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Abstract— Deepfake technology, a rapidly evolving 
application of artificial intelligence, has enabled the 
creation of highly realistic yet synthetic multimedia 
content. While this innovation offers potential benefits in 
areas such as entertainment and education, its misuse has 
raised significant ethical and security concerns, including 
misinformation and financial fraud. This study evaluates 
the effectiveness of current deepfake detection methods, 
focusing on the Xception model for video detection and 
the LCNN model for audio detection, using a dataset 
composed of real-life and deepfake content. The dataset 
includes deepfakes generated by tools such as the 
Deepfake Offensive Toolkit and Haotian AI, a cutting-
edge provider known for its high-quality outputs. Our 
findings reveal that the Xception model, while achieving 
89.1% accuracy on control datasets, struggled to detect 
Haotian AI-generated deepfakes, misclassifying nearly all 
samples as authentic. This performance gap highlights 
the need for more diverse training datasets and advanced 
detection frameworks capable of addressing the nuances 
of emerging deepfake tools. Additionally, metadata 
changes caused by uploading and downloading content 
on social media platforms were found to have minimal 
impact on detection accuracy, challenging the feasibility 
of metadata-based detection approaches. This research 
underscores the limitations of current deepfake detection 
models and emphasizes the necessity for multimodal 
approaches and broader datasets to enhance robustness. 
The study’s implications call for continued advancements 
in detection methods to keep pace with the growing 
sophistication of deepfake technologies. 
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I. INTRODUCTION 

A. Context 

Artificial intelligence has been enhanced in recent 
years to include an application to multimedia known 
as “deepfakes”. A deepfake is some form of media 
input that has been artificially transformed to mimic 
some training media to produce an output like the 
training media. Realtime video and/or audio as well 

as recorded video, audio, and images can all be used 
for the generation of deepfakes. Improvements have 
been made to the specific artificial intelligence 
algorithms used for generations of deepfakes to more 
closely resemble the training data used. With the 
advent of this application of artificial intelligence has 
come malicious use of deepfakes. Deepfake 
technology has been used to both make humorous 
content for social media popularity, and for scams 
[1]. Deepfakes can become harmful on social media 
sites when used for scams or misinformation. It has 
been reported that deepfakes have impacted elderly 
American citizens through fraud using deepfake 
technology to gain trust of the victim, resulting in a 
total loss of 3.4 billion USD in 2023 [43]. While 
metadata has been suggested as a tool for identifying 
deepfake content, this approach faces significant 
limitations. Alterations, encryption, or removal of 
metadata from deepfake media can render this 
method ineffective. Moreover, many social media 
platforms further complicate detection by removing 
or encrypting metadata, often as a privacy measure, 
making it challenging or even impossible to rely on 
metadata for identifying deepfakes. [37][38][39][40]. 
While efforts have been successful before to detect 
the use of deepfake-related scams, such as asking an 
attacker to make a gesture with their hand or face to 
reveal artifacts or errors of their software, recent 
developments in such scams have prompted 
legislation to be made to regulate such use of 
deepfakes, and further research to be conducted to 
improve existing detection methods [3][4][20]. 

This paper will evaluate the ability of current 
deepfake detection methods to detect deepfake media 
generated by known deepfake algorithms, and some 
samples from deepfakes generated by Haotian AI, a 
company whose deepfake software is reported to 
offer capabilities comparable to or exceeding those of 
DeepFaceLab and its live version [2]. We also aim to 
explore the impact of uploading both original videos 
and audios to social media sites on metadata for both 
real life content and deepfake content. The 
experiment will be conducted as follows. First, 
samples of video and audio will be utilized as input 



for different deepfake algorithms. Second, the 
generated deepfake content is uploaded to different 
social media platforms and then downloaded for 
analysis of the changes to the metadata of the original 
videos and audio and the deepfake versions. Finally, a 
deepfake detection model will be trained and tested 
on the original and deepfake content. 

B. Technical Background 

B.1. Deep Learning Fundamentals. Deep learning, a 
subset of machine learning, relies on neural networks 
with multiple layers to extract complex patterns from 
data. Convolutional Neural Networks (CNNs), a 
specialized type of deep neural network, excel in 
processing spatial data like images or audio. By using 
convolutional and pooling layers, CNNs reduce 
dimensionality while amplifying significant features, 
such as edges, anomalies, and distortions, making 
them vital for both the generation and detection of 
deepfakes [21][22][27][53]. 

Mathematical Functions in CNNs: 

1. Convolution Operation 

(𝑓 ∗ 𝑔)(𝑥, 𝑦) = ෍ ∑ 𝑓(𝑖, 𝑗) ⋅ 𝑔(𝑥 + 𝑖, 𝑦 + 𝑗)௞
௝ୀି௞

௞

௜ୀି௞
 

1. This operation extracts local features from 
input data by sliding a filter (a.k.a. a kernel) 
over the input matrix (image or audio). 

2. Pooling: 

𝑃௜௝ = max
(௠,௡)ఢோ೔ೕ

(𝐼௠,௡) 

2. This function reduces spatial dimensions 
while preserving the most significant 
features in the region 𝑅௜௝. 

B.2. Deepfake Generation Techniques. Deepfake 
generation leverages neural network architectures, 
primarily autoencoders and GANs. B.2.a. 
Autoencoders. These models compress input data into 
a latent representation, then reconstruct it. When two 
decoders are trained on distinct inputs, they can 
generate outputs blending shared features of both, 
enabling realistic deepfake synthesis [23][28]. 

B.2.b. Generative Adversarial Networks (GANs). 
GANs consist of a generator, which produces 
synthetic outputs, and a discriminator, which 
evaluates their authenticity. The iterative adversarial 
process between the two improves the quality of 
outputs, often rendering them indistinguishable from 
genuine media [30]. 

B.3. Deepfake Detection Methods. Effective detection 
of deepfakes requires identifying artifacts or 
inconsistencies introduced during synthesis. B.3.a. 
Artifacts and Behavioral Anomalies. Research 
highlights common issues such as unnatural facial 
movements, warping, and audio-video 
desynchronization [30][31][32][33]. B.3.b. CNN-
Based Techniques. CNNs excel at detecting such 
irregularities in visual data, leveraging their feature 
extraction capabilities [35].  

