
Dynam3D: Dynamic Layered 3D Tokens Empower
VLM for Vision-and-Language Navigation

Zihan Wang Seungjun Lee Gim Hee Lee
School of Computing, National University of Singapore
zihan.wang@u.nus.edu, gimhee.lee@nus.edu.sg

Abstract

Vision-and-Language Navigation (VLN) is a core task where embodied agents
leverage their spatial mobility to navigate in 3D environments toward designated
destinations based on natural language instructions. Recently, video-language
large models (Video-VLMs) with strong generalization capabilities and rich com-
monsense knowledge have shown remarkable performance when applied to VLN
tasks. However, these models still encounter the following challenges when applied
to real-world 3D navigation: 1) Insufficient understanding of 3D geometry and
spatial semantics; 2) Limited capacity for large-scale exploration and long-term
environmental memory; 3) Poor adaptability to dynamic and changing environ-
ments. To address these limitations, we propose Dynam3D, a dynamic layered 3D
representation model that leverages language-aligned, generalizable, and hierar-
chical 3D representations as visual input to train 3D-VLM in navigation action
prediction. Given posed RGB-D images, our Dynam3D projects 2D CLIP features
into 3D space and constructs multi-level 3D patch-instance-zone representations
for 3D geometric and semantic understanding with a dynamic and layer-wise
update strategy. Our Dynam3D is capable of online encoding and localization
of 3D instances, and dynamically updates them in changing environments to
provide large-scale exploration and long-term memory capabilities for naviga-
tion. By leveraging large-scale 3D-language pretraining and task-specific adapta-
tion, our Dynam3D sets new state-of-the-art performance on VLN benchmarks
including R2R-CE, REVERIE-CE and NavRAG-CE under monocular settings.
Furthermore, experiments for pre-exploration, lifelong memory, and real-world
robot validate the effectiveness of practical deployment. The code is available at
https://github.com/MrZihan/Dynam3D.

1 Introduction

Vision-and-language navigation (VLN) tasks [1–4] require agents to integrate three core capabilities:
1) understanding natural language instructions, 2) exploring environments and localizing targets
or destinations, and 3) planning and executing navigation actions. As illustrated in Figure 1(a),
recent works [5–7] have predominantly focused on using video-based large models [8–10] to develop
monocular VLN systems. This is due to the practical constraint that most robots are equipped with
monocular cameras instead of panoramic cameras. These models pre-trained on large-scale internet
data demonstrate strong language understanding and multimodal reasoning abilities, which enable
effective instruction following and continuous prediction of navigation actions toward the destination.

Despite these recent advances, several limitations still remain: 1) Video-based models struggle to
capture spatial geometry and semantics in large-scale 3D environments. Our experiments reveal
that this significantly hinders the ability of these models to explore extensively and correct errors
effectively. 2) These models lack mechanisms for structured scene memory. This prevents the use of

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MrZihan/Dynam3D

Instruction: “Please go to the kitchen and
take the bread out of the microwave for me.”

…

Video-Language Large Model

…

Action

3D-Language Large Model Action

• Large-scale scene exploration and memory

• 3D geometry and semantic understanding

• Dynamic multi-level representation updates

(a) Video-based VLM for Navigation.

(b) Our 3D Patch-Instance-Zone VLM for Navigation.

Figure 1: Different vision-language large models for monocular VLN tasks. Compared to previous
video-based representations (a), our Dynam3D (b) adopts dynamic hierarchical 3D representations
offering advantages in spatial geometry and semantic understanding.

pre-exploration knowledge and limits the potential for lifelong learning. 3) Representations derived
from historical frames are inadequate for dynamically changing 3D scenes, where frequent object
and human movements lead to performance drop.

We propose Dynam3D to alleviate the limitations mentioned above. As illustrated in Figure 1(b), our
Dynam3D is a 3D-language model with dynamic layered 3D representations for vision-and-language
navigation. To encode 3D environments, we extract patch-level 2D features using CLIP [11] and
project them into 3D space via depth maps and camera poses. Our Dynam3D employs FastSAM [12]
to generate 2D instance masks, and aggregates patch features within each mask into instance-level
representations. A 3D instance merging discriminator aligns 2D instances with existing 3D instances
based on geometry and semantics to enable dynamic updates of 3D instance representations. Unlike
previous online [13] or language-guided [14] 3D segmentation methods that focus on mask accuracy,
our Dynam3D mainly aligns instance representations with the semantic space of CLIP through
large-scale 3D-language pretraining to improve 3D representation quality and scene understanding.

Furthermore, our Dynam3D aggregates 3D instance features within spatial zones to facilitate un-
derstanding of large-scale environments. As a result, this enables high-level comprehension of
layouts, e.g. bedrooms, kitchens, etc that instance-level features alone cannot capture. our Dynam3D
updates the scene dynamically with this hierarchical patch-instance-zone representation: outdated
patch features are removed when a new RGB-D observation arrives, and new features are projected
and propagated across the representation layers (patch-instance-zone) for change adaptation. These
features enable our Dynam3D to maintain a lifelong and dynamic environmental memory that can
significantly improve navigation performance in real-world deployments.

We further introduce a generalizable feature field model [15] to render 3D patch features over an
agent-centric panoramic scope for the enrichment of local geometric and semantic perception. These
rendered 3D patch features combined with instance and zone representations serve as visual input to
the 3D Vision-Language Model (VLM). Given language instructions and action history, the 3D-VLM
directly predicts navigation actions, e.g., turn θ degrees, move forward d cm, or stop.

In summary, our main contributions include:

• We propose Dynam3D, a multi-level patch-instance-zone 3D representation model that
performs online 3D instance and zone-level encoding and real-time hierarchical updates in
dynamic environments.

• We introduce a 3D Vision-Language Model that integrates 3D patch features from gener-
alizable feature fields and 3D instance-zone features from our Dynam3D. This balances
fine-grained geometry and global spatial layout for navigation planning.

