
Detection of Deepfake Videos and Audios on
Social Media Platforms

Charles Fross

cwf016@shsu.edu

M.S. Digital Forensics

Sam Houston State University

Qingzhong (Frank) Liu, Professor

liu@shsu.edu

Department of Computer Science

Sam Houston State University

Abstract— Deepfake technology, a rapidly evolving
application of artificial intelligence, has enabled the
creation of highly realistic yet synthetic multimedia
content. While this innovation offers potential benefits in
areas such as entertainment and education, its misuse has
raised significant ethical and security concerns, including
misinformation and financial fraud. This study evaluates
the effectiveness of current deepfake detection methods,
focusing on the Xception model for video detection and
the LCNN model for audio detection, using a dataset
composed of real-life and deepfake content. The dataset
includes deepfakes generated by tools such as the
Deepfake Offensive Toolkit and Haotian AI, a cutting-
edge provider known for its high-quality outputs. Our
findings reveal that the Xception model, while achieving
89.1% accuracy on control datasets, struggled to detect
Haotian AI-generated deepfakes, misclassifying nearly all
samples as authentic. This performance gap highlights
the need for more diverse training datasets and advanced
detection frameworks capable of addressing the nuances
of emerging deepfake tools. Additionally, metadata
changes caused by uploading and downloading content
on social media platforms were found to have minimal
impact on detection accuracy, challenging the feasibility
of metadata-based detection approaches. This research
underscores the limitations of current deepfake detection
models and emphasizes the necessity for multimodal
approaches and broader datasets to enhance robustness.
The study’s implications call for continued advancements
in detection methods to keep pace with the growing
sophistication of deepfake technologies.

Keywords—deepfake, Deepfake Offensive Toolkit,
Faceswap, DeepFaceLab, Voicemod, Real-Time Voice
Cloning, metadata analysis, social media, deepfake
detection, deep learning, digital forensics

I. INTRODUCTION

A. Context

Artificial intelligence has been enhanced in recent
years to include an application to multimedia known
as “deepfakes”. A deepfake is some form of media
input that has been artificially transformed to mimic
some training media to produce an output like the
training media. Realtime video and/or audio as well

as recorded video, audio, and images can all be used
for the generation of deepfakes. Improvements have
been made to the specific artificial intelligence
algorithms used for generations of deepfakes to more
closely resemble the training data used. With the
advent of this application of artificial intelligence has
come malicious use of deepfakes. Deepfake
technology has been used to both make humorous
content for social media popularity, and for scams
[1]. Deepfakes can become harmful on social media
sites when used for scams or misinformation. It has
been reported that deepfakes have impacted elderly
American citizens through fraud using deepfake
technology to gain trust of the victim, resulting in a
total loss of 3.4 billion USD in 2023 [43]. While
metadata has been suggested as a tool for identifying
deepfake content, this approach faces significant
limitations. Alterations, encryption, or removal of
metadata from deepfake media can render this
method ineffective. Moreover, many social media
platforms further complicate detection by removing
or encrypting metadata, often as a privacy measure,
making it challenging or even impossible to rely on
metadata for identifying deepfakes. [37][38][39][40].
While efforts have been successful before to detect
the use of deepfake-related scams, such as asking an
attacker to make a gesture with their hand or face to
reveal artifacts or errors of their software, recent
developments in such scams have prompted
legislation to be made to regulate such use of
deepfakes, and further research to be conducted to
improve existing detection methods [3][4][20].

This paper will evaluate the ability of current
deepfake detection methods to detect deepfake media
generated by known deepfake algorithms, and some
samples from deepfakes generated by Haotian AI, a
company whose deepfake software is reported to
offer capabilities comparable to or exceeding those of
DeepFaceLab and its live version [2]. We also aim to
explore the impact of uploading both original videos
and audios to social media sites on metadata for both
real life content and deepfake content. The
experiment will be conducted as follows. First,
samples of video and audio will be utilized as input

for different deepfake algorithms. Second, the
generated deepfake content is uploaded to different
social media platforms and then downloaded for
analysis of the changes to the metadata of the original
videos and audio and the deepfake versions. Finally, a
deepfake detection model will be trained and tested
on the original and deepfake content.

B. Technical Background

B.1. Deep Learning Fundamentals. Deep learning, a
subset of machine learning, relies on neural networks
with multiple layers to extract complex patterns from
data. Convolutional Neural Networks (CNNs), a
specialized type of deep neural network, excel in
processing spatial data like images or audio. By using
convolutional and pooling layers, CNNs reduce
dimensionality while amplifying significant features,
such as edges, anomalies, and distortions, making
them vital for both the generation and detection of
deepfakes [21][22][27][53].

Mathematical Functions in CNNs:

1. Convolution Operation

(𝑓 ∗ 𝑔)(𝑥, 𝑦) = ෍ ∑ 𝑓(𝑖, 𝑗) ⋅ 𝑔(𝑥 + 𝑖, 𝑦 + 𝑗)௞
௝ୀି௞

௞

௜ୀି௞

1. This operation extracts local features from
input data by sliding a filter (a.k.a. a kernel)
over the input matrix (image or audio).

2. Pooling:

𝑃௜௝ = max
(௠,௡)ఢோ೔ೕ

(𝐼௠,௡)

2. This function reduces spatial dimensions
while preserving the most significant
features in the region 𝑅௜௝.

B.2. Deepfake Generation Techniques. Deepfake
generation leverages neural network architectures,
primarily autoencoders and GANs. B.2.a.
Autoencoders. These models compress input data into
a latent representation, then reconstruct it. When two
decoders are trained on distinct inputs, they can
generate outputs blending shared features of both,
enabling realistic deepfake synthesis [23][28].

B.2.b. Generative Adversarial Networks (GANs).
GANs consist of a generator, which produces
synthetic outputs, and a discriminator, which
evaluates their authenticity. The iterative adversarial
process between the two improves the quality of
outputs, often rendering them indistinguishable from
genuine media [30].

B.3. Deepfake Detection Methods. Effective detection
of deepfakes requires identifying artifacts or
inconsistencies introduced during synthesis. B.3.a.
Artifacts and Behavioral Anomalies. Research
highlights common issues such as unnatural facial
movements, warping, and audio-video
desynchronization [30][31][32][33]. B.3.b. CNN-
Based Techniques. CNNs excel at detecting such
irregularities in visual data, leveraging their feature
extraction capabilities [35].

Loss Function for CNN Models:

3. Both audio and video deepfake detection
models used in this paper utilized
categorical cross-entropy loss for
classification tasks. This is defined as:

𝐿 = − ෍ 𝑦௜ log(𝑦ො௜)

஼

௜ୀଵ

 Where 𝐶 is the number of classes, 𝑦௜ is the
true label (one-hot encoded), and 𝑦ො௜ is the
predicted probability for class 𝑖.

4. This loss function measures the divergence
between the predicted class probabilities and
the true labels, guiding the model to improve
its predictions during training.

B.3.c. GAN-Based Techniques. While CNNs excel at
detecting visual irregularities, GANs are commonly
used in creating highly realistic fake data.
Understanding the mathematical basis of these
methods provides insight into their capabilities and
limitations. GANs, like those used in Simswap, are
central to the generation of deepfakes. The
adversarial training process involves two neural
networks: a generator and a discriminator [62].

1. Discriminator Loss:

𝐿஽ = −𝔼௫~௣೏ೌ೟ೌ
[log 𝐷(𝑥)] − 𝔼௭~௣೥

ൣlog(1 − 𝐷൫𝐺(𝑧)൯)൧

5. The discriminator learns to distinguish between
real samples (𝑥) from the true data distribution
(𝑝ௗ௔௧௔) and fake samples (𝐺(𝑧)) generated by the
generator.