Loss Function for CNN Models: 

3. Both audio and video deepfake detection 
models used in this paper utilized 
categorical cross-entropy loss for 
classification tasks. This is defined as: 

𝐿 = − ෍ 𝑦௜ log(𝑦ො௜)

஼

௜ୀଵ

 

 Where 𝐶 is the number of classes, 𝑦௜  is the 
true label (one-hot encoded), and 𝑦ො௜ is the 
predicted probability for class 𝑖. 

4. This loss function measures the divergence 
between the predicted class probabilities and 
the true labels, guiding the model to improve 
its predictions during training. 

B.3.c. GAN-Based Techniques. While CNNs excel at 
detecting visual irregularities, GANs are commonly 
used in creating highly realistic fake data. 
Understanding the mathematical basis of these 
methods provides insight into their capabilities and 
limitations. GANs, like those used in Simswap, are 
central to the generation of deepfakes. The 
adversarial training process involves two neural 
networks: a generator and a discriminator [62]. 

1. Discriminator Loss: 

𝐿஽ =  −𝔼௫~௣೏ೌ೟ೌ
[log 𝐷(𝑥)] − 𝔼௭~௣೥

ൣlog(1 − 𝐷൫𝐺(𝑧)൯)൧ 

5. The discriminator learns to distinguish between 
real samples (𝑥) from the true data distribution 
(𝑝ௗ௔௧௔) and fake samples (𝐺(𝑧)) generated by the 
generator. 

2. Generator Loss: 

𝐿ீ = −𝔼௭~௣೥
[log 𝐷(𝐺(𝑧))] 

6. The generator aims to produce fake samples that 
the discriminator classifies as real, effectively 
“tricking” it. 

These loss functions represent the adversarial training 
process, which underpins the creation of realistic deepfakes 
in Simswap. Understanding these mathematical foundations 



aids in designing detection models capable of identifying 
subtle artifacts generated during GAN training. 

B.3.d. Emerging Challenges: 

Advances in neural network algorithms reduce errors 
and anomalies, thereby complicating detection and 
necessitating innovative approaches, such as 
multimodal or transformer-based methods [30] 

II. METHODOLOGY 

A. Dataset collection 

The beginning of the project required collecting a 
dataset to use for generating the deepfake content. 
The dataset chosen for the video deepfakes originated 
from a dataset on Kaggle labeled, “Deep Fake 
Detection (DFD) Entire Original Dataset,” but was 
discovered later to have come from Google & JigSaw 
based on information on the FaceForensics++ Github 
repository [5][18][12]. This dataset contains videos 
of several different people all performing similar 
actions and in similar scenarios, which allowed for 
easy comparison of the effects of the deepfake tools 
used in this project. The primary reason why this 
dataset was selected was due to its sheer size, 
allowing for the dynamic selection of the quantity of 
videos required for this project. 200 video samples 
were chosen at random from this dataset. Some 
samples from the Haotian AI Telegram channel were 
selected for this dataset due to the cutting-edge 
algorithms that their deepfake tools have been 
reported to utilize and the capacity for their tools to 
produce outputs comparable to or exceeding the 
quality of industry-standard tools like DeepFaceLab. 
For the samples from Haotian AI, 28 video files 
showing samples of their deepfake tools were 
downloaded from their Telegram channel [6]. This 
inclusion allowed the project to evaluate deepfake 
detection methods against some of the most advanced 
and sophisticated deepfake technologies currently 
available, ensuring that the results are relevant to 
emerging real-world challenges in detecting high-
quality deepfakes. For the audio deepfake dataset, 
200 audio samples were chosen at random from two 
different datasets of male and female voice samples 
from Kaggle [7][8]. These audio samples were later 
preprocessed using FFmpeg and Librosa to ensure the 
normalization and consistency of the quality of each 
audio file. The preprocessing of the source audio files 
used for the generation of the deepfakes involved 
using Audacity to remove sections of audio heavily 
polluted with other individuals’ voices (e.g., 
interviews, public speeches, music, etc., …), 
applause, or other noise. Audacity was also utilized to 
ensure the normalization of the source audio. Some 

audio source files were rejected due to insufficient 
media found of the voices of certain individuals or 
some source audio presented issues with finding 
enough substantial audio of the desired voice without 
background noise. All data collected was found from 
publicly available sources, ensuring compliance with 
ethical standards regarding various individuals desire 
for privacy or protection of intellectual property. An 
essential directory structure of “real-life-videos,” 
“real-life-audios,” “deepfake-videos,” and “deepfake-
audios” was created, with each folder containing 
subfolders for different social media sites. This 
structure was crucial for managing storage and 
tracking metadata changes for original and deepfake 
files. Ultimately, these datasets were fair enough to 
not only be used for this project but may be used in 
future projects. 

B. Deepfake Generation  

B.1. Tools Used. Multiple tools for video and audio 
deepfakes were considered and tested. The ethical, 
computational, and financial constraints informed 
tool selection. B.1.a. Video Deepfakes. For video 
deepfakes, tools like DeepFaceLab_DirectX12 and 
the Deepfake Offensive Toolkit were explored. The 
Deepfake Offensive Toolkit was chosen for its 
efficiency and quality, allowing batch processing of 
200 deepfake videos. DOT utilized the GAN-based 
model Simswap. DeepFaceLab_DirectX12 is a 
deepfake generation software which allows the 
utilization of the CPU or acceleration of the deepfake 
generation process with the GPU [19]. This software 
proved to be very user-friendly with available 
YouTube tutorials to assist in a simple video deepfake 
process [17].  