• Our monocular VLN system achieves state-of-the-art performance on benchmarks includ-
ing R2R-CE, REVERIE-CE, and NavRAG-CE. The results also demonstrate our strong
capabilities in pre-exploration, lifelong memory and real-world experiments.

2

2 Related Work

Vision-and-Language Navigation. Vision-and-Language Navigation (VLN) [1, 3, 2, 16–19] re-
quires the agent to understand complex natural language instructions and navigate to the described
destination. In contrast to early works [16–18, 20, 21] which primarily concentrate on training and
evaluating models within discrete environment simulators [22, 1, 2] (i.e., move on the pre-defined
navigation connectivity graph, equipped with panoramic RGB-D camera), recent researches have
increasingly emphasized navigation in continuous environment simulators [23–27] and the real-world
deployment of monocular VLN systems [5, 28, 15, 6, 7, 29, 30]. For monocular VLN on continuous
environment simulators, the agent equips only a forward-facing monocular RGB-D camera, and uses
low-level actions to navigate. To leverage the language understanding and commonsense reasoning
capabilities of large models, some recent works [31–35, 29] have adapted 2D-VLMs to VLN tasks,
leading to notable performance improvements. Extensions such as NaVid [5], Uni-NaVid [6], and
NaVILA [7] further exploit video-based large models to build high-performance monocular VLN
systems with strong real-world applicability. However, video-based representations still have inherent
limitations. For example, they struggle to capture fine-grained geometry semantics and comprehend
large-scale spatial layouts, which in turn limits their capabilities in object localization and path
planning. To the best of our knowledge, our Dynam3D is the first approach that effectively addresses
the limitations inherent in previous video-based models by using a 3D-VLM to perform monocular
VLN tasks in unseen and dynamic environments.

3D Vision-Language Models. Inspired by the development of 2D-VLM [36, 37, 8–10], recent
works integrate 3D inputs, the point clouds [38–40] or multi-view images [41–43] to enable 3D scene
reasoning for 3D-VLMs. These approaches differ primarily in scene representation: LL3DA [38]
encodes full-scene point clouds directly; LEO [40] and Chat-Scene [39] decompose scene point
clouds into object-level segments and encode corresponding features. 3D-LLM [42] and Scene-
LLM [41] begin with multi-view images, apply 2D object segmentation, and aggregate CLIP features
into pixel-aligned 3D points. LLaVA-3D [44] builds on a pretrained 2D VLM [37] to embed 2D
patches into 3D voxels via multi-view inputs and 3D positional embeddings. This enables fast
adaptation to 3D tasks while maintaining strong 2D perception. However, current 3D-VLMs face
fundamental challenges in large-scale unseen and dynamic tasks such as embodied navigation. Full-
scene point cloud or voxel-based representations are impractical for real-time reasoning in unseen
environments. Existing models lack mechanisms for incremental updates, which make it difficult to
revise or discard outdated scene information in dynamic contexts. Moreover, they struggle to balance
the computational trade-off between global spatial layout and fine-grained geometric semantics.
In this context, we propose Dynam3D, a 3D-VLM model that is better adapted for such dynamic
embodied tasks.

3 Our Method

Overview. Figure 2 shows the framework of our Dynam3D for vision-and-language navigation. The
framework takes the posed monocular RGB and depth images as input, and outputs atomic navigation
actions such as turning, moving forward, stopping etc. Our Dynam3D maintains a set of patch
feature points to encode the generalizable feature field [15] used to render the panoramic 3D patch
tokens of the agent. Furthermore, our Dynam3D layer-by-layer encodes and updates 3D instance
representations and large-scale cube zone representations for multi-level scene understanding and
target localization (cf. Section 3.1). These multi-level 3D tokens, navigation instructions and history
actions are then fed into a 3D-VLM for next action prediction (cf. Section 3.2).

3.1 Dynamic Layered 3D Representation Model

We first design and pre-train a multi-level 3D representation model to acquire language-aligned 3D
representations encompassing both fine-grained details and global layouts.

Encoding the Patch Feature Points. To memorize the geometry and semantics of 3D environments,
we follow HNR [45] and g3D-LF [15] in using CLIP-ViT-L/14@336px [11] as the encoder for RGB
images to extract 2D patch features {gt,i ∈ R768}Ii=1. gt,i denotes the i-th patch feature of the 2D
feature map extracted from t-th frame observed by the agent and I = 24× 24. The patch features
{gt,i}Ii=1 are then project to the corresponding 3D world coordinates {Pt,i}Ii=1 using the depth map

3

RGB image

Depth image

CLIP
Visual

Encoder

3D
Project

Patch Feature Points in 3D Space

Render Panoramic Rays
within Generalizable Feature Fields

FastSAM

2D Instance Masks

3D Instance Masks

Instance
Encoder

2D Instance
Features

Merging
Discriminator

Zone
Encoder

Instance
Encoder

3D Instance
Tokens

Aggregate
patch features
within 2D mask

Aggregate
patch features
within 3D mask

Panoramic
3D Patch Tokens

3D Vision-Language Large M
odel

Aggregate 3D instance features
within cube zone

Merge 2D instances into
existing 3D instances

3D Zone Tokens

Instruction Tokens

…

…

…

Instruction: “Please go to the kitchen and take the bread out of the microwave for me.”