2. Generator Loss:

𝐿ீ = −𝔼௭~௣೥
[log 𝐷(𝐺(𝑧))]

6. The generator aims to produce fake samples that
the discriminator classifies as real, effectively
“tricking” it.

These loss functions represent the adversarial training
process, which underpins the creation of realistic deepfakes
in Simswap. Understanding these mathematical foundations

aids in designing detection models capable of identifying
subtle artifacts generated during GAN training.

B.3.d. Emerging Challenges:

Advances in neural network algorithms reduce errors
and anomalies, thereby complicating detection and
necessitating innovative approaches, such as
multimodal or transformer-based methods [30]

II. METHODOLOGY

A. Dataset collection

The beginning of the project required collecting a
dataset to use for generating the deepfake content.
The dataset chosen for the video deepfakes originated
from a dataset on Kaggle labeled, “Deep Fake
Detection (DFD) Entire Original Dataset,” but was
discovered later to have come from Google & JigSaw
based on information on the FaceForensics++ Github
repository [5][18][12]. This dataset contains videos
of several different people all performing similar
actions and in similar scenarios, which allowed for
easy comparison of the effects of the deepfake tools
used in this project. The primary reason why this
dataset was selected was due to its sheer size,
allowing for the dynamic selection of the quantity of
videos required for this project. 200 video samples
were chosen at random from this dataset. Some
samples from the Haotian AI Telegram channel were
selected for this dataset due to the cutting-edge
algorithms that their deepfake tools have been
reported to utilize and the capacity for their tools to
produce outputs comparable to or exceeding the
quality of industry-standard tools like DeepFaceLab.
For the samples from Haotian AI, 28 video files
showing samples of their deepfake tools were
downloaded from their Telegram channel [6]. This
inclusion allowed the project to evaluate deepfake
detection methods against some of the most advanced
and sophisticated deepfake technologies currently
available, ensuring that the results are relevant to
emerging real-world challenges in detecting high-
quality deepfakes. For the audio deepfake dataset,
200 audio samples were chosen at random from two
different datasets of male and female voice samples
from Kaggle [7][8]. These audio samples were later
preprocessed using FFmpeg and Librosa to ensure the
normalization and consistency of the quality of each
audio file. The preprocessing of the source audio files
used for the generation of the deepfakes involved
using Audacity to remove sections of audio heavily
polluted with other individuals’ voices (e.g.,
interviews, public speeches, music, etc., …),
applause, or other noise. Audacity was also utilized to
ensure the normalization of the source audio. Some

audio source files were rejected due to insufficient
media found of the voices of certain individuals or
some source audio presented issues with finding
enough substantial audio of the desired voice without
background noise. All data collected was found from
publicly available sources, ensuring compliance with
ethical standards regarding various individuals desire
for privacy or protection of intellectual property. An
essential directory structure of “real-life-videos,”
“real-life-audios,” “deepfake-videos,” and “deepfake-
audios” was created, with each folder containing
subfolders for different social media sites. This
structure was crucial for managing storage and
tracking metadata changes for original and deepfake
files. Ultimately, these datasets were fair enough to
not only be used for this project but may be used in
future projects.

B. Deepfake Generation

B.1. Tools Used. Multiple tools for video and audio
deepfakes were considered and tested. The ethical,
computational, and financial constraints informed
tool selection. B.1.a. Video Deepfakes. For video
deepfakes, tools like DeepFaceLab_DirectX12 and
the Deepfake Offensive Toolkit were explored. The
Deepfake Offensive Toolkit was chosen for its
efficiency and quality, allowing batch processing of
200 deepfake videos. DOT utilized the GAN-based
model Simswap. DeepFaceLab_DirectX12 is a
deepfake generation software which allows the
utilization of the CPU or acceleration of the deepfake
generation process with the GPU [19]. This software
proved to be very user-friendly with available
YouTube tutorials to assist in a simple video deepfake
process [17].

B.2.b. Audio Deepfakes. For audio deepfakes, tools
included “Voicemod,” “PlayHT,” and “Real-Time
Voice Cloning.” Real-Time Voice Cloning generated
200 audio files using a pretrained model. Voicemod
and PlayHT are two different kinds of commercial
off-the-shelf tools which provide unique features to
select for audio deepfake generation for free or
subscription-based [14][15]. Voicemod allows users
to produce alterations of the user’s own voice with a
selection of free filters to transform their voice.
PlayHT’s paid options allowed for the cloning of a
provided sample of a source voice. “Real-Time Voice
Cloning” was the primary tool used, generating
deepfakes in a timely manner using a pretrained
model [13]. B.2.b.i. Mathematical Basis of the RNN
Model in Real-Time Voice Cloning. RTVC relies on
recurrent neural networks (RNNs), the same neural

network which are useful in video deepfake detection
when using their advanced variants like long short-
term memory (LSTM) or gated recurrent units
(GRU). RNNs are designed to process sequential
data, such as audio waveforms or text, by
maintaining a hidden state that captures temporal
dependencies [53][54].

1. Input Representation
 RTVC takes a Mel-Spectrogram of

the audio as input:

𝑆(𝑓, 𝑡) = Log-Mel(𝑓, 𝑡)

Where 𝑓 represents frequency
bands and 𝑡 represents time steps.

2. RNN Hidden State Update
 For each time step 𝑡, the RNN

computes the hidden state ℎ௧ using
the input 𝑥௧ (e.g., Mel-Spectrogram
features at time t) and the previous
hidden state ℎ௧ିଵ:

ℎ௧ = 𝜎(𝑊௛௫𝑥௧ + 𝑊௛௛ℎ௧ିଵ + 𝑏௛)

 𝑊௛௫: Weight matrix for
the input

 𝑊௛௛: Weight matrix for
the hidden state.

 𝑏௛: Bias term.
 𝜎: Activation function

(e.g., tanh or ReLU).
3. Output Generation

 The RNN produces an output 𝑦௧ at
each time step:

𝑦௧ = 𝑊௛௬ℎ௧ + 𝑏௬

 𝑊௛௬: Weight matrix for
the output layer.

 𝑏௬: Bias term.
4. Enhanced RNN Variants

 RTVC often employs advanced RNN
variants to address vanishing gradient
problems:

 Long Short-Term Memory
(LSTM):

𝑖௧ = 𝜎(𝑊௫௜𝑥௧ + 𝑊௛௜ℎ௧ିଵ + 𝑏௜)

𝑓௧ = 𝜎൫𝑊௫௙𝑥௧ + 𝑊௛௙ℎ௧ିଵ + 𝑏௙൯

𝑜௧ = 𝜎(𝑊௫௢𝑥௧ + 𝑊௛௢ℎ௧ିଵ + 𝑏௢)

𝑐௧ = 𝑓௧⨀𝑐௧ିଵ + 𝑖௧⨀ tanh(𝑊௫௖𝑥௧ + 𝑊௛௖ℎ௧ିଵ + 𝑏௖)

ℎ௧ = 𝑜௧⨀ tanh(𝑐௧)

 𝑖௧ , 𝑓௧ , 𝑜௧: Input, forget, and
output gates, respectively.

 𝑐௧: Cell state that captures
long-term dependencies.

 Gated Recurrent Units (GRUs):

𝑧௧ = 𝜎(𝑊௫௭𝑥௧ + 𝑊௛௭ℎ௧ିଵ + 𝑏௭)

𝑟௧ = 𝜎(𝑊௫௥𝑥௧ + 𝑊௛௥ℎ௧ିଵ + 𝑏௥)

ℎ௧ = 𝑧௧⨀ h௧ିଵ + (1 − z௧)⨀ tanh(𝑊௫௛𝑥௧ + 𝑟௧⨀𝑊௛௛ℎ௧ିଵ + 𝑏௛)

 𝑧௧ , 𝑟௧: Update and reset gates,
respectively.