B.2.b. Audio Deepfakes. For audio deepfakes, tools 
included “Voicemod,” “PlayHT,” and “Real-Time 
Voice Cloning.” Real-Time Voice Cloning generated 
200 audio files using a pretrained model. Voicemod 
and PlayHT are two different kinds of commercial 
off-the-shelf tools which provide unique features to 
select for audio deepfake generation for free or 
subscription-based [14][15]. Voicemod allows users 
to produce alterations of the user’s own voice with a 
selection of free filters to transform their voice. 
PlayHT’s paid options allowed for the cloning of a 
provided sample of a source voice. “Real-Time Voice 
Cloning” was the primary tool used, generating 
deepfakes in a timely manner using a pretrained 
model [13]. B.2.b.i. Mathematical Basis of the RNN 
Model in Real-Time Voice Cloning. RTVC relies on 
recurrent neural networks (RNNs), the same neural 



network which are useful in video deepfake detection 
when using their advanced variants like long short-
term memory (LSTM) or gated recurrent units 
(GRU). RNNs are designed to process sequential 
data, such as audio waveforms or text, by 
maintaining a hidden state that captures temporal 
dependencies [53][54]. 

1. Input Representation 
 RTVC takes a Mel-Spectrogram of 

the audio as input: 

𝑆(𝑓, 𝑡) = Log-Mel(𝑓, 𝑡) 

Where 𝑓 represents frequency 
bands and 𝑡 represents time steps. 

2. RNN Hidden State Update 
 For each time step 𝑡, the RNN 

computes the hidden state ℎ௧ using 
the input 𝑥௧ (e.g., Mel-Spectrogram 
features at time t) and the previous 
hidden state ℎ௧ିଵ: 

ℎ௧ = 𝜎(𝑊௛௫𝑥௧ + 𝑊௛௛ℎ௧ିଵ + 𝑏௛) 

 𝑊௛௫: Weight matrix for 
the input 

 𝑊௛௛: Weight matrix for 
the hidden state. 

 𝑏௛: Bias term. 
 𝜎: Activation function 

(e.g., tanh or ReLU). 
3. Output Generation 

 The RNN produces an output 𝑦௧  at 
each time step: 

𝑦௧ = 𝑊௛௬ℎ௧ + 𝑏௬ 

 𝑊௛௬: Weight matrix for 
the output layer. 

 𝑏௬: Bias term. 
4. Enhanced RNN Variants 

 RTVC often employs advanced RNN 
variants to address vanishing gradient 
problems: 

 Long Short-Term Memory 
(LSTM): 

𝑖௧ = 𝜎(𝑊௫௜𝑥௧ + 𝑊௛௜ℎ௧ିଵ + 𝑏௜) 

𝑓௧ = 𝜎൫𝑊௫௙𝑥௧ + 𝑊௛௙ℎ௧ିଵ + 𝑏௙൯ 

𝑜௧ = 𝜎(𝑊௫௢𝑥௧ + 𝑊௛௢ℎ௧ିଵ + 𝑏௢) 

𝑐௧ = 𝑓௧⨀𝑐௧ିଵ + 𝑖௧⨀ tanh(𝑊௫௖𝑥௧ + 𝑊௛௖ℎ௧ିଵ + 𝑏௖) 

ℎ௧ = 𝑜௧⨀ tanh(𝑐௧) 

 𝑖௧ , 𝑓௧ , 𝑜௧: Input, forget, and 
output gates, respectively. 

 𝑐௧: Cell state that captures 
long-term dependencies. 

 Gated Recurrent Units (GRUs): 

𝑧௧ = 𝜎(𝑊௫௭𝑥௧ + 𝑊௛௭ℎ௧ିଵ + 𝑏௭) 

𝑟௧ = 𝜎(𝑊௫௥𝑥௧ + 𝑊௛௥ℎ௧ିଵ + 𝑏௥) 

ℎ௧ = 𝑧௧⨀ h௧ିଵ + (1 − z௧)⨀ tanh(𝑊௫௛𝑥௧ + 𝑟௧⨀𝑊௛௛ℎ௧ିଵ + 𝑏௛) 

 𝑧௧ , 𝑟௧: Update and reset gates, 
respectively. 

5. Application to Voice Cloning 
 Encoder-Decoder Framework: 

 The encoder extracts a fixed-
dimensional embedding 
𝑧௦௣௘௔௞௘௥ from the input voice, 
capturing speaker-specific 
features. 

 The decoder generates the 
Mel-Spectrogram of the cloned 
voice using the RNN or its 
variants (LSTM/GRU) to 
maintain temporal coherence. 

6. Output Processing 
 The generated Mel-Spectrogram is 

converted back to audio using a 
vocoder, such as WaveNet or HiFi-
GAN, which synthesizes high-quality 
waveforms. 

The RNN model in RTVC captures temporal 
dependencies in audio, ensuring that the generated 
voice matches the natural rhythm and intonation of 
the target speaker. While the pretrained RTVC model 
achieves fast cloning, its reliance on simpler 
embeddings and models results in lower quality 
compared to tools like PlayHT, which may use more 
advanced architectures or higher-quality training 
datasets. Consequently, the use of the pretrained 
model in RTVC led to a lower quality audio deepfake 
than what was produced with PlayHT. Additional 
preprocessing involved tools like FFmpeg, Whisper, 
and Librosa for extracting mel-spectrograms, and 
transcribing the audio. To briefly explain FFmpeg is 
used to standardize audio properties such as channels, 
sample rate, and bit depth to ensure consistency 
across datasets. This process is crucial for extracting 
reliable features for deepfake generation and 
detection. Below is a mathematical explanation of 



how FFmpeg was used to preprocess the audio 
dataset. B.2.b.ii. Audio Preprocessing with FFmpeg. 
FFmpeg applies transformations to the audio signal 
as seen below [57][58]. 

1. Resampling to 𝑓௦ =22,050 Hz: 

𝑦௥௘௦௔௠௣௟௘ௗ[𝑛] = ෍ 𝑦[𝑘] ⋅ ℎ(𝑛 − 𝑘)

ஶ

௞ୀିஶ

 

 Where 𝑦[𝑘] is the original audio signal and 
ℎ is the interpolation filter. 