Turn left 30 degree. Forward 50 cm. Turn left 45 degree. Forward 75 cm.
History Actions

…

Figure 2: The architecture of our Dynam3D framework. Our Dynam3D takes posed monocular RGB
and depth images as input and outputs atomic navigation actions. It encodes and updates multi-level
3D representations for scene understanding and target localization. The 3D tokens, navigation
instructions and history actions are then consolidated into the 3D-VLM for next action prediction.

and camera parameters. For each feature gt,i, the observed horizontal orientation θt,i and the regional
size st,j are also calculated and stored to enhance the spatial representation. The set of feature points
M can therefore be updated online as:

Mt = Mt−1 ∪ {[gt,i, Pt,i, θt,i, st,i]}Ii=1. (1)

Updating the Patch Feature Points. As shown in Figure 3, we employ the Frustum Culling strategy
to dynamically update the feature points set M by discarding outdated features and incorporating new
ones, which differs from previous methods [46, 45, 28, 15] simply add new feature points regardless
of object motion or removal. Specifically, after obtaining the observed depth image Dt ∈ RH×W ,
the frustum culling strategy transforms the 3D world coordinate Pw ∈ M of each feature point into
the pixel coordinate of the depth image using the camera pose [R,T] and camera intrinsics K as
follows:

P⊤
c =

[
xc

yc
zc

]
= RP⊤

w +T,

[
u
v
1

]
=

1

zc
K

[
xc

yc
zc

]
,

FrustumCulling(Pw), if 0 < zc < min(du,v + δ,∆), 0 < u < H, and 0 < v < W. (2)

dh,w denotes the depth value in row h and column w of the depth image Dt ∈ RH×W . A feature
point Pw is removed from the feature points set M by the FrustumCulling(·) function when
0 < zc < min(du,v + δ,∆), 0 < u < H and 0 < v < W , where δ is a noise threshold and ∆ is the
farthest culling distance. The frustum culling is first applied and followed by adding the new feature
points when a RGB-D observation is obtained.

Dynamically Encoding 3D Instance Representations. Due to the overwhelming volume of 3D
patch features, a direct employment as visual input to 3D-VLM is computationally and economically
impractical. In contrast to voxel-level pooling approaches, e.g. LLaVA-3D [44], our Dynam3D
encodes features at the 3D instance level since target localization in navigation instructions is mostly
described in terms of object instances. As illustrated in Figure 2, FastSAM [12] rapidly segments

4

For removed/moved object,
frustum cull outdated patch features

For currently observed object,
add new patch features

Add features
on the new

observed surface

Remove features from
camera to the new
observed surface

FastSAM

Merging
Discriminator

2D Instances

3D Instances

3D segmentation loss

Instance feature
distillation loss

CLIP

Masked
Average Pooling

Instance
Encoder

CLIP
Zone feature

distillation loss

Instance-level
language alignment loss

Zone-level
language alignment loss

Zone
Encoder

“A white modern sofa with
colorful cushions.”

“This is a modern living room with
a white sofa, colorful pillows, a

large brown square coffee table,
and dark accent walls.”

Figure 3: Left: Illustration of the feature points update and frustum culling strategy. Right: The
supervision of feature distillation and 3D-language contrastive learning for our Dynam3D model.

the observed RGB image into a set of 2D instance masks. Within each mask, a transformer-based
instance encoder aggregates the corresponding patch features {gm}Mm=1 with positional embeddings
{pm}Mm=1 into a compact instance-level representation O using a learnable token q as query:

pm = MLP([Pm −Average({Pm}Mm=1), sm, cos(θm), sin(θm)]),

O = InstanceEncoder(q, {gm ⊕ pm}Mm=1). (3)

In contrast to simple 2D instance representations, 3D instances require both multi-view and geometric
consistency, enabling the agent to identify the same instance across different views. To this end, we
train a Merging Discriminator to integrate 2D instance representations into consistent 3D instances,
as shown in Figure 2. Initially, each 2D instance is treated as a new 3D instance. At each subsequent
step, for every new 2D instance, the Top-K nearest existing 3D instances are retrieved. The Merging
Discriminator evaluates each 2D–3D instance candidate pair using semantic and geometric encodings
to determine correspondence. If no match is found among the Top-K candidates, a new 3D instance
is created. Otherwise, the 2D instance is merged with the most similar 3D instance by concatenating
their patch features and updating the 3D instance representation through the instance encoder. The 3D
representation is updated with the remaining relevant patches when the outdated patches are removed
via Frustum Culling. We discard the 3D instance in the case where all patches are removed.

We train the Merging Discriminator using over 5K rooms with 3D instance segmentation data:
ScanNet [47], HM3D [48], Matterport3D [22] and 3RScan [49], where the annotation of instances
of point clouds are processed for each point with world coordinate and instance ID. Ground truth
instance IDs are assigned to patches by searching the nearest matching instance point from annotated
instance point clouds. For each 2D or 3D instance, the majority ID of their patches determines the
ground truth instance ID. The Merging Discriminator is trained with a binary classification loss,
where the label is positive (G = 1) if the 2D and 3D instances share the same ground truth instance
ID, or negative (G = 0) otherwise:

Lsegm =
1

J

J∑
j=1

K∑
k=1

CrossEntropy(MergingDiscriminator(O2D
j ,O3D

k , Dj,k),Gj,k). (4)

The function MergingDiscriminator(·) is an MLP network which takes as input the 2D instance fea-
tures O2D

j , 3D instance features O3D
k and their Euclidean distance Dj,k, and outputs a 2-dimensional

logit vector. After extensive pre-training, the function MergingDiscriminator(·) efficiently inte-
grates 2D instances into existing 3D instances to maintain mult-view and geometrically consistent
3D representations that can be updated.