5. Application to Voice Cloning
 Encoder-Decoder Framework:

 The encoder extracts a fixed-
dimensional embedding
𝑧௦௣௘௔௞௘௥ from the input voice,
capturing speaker-specific
features.

 The decoder generates the
Mel-Spectrogram of the cloned
voice using the RNN or its
variants (LSTM/GRU) to
maintain temporal coherence.

6. Output Processing
 The generated Mel-Spectrogram is

converted back to audio using a
vocoder, such as WaveNet or HiFi-
GAN, which synthesizes high-quality
waveforms.

The RNN model in RTVC captures temporal
dependencies in audio, ensuring that the generated
voice matches the natural rhythm and intonation of
the target speaker. While the pretrained RTVC model
achieves fast cloning, its reliance on simpler
embeddings and models results in lower quality
compared to tools like PlayHT, which may use more
advanced architectures or higher-quality training
datasets. Consequently, the use of the pretrained
model in RTVC led to a lower quality audio deepfake
than what was produced with PlayHT. Additional
preprocessing involved tools like FFmpeg, Whisper,
and Librosa for extracting mel-spectrograms, and
transcribing the audio. To briefly explain FFmpeg is
used to standardize audio properties such as channels,
sample rate, and bit depth to ensure consistency
across datasets. This process is crucial for extracting
reliable features for deepfake generation and
detection. Below is a mathematical explanation of

how FFmpeg was used to preprocess the audio
dataset. B.2.b.ii. Audio Preprocessing with FFmpeg.
FFmpeg applies transformations to the audio signal
as seen below [57][58].

1. Resampling to 𝑓௦ =22,050 Hz:

𝑦௥௘௦௔௠௣௟௘ௗ[𝑛] = ෍ 𝑦[𝑘] ⋅ ℎ(𝑛 − 𝑘)

ஶ

௞ୀିஶ

 Where 𝑦[𝑘] is the original audio signal and
ℎ is the interpolation filter.

2. Channel Conversion (e.g., stereo to mono):

𝑦௠௢௡௢[𝑛] =
1

2
⋅ (𝑦௟௘௙௧[𝑛] + 𝑦௥௜௚௛௧[𝑛])

3. Bit Depth Adjustment to 16-bit: Quantizes
the signal 𝑦[𝑛] into 216 discrete levels.

B.2.b.iii. Mel-Spectrogram Extraction (with Librosa).
Mel-Spectrograms represent the frequency content of
an audio signal on the perceptually scaled Mel
frequency axis [59][60].

1. Compute the Short-Time Fourier Transform
(STFT):

𝑋(𝑓, 𝑡) = න 𝑥(𝜏) ⋅ 𝑤(𝑡 − 𝜏) ⋅ 𝑒ି௝ଶగ௙ఛ𝑑𝜏
ஶ

ିஶ

 where w(t) is a window function.

2. Map frequencies to the Mel scale using
triangular filters:

𝑀(𝑓௠, 𝑡) = ෍|𝑋(𝑓, 𝑡)|ଶ ⋅ 𝑊(𝑓௠, 𝑓)

௙

 𝑊(𝑓௠, 𝑓) is the Mel filter bank.

3. Apply the logarithm:

Log-Mel(𝑓௠, 𝑡) = log(𝑀(𝑓௠, 𝑡) + 𝜖)

Mel-Spectrograms emphasize frequency bands
important for human perception, enhancing the
ability of machine learning models to detect subtle
manipulations in deepfakes. B.2.b.iv. MFCCs:
Mathematical Basis. Mel-Frequency Cepstral
Coefficients (MFCCs) provided a compact
representation of the spectral envelope, derived from
the Mel-Spectrogram [61]:

1. Compute the logarithm of the Mel-Spectrogram:

log(𝑀(𝑓, 𝑡))

2. Apply the Discrete Cosine Transform (DCT) to
reduce dimensionality:

𝑀𝐹𝐶𝐶௞ = ෍ log(𝑀௡) ⋅ cos ൤𝑘 ൬𝑛 −
1

2
൰

𝜋

𝑁
൨

ே

௡ୀଵ

 𝑀௡: Mel-Spectrogram coefficients.
 𝑁: Number of Mel bands.
 𝑘: Index of the MFCC.

By focusing on the lower-order coefficients, MFCCs
capture the broad spectral shape, essential for
identifying voice characteristics used in Real-Time
Voice Cloning and audio deepfake generation. Mel-
Spectrograms and MFCCs serve as input features for
machine learning models. They transform raw audio
into a format that emphasizes relevant characteristics,
improving the quality and efficiency of deepfake
generation and detection. B.2.b.iv. Transcription with
Whisper. Whisper transcribes audio into text, aiding
in evaluating coherence and alignment between
synthesized speech and its intended content. Whisper
uses a transformer model trained on spectrograms
[55][56].

 Input spectrogram:

𝑆(𝑡, 𝑓) = Log-Mel(𝑓, 𝑡)

 Self-attention mechanism:

Attention(𝑄, 𝐾, 𝑉) = softmax ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ 𝑉

where 𝑄, 𝐾, 𝑉 are query, key, and value
matrices, and 𝑑௞ is the dimension of the key.

 Output: Decoded text using beam search or
similar algorithms.

The transcription of the audio ensures the generated
audio matches the expected linguistic structure, a
critical aspect of high-quality deepfake synthesis.

B.2.c. Tools Not Used. Tools like Tacotron2,
DeepFaceLab_DirectX12, and Faceswap faced
computational, compatibility, or ethical constraints.
Faceswap, for instance, required excessive processing
time and encountered technical issues.
DeepFaceLab_DirectX12 was not selected as the
primary video deepfake generation tool due to
technical constraints which prevented automation of
the batch scripts. Deciding to not use PlayHT as the
primary audio deepfake generation tool was focused
on the inability to automate the process of generating
all audio deepfakes, which was unhelpful for time
constraints. B.3. Challenges Faced. Computational
limitations, such as insufficient GPU power and

system disconnections, were mitigated by using a
university GPU workstation and alternative software.
These adjustments improved processing efficiency
and quality. When Faceswap was allowed to
successfully complete the generation of one deepfake
video, the quality was easy to detect due to the
hardcoded face mask used for detecting the face of
the target subject. This confirmed the suspicion of the
software’s lack of trustworthiness for a high quality
deepfake generation tool. B.4. Deepfake Creation
Process. Video deepfake generation involved
extracting source images, training models, and batch
processing. Audio deepfakes followed a multi-step
process, including transcription, spectrogram
generation, and model training.

C. Data Dissemination and Metadata Analysis

The third step of the project required uploading the
deepfake and real-life or original (RLO) content to
different social media platforms. A variety of social
media platforms were considered, but some required
to be avoided or were not capable of uploading or
downloading all the content from the project. The
metadata extracted from the control and uploaded
content showed substantial changes which reflect the
privacy policies and efficiency of the file transfer
algorithms selected by different social media
platforms based on their level of popularity. The
metadata analysis also showed a substantial change
from the RLO content to the deepfake content,
confirming what some sources have said about the
feasibility of detection based on its metadata. The
analysis also showed a significant difference in the
scale of alterations of the metadata of specifically
deepfake content uploaded to social media. This may
suggest that social media platforms have
implemented anti-deepfake protection. However, this
would only confirm an earlier hypothesis of the
infeasibility of detection based on metadata due to
the altered state post-upload.

