ± 0.05 0.75 ± 0.05 0.73 ± 0.05
Precision 0.73 ± 0.05 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

Recall 0.77 ± 0.12 0.75 ± 0.11 0.77 ± 0.11 0.77 ± 0.10
ROAUC 0.72 ± 0.05 0.73 ± 0.05 0.74 ± 0.05 0.73 ± 0.05
# clusters 5 ± 4 3 ± 1 4 ± 1 6 ± 5

Not noise, % 90 ± 5 91 ± 7 89 ± 8 87 ± 7
Silhouette 0.13 ± 0.08 0.14 ± 0.09 0.13 ± 0.08 0.12 ± 0.07

(Davies-Bouldin)−1 0.55 ± 0.17 0.54 ± 0.14 0.56 ± 0.17 0.53 ± 0.10
Regularized

d(MTX, PTX) 0.17 ± 0.00 0.19 ± 0.00 0.15 ± 0.00 0.18 ± 0.00
D−1(MTX, PTX) 0.12 ± 0.02 0.08 ± 0.01 0.09 ± 0.02 0.08 ± 0.01

Accuracy 0.73 ± 0.07 0.76 ± 0.07 0.70 ± 0.05 0.72 ± 0.06
Precision 0.79 ± 0.05 0.83 ± 0.05 0.75 ± 0.04 0.80 ± 0.06

Recall 0.70 ± 0.11 0.68 ± 0.11 0.66 ± 0.11 0.66 ± 0.09
ROAUC 0.73 ± 0.06 0.76 ± 0.06 0.69 ± 0.05 0.72 ± 0.06
# clusters 4 ± 1 4 ± 2 3 ± 1 4 ± 2

Not noise, % 93 ± 5 93 ± 4 94 ± 5 94 ± 5
Silhouette 0.32 ± 0.06 0.30 ± 0.09 0.35 ± 0.15 0.33 ± 0.12

(Davies-Bouldin)−1 0.76 ± 0.20 0.77 ± 0.26 0.99 ± 0.92 0.94 ± 0.68

6 DISCUSSION

In this study, we used the distance-based analysis to validate and compare models. We took images
of two drugs (PTX and MTX), known to be structurally and functionally similar, evaluated and
compared their distances to control images in the space of learned features. However, this analysis
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stays limited to the choice of drugs. Although PTX and MTX made the best example for this dataset
to use a-priori knowledge in validation and comparison of learned features, the results can not be
generalized for any pair of drugs.

A common practice to evaluate learned representations is to apply them to different tasks and
datasets. Often, linear evaluation and transfer learning scenarios are tested. However, this is the
case when representations are learned from multi-class general purpose datasets (e.g., ImageNet).
On the contrary, biological imaging datasets are specific. It has been reported that even SOTA mod-
els trained on ImageNet drop their performance significantly on such datasets (Grill et al., 2020).
In this study, we had a large imbalanced unlabelled dataset of 1.1M cell images under 693 different
conditions over time. We sampled from it in the way to formulate a balanced binary classification
problem, which in turn drastically limited further transfer learning applications.

To the date, no consensual measure to evaluate clustering results has been proposed (Palacio-Niño
& Berzal, 2019). A number of metrics, such as Adjusted Rand Index, Silhouette score, Normalized
Mutual Information, etc., are typically used together to compare results. Most metrics, however,
require the ground truth labelling, which were not available in this study. Besides, the clustering
itself can be approached in many different ways, using the classical or the newly developed deep-
learning based algorithms (Ciortan & Defrance, 2021). In this study, we only intended to fairly
compare clustering results, obtained under identical conditions (same algorithm, grid search param-
eters, evaluation metrics, etc.)

In this study, we have demonstrated a number of ways to analyze large biological datasets with differ-
ent representation learning paradigms. Similar approaches can be applied to address actual problems
in healthcare and biotech industry (e.g., deriving drug onset times, characterizing concentration-
dependent pharmacodynamics, exploring opportunities for combination therapy, etc.) In this con-
text, it is important for the scientific community to see that SOTA methods (such as BYOL) can be
successfully trained on large datasets within reasonable time using limited resources.

7 CONCLUSION

We applied different AI paradigms to analyze a large unlabelled dataset of drug treated cancer cell
lines. We implemented four different models and trained them under four different settings, com-
bining augmentations and multi-crops. We kept the training parameters identical to ensure fair
comparison of learned representations. We used Nvidia GeForce RTX 2060 with 6 GB only to train
all models. The learned representations of 16 setups (model + setting) were evaluated in 3 down-
stream tasks: i) distance-based similarity analysis of known drugs, ii) classification of drugs versus
controls, iii) clustering within cell lines. Multiple metrics were used to quantify performance on
each task. We make the following observations summarizing our analysis:

• Multi-crops and augmentations generally improve performance in downstream tasks, as
expected. Of 16 setups tested on 3 tasks each, only once the model with no augmentations
and single crops produced the best performance.

• The self-supervised model showed very competitive performance and was the fastest to
train. Strikingly, we managed to train it on the 770k dataset using a moderate GPU within
1.5 and 4 hours only (for single and multi-crops, respectively). Additionally, double aug-
menting resulted in improved performance on 2 of 3 downstream tasks.

• Overall, the regularized autoencoder produced the most informative features. It delivered
the best scores for classification and clustering tasks and the second best for distance-based
drug similarity analysis. However, it also required significantly more time to train.

• No single combination of model (architecture) and setting (augmenting and cropping strat-
egy) consistently outperformed the others. Within each model, the top performance on 3
tasks was often shown by different settings.

Our results suggest a combination of regularized and self-supervised learning as the most promising
mechanism to efficiently learn biologically meaningful representations. To achieve top performance
in a particular application, we recommend to extensively evaluate the strength of domain-specific
regularization, as well as augmenting and cropping strategies.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
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A QUALITY OF IMAGE RECONSTRUCTIONS
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Figure 6: Random examples of reconstructed and original images for the unsupervised (a) and the
regularized (b) models. Regularization did not harm the quality of reconstructions. The learning
capacity of the CNN backbone was sufficient to capture normal and altered morphology of the cells.

B CLUSTERING OF HCT CELL LINE REPRESENTATIONS

Figure 7: Clustering example of 20480 images (HCT15 cell line) with random cluster representa-
tives. Each point is a 2D UMAP embedding of the learned image representations (self-supervised
model). Clusters found by HDBSCAN are highlighted in colors. The left cluster (blue) contains
drugs of no effect on HCT15. The right cluster (red) contains the drugs of the strongest effect.
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