Feature Distillation and Language Alignment for 3D Instances. To align 3D instances with
language semantics, we leverage contrastive learning on large-scale 3D-language pairs from Scen-
eVerse [50] and g3D-LF [15]. Given a 3D instance feature Oi and its corresponding annotated
language description feature Ti extracted from CLIP text encoder, we treat Ti as the positive sample

5

and descriptions of other instances serve as negatives:

Linstance_text =
1

I

I∑
i=1

CrossEntropy({CosSim(Oi, Tj)/τ}Jj=1, i). (5)

However, the generalization ability is limited by the scale of 3D-language data remains substantially
smaller than that of image-language datasets: millions vs. billions [11]. We thus further enhance
generalization by distilling visual knowledge from CLIP [11] into our Dynam3D model:

Linstance_distillation =
1

I

I∑
i=1

CrossEntropy({CosSim(Oi,Ogt
j)/τ}Jj=1, i). (6)

To obtain the ground-truth instance feature Ogt
i for distillation, we apply FastSAM to generate 2D

instance masks and adopt the Masked Average Pooling (MAP) strategy from Feature Splatting [51]
to average pool patch-level features within each instance mask and obtain Ogt

j . However, we observe
that the instance-level features extracted in this strategy are interfered by noise from the overall image
background. The ground-truth instance features of the same 3D instance obtained from different
views exhibit a significant gap, which greatly affects the effectiveness of distillation since one of our
goals is to achieve multi-view consistency in the representation of 3D instances. Consequently, we
propose a strategy of Subspace Contrastive Learning:

Lsubspace_distillation =
1

I

I∑
i=1

CrossEntropy({CosSim((Oi − Vj), (Ogt
j − Vj))/τ}Jj=1, i), (7)

where Vj is computed by average pooling all patch features within the given 2D view to yield the local
semantic center of this view, i.e. semantic subspace. In Equation 6, instance features are optimized by
maximizing cosine similarity with respect to the origin of the CLIP semantic space as the anchor. As
a result, positive samples are pulled closer and negative samples are pushed farther apart. However,
ground truth bias of different views can impede this contrastive process. In Equation 7, we replace
the origin anchor with semantic center Vj of the view to mitigate the bias effect, impose a stronger
optimization constraint and promote a sparser feature space with improved representational capacity.

Feature Distillation and Language Alignment for 3D Zones. As shown in Figure 2 and Figure 3,
we introduce the zone-level representations Z to further capture coarse-grained spatial layout context.
Specifically, our Dynam3D partitions the 3D world coordinate space into uniform cubic zones (each
spanning several cubic meters) and employs a zone encoder to aggregate the instance-level features O
within each zone to obtain Z . The encoding process is similar to Equation 3. For feature distillation at
the zone level, our Dynam3D adopts a relatively simple strategy: it uses a zone encoder to aggregate
3D instances that belong to the same 2D view, and then aligns the aggregated zone representation Z
with the CLIP feature of the entire 2D view. Although the aggregated instances do not strictly come
from the same cube zone, this approach ensures the quality of the distilled ground-truth features. For
zone-level language alignment, we follow g3D-LF [15] to use Fine-grained Contrastive Learning for
long-text contrastive supervision. Specifically, we compute an affinity matrix between the instance
representations within a zone and the long-text representations to measure similarity, and then perform
contrastive learning across different zones and texts.

3.2 3D Vision-Language Model for Navigation

As illustrated in Figure 2, Dynam3D constructs hierarchical 3D representations, spanning from
fine-grained object instances to large-scale environmental zones. Leveraging these multi-level 3D
representations as perceptual inputs, we introduce a dedicated 3D Vision-Language Model (3D-VLM)
tailored for VLN tasks.

Encoding Panoramic 3D Patch Tokens via Generalizable Feature Fields. To effectively capture
fine-grained geometric and semantic information within the surrounding panorama of the agent, we
build upon the approach of g3D-LF [15] and adopt a generalizable feature field model to predict
agent-centric 3D patch tokens. Specifically, we uniformly sample 12×48 rays covering a 90◦ vertical
and 360◦ horizontal field-of-view around the agent, rendering both the 3D patch features ĝ and their
corresponding depth estimates. These features with positional embeddings provide rich and spatially
grounded representations of the scene geometry and semantics from the egocentric viewpoint.

Multimodal Reasoning and Action Prediction. To balance multimodal reasoning capabilities with
computational efficiency, the 3.8 billion-parameter LLaVA-Phi-3-mini [52, 53] is integrated into

6

the proposed 3D-VLM framework. Since the 3D tokens (patch-instance-zone) are aligned with the
semantic space of CLIP-ViT-L/14@336px [11], the strong multimodal understanding and reasoning
abilities of this 2D-VLM can be effectively transferred to the 3D domain.

As shown in Figure 2, the input and output format of our 3D-VLM is:
Input: < user > {patch_tokens}{instance_tokens}{zone_tokens}{instruction_tokens}
{history_action_tokens} < end >< assistant >

Output: Next action: 1) Turn left θ degree. 2) Turn right θ degree. 3) Forward d cm. 4) Stop.
<user> is a special token in LLaVA [36] used to indicate that the following tokens are context. <end>
marks the end of a sequence.<assistant> indicates that the following tokens are the response of the
model. To encode the relative positional relationship between 3D tokens and the agent, the relative
coordinates [xc, yc, zc], i.e. camera coordinates of each 3D token to the agent are calculated along
with the relative distance Dc and the relative horizontal angle θc. [xc, yc, zc, Dc, cos(θc), sin(θc)] of
each token are then fed into a MLP network to generate the corresponding positional embeddings.

The 3D patch tokens {patch_tokens} rendered from the generalizable feature field are organized in
a row-major order of 12×48 tokens, starting from the rays directly behind the agent and proceeding
clockwise. This strategy is similar to that used in the pre-trained LLaVA-Phi-3-mini model [52, 53]
when handling a single-view image. The instance tokens {instance_tokens} and zone tokens
{zone_tokens} are sorted by their Euclidean distance to the agent from nearest to farthest. As shown
in Figure 2, 3D-VLM outputs atomic actions with turning angles or movement distances. The history
actions {history_action_tokens} store the four most recent action texts, padding with the special
token < none > if fewer than four are available.

4 Experiments

4.1 Comparison with SOTA Methods

As shown in Tables 1 and 2, we evaluate the navigation performance of our Dynam3D across three
distinct continuous-environment VLN benchmarks. Specifically, the R2R-CE dataset (Tables 1)
provides step-by-step and following instructions. Compared to prior state-of-the-art methods, e.g.,
g3D-LF and Uni-NaVid, our Dynam3D achieves an improvement of nearly 5% in navigation success
rate (SR). Furthermore, despite the utilization of a large model, our Dynam3D maintains a smaller
parameter footprint (3.8B vs. 7B) relative to the video-based Uni-NaVid. This highlights the superior
efficiency of our model.