C.1. Uploading to Social Media Platforms. The social
media sites attempted were the sites which resulted in
the largest successful uploads. Uploading RLO video
files in batch was successful in different numbers
depending on the site. Of all social media sites which
were attempted to upload content to per information
found about their capacity for uploading videos or
audios, the most consistent social media sites which
allowed the most successful amount of content
uploaded and downloaded content were Facebook,
Telegram, and SoundCloud. Other social media sites,
which may have allowed some content or almost the
entire amount of RLO and deepfake content, were

compartmentalized due to issues relating to file size,
file media type allowable, ease of use, upload
frequency standards, and batch upload or download
capacity. Instagram, like Facebook, allowed batch
uploading up to ten or more videos at a time and to
upload videos up to a certain file size, but was not
feasible for downloading all content due to reasons
unknown. As with all social media sites attempted
except for Telegram and Facebook, attempts to
upload a large majority of the deepfake video content
to Instagram were unsuccessful due to exceeding the
file size limit. The deepfake videos which were
successfully uploaded to, and downloaded from,
social media sites other than Facebook and Telegram
were either produced by the Faceswap software after
insufficient iterations were allowed or were from the
samples collected from the Haotian AI Telegram
channel. Some sites, such as Truth-Social, Tumblr,
Twitter, and Threads, could only allow upload
frequencies either one or up to four videos at a time.
Other social media sites that were either not feasible
for uploading and downloading much of the content
or could not allow for the upload or download video
or audio media types, are illustrated (see Fig. 1).
Facebook, while not possible to upload audio,
allowed for the successful upload and download of
both RLO and deepfake videos thanks to the batch
download feature in the Account Center. Telegram
appeared to have no total file size or frequency limit
granted enough internet speed to upload all requested
content.

C. 2. Metadata Extraction and Analysis. The initial
analysis of metadata showed that uploading the
content to almost all social media sites had
substantial impacts on the metadata of each file.
However, some more interesting meaning arrived
from creating different scripts to search for any trends
in the metadata files. The metadata viewer software,
“EXIFTOOL,” was used to create reports of the
metadata of both the RLO and deepfake files. After
creating these reports of the metadata of each file,
RLO or deepfake and uploaded or not, Python scripts
were written to make comparisons of different classes
of the content. Comparisons were made of the non-
uploaded content against the uploaded content, RLO
videos to deepfake videos, and RLO audios to
deepfake audios. Metrics which were used to
compare content with others were primarily changes
to existing attributes, addition of attributes, and
removal of attributes. This graph (see Fig. 3) revealed
how the most changes in metadata from uploading to

social media came from deepfake videos uploaded to
social media sites. This change may be due to the file
size and unique dimensions of deepfake videos as
well as the quality. After these comparisons were
made, alternative comparisons were made to observe
other trends in changes of metadata. An additional
Python script was written to observe the objective
changes in metadata of all metadata reports and
comparison records. The resulting output of this
script showed that the most common and
considerable changes in metadata of all files (RLO to
deepfake, original to uploaded) were changes in the
file name (“FileName”), file size (“MediaDataSize”),
and average bitrate (“AvgBitrate”). These changes are
illustrated in the appendix (see Fig. 2). This trend is
consistent with the noticeable differences in the files
downloaded from social media platforms as most
downloaded content had a different name (e.g.,
Facebook is known to encrypt user content for
privacy standards), and previous studies have shown
that some metadata will be reduced or removed to
enhance efficiency of uploading and storage of the
files. One final script which was written revealed the
relative changes of uploading to social media
platforms to account for discrepancies in the
uploaded or downloaded file count (see Fig. 4). This
graph helped improve the neutrality of the data
gathered, thereby revealing social media sites which
had the most substantial impact on the metadata of
files. The sites which had such were Truth Social,
Facebook, Instagram, and then Tumblr and Twitter
tied in that order. This trend discovered is consistent
with the review made by [41] about Truth Social how
the site does encrypt the data uploaded to the site
when at rest. It is expected for most social media
platforms to encrypt and remove most metadata
uploaded to the site to improve the efficiency of the
upload [42].

D. Deepfake Detection Models

 D.1. Video Deepfake Detection. The video deepfake
detection process called for the use of the Xception
model. D.1.a. Introduction to Xception. This model is
based on depth-wise separable convolutions as
opposed to the usual standard convolutional layers
used in convolutional neural networks (CNNs) [46].
To demonstrate the computational efficiency of the
Xception model, consider the following:

1. Normal Convolution in CNNs
In a standard convolutional layer [53]:

 A kernel (filter) of size 𝑘 × 𝑘 operates on all
input channels simultaneously to produce
each output channel.

 Mathematically:

𝑂(𝑖, 𝑗, 𝑚) = ෍ ෍ ෍ 𝐾(𝑝, 𝑞, 𝑛, 𝑚) ⋅ 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛)

௞

௤ୀଵ

௞

௣ୀଵ

஼

௡ୀଵ

 𝑂(𝑖, 𝑗, 𝑚): Output value at position
(𝑖, 𝑗) in the 𝑚-th output channel.

 𝐾(𝑝, 𝑞, 𝑛, 𝑚): Kernel weight for input
channel 𝑛 and output channel 𝑚.

 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛): Input value at
position (𝑖 + 𝑝, 𝑗 + 𝑞) in the 𝑛-th input
channel.

 𝐶: Number of output channels.

This requires (𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀) multiplications, where 𝑀 is the
number of output channels.

2. Depthwise Separable Convolution

Depthwise separable convolution breaks this process into
two smaller operations:

1. Depthwise Convolution:
 Applies a single filter per input channel

independently.
 Mathematically:

𝑂ௗ(𝑖, 𝑗, 𝑛) = ෍ ෍ 𝐾ௗ(𝑝, 𝑞, 𝑛) ⋅ 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑛)

௞

௤ୀଵ

௞

௣ୀଵ

o 𝐾ௗ(𝑝, 𝑞, 𝑛): Depthwise kernel for
the 𝑛-th channel.

 Reduces the number of multiplications to
(𝑘 ⋅ 𝑘 ⋅ 𝐶).

2. Pointwise Convolution:
 Applies a 1 × 1 kernel across all

channels to combine Depthwise
outputs:

𝑂௣(𝑖, 𝑗, 𝑚) = ෍ 𝐾௣(𝑛, 𝑚) ⋅ 𝑂ௗ(𝑖, 𝑗, 𝑛)

஼

௡ୀଵ

o 𝐾௣(𝑛, 𝑚): Pointwise kernel
weight for combining input
channel 𝑛 to output channel m.

 Requires (𝐶 ⋅ 𝑀) multiplications.

Total Computation in Depthwise Separable
Convolution:
 Total Operations = (𝑘 ⋅ 𝑘 ⋅ 𝐶) + (𝐶 ⋅ 𝑀)

Compared to normal convolution, this is significantly
smaller, especially for large 𝑘, 𝐶, and 𝑀.

3. Application to Xception

The Xception model replaces standard convolutions
with depthwise separable convolutions in its
convolutional blocks [46]. This approach:

1. Reduces the number of parameters.
2. Increases efficiency by focusing on

spatial filtering (depthwise convolution)
and channel mixing (pointwise
convolution) as separate tasks.

Aspect Normal

Convolution
Depthwise
Separable
Convolution

Multiplications 𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀 𝑘 ⋅ 𝑘 ⋅ 𝐶 + 𝐶 ⋅ 𝑀
Parameters 𝑘 ⋅ 𝑘 ⋅ 𝐶 ⋅ 𝑀 𝑘 ⋅ 𝑘 ⋅ 𝐶 + 𝐶 ⋅ 𝑀
Efficiency High

Computational
Cost

More efficient

Usage in
Xception

Not used Used in all
major blocks

Table 1. Comparison: Normal Convolution vs.
Depthwise Separable Convolution.