2. Channel Conversion (e.g., stereo to mono): 

𝑦௠௢௡௢[𝑛] =  
1

2
⋅ (𝑦௟௘௙௧[𝑛] + 𝑦௥௜௚௛௧[𝑛]) 

3. Bit Depth Adjustment to 16-bit: Quantizes 
the signal 𝑦[𝑛] into 216 discrete levels. 

B.2.b.iii. Mel-Spectrogram Extraction (with Librosa). 
Mel-Spectrograms represent the frequency content of 
an audio signal on the perceptually scaled Mel 
frequency axis [59][60]. 

1. Compute the Short-Time Fourier Transform 
(STFT): 

𝑋(𝑓, 𝑡) = න 𝑥(𝜏) ⋅ 𝑤(𝑡 − 𝜏) ⋅ 𝑒ି௝ଶగ௙ఛ𝑑𝜏
ஶ

ିஶ

 

 where w(t) is a window function. 

2. Map frequencies to the Mel scale using 
triangular filters: 

𝑀(𝑓௠, 𝑡) = ෍|𝑋(𝑓, 𝑡)|ଶ ⋅ 𝑊(𝑓௠, 𝑓)

௙

 

 𝑊(𝑓௠, 𝑓) is the Mel filter bank. 

3. Apply the logarithm: 

Log-Mel(𝑓௠, 𝑡) = log(𝑀(𝑓௠, 𝑡) + 𝜖) 
 
Mel-Spectrograms emphasize frequency bands 
important for human perception, enhancing the 
ability of machine learning models to detect subtle 
manipulations in deepfakes. B.2.b.iv. MFCCs: 
Mathematical Basis. Mel-Frequency Cepstral 
Coefficients (MFCCs) provided a compact 
representation of the spectral envelope, derived from 
the Mel-Spectrogram [61]: 

1. Compute the logarithm of the Mel-Spectrogram: 

log(𝑀(𝑓, 𝑡)) 

2. Apply the Discrete Cosine Transform (DCT) to 
reduce dimensionality: 

𝑀𝐹𝐶𝐶௞ = ෍ log(𝑀௡) ⋅ cos ൤𝑘 ൬𝑛 −
1

2
൰

𝜋

𝑁
൨

ே

௡ୀଵ

 

 𝑀௡: Mel-Spectrogram coefficients. 
 𝑁: Number of Mel bands. 
 𝑘: Index of the MFCC. 

By focusing on the lower-order coefficients, MFCCs 
capture the broad spectral shape, essential for 
identifying voice characteristics used in Real-Time 
Voice Cloning and audio deepfake generation. Mel-
Spectrograms and MFCCs serve as input features for 
machine learning models. They transform raw audio 
into a format that emphasizes relevant characteristics, 
improving the quality and efficiency of deepfake 
generation and detection. B.2.b.iv. Transcription with 
Whisper. Whisper transcribes audio into text, aiding 
in evaluating coherence and alignment between 
synthesized speech and its intended content. Whisper 
uses a transformer model trained on spectrograms 
[55][56]. 

 Input spectrogram: 

𝑆(𝑡, 𝑓) =  Log-Mel(𝑓, 𝑡) 

 Self-attention mechanism: 

Attention(𝑄, 𝐾, 𝑉) = softmax ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ 𝑉 

where 𝑄, 𝐾, 𝑉 are query, key, and value 
matrices, and 𝑑௞ is the dimension of the key. 

 Output: Decoded text using beam search or 
similar algorithms. 

The transcription of the audio ensures the generated 
audio matches the expected linguistic structure, a 
critical aspect of high-quality deepfake synthesis. 

B.2.c. Tools Not Used. Tools like Tacotron2, 
DeepFaceLab_DirectX12, and Faceswap faced 
computational, compatibility, or ethical constraints. 
Faceswap, for instance, required excessive processing 
time and encountered technical issues. 
DeepFaceLab_DirectX12 was not selected as the 
primary video deepfake generation tool due to 
technical constraints which prevented automation of 
the batch scripts. Deciding to not use PlayHT as the 
primary audio deepfake generation tool was focused 
on the inability to automate the process of generating 
all audio deepfakes, which was unhelpful for time 
constraints. B.3. Challenges Faced. Computational 
limitations, such as insufficient GPU power and 



system disconnections, were mitigated by using a 
university GPU workstation and alternative software. 
These adjustments improved processing efficiency 
and quality. When Faceswap was allowed to 
successfully complete the generation of one deepfake 
video, the quality was easy to detect due to the 
hardcoded face mask used for detecting the face of 
the target subject. This confirmed the suspicion of the 
software’s lack of trustworthiness for a high quality 
deepfake generation tool. B.4. Deepfake Creation 
Process. Video deepfake generation involved 
extracting source images, training models, and batch 
processing. Audio deepfakes followed a multi-step 
process, including transcription, spectrogram 
generation, and model training. 

C. Data Dissemination and Metadata Analysis 

The third step of the project required uploading the 
deepfake and real-life or original (RLO) content to 
different social media platforms. A variety of social 
media platforms were considered, but some required 
to be avoided or were not capable of uploading or 
downloading all the content from the project. The 
metadata extracted from the control and uploaded 
content showed substantial changes which reflect the 
privacy policies and efficiency of the file transfer 
algorithms selected by different social media 
platforms based on their level of popularity. The 
metadata analysis also showed a substantial change 
from the RLO content to the deepfake content, 
confirming what some sources have said about the 
feasibility of detection based on its metadata. The 
analysis also showed a significant difference in the 
scale of alterations of the metadata of specifically 
deepfake content uploaded to social media. This may 
suggest that social media platforms have 
implemented anti-deepfake protection. However, this 
would only confirm an earlier hypothesis of the 
infeasibility of detection based on metadata due to 
the altered state post-upload. 