To ensure a fair comparison on the more challenging and realistic benchmarks such as REVERIE-CE
which use coarse-grained and high-level destination description, and NavRAG-CE which requires
understanding complex user demands, we retrain NaVid and g3D-LF on our training dataset and
evaluate on these two benchmarks (Table 2). Our Dynam3D still demonstrates substantial improve-
ments, outperforming NaVid by over 13% in Success Rate (SR) on REVERIE-CE and by over 5% on
NavRAG-CE. The detailed experimental setup can be found in the supplementary materials.

Table 1: Evaluation of VLN on R2R-CE with monocular setting. ∗ denotes zero-shot method.

Methods LLM Scene Representation R2R-CE Val R2R-CE Test
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

CM2 [54] × Semantic Map 7.02 41.5 34.3 27.6 7.7 39 31 24
WS-MGMap [55] × Multi-Granularity Semantic Map 6.28 47.6 38.9 34.3 7.11 45 35 28
InstructNav∗ [56] ✓ Semantic Value Map 6.89 - 31 24 - - - -
AO-Planner∗ [57] ✓ Visual Affordance Prompts 6.95 38.3 25.5 16.6 - - - -

NaVid [5] ✓ Video Frames 5.47 49.1 37.4 35.9 - - - -
VLN-3DFF [28] × Feature Fields 5.95 55.8 44.9 30.4 6.24 54.4 43.7 28.9

g3D-LF [15] × Feature Fields 5.70 59.5 47.2 34.6 6.00 57.5 46.3 32.2
Uni-NaVid [6] ✓ Multi-Granularity Video Frames 5.58 53.3 47.0 42.7 - - - -

Dynam3D (Ours) ✓ 3D Patch-Instance-Zone Tokens 5.34 62.1 52.9 45.7 5.53 60.4 51.4 44.8

4.2 Experiments on Pre-exploration and Lifelong Memory

As shown in Table 3, we additionally evaluate the performance under the Pre-exploration and Lifelong
Memory settings to further demonstrate the advantages of our Dynam3D. The pre-explored panoramic

7

Table 2: Evaluation of VLN on REVERIE-CE and NavRAG-CE with monocular setting. ∗ denotes
zero-shot method.

Methods LLM Scene Representation REVERIE-CE Val NavRAG-CE Val
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

InstructNav∗ [56] ✓ Semantic Value Map 7.44 31.5 25.2 19.1 9.83 24.1 17.4 10.9
NaVid [5] ✓ Video Frames 6.74 36.3 26.6 20.8 9.35 29.6 19.4 13.9

g3D-LF [15] × Feature Fields 6.50 41.6 34.4 23.8 8.85 31.8 21.4 13.5
Dynam3D (Ours) ✓ 3D Patch-Instance-Zone Tokens 6.22 48.9 40.1 28.5 8.12 38.4 24.7 18.8

images from the Pre-exploration setting are collected at the navigable viewpoints annotated in the
Matterport3D [22] dataset, which are then used to construct the Patch-Instance-Zone representations
of the entire scene. For the Lifelong Memory setting, we group the evaluation episodes by scene with
navigation samples from the same scene evaluated consecutively within a group. For each scene,
previously stored 3D representations can be leveraged in subsequent episodes to simulate gradual
familiarization of the agent with the environment during task execution.

Table 3 shows that the Pre-exploration strategy enables our Dynam3D to achieve over a 5% improve-
ment in Success Rate (SR) on R2R-CE and an 8% improvement on REVERIE-CE. Under the Lifelong
Memory setting, our Dynam3D also achieves performance gains, with a 2.7% SR improvement
on R2R-CE and a 4.9% SR improvement on REVERIE-CE. Compared to NaVid [5] which uses a
video-based large model, our Dynam3D employing both the Pre-exploration and Lifelong Memory
achieves over a 20% increase in navigation success rate (SR).

Table 3: Evaluation of VLN for Pre-exploration and Lifelong Memory. Pre-exploration allows agents
to scan and encode environmental representations before evaluation, while Lifelong Memory enables
agents to retain the environmental representations of previous episodes for subsequent episodes.

Methods Pre-exploration Lifelong Memory R2R-CE Val REVERIE-CE Val
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

NaVid [5] × × 5.47 49.1 37.4 35.9 6.74 36.3 26.6 20.8
g3D-LF [15] × × 5.70 59.5 47.2 34.6 6.50 41.6 34.4 23.8
g3D-LF [15] ✓ ✓ 5.46 62.5 51.8 39.9 6.44 43.3 37.1 25.9

Dynam3D (Ours) × × 5.34 62.1 52.9 45.7 6.22 48.9 40.1 28.5
Dynam3D (Ours) ✓ × 5.04 66.2 57.1 52.7 6.09 56.8 48.1 37.3
Dynam3D (Ours) × ✓ 5.21 64.4 55.6 48.1 6.31 52.8 45.0 32.7
Dynam3D (Ours) ✓ ✓ 5.11 67.2 58.4 50.4 6.02 56.4 49.5 38.1

4.3 Experiments on Real World and Dynamic Environment

As shown in Tables 4, 5 and Figure 4, we evaluate our Dynam3D on both real-world static and dynamic
environments using the Hello Robot Stretch 3. Each setting includes 20 test cases, and navigation is
deemed successful if the robot stops within 1 meter of the target. In the static environment (Table 4)
Dynam3D achieves a 20% higher success rate than baselines, reaching 70% after pre-exploration. In
the dynamic setting (Figure 4 and Table 5), the target is manually moved to another location once
the robot reach within two meters of the original target. our Dynam3D consistently outperforms all
baselines, demonstrating strong robustness to environmental changes. The detailed experimental
setup can be found in the supplementary materials.

Table 4: Real-world navigation experiments
in static environments.