How Xception Processes Data:

1. Input Layer: Processes input data into a
standard size (e.g., 299x299x3 for
images).

2. Depthwise Separable Convolutions:
Apply Depthwise filtering and channel
mixing separately.

3. Global Average Pooling: Aggregates
spatial features into a single vector per
channel:

𝐺𝐴𝑃(𝑐) =
1

𝐻 ⋅ 𝑊
෍ ෍ 𝑂(𝑖, 𝑗, 𝑐)

ௐ

௝ୀଵ

ு

௜ୀଵ

4. Fully Connected Layers: Use dense
layers for classification:

𝑦 = softmax(𝑊𝑥 + 𝑏)

Advantages of Depthwise Separable Convolutions

1. Efficiency: Reduces the computational load
significantly.

2. Flexibility: Allows better use of model
parameters for larger networks.

3. Scalability: Well-suited for large-scale
datasets and high-resolution images.

By leveraging depthwise separable convolutions,
Xception achieves better performance with fewer
parameters compared to traditional CNNs. This

makes it particularly effective for tasks like deepfake
detection, where computational efficiency and high
accuracy are crucial. This has shown that it thus
requires less computational resources and parameters.
Studies have shown that the model outperforms the
MobileNet V3, VGG-16, ResNet-50, ResNet-152,
and Inception V3 models in terms of accuracy of
deepfake detection and required fewer gradient
descent steps and thus fewer parameters to approach
negligible loss than its parent, Inception V3
[44][47][49]. This model can recognize subtle
artifacts in images so well that it has shown to have
applications in recognizing diseases in leaves and
peaches, and quickly detect signs of COVID-19 from
Xray images [47][48]. D.1.b. Evaluation on Control
Dataset. The Xception model was trained and
evaluated on the control dataset, achieving 89.1%
accuracy. The architecture of the implementation for
this model is illustrated later (see Fig. 16). However,
detection performance dropped significantly for
social media content, suggesting platform-induced
changes in file attributes. A Python script was written
to train and evaluate the Xception model on the
Control dataset. The evaluation metrics showed that
this model was good at recognizing deepfakes with a
score of 89.1%. This value is to be expected when
some of the content in the deepfake video dataset
contained frames of real people due to both the
Haotian AI samples and the quality of the deepfakes
generated. The confusion matrix showing the overall
distribution of this evaluation of the model is
illustrated in Figure 5 (see Fig. 5). D.1.c. Evaluation
on Social Media Datasets. An extension of the
application of this deepfake detection model was
considered and applied to evaluate the performance
on detecting videos from the dataset of social media
content. A 25 percent sample size was used for each
dataset, including the control dataset, due to time
constraints. The results of this experiment showed the
model was unsuccessful at recognizing the selected
deepfake video content in each selection, nearly
completely misclassifying 100 percent of the
deepfake video sample of each dataset. This suggests
that the model either predicted the videos collected
from the Haotian AI to be authentic (not deepfake) or
changes made in the uploading process of the videos
to social media sites. However, most confusion
matrices in the appendix show that the latter is not
possible due to a near successful RLO video
prediction rate of the content uploaded to social
media. The results of each evaluation of the Xception
deepfake detection model on the 25% sample size of

each dataset of each social media site collected can
be seen in the appendix of this paper. Figures 10, 12,
and 15 show the most noticeable results of
misclassification due to the dataset used was
predominantly Haotian AI videos, as originally
generated deepfake videos were too big of file size to
upload to such social media platforms. This
difference can be noticed by observing Figures 11,
and 14 as the most normal results, with some
misclassification expected due to discrepancies in
metadata after uploading to social media. Figure 9
shows the control evaluation of the Xception model.

D.2. Audio Deepfake Detection. The audio deepfake
detection process executed the use of the Light
Convolutional Neural Network (LCNN) model.
D.2.a. Introduction to the LCNN Model. The audio
deepfake detection process utilized the Light
Convolutional Neural Network (LCNN) model,
which has demonstrated a strong ability to extract
robust features provided by Mel-Spectrograms and
MFCCs, aiding in effective deepfake detection.
D.2.a.i. Relevance of Feature Extraction. By mapping
the audio signal onto a perceptually relevant
frequency scale, Mel-Spectrograms enable the LCNN
to identify subtle frequency-domain artifacts
introduced during deepfake synthesis. MFCCs
compactly represent the spectral envelope, allowing
the LCNN to focus on time-domain and frequency-
domain irregularities. Unlike standard models that
employ the Rectified Linear Unit (ReLU) activation
function, the LCNN processes the extracted features
using a series of 1D convolutional layers and
employs a Max-Feature-Map (MFM) activation
function.

𝑀𝐹𝑀(𝑥) = max(𝑤ଵ ⋅ 𝑥 + 𝑏ଵ, 𝑤ଶ ⋅ 𝑥 + 𝑏ଶ)

This activation function selects the most relevant
features, suppressing noise and irrelevant activations,
making the LCNN highly effective for detecting
audio manipulations [50][51][63]. Research has
highlighted the LCNN model's efficiency in
recognizing both time-domain and frequency-domain
artifacts commonly found in synthetic audio. Beyond
deepfake detection, this model has also found
applications in tasks such as speaker verification and
detecting anomalies in live audio streams. In terms of
computational efficiency, the LCNN model is highly
optimized, achieving notable accuracy with minimal
training time. For instance, it completed training on
the control dataset in under five minutes, showcasing
its practical application potential for real-time

analysis scenarios [50]. D.2.b. Evaluation on Control
Dataset. The evaluation metrics for the LCNN on the
control dataset indicated a test accuracy of 100%,
underscoring its reliability in detecting audio
deepfakes. The architecture of the model
implementation is illustrated later (see Fig. 17). This
level of performance is attributed to its robust
architecture and the quality of the curated dataset
used during training. The confusion matrix
summarizing the results of the model's evaluation on
the control dataset is provided in Figure 6 (see Fig.
6). D.2.c. Evaluation on Social Media Platforms.
Additionally, an extension of this model was applied
to assess its performance on a broader dataset
comprising various audio samples, including social
media content. The results of this experiment
illustrated the model's adaptability to diverse audio
sources, further solidifying its efficacy in deepfake
detection tasks [50][52]. The results of this extension
show the LCNN model was just as capable of
detecting deepfake content from the content uploaded
to SoundCloud and Telegram as it was with the
control (see Fig. 7) (see Fig. 8).

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments involved generating deepfake
content, uploading and downloading files from social
media platforms, and analyzing metadata changes.
Detection models were trained on the control dataset
and tested on social media datasets.

B. Model Training and Evaluation

B.1. Xception Model for Video Detection.

 Control Dataset Results: Achieved 89.1%
accuracy, with a confusion matrix showing a
near-perfect classification of real-life and
deepfake videos. Further evaluation metrics
of original test of Xception model on
Control dataset are illustrated in Figure 19
(see Appendix).

 Social Media Dataset Results: Nearly all
deepfake videos were misclassified, likely
due to metadata alterations.

B.2. LCNN Model for Audio Detection.

 Control Dataset Results: Achieved 100%
accuracy, as shown in Figure 6. Further
information on evaluation metrics of LCNN

model test on Control dataset are illustrated
in Figure 18 (see Appendix).

 Social Media Dataset Results: Maintained
high accuracy for platforms like Telegram
and SoundCloud, as shown in Figures 7 and
8.