C.1. Uploading to Social Media Platforms. The social 
media sites attempted were the sites which resulted in 
the largest successful uploads. Uploading RLO video 
files in batch was successful in different numbers 
depending on the site.  Of all social media sites which 
were attempted to upload content to per information 
found about their capacity for uploading videos or 
audios, the most consistent social media sites which 
allowed the most successful amount of content 
uploaded and downloaded content were Facebook, 
Telegram, and SoundCloud. Other social media sites, 
which may have allowed some content or almost the 
entire amount of RLO and deepfake content, were 

compartmentalized due to issues relating to file size, 
file media type allowable, ease of use, upload 
frequency standards, and batch upload or download 
capacity. Instagram, like Facebook, allowed batch 
uploading up to ten or more videos at a time and to 
upload videos up to a certain file size, but was not 
feasible for downloading all content due to reasons 
unknown. As with all social media sites attempted 
except for Telegram and Facebook, attempts to 
upload a large majority of the deepfake video content 
to Instagram were unsuccessful due to exceeding the 
file size limit. The deepfake videos which were 
successfully uploaded to, and downloaded from, 
social media sites other than Facebook and Telegram 
were either produced by the Faceswap software after 
insufficient iterations were allowed or were from the 
samples collected from the Haotian AI Telegram 
channel. Some sites, such as Truth-Social, Tumblr, 
Twitter, and Threads, could only allow upload 
frequencies either one or up to four videos at a time. 
Other social media sites that were either not feasible 
for uploading and downloading much of the content 
or could not allow for the upload or download video 
or audio media types, are illustrated (see Fig. 1). 
Facebook, while not possible to upload audio, 
allowed for the successful upload and download of 
both RLO and deepfake videos thanks to the batch 
download feature in the Account Center. Telegram 
appeared to have no total file size or frequency limit 
granted enough internet speed to upload all requested 
content. 

C. 2. Metadata Extraction and Analysis. The initial 
analysis of metadata showed that uploading the 
content to almost all social media sites had 
substantial impacts on the metadata of each file. 
However, some more interesting meaning arrived 
from creating different scripts to search for any trends 
in the metadata files. The metadata viewer software, 
“EXIFTOOL,” was used to create reports of the 
metadata of both the RLO and deepfake files. After 
creating these reports of the metadata of each file, 
RLO or deepfake and uploaded or not, Python scripts 
were written to make comparisons of different classes 
of the content. Comparisons were made of the non-
uploaded content against the uploaded content, RLO 
videos to deepfake videos, and RLO audios to 
deepfake audios. Metrics which were used to 
compare content with others were primarily changes 
to existing attributes, addition of attributes, and 
removal of attributes. This graph (see Fig. 3) revealed 
how the most changes in metadata from uploading to 



social media came from deepfake videos uploaded to 
social media sites. This change may be due to the file 
size and unique dimensions of deepfake videos as 
well as the quality. After these comparisons were 
made, alternative comparisons were made to observe 
other trends in changes of metadata. An additional 
Python script was written to observe the objective 
changes in metadata of all metadata reports and 
comparison records. The resulting output of this 
script showed that the most common and 
considerable changes in metadata of all files (RLO to 
deepfake, original to uploaded) were changes in the 
file name (“FileName”), file size (“MediaDataSize”), 
and average bitrate (“AvgBitrate”). These changes are 
illustrated in the appendix (see Fig. 2). This trend is 
consistent with the noticeable differences in the files 
downloaded from social media platforms as most 
downloaded content had a different name (e.g., 
Facebook is known to encrypt user content for 
privacy standards), and previous studies have shown 
that some metadata will be reduced or removed to 
enhance efficiency of uploading and storage of the 
files. One final script which was written revealed the 
relative changes of uploading to social media 
platforms to account for discrepancies in the 
uploaded or downloaded file count (see Fig. 4). This 
graph helped improve the neutrality of the data 
gathered, thereby revealing social media sites which 
had the most substantial impact on the metadata of 
files. The sites which had such were Truth Social, 
Facebook, Instagram, and then Tumblr and Twitter 
tied in that order. This trend discovered is consistent 
with the review made by [41] about Truth Social how 
the site does encrypt the data uploaded to the site 
when at rest. It is expected for most social media 
platforms to encrypt and remove most metadata 
uploaded to the site to improve the efficiency of the 
upload [42].  

D. Deepfake Detection Models 

 D.1. Video Deepfake Detection. The video deepfake 
detection process called for the use of the Xception 
model. D.1.a. Introduction to Xception. This model is 
based on depth-wise separable convolutions as 
opposed to the usual standard convolutional layers 
used in convolutional neural networks (CNNs) [46]. 
To demonstrate the computational efficiency of the 
Xception model, consider the following: 

1. Normal Convolution in CNNs 
In a standard convolutional layer [53]: 

 A kernel (filter) of size 𝑘 × 𝑘 operates on all 
input channels simultaneously to produce 
each output channel. 

 Mathematically: 

𝑂(𝑖, 𝑗, 𝑚) = ෍ ෍ ෍ 𝐾(𝑝, 𝑞, 𝑛, 𝑚) ⋅ 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛)
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 𝑂(𝑖, 𝑗, 𝑚): Output value at position 
(𝑖, 𝑗) in the 𝑚-th output channel. 

 𝐾(𝑝, 𝑞, 𝑛, 𝑚): Kernel weight for input 
channel 𝑛 and output channel 𝑚. 

 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛): Input value at 
position (𝑖 + 𝑝, 𝑗 + 𝑞) in the 𝑛-th input 
channel. 

 𝐶: Number of output channels. 

This requires (𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀) multiplications, where 𝑀 is the 
number of output channels. 

2. Depthwise Separable Convolution 

Depthwise separable convolution breaks this process into 
two smaller operations: 

1. Depthwise Convolution: 
 Applies a single filter per input channel 

independently. 
 Mathematically: 

𝑂ௗ(𝑖, 𝑗, 𝑛) = ෍ ෍ 𝐾ௗ(𝑝, 𝑞, 𝑛) ⋅ 𝐼( 𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛)
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o 𝐾ௗ(𝑝, 𝑞, 𝑛): Depthwise kernel for 
the 𝑛-th channel. 

 Reduces the number of multiplications to 
(𝑘 ⋅ 𝑘 ⋅ 𝐶). 