Methods NE↓ OSR↑ SR↑
NaVid 2.2 45 35

g3D-LF 3.1 40 30
Dynam3D 1.4 65 55

+ Pre-exploration 0.8 75 70

Table 5: Real-world navigation experiments
in dynamic environments.

Methods NE↓ OSR↑ SR↑
NaVid 3.6 45 20

g3D-LF 4.6 35 10
Dynam3D 1.9 60 45

+ Pre-exploration 1.4 75 45

4.4 Analysis for Dynamic Representation and Lifelong Memory

In our Dynam3D, the agent discards outdated representations within its current field-of-view and
adds or updates new ones to ensure real-time understanding of dynamic environments with each
new observation. However, this does not conflict with its advantage of maintaining lifelong memory.

8

Instruction: “Please bring me the white fruit
bowl filled with apples from the chair.”

Dynamic environment: During the robot's
navigation process, the white fruit bowl is
manually moved to another table.

Target Target
Target

Target
Target

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 4: A demonstration of navigation in a dynamic real-world environment.

Features corresponding to regions outside the robot’s current view are still preserved and not updated,
and serve as long-term memory to support navigation. This is due to the limited field of view of the
monocular camera, where the majority of the scene is preserved since it lies outside the current view
of the robot. These features are retained until new observations covering those regions are available
to update them. This highlights the ability of our Dynam3D to balance real-time adaptability in
dynamic environments with the effective use of long-term memory.

4.5 Computational Cost and Real-Time Analysis

We evaluate computational cost on the R2R-CE dataset using a single NVIDIA RTX 4090 GPU.
During training, each navigation step takes 455ms (∼0.46 seconds) on average: 83ms for 3D
representation updates, 315ms for large language model, and 57ms for other operations. During
inference, the average step time increases to 649ms (∼0.65 seconds) with 83ms for 3D representation
updates, 540ms for large language model inference, and 26ms for the remaining components. Most
navigation episodes can be completed within 20 to 40 navigation steps, our navigation system
supports real-time 3D representation updates and navigation action prediction for efficient training
and inference.

4.6 Ablation Study

Table 6: Ablation Study of Dynam3D on R2R-CE and REVERIE-CE Val Unseen benchmarks. We
analyze the contribution of different components: input view type (currently observed Single View
patches vs. Rendered Panoramic patches), High-level 3D representations (Instance and Zone), and
the Subspace Align. loss used for supervising instance representations.

Single View Rendered Pano Instance Subspace Zone R2R-CE Val Unseen REVERIE-CE Val Unseen
Align. NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

× × ✓ ✓ ✓ 7.59 43.9 32.7 21.1 8.76 27.4 19.3 11.4
✓ × ✓ ✓ ✓ 6.14 51.7 43.1 33.9 7.85 35.9 28.4 21.8
× ✓ × × × 5.63 51.1 45.7 40.2 7.89 34.8 25.7 17.8
× ✓ × × ✓ 5.77 54.7 47.9 43.3 6.58 38.5 26.8 21.0
× ✓ ✓ ✓ × 5.26 61.8 52.4 45.7 6.37 46.2 39.3 26.2
× ✓ ✓ × ✓ 5.44 58.8 50.7 43.2 6.31 45.1 38.4 25.8
× ✓ ✓ ✓ ✓ 5.34 62.1 52.9 45.7 6.22 48.9 40.1 28.5

Contribution of 3D Representations. From the full model (last row), removing the rendered
panoramic patch tokens (row 1), instance tokens (row 4), zone tokens (row 5), or both instance and
zone tokens (row 3) leads to performance drops of varying degrees. The results show that the impact
on performance follows the order: Patch > Instance > Zone tokens.

Specifically, when both 3D instance and zone representations are removed and only 3D patch tokens
from the feature fields [15] are used (row 3), there is a substantial performance drop, particularly on
REVERIE-CE, where SR decreases by nearly 15%. This highlights the critical role of the hierarchical
instance-zone representation in supporting effective navigation and large-scale exploration, as local
patch-level features alone provide limited spatial coverage.

9

Importance of Subspace Alignment. Without Subspace Alignment supervision (row 6), the
navigation performance significantly decreases. This highlights the limitations of naive CLIP feature
distillation for 3D instance supervision. Subspace Contrastive Learning effectively mitigates the
instance feature bias from different views.

Value of Rendered Panoramic Views. As analyzed in VLN-3DFF [28], rendered panoramic patch
tokens substantially mitigate the limited field of view caused by monocular cameras on most robots.
Comparing row 2 and last row in Table 6, replacing the rendered panoramic tokens with CLIP patch
features extracted from the current monocular view results in about a 10% drop in navigation success
rates on both R2R-CE and REVERIE-CE.

Table 7: Robustness study on the R2R-CE Val Unseen benchmark with the simulated SLAM noise
and depth noise.

SLAM Noise Depth Noise NE↓ OSR↑ SR↑ SPL↑
× × 5.34 62.1 52.9 45.7
✓ × 5.46 61.3 52.1 45.0
× ✓ 5.39 61.9 52.3 45.2
✓ ✓ 5.47 60.7 50.9 44.1

Robustness to Noise. To further validate the model’s navigation performance in noisy environments,
we introduce different types of noise into the simulator and evaluate Dynam3D’s performance. We
simulate the potential noise from a SLAM system in localization and pose estimation, as well as the
measurement errors inherent in depth cameras.

To simulate SLAM noise, we introduce localization noise, uniformly sampled from -5 cm to +5
cm, and orientation noise, uniformly sampled from -3 degrees to +3 degrees, to the agent’s position
at each simulation step. To simulate depth camera noise, we add random noise to the depth maps
acquired from the simulator. For depths within 2 meters, noise is sampled between -4 cm and +4 cm;
for depths from 2 to 3 meters, noise is sampled between -6 cm and +6 cm; for depths over 3 meters,
noise is sampled between -10 cm and +10 cm.