C. Metadata Analysis Results

Python scripts revealed consistent metadata changes
in file name, file size, and average bitrate, with
deepfake files showing more significant alterations.
Social media platforms like Facebook, Instagram,
and Truth Social exhibited the most substantial
metadata modifications.

IV. DISCUSSION

A. Impact of Haotian AI Samples on Xception
Model Performance

The inclusion of samples generated by Haotian AI's
deepfake tools revealed significant challenges in
detection accuracy. The Xception model, which
performed effectively on the control dataset with an
accuracy of 89.1%, demonstrated a marked inability
to recognize deepfake content from Haotian AI's
tools. Specifically, nearly 100% of the Haotian AI-
generated samples were misclassified as authentic.
This suggests that the advanced algorithms employed
by Haotian AI produce artifacts and features that are
either indistinguishable by the Xception model or
sufficiently realistic to bypass its detection
capabilities. One possible explanation for this
discrepancy is that the dataset of deepfake videos
used to train the Xception model may have been
primarily generated using the Deepfake Offensive
Toolkit. While this toolkit is known for its efficiency
and ability to produce convincing deepfakes, it does
not necessarily represent the full spectrum of artifacts
and features introduced by other advanced tools like
Haotian AI. The reliance on a single generation tool
for training could lead to overfitting to its specific
patterns and artifacts, reducing the model's ability to
generalize to other tools. The Deepfake Offensive
Toolkit is notable for its ability to generate high-
quality deepfakes efficiently. It uses pre-trained
models optimized for real-time deepfake generation,
allowing for faster production compared to tools like
Faceswap or DeepFaceLab. However, this efficiency
can come at the cost of diversity in the types of
artifacts and distortions produced. This limitation
may have contributed to the Xception model's
inability to detect Haotian AI's deepfakes, as the

training data did not sufficiently encompass the
nuanced features of Haotian AI’s outputs.

B. Metadata Changes and Their Limited
Impact on Detection

The results also demonstrated that changes in
metadata had minimal impact on the Xception
model's ability to recognize deepfakes. While
uploading content to social media platforms caused
significant alterations in metadata, such as changes in
file name, size, and average bitrate, these did not
appear to affect the detection process. The model's
reliance on visual artifacts rather than metadata
attributes accounts for this finding. This observation
aligns with the critique of online suggestions
advocating for metadata analysis as a reliable
deepfake detection method. As discussed in the
introduction, metadata can be easily removed,
encrypted, or altered by social media platforms,
rendering it an unreliable standalone approach. The
project's results reinforce the idea that metadata-
based detection is infeasible for robust deepfake
identification, particularly when dealing with
advanced generation tools or altered files.

C. Future Implications

The findings suggest a need for advanced detection
techniques that go beyond traditional artifact
analysis. Multimodal approaches, which integrate
visual, audio, and metadata cues, could enhance the
ability to detect sophisticated deepfakes.
Furthermore, training datasets must incorporate a
wider range of tools, including Haotian AI and other
emerging technologies, to ensure the models can
generalize effectively. Expanding the dataset to
include variations in generation quality and
algorithms would mitigate the limitations of relying
on any single deepfake tool. Moreover, further
research is required to evaluate the role of anti-
deepfake strategies implemented by social media
platforms, as these may introduce subtle changes that
impact detection models. Exploring alternative
detection frameworks, such as transformer-based or
multimodal methods, could address the evolving
landscape of deepfake technologies.

V. CONCLUSION

This study evaluated the Xception, and LCNN model
for detecting deepfakes in video and audio datasets.
While the LCNN model demonstrated consistent
accuracy across control and social media datasets, the

Xception model struggled with detecting high-quality
deepfakes generated by Haotian AI. The significant
misclassification of Haotian AI samples underscores
the limitations of current models in addressing
advanced algorithms. Additionally, the possible
reliance on deepfake samples generated by the
Deepfake Offensive Toolkit during model training
may have contributed to the model's reduced
generalization. While the toolkit produces efficient
and convincing deepfakes, its artifacts may not fully
capture the nuances of other tools like Haotian AI.
This highlights the importance of diverse datasets in
model training. Furthermore, the study revealed that
metadata changes resulting from social media
uploads had minimal impact on detection accuracy,
challenging the effectiveness of metadata-based
detection strategies. These findings emphasize the
importance of training detection models with diverse
datasets and adopting multimodal approaches to
address the growing sophistication of deepfake
technologies. Future research should prioritize the
inclusion of samples from emerging deepfake tools
and explore innovative detection frameworks to
ensure the reliability and applicability of detection
methods in real-world scenarios.

REFERENCES

[1] “27 Arrested In $360 Million DeepFake Scam
Syndicate,” Frank on Fraud, Oct. 14, 2024.
https://frankonfraud.com/fraud-trends/27-
arrested-in-46-million-deepfake-scam-syndicate/
(accessed Nov. 29, 2024).

[2] “Haotian AI : Providing Deepfake AI For Scam
Bosses,” Frank on Fraud, Oct. 10, 2024.
https://frankonfraud.com/fraud-trends/haotian-ai-
providing-deepfake-ai-for-scam-bosses/
(accessed Nov. 29, 2024).

[3] Anis Trabelsi, M. M. Pic, and Jean-Luc Dugelay,
“Improving Deepfake Detection by Mixing Top
Solutions of the DFDC,” 2021 29th European
Signal Processing Conference (EUSIPCO), vol.
abs 1710 10196, pp. 643–647, Aug. 2022, doi:
https://doi.org/10.23919/eusipco55093.2022.9909
905.

[4] A. Kaushal, S. Singh, S. Negi, and S. Chhaukar,
“A Comparative Study on Deepfake Detection
Algorithms,” IEEE Xplore, Dec. 01, 2022.
https://ieeexplore.ieee.org/document/10074593

[5] Sanika Tiwarekar, “Deep Fake Detection (DFD)
Entire Original Dataset,” Kaggle.com, 2024.
https://www.kaggle.com/datasets/sanikatiwarekar
/deep-fake-detection-dfd-entire-original-dataset
(accessed Nov. 29, 2024).

[6] Haotian AI, “昊天AI换脸 官方频道-AI换脸-实

时换脸,” Telegram, 2024. https://t.me/haotianai

(accessed Nov. 29, 2024).

[7] S. Kumar, “1000 male voice samples,”
Kaggle.com, 2022.
https://www.kaggle.com/datasets/sandeep16064/1
000-male-voice-samples (accessed Nov. 29,
2024).

[8] S. Kumar, “1000 female voice samples,”
Kaggle.com, 2022.
https://www.kaggle.com/datasets/sandeep16064/2
000-voice-samples (accessed Nov. 29, 2024).

[9] iperov, “iperov/DeepFaceLab,” GitHub, Apr. 08,
2020. https://github.com/iperov/DeepFaceLab

[10] waywardspooky, “Reddit - Dive into anything,”
Reddit.com, 2024.
https://www.reddit.com/r/DeepFaceLab/comment
s/1eyvlwo/deepfacelab_shutdown_on_github/
(accessed Nov. 29, 2024).

[11] G. Chaabouni, A. Indulkar, G. Patrini, and V.
Papadopoulos, “the Deepfake Offensive Toolkit,”

GitHub, Dec. 11, 2022.
https://github.com/sensity-ai/dot

[12] ondyari, “FaceForensics++: Learning to Detect
Manipulated Facial Images,” GitHub, Dec. 02,
2022. https://github.com/ondyari/FaceForensics

[13] C. Jemine, “CorentinJ/Real-Time-Voice-
Cloning,” GitHub, Jun. 05, 2020.
https://github.com/CorentinJ/Real-Time-Voice-
Cloning

[14] “AI Voice Generator & Realistic Text to Speech
Online,” Play.ht, 2016. https://play.ht

[15] “Free Real Time Voice Changer & Modulator -
Voicemod,” www.voicemod.net.
https://www.voicemod.net

[16] OpenAI, “Whisper,” GitHub, Oct. 09, 2022.
https://github.com/openai/whisper

[17] Deepfakery, “Easy Deepfake Tutorial:
DeepFaceLab 2.0 Quick96,” YouTube, Jul. 27,
2020. https://www.youtube.com/watch?v=lSM-
9RBk3HQ (accessed Nov. 29, 2024).