2. Pointwise Convolution: 
 Applies a 1 × 1 kernel across all 

channels to combine Depthwise 
outputs: 

𝑂௣(𝑖, 𝑗, 𝑚) = ෍ 𝐾௣(𝑛, 𝑚) ⋅ 𝑂ௗ(𝑖, 𝑗, 𝑛)

஼
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o 𝐾௣(𝑛, 𝑚): Pointwise kernel 
weight for combining input 
channel 𝑛 to output channel m. 

 Requires (𝐶 ⋅ 𝑀) multiplications. 

Total Computation in Depthwise Separable 
Convolution: 
 Total Operations = (𝑘 ⋅ 𝑘 ⋅ 𝐶) + (𝐶 ⋅ 𝑀) 

Compared to normal convolution, this is significantly 
smaller, especially for large 𝑘, 𝐶, and 𝑀. 



3. Application to Xception 

The Xception model replaces standard convolutions 
with depthwise separable convolutions in its 
convolutional blocks [46]. This approach: 

1. Reduces the number of parameters. 
2. Increases efficiency by focusing on 

spatial filtering (depthwise convolution) 
and channel mixing (pointwise 
convolution) as separate tasks. 

 
Aspect Normal 

Convolution 
Depthwise 
Separable 
Convolution 

Multiplications 𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀 𝑘 ⋅ 𝑘 ⋅ 𝐶 + 𝐶 ⋅ 𝑀 
Parameters 𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀 𝑘 ⋅ 𝑘 ⋅ 𝐶 + 𝐶 ⋅ 𝑀 
Efficiency High 

Computational 
Cost 

More efficient 

Usage in 
Xception 

Not used Used in all 
major blocks 

Table 1. Comparison: Normal Convolution vs. 
Depthwise Separable Convolution. 

How Xception Processes Data: 

1. Input Layer: Processes input data into a 
standard size (e.g., 299x299x3 for 
images). 

2. Depthwise Separable Convolutions: 
Apply Depthwise filtering and channel 
mixing separately. 

3. Global Average Pooling: Aggregates 
spatial features into a single vector per 
channel: 

𝐺𝐴𝑃(𝑐) =
1

𝐻 ⋅ 𝑊
෍ ෍ 𝑂(𝑖, 𝑗, 𝑐)

ௐ

௝ୀଵ

ு

௜ୀଵ

 

4. Fully Connected Layers: Use dense 
layers for classification: 

𝑦 = softmax(𝑊𝑥 + 𝑏) 

Advantages of Depthwise Separable Convolutions 

1. Efficiency: Reduces the computational load 
significantly. 

2. Flexibility: Allows better use of model 
parameters for larger networks. 

3. Scalability: Well-suited for large-scale 
datasets and high-resolution images. 

By leveraging depthwise separable convolutions, 
Xception achieves better performance with fewer 
parameters compared to traditional CNNs. This 

makes it particularly effective for tasks like deepfake 
detection, where computational efficiency and high 
accuracy are crucial. This has shown that it thus 
requires less computational resources and parameters. 
Studies have shown that the model outperforms the 
MobileNet V3, VGG-16, ResNet-50, ResNet-152, 
and Inception V3 models in terms of accuracy of 
deepfake detection and required fewer gradient 
descent steps and thus fewer parameters to approach 
negligible loss than its parent, Inception V3 
[44][47][49]. This model can recognize subtle 
artifacts in images so well that it has shown to have 
applications in recognizing diseases in leaves and 
peaches, and quickly detect signs of COVID-19 from 
Xray images [47][48]. D.1.b. Evaluation on Control 
Dataset. The Xception model was trained and 
evaluated on the control dataset, achieving 89.1% 
accuracy. The architecture of the implementation for 
this model is illustrated later (see Fig. 16). However, 
detection performance dropped significantly for 
social media content, suggesting platform-induced 
changes in file attributes. A Python script was written 
to train and evaluate the Xception model on the 
Control dataset. The evaluation metrics showed that 
this model was good at recognizing deepfakes with a 
score of 89.1%. This value is to be expected when 
some of the content in the deepfake video dataset 
contained frames of real people due to both the 
Haotian AI samples and the quality of the deepfakes 
generated. The confusion matrix showing the overall 
distribution of this evaluation of the model is 
illustrated in Figure 5 (see Fig. 5). D.1.c. Evaluation 
on Social Media Datasets. An extension of the 
application of this deepfake detection model was 
considered and applied to evaluate the performance 
on detecting videos from the dataset of social media 
content. A 25 percent sample size was used for each 
dataset, including the control dataset, due to time 
constraints. The results of this experiment showed the 
model was unsuccessful at recognizing the selected 
deepfake video content in each selection, nearly 
completely misclassifying 100 percent of the 
deepfake video sample of each dataset. This suggests 
that the model either predicted the videos collected 
from the Haotian AI to be authentic (not deepfake) or 
changes made in the uploading process of the videos 
to social media sites. However, most confusion 
matrices in the appendix show that the latter is not 
possible due to a near successful RLO video 
prediction rate of the content uploaded to social 
media. The results of each evaluation of the Xception 
deepfake detection model on the 25% sample size of 



each dataset of each social media site collected can 
be seen in the appendix of this paper. Figures 10, 12, 
and 15 show the most noticeable results of 
misclassification due to the dataset used was 
predominantly Haotian AI videos, as originally 
generated deepfake videos were too big of file size to  
upload to such social media platforms. This 
difference can be noticed by observing Figures 11, 
and 14 as the most normal results, with some 
misclassification expected due to discrepancies in 
metadata after uploading to social media. Figure 9 
shows the control evaluation of the Xception model. 

D.2. Audio Deepfake Detection. The audio deepfake 
detection process executed the use of the Light 
Convolutional Neural Network (LCNN) model. 
D.2.a. Introduction to the LCNN Model. The audio 
deepfake detection process utilized the Light 
Convolutional Neural Network (LCNN) model, 
which has demonstrated a strong ability to extract 
robust features provided by Mel-Spectrograms and 
MFCCs, aiding in effective deepfake detection. 
D.2.a.i. Relevance of Feature Extraction. By mapping 
the audio signal onto a perceptually relevant 
frequency scale, Mel-Spectrograms enable the LCNN 
to identify subtle frequency-domain artifacts 
introduced during deepfake synthesis. MFCCs 
compactly represent the spectral envelope, allowing 
the LCNN to focus on time-domain and frequency-
domain irregularities. Unlike standard models that 
employ the Rectified Linear Unit (ReLU) activation 
function, the LCNN processes the extracted features 
using a series of 1D convolutional layers and 
employs a Max-Feature-Map (MFM) activation 
function.  