As shown in Table 7, even with the simultaneous addition of simulated SLAM and depth noise, the
navigation success rate (SR) only decreased by approximately 2% (comparing the last row to the
first row), demonstrating Dynam3D’s robustness to noise. A significant reason is that our Dynam3D
leverages 2D foundation models (e.g., CLIP [11], FastSAM [12]) to extract visual semantic features,
which are unaffected by SLAM and depth noise. Even with minor spatial position deviations due
to noise, the 3D-aware representations obtained by our model through the hierarchical encoding of
Patch-Instance-Zone remain sufficient for perceiving spatial geometry and scene layout at the object
and zone levels.

5 Conclusion

We introduce Dynam3D, a dynamic hierarchical 3D representation framework for monocular vision-
and-language navigation. By aligning patch-instance-zone features with language semantics and
enabling real-time scene updates, our Dynam3D enhances spatial understanding, long-term memory,
and adaptability in dynamic environments. Our model achieves state-of-the-art results on multiple
VLN benchmarks and demonstrates strong generalization in real-world deployment. These results
highlight the value of structured and dynamically updated 3D representations for embodied navigation.

Limitations. Our Dynam3D predicts navigation actions without explicitly outputting the coordinate
of target instance, limiting its applicability to some tasks such as mobile manipulation. Moreover, it
lacks capabilities for question answering, dialogue, and task updates, showing potential directions for
better navigation agents.

10

Acknowledgement

This research work is supported by the Agency for Science, Technology and Research (A*STAR) un-
der its MTC Programmatic Funds (Grant No. M23L7b0021), and the Tier 2 grant MOE-T2EP20124-
0015 from the Singapore Ministry of Education.

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,

Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3674–3683, 2018.

[2] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and
Anton van den Hengel. Reverie: Remote embodied visual referring expression in real indoor
environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9982–9991, 2020.

[3] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-
graph: Vision-and-language navigation in continuous environments. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII
16, pages 104–120. Springer, 2020.

[4] Zihan Wang, Yaohui Zhu, Gim Hee Lee, and Yachun Fan. Navrag: Generating user de-
mand instructions for embodied navigation through retrieval-augmented llm. arXiv preprint
arXiv:2502.11142, 2025.

[5] Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang,
Qi Wu, Zhizheng Zhang, and He Wang. Navid: Video-based vlm plans the next step for
vision-and-language navigation. In Proceedings of Robotics: Science and Systems (RSS), 2024.

[6] Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
for unifying embodied navigation tasks. arXiv preprint arXiv:2412.06224, 2024.

[7] An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Xueyan Zou, Jan Kautz, Erdem Biyik, Hongxu
Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action model for
navigation. In RSS, 2025.

[8] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection. arXiv preprint arXiv:2311.10122,
2023.

[9] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila:
On pre-training for visual language models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 26689–26699, 2024.

[10] Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14
April 2023), 2(3):6, 2023.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[12] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao
Wang. Fast segment anything. arXiv preprint arXiv:2306.12156, 2023.

[13] Xiuwei Xu, Huangxing Chen, Linqing Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Embodied-
sam: Online segment any 3d thing in real time. In The Thirteenth International Conference on
Learning Representations.

11

[14] Seungjun Lee, Yuyang Zhao, and Gim Hee Lee. Segment any 3d object with language. In The
Thirteenth International Conference on Learning Representations.

[15] Zihan Wang and Gim Hee Lee. g3d-lf: Generalizable 3d-language feature fields for embodied
tasks. arXiv preprint arXiv:2411.17030, 2024.

[16] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
recurrent vision-and-language bert for navigation. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pages 1643–1653, 2021.

[17] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
transformer for vision-and-language navigation. Advances in neural information processing
systems, 34:5834–5847, 2021.

[18] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev.
Think global, act local: Dual-scale graph transformer for vision-and-language navigation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16537–16547, 2022.

[19] Liuyi Wang, Zongtao He, Ronghao Dang, Mengjiao Shen, Chengju Liu, and Qijun Chen. Vision-
and-language navigation via causal learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13139–13150, 2024.

[20] Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, Peng Wang, and Qi Wu. Hop+: History-
enhanced and order-aware pre-training for vision-and-language navigation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(7):8524–8537, 2023.

[21] Rui Liu, Xiaohan Wang, Wenguan Wang, and Yi Yang. Bird’s-eye-view scene graph for vision-
language navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10968–10980, 2023.

[22] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. In International Conference on 3D Vision (3DV), 2017.

[23] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339–9347, 2019.

[24] Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. Bridging the gap between learning in
discrete and continuous environments for vision-and-language navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022.

[25] Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Gridmm: Grid memory
map for vision-and-language navigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15625–15636, 2023.

[26] Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang
Wang. Etpnav: Evolving topological planning for vision-language navigation in continuous
environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[27] Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and Jing Shao.
Bevbert: Multimodal map pre-training for language-guided navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2737–2748, 2023.

[28] Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Sim-to-real transfer
via 3d feature fields for vision-and-language navigation. In 8th Annual Conference on Robot
Learning, 2024.

[29] Yanyuan Qiao, Wenqi Lyu, Hui Wang, Zixu Wang, Zerui Li, Yuan Zhang, Mingkui Tan,
and Qi Wu. Open-nav: Exploring zero-shot vision-and-language navigation in continuous
environment with open-source llms. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2025.

12

[30] Sixian Zhang, Xinhang Song, Xinyao Yu, Yubing Bai, Xinlong Guo, Weijie Li, and Shuqiang
Jiang. Hoz++: Versatile hierarchical object-to-zone graph for object navigation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2025.

[31] Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a
generalist model for embodied navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13624–13634, 2024.

[32] Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Un-
leashing navigational reasoning capability for large vision-language models. arXiv preprint
arXiv:2407.12366, 2024.

[33] Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K. Wong.
Mapgpt: Map-guided prompting with adaptive path planning for vision-and-language navigation.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics,
2024.