[18] N. Dufour and A. Gully, “Contributing Data to
Deepfake Detection Research,” research.google,
Sep. 24, 2019.
https://research.google/blog/contributing-data-to-
deepfake-detection-research/

[19] “Download DIRECTX 12 to add amazing
graphics effects | NVIDIA,” www.nvidia.com.
https://www.nvidia.com/en-
us/geforce/technologies/dx12/

[20] Michelle M. Graham, “Deepfakes: Federal and
state regulation aims to curb a growing threat,”
Thomson Reuters Institute, Jun. 26, 2024.
https://www.thomsonreuters.com/en-
us/posts/government/deepfakes-federal-state-
regulation/

[21] GeeksforGeeks, “Types of Convolution Kernels,”
GeeksforGeeks, Jul. 22, 2024.
https://www.geeksforgeeks.org/types-of-
convolution-kernels/

[22] GeeksforGeeks, “Introduction to Convolution
Neural Network,” GeeksforGeeks, Mar. 14, 2024.
https://www.geeksforgeeks.org/introduction-
convolution-neural-network/

[23] A. Zucconi, “Understanding the Technology
Behind DeepFakes - Alan Zucconi,” Alan
Zucconi, Mar. 14, 2018.
https://www.alanzucconi.com/2018/03/14/underst
anding-the-technology-behind-deepfakes/

[24] Q. Luo and K. Vinayagam Sivasundari,
“Whisper+AASIST for DeepFake Audio
Detection,” Lecture Notes in Computer Science,
pp. 121–133, 2024, doi:
https://doi.org/10.1007/978-3-031-61382-1_8.

[25] T.-P. Doan, L. Nguyen-Vu, S. Jung, and K. Hong,
“BTS-E: Audio Deepfake Detection Using
Breathing-Talking-Silence Encoder,” ICASSP
2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), Jun. 2023, doi:
https://doi.org/10.1109/icassp49357.2023.100959
27.

[26] Q. Luo and K. Sivasundari, “Whisper+AASIST
for DeepFake Audio Detection.”

[27] GeeksforGeeks, “CNN | Introduction to Pooling
Layer,” GeeksforGeeks, Aug. 05, 2019.
https://www.geeksforgeeks.org/cnn-introduction-
to-pooling-layer/

[28] “What are DeepFakes and How Dangerous are
They?,” GeeksforGeeks, Mar. 12, 2020.
https://www.geeksforgeeks.org/what-are-
deepfakes-and-how-dangerous-are-they/

[29] “Welcome,” Faceswap. https://faceswap.dev

[30] H. Lee et al., “The Tug-of-War Between
Deepfake Generation and Detection,” Arxiv.org,
2020.
https://arxiv.org/html/2407.06174v4?utm_source
=chatgpt.com (accessed Nov. 30, 2024).

[31] A. Kaur, Azadeh Noori Hoshyar, Vidya
Saikrishna, S. Firmin, and F. Xia, “Deepfake
video detection: challenges and opportunities,”
Artificial intelligence review, vol. 57, no. 6, May
2024, doi: https://doi.org/10.1007/s10462-024-
10810-6.

[32] G. Gupta, K. Raja, M. Gupta, T. Jan, Scott
Thompson Whiteside, and M. Prasad, “A
Comprehensive Review of DeepFake Detection
Using Advanced Machine Learning and Fusion
Methods,” Electronics, vol. 13, no. 1, pp. 95–95,
Dec. 2023, doi:
https://doi.org/10.3390/electronics13010095.

[33] A. Naitali, M. Ridouani, F. Salahdine, and N.
Kaabouch, “Deepfake Attacks: Generation,
Detection, Datasets, Challenges, and Research
Directions,” Computers, vol. 12, no. 10, p. 216,
Oct. 2023, doi:
https://doi.org/10.3390/computers12100216.

[34] E.-G. Lee, I. Lee, and S.-B. Yoo, “ClueCatcher:
Catching Domain-Wise Independent Clues for

Deepfake Detection,” Mathematics, vol. 11, no.
18, p. 3952, Jan. 2023, doi:
https://doi.org/10.3390/math11183952.

[35] Y. Li and S. Lyu, “Exposing DeepFake Videos By
Detecting Face Warping Artifacts,”
arXiv:1811.00656 [cs], May 2019, Available:
https://arxiv.org/abs/1811.00656

[36] “The Deepfake Offensive Toolkit,” Changelog,
2022. https://changelog.com/news/the-deepfake-
offensive-toolkit-zD4V (accessed Dec. 01, 2024).

[37] K. O’Neal-Kenny, “Can Metadata Help Identify
Deepfakes? — INM348 Article 2 Extras,”
www.linkedin.com, Nov. 11, 2021.
https://www.linkedin.com/pulse/can-metadata-
help-identify-deepfakes-inm348-article-2-kaitlyn-
o-neal/

[38] M. Edirisooriya, “Defeating Deepfakes with
Metadata,” Medium, Aug. 11, 2023.
https://medium.com/@maninda/defeating-
deepfakes-with-metadata-2e1de42d24c6

[39] O. Laurent, “Study exposes social media sites
that delete photographs’ metadata - 1854
Photography,” www.1854.photography.
https://www.1854.photography/2013/03/study-
exposes-social-media-sites-that-delete-
photographs-metadata/

[40] “Social Media Metadata on Mobile Devices:
Gathering Valuable Crumbs,” Digital Mountain.
https://digitalmountain.com/newsletter/social-
media-metadata-on-mobile-devices-gathering-
valuable-crumbs/

[41] “Common Sense Privacy Standard Privacy
Report for Truth Social,” Commonsense.org,
2023. https://privacy.commonsense.org/privacy-
report/Truth-Social (accessed Dec. 02, 2024).

[42] Scott, “Scott Wyden Kivowitz,” Scott Wyden
Kivowitz, Jun. 03, 2010.
https://scottwyden.com/facebooks-photo-upload-
compression/ (accessed Dec. 02, 2024).

[43] “How to Spot Deepfake Scams,” Ncoa.org, Oct.
30, 2024.
https://www.ncoa.org/article/understanding-
deepfakes-what-older-adults-need-to-know/

[44] Ashok V and Preetha Theresa Joy, “Deepfake
Detection Using XceptionNet,” 2023 IEEE
International Conference on Recent Advances in
Systems Science and Engineering (RASSE), Nov.
2023, doi:
https://doi.org/10.1109/rasse60029.2023.1036347
7.

[45] D. Ahmed Alkurdi, M. Cevik, and A.
Akgundogdu, “Advancing Deepfake Detection
Using Xception Architecture: A Robust Approach
for Safeguarding against Fabricated News on
Social Media,” Techscience.com, 2024.
http://www.techscience.com/cmc/online/detail/22
022 (accessed Dec. 05, 2024).

[46] F. Chollet, “Xception: Deep Learning with
Depthwise Separable Convolutions,” arXiv.org,
2016. https://arxiv.org/abs/1610.02357

[47] G. Boesch, “Xception Model: Analyzing
Depthwise Separable Convolutions - viso.ai,”
viso.ai, May 16, 2024. https://viso.ai/deep-
learning/xception-
model/?utm_source=chatgpt.com (accessed Dec.
05, 2024).