𝑀𝐹𝑀(𝑥) = max(𝑤ଵ ⋅ 𝑥 + 𝑏ଵ, 𝑤ଶ ⋅ 𝑥 + 𝑏ଶ) 

This activation function selects the most relevant 
features, suppressing noise and irrelevant activations, 
making the LCNN highly effective for detecting 
audio manipulations [50][51][63]. Research has 
highlighted the LCNN model's efficiency in 
recognizing both time-domain and frequency-domain 
artifacts commonly found in synthetic audio. Beyond 
deepfake detection, this model has also found 
applications in tasks such as speaker verification and 
detecting anomalies in live audio streams. In terms of 
computational efficiency, the LCNN model is highly 
optimized, achieving notable accuracy with minimal 
training time. For instance, it completed training on 
the control dataset in under five minutes, showcasing 
its practical application potential for real-time 

analysis scenarios [50]. D.2.b. Evaluation on Control 
Dataset.  The evaluation metrics for the LCNN on the 
control dataset indicated a test accuracy of 100%, 
underscoring its reliability in detecting audio 
deepfakes. The architecture of the model 
implementation is illustrated later (see Fig. 17). This 
level of performance is attributed to its robust 
architecture and the quality of the curated dataset 
used during training. The confusion matrix 
summarizing the results of the model's evaluation on 
the control dataset is provided in Figure 6 (see Fig. 
6). D.2.c. Evaluation on Social Media Platforms. 
Additionally, an extension of this model was applied 
to assess its performance on a broader dataset 
comprising various audio samples, including social 
media content. The results of this experiment 
illustrated the model's adaptability to diverse audio 
sources, further solidifying its efficacy in deepfake 
detection tasks [50][52]. The results of this extension 
show the LCNN model was just as capable of 
detecting deepfake content from the content uploaded 
to SoundCloud and Telegram as it was with the 
control (see Fig. 7) (see Fig. 8). 

III. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

The experiments involved generating deepfake 
content, uploading and downloading files from social 
media platforms, and analyzing metadata changes. 
Detection models were trained on the control dataset 
and tested on social media datasets.   

B. Model Training and Evaluation 

B.1. Xception Model for Video Detection.  

 Control Dataset Results: Achieved 89.1% 
accuracy, with a confusion matrix showing a 
near-perfect classification of real-life and 
deepfake videos. Further evaluation metrics 
of original test of Xception model on 
Control dataset are illustrated in Figure 19 
(see Appendix). 

 Social Media Dataset Results: Nearly all 
deepfake videos were misclassified, likely 
due to metadata alterations. 

B.2. LCNN Model for Audio Detection. 

 Control Dataset Results: Achieved 100% 
accuracy, as shown in Figure 6. Further 
information on evaluation metrics of LCNN 



model test on Control dataset are illustrated 
in Figure 18 (see Appendix). 

 Social Media Dataset Results: Maintained 
high accuracy for platforms like Telegram 
and SoundCloud, as shown in Figures 7 and 
8. 

C. Metadata Analysis Results 

Python scripts revealed consistent metadata changes 
in file name, file size, and average bitrate, with 
deepfake files showing more significant alterations. 
Social media platforms like Facebook, Instagram, 
and Truth Social exhibited the most substantial 
metadata modifications. 

IV. DISCUSSION 

A. Impact of Haotian AI Samples on Xception 
Model Performance 

The inclusion of samples generated by Haotian AI's 
deepfake tools revealed significant challenges in 
detection accuracy. The Xception model, which 
performed effectively on the control dataset with an 
accuracy of 89.1%, demonstrated a marked inability 
to recognize deepfake content from Haotian AI's 
tools. Specifically, nearly 100% of the Haotian AI-
generated samples were misclassified as authentic. 
This suggests that the advanced algorithms employed 
by Haotian AI produce artifacts and features that are 
either indistinguishable by the Xception model or 
sufficiently realistic to bypass its detection 
capabilities. One possible explanation for this 
discrepancy is that the dataset of deepfake videos 
used to train the Xception model may have been 
primarily generated using the Deepfake Offensive 
Toolkit. While this toolkit is known for its efficiency 
and ability to produce convincing deepfakes, it does 
not necessarily represent the full spectrum of artifacts 
and features introduced by other advanced tools like 
Haotian AI. The reliance on a single generation tool 
for training could lead to overfitting to its specific 
patterns and artifacts, reducing the model's ability to 
generalize to other tools. The Deepfake Offensive 
Toolkit is notable for its ability to generate high-
quality deepfakes efficiently. It uses pre-trained 
models optimized for real-time deepfake generation, 
allowing for faster production compared to tools like 
Faceswap or DeepFaceLab. However, this efficiency 
can come at the cost of diversity in the types of 
artifacts and distortions produced. This limitation 
may have contributed to the Xception model's 
inability to detect Haotian AI's deepfakes, as the 

training data did not sufficiently encompass the 
nuanced features of Haotian AI’s outputs. 

B. Metadata Changes and Their Limited 
Impact on Detection 

The results also demonstrated that changes in 
metadata had minimal impact on the Xception 
model's ability to recognize deepfakes. While 
uploading content to social media platforms caused 
significant alterations in metadata, such as changes in 
file name, size, and average bitrate, these did not 
appear to affect the detection process. The model's 
reliance on visual artifacts rather than metadata 
attributes accounts for this finding. This observation 
aligns with the critique of online suggestions 
advocating for metadata analysis as a reliable 
deepfake detection method. As discussed in the 
introduction, metadata can be easily removed, 
encrypted, or altered by social media platforms, 
rendering it an unreliable standalone approach. The 
project's results reinforce the idea that metadata-
based detection is infeasible for robust deepfake 
identification, particularly when dealing with 
advanced generation tools or altered files. 