[48] A. H. Panahi, A. Rafiei, and A. Rezaee, “FCOD:
Fast COVID-19 Detector based on deep learning
techniques,” Informatics in Medicine Unlocked,
vol. 22, p. 100506, 2021, doi:
https://doi.org/10.1016/j.imu.2020.100506.

[49] N. Yao et al., “L2MXception: an improved
Xception network for classification of peach
diseases,” Plant Methods, vol. 17, no. 1, Apr.
2021, doi: https://doi.org/10.1186/s13007-021-
00736-3.

[50] Z. Wu, R. K. Das, J. Yang, and H. Li, “Light
Convolutional Neural Network with Feature
Genuinization for Detection of Synthetic Speech
Attacks,” arXiv.org, 2020.
https://arxiv.org/abs/2009.09637 (accessed Dec.
06, 2024).

[51] Z. Yang, M. Jian, B. Bao, and L. Wu, “Max-
Feature-Map Based Light Convolutional
Embedding Networks for Face Verification,”
Lecture notes in computer science, pp. 58–65,
Jan. 2017, doi: https://doi.org/10.1007/978-3-
319-69923-3_7.

[52] S. Joshi and M. Dua, “Noise Robust Audio Spoof
Detection Using Hybrid Feature Extraction and
LCNN,” SN Computer Science, vol. 5, no. 4, Apr.
2024, doi: https://doi.org/10.1007/s42979-024-
02774-9.

[53] I. Goodfellow, Y. Bengio, and A. Courville,
“Deep Learning,” www.deeplearningbook.org,
2016. https://www.deeplearningbook.org

[54] S. Hochreiter and J. Schmidhuber, “Long Short-
Term Memory,” Neural Computation, vol. 9, no.
8, pp. 1735–1780, Nov. 1997, doi:
https://doi.org/10.1162/neco.1997.9.8.1735.

[55] A. Vaswani et al., “Attention Is All You Need,”
arXiv.org, Dec. 05, 2017.
https://arxiv.org/abs/1706.03762

[56] OpenAI, “Whisper,” GitHub, Oct. 09, 2022.
https://github.com/openai/whisper

[57] “Documentation,” ffmpeg.org.
https://ffmpeg.org/documentation.html

[58] E. Tatulli and T. Hueber, “Feature extraction
using multimodal convolutional neural networks
for visual speech recognition,” IEEE Xplore, Mar.
01, 2017.
https://ieeexplore.ieee.org/abstract/document/795
2701 (accessed Jul. 09, 2020).

[59] S. S. Stevens, “A Scale for the Measurement of
the Psychological Magnitude Pitch,” Acoustical
Society of America Journal, vol. 8, no. 3, p. 185,
1937, doi: https://doi.org/10.1121/1.1915893.

[60] B. Mcfee et al., “librosa: Audio and Music Signal
Analysis in Python,” PROC. OF THE 14th
PYTHON IN SCIENCE CONF. (SCIPY, vol.
2015, p. 1.

[61] S. Davis and P. Mermelstein, “Comparison of
parametric representations for monosyllabic word
recognition in continuously spoken sentences,”
IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 28, no. 4, pp. 357–366,
Aug. 1980, doi:
https://doi.org/10.1109/tassp.1980.1163420.

[62] I. J. Goodfellow et al., “Generative Adversarial
Networks,” arXiv (Cornell University), vol. 1,
Jun. 2014, doi:
https://doi.org/10.48550/arxiv.1406.2661.

[63] X. Wu, R. He, Z. Sun, and T. Tan, “A Light CNN
for Deep Face Representation With Noisy
Labels,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 11, pp. 2884–
2896, Nov. 2018, doi:
https://doi.org/10.1109/tifs.2018.2833032.

APPENDIX

The following are materials which are referenced in
this paper to aid either the discussion of the data
distribution on social media and metadata analysis, or
detection results.

Fig. 1 Table showing what content was successful to

upload to which social media sites, including
information relating to content type, size, amount,
and capabilities of batch upload and download to and
from which social media sites.

Fig. 2 Graph showing organization of metadata
changes, showing attributes with number of changes
from largest to smallest.

Video Files Sound Files Real Life Videos Real Life Audio Deepfake Video Deepfake Audio Batch upload Batch download

DeviantArt Yes Yes No No Yes No No No

Discord Yes No Yes Yes No (Too big file size) Yes Only up to 10 No

Facebook Yes No Yes No Only to a certain file size No 10+ Yes

Instagram Yes No Yes No Only to a certain file size No 10+ Yes, but not comprehensive
Pinterest No No N/A N/A N/A N/A N/A N/A

Reddit Yes No Yes No Only to a certain file size No No No

Snapchat Yes No Yes No No (Not feasible) No No No

SoundCloud No Yes No Yes No Yes Yes No

Telegram Yes Yes Yes Yes Yes Yes Yes, as long as the internet could handle the upload demand No

TikTok Yes No Yes No Only to a certain file size No Yes, but this would clump the files into one file No

Truth-Social Yes No Yes No Only to a certain file size No No (implicitly flagged for spam) No

Tumblr Yes No (Failed) Yes N/A Only to a certain file size N/A No (implicitly flagged for spam) No
Twitter Yes No Yes No Only to a certain file size No Only to four at a time, but could make a thread No

Vimeo Yes No Yes No Only to a certain file size No No No

WhatsApp Yes Yes Yes Yes Only to a certain file size Yes No No

YouTube Yes No Yes No Only to a certain file size No Only up to 10 No

Threads Yes No Yes No Only to a certain file size No No (was flagged for spam) N/A

Steam No No N/A N/A N/A N/A N/A N/A

Fig. 3 Graph showing changes either addition or
alteration of attributes (left) and removal of attributes
(right).

Fig. 4 Graph showing relative changes across datasets, with deepfake content uploaded to social media sites on the
left, audio files in the middle (red and green), real-life content to deepfake shown as the purple bar leftmost with all
other real-life content uploaded to social media to the right in purple.

Fig. 5 Confusion Matrix shows a distribution of correct classifications and
misclassifications of RLO and deepfake control videos.

Fig. 6 Confusion Matrix shows a distribution of correct
classifications of RLO and deepfake control audio.

Fig. 7 Confusion Matrix shows a distribution of correct classifications of RLO
and deepfake audio uploaded to SoundCloud.

Fig. 8. Confusion Matrix shows a distribution of correct classifications
of RLO and deepfake audio uploaded to Telegram.

Fig. 9. Control test of Xception model on 50
randomly selected deepfake videos.

Fig. 10. Evaluation of Xception model on collection
of deepfake videos uploaded to Truth-Social shows
staggering misclassification of fake videos, majority
Haotian AI samples.

Fig. 11. Evaluation of Xception model on deepfake
videos uploaded to YouTube with slight
misclassification of deepfake videos.

Fig. 12. Evaluation of Xception model on deepfake
videos uploaded to Twitter with staggering
misclassification of deepfake videos, majority
Haotian AI samples.

Fig. 13. Evaluation of Xception model on Facebook
videos, with some successful classification of
deepfake videos due to majority original deepfake
content.

Fig. 15. Evaluation of Xception model on deepfake
videos with staggering misclassification due to
Haotian AI deepfake samples.

Fig. 16. Xception model architecture.

Fig. 17. Light Convolutional Neural
Network (LCNN) model architecture.

Fig. 18. Evaluation metrics of LCNN audio deepfake detection model

Fig. 19. Evaluation metrics of Xception video
deepfake detection model.