C. Future Implications 

The findings suggest a need for advanced detection 
techniques that go beyond traditional artifact 
analysis. Multimodal approaches, which integrate 
visual, audio, and metadata cues, could enhance the 
ability to detect sophisticated deepfakes. 
Furthermore, training datasets must incorporate a 
wider range of tools, including Haotian AI and other 
emerging technologies, to ensure the models can 
generalize effectively. Expanding the dataset to 
include variations in generation quality and 
algorithms would mitigate the limitations of relying 
on any single deepfake tool. Moreover, further 
research is required to evaluate the role of anti-
deepfake strategies implemented by social media 
platforms, as these may introduce subtle changes that 
impact detection models. Exploring alternative 
detection frameworks, such as transformer-based or 
multimodal methods, could address the evolving 
landscape of deepfake technologies. 

V. CONCLUSION 

This study evaluated the Xception, and LCNN model 
for detecting deepfakes in video and audio datasets. 
While the LCNN model demonstrated consistent 
accuracy across control and social media datasets, the 



Xception model struggled with detecting high-quality 
deepfakes generated by Haotian AI. The significant 
misclassification of Haotian AI samples underscores 
the limitations of current models in addressing 
advanced algorithms. Additionally, the possible 
reliance on deepfake samples generated by the 
Deepfake Offensive Toolkit during model training 
may have contributed to the model's reduced 
generalization. While the toolkit produces efficient 
and convincing deepfakes, its artifacts may not fully 
capture the nuances of other tools like Haotian AI. 
This highlights the importance of diverse datasets in 
model training. Furthermore, the study revealed that 
metadata changes resulting from social media 
uploads had minimal impact on detection accuracy, 
challenging the effectiveness of metadata-based 
detection strategies. These findings emphasize the 
importance of training detection models with diverse 
datasets and adopting multimodal approaches to 
address the growing sophistication of deepfake 
technologies. Future research should prioritize the 
inclusion of samples from emerging deepfake tools 
and explore innovative detection frameworks to 
ensure the reliability and applicability of detection 
methods in real-world scenarios. 
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APPENDIX 



The following are materials which are referenced in 
this paper to aid either the discussion of the data 
distribution on social media and metadata analysis, or 
detection results. 
 
Fig. 1 Table showing what content was successful to 

upload to which social media sites, including 
information relating to content type, size, amount, 
and capabilities of batch upload and download to and 
from which social media sites. 

 

 

 

  

Fig. 2 Graph showing organization of metadata 
changes, showing attributes with number of changes 
from largest to smallest. 

Video Files Sound Files Real Life Videos Real Life Audio Deepfake Video Deepfake Audio Batch upload Batch download

DeviantArt Yes Yes No No Yes No No No

Discord Yes No Yes Yes No (Too big file size) Yes Only up to 10 No

Facebook Yes No Yes No Only to a certain file size No 10+ Yes

Instagram Yes No Yes No Only to a certain file size No 10+ Yes, but not comprehensive
Pinterest No No N/A N/A N/A N/A N/A N/A

Reddit Yes No Yes No Only to a certain file size No No No

Snapchat Yes No Yes No No (Not feasible) No No No

SoundCloud No Yes No Yes No Yes Yes No

Telegram Yes Yes Yes Yes Yes Yes Yes, as long as the internet could handle the upload demand No

TikTok Yes No Yes No Only to a certain file size No Yes, but this would clump the files into one file No

Truth-Social Yes No Yes No Only to a certain file size No No (implicitly flagged for spam) No

Tumblr Yes No (Failed) Yes N/A Only to a certain file size N/A No (implicitly flagged for spam) No
Twitter Yes No Yes No Only to a certain file size No Only to four at a time, but could make a thread No

Vimeo Yes No Yes No Only to a certain file size No No No

WhatsApp Yes Yes Yes Yes Only to a certain file size Yes No No

YouTube Yes No Yes No Only to a certain file size No Only up to 10 No

Threads Yes No Yes No Only to a certain file size No No (was flagged for spam) N/A

Steam No No N/A N/A N/A N/A N/A N/A



Fig. 3 Graph showing changes either addition or 
alteration of attributes (left) and removal of attributes 
(right). 

 

  

Fig. 4 Graph showing relative changes across datasets, with deepfake content uploaded to social media sites on the 
left, audio files in the middle (red and green), real-life content to deepfake shown as the purple bar leftmost with all 
other real-life content uploaded to social media to the right in purple. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Confusion Matrix shows a distribution of correct classifications and 
misclassifications of RLO and deepfake control videos. 

Fig. 6 Confusion Matrix shows a distribution of correct 
classifications of RLO and deepfake control audio.  



  

Fig. 7 Confusion Matrix shows a distribution of correct classifications of RLO 
and deepfake audio uploaded to SoundCloud. 

Fig. 8. Confusion Matrix shows a distribution of correct classifications 
of RLO and deepfake audio uploaded to Telegram. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Control test of Xception model on 50 
randomly selected deepfake videos. 

Fig. 10. Evaluation of Xception model on collection 
of deepfake videos uploaded to Truth-Social shows 
staggering misclassification of fake videos, majority 
Haotian AI samples. 

Fig. 11. Evaluation of Xception model on deepfake 
videos uploaded to YouTube with slight 
misclassification of deepfake videos. 

Fig. 12. Evaluation of Xception model on deepfake 
videos uploaded to Twitter with staggering 
misclassification of deepfake videos, majority 
Haotian AI samples. 

Fig. 13. Evaluation of Xception model on Facebook 
videos, with some successful classification of 
deepfake videos due to majority original deepfake 
content. 

Fig. 15. Evaluation of Xception model on deepfake 
videos with staggering misclassification due to 
Haotian AI deepfake samples.  



 

Fig. 16. Xception model architecture. 

 

Fig. 17. Light Convolutional Neural 
Network (LCNN) model architecture. 

Fig. 18. Evaluation metrics of LCNN audio deepfake detection model 

Fig. 19. Evaluation metrics of Xception video 
deepfake detection model. 