[34] Sixian Zhang, Xinyao Yu, Xinhang Song, Xiaohan Wang, and Shuqiang Jiang. Imagine before
go: Self-supervised generative map for object goal navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16414–16425, 2024.

[35] Jiaqi Chen, Bingqian Lin, Xinmin Liu, Lin Ma, Xiaodan Liang, and Kwan-Yee K. Wong.
Affordances-oriented planning using foundation models for continuous vision-language naviga-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

[36] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

[37] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 26296–26306, 2024.

[38] Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan
Fan, and Tao Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding
reasoning and planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 26428–26438, 2024.

[39] Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang, Runsen Xu, Tai Wang, Luping
Liu, Xize Cheng, Yang Zhao, Jiangmiao Pang, et al. Chat-scene: Bridging 3d scene and large
language models with object identifiers. arXiv preprint arXiv:2312.08168, 2023.

[40] Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
In Proceedings of the International Conference on Machine Learning (ICML), 2024.

[41] Rao Fu, Jingyu Liu, Xilun Chen, Yixin Nie, and Wenhan Xiong. Scene-llm: Extending language
model for 3d visual understanding and reasoning. arXiv preprint arXiv:2403.11401, 2024.

[42] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and
Chuang Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural
Information Processing Systems, 36:20482–20494, 2023.

[43] Duo Zheng, Shijia Huang, and Liwei Wang. Video-3d llm: Learning position-aware video
representation for 3d scene understanding. arXiv preprint arXiv:2412.00493, 2024.

[44] Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple
yet effective pathway to empowering lmms with 3d-awareness. arXiv preprint arXiv:2409.18125,
2024.

[45] Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, Junjie Hu, Ming Jiang, and Shuqiang Jiang.
Lookahead exploration with neural radiance representation for continuous vision-language
navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13753–13762, 2024.

13

[46] Ri-Zhao Qiu, Yafei Hu, Ge Yang, Yuchen Song, Yang Fu, Jianglong Ye, Jiteng Mu, Ruihan
Yang, Nikolay Atanasov, Sebastian Scherer, et al. Learning generalizable feature fields for
mobile manipulation. arXiv preprint arXiv:2403.07563, 2024.

[47] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828–5839, 2017.

[48] Karmesh Yadav, Ram Ramrakhya, Santhosh Kumar Ramakrishnan, Theo Gervet, John Turner,
Aaron Gokaslan, Noah Maestre, Angel Xuan Chang, Dhruv Batra, Manolis Savva, et al. Habitat-
matterport 3d semantics dataset. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4927–4936, 2023.

[49] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Nießner. Rio:
3d object instance re-localization in changing indoor environments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7658–7667, 2019.

[50] Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li,
and Siyuan Huang. Sceneverse: Scaling 3d vision-language learning for grounded scene
understanding. In European Conference on Computer Vision (ECCV), 2024.

[51] Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024.

[52] XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. https://github.com/
InternLM/xtuner, 2023.

[53] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[54] Georgios Georgakis, Karl Schmeckpeper, Karan Wanchoo, Soham Dan, Eleni Miltsakaki, Dan
Roth, and Kostas Daniilidis. Cross-modal map learning for vision and language navigation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15460–15470, 2022.

[55] Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng, Thomas Li, Mingkui Tan, and Chuang
Gan. Weakly-supervised multi-granularity map learning for vision-and-language navigation.
Advances in Neural Information Processing Systems, 35:38149–38161, 2022.

[56] Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, and Hao Dong. Instructnav:
Zero-shot system for generic instruction navigation in unexplored environment. In 8th Annual
Conference on Robot Learning, 2024.

[57] Jiaqi Chen, Bingqian Lin, Xinmin Liu, Lin Ma, Xiaodan Liang, and Kwan-Yee K Wong.
Affordances-oriented planning using foundation models for continuous vision-language nav-
igation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
23568–23576, 2025.

[58] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Feigin, Peter Fu, Thomas Gebauer, Daniel
Kurz, Tal Dimry, Brandon Joffe, Arik Schwartz, et al. Arkitscenes: A diverse real-world dataset
for 3d indoor scene understanding using mobile rgb-d data. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1).

[59] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d:
A large photo-realistic dataset for structured 3d modeling. In Proceedings of The European
Conference on Computer Vision (ECCV), 2020.

[60] Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan,
and Yu Qiao. Scaling data generation in vision-and-language navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 12009–12020, 2023.

14

https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner

[61] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[62] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[63] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[64] Peiqi Liu, Zhanqiu Guo, Mohit Warke, Soumith Chintala, Chris Paxton, Nur Muhammad Mahi
Shafiullah, and Lerrel Pinto. Dynamem: Online dynamic spatio-semantic memory for open
world mobile manipulation. In CoRL 2024 Workshop on Mastering Robot Manipulation in a
World of Abundant Data.

15

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize the main contributions in the Introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Conclusion section.

16

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We commit to open-sourcing all code, models, and data upon the acceptance
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

19

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.

20

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the necessary papers, and their licenses will be made public
along with our open-source code and datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]

21

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Supplementary Material

A.1 Datasets and Experimental Details

3D-Language Datasets and Training Details. To train the Dynam3D representation model, we
follow SceneVerse [50] and g3D-LF [15] in collecting over 5K scenes with 2M language annotations
from ScanNet [47], HM3D [48], Matterport3D [22], 3RScan [49], ARKitScenes [58], and Struc-
tured3D [59]. For each episode, we randomly sample sufficient posed RGB-D images from raw
videos or the Habitat simulator [23] to construct and update the hierarchical patch-instance-zone
representations. The updated representations after each observed frame is supervised using the losses
defined in Section 3.1. We pre-train our Dynam3D representation model on the aforementioned
dataset for 100K episodes (approximately 8 days) using four RTX 6000 Ada GPUs. The training is
performed with a batch size of 4 and a learning rate of 1e-4.

Navigation Datasets and Training Details. To train our 3D-VLM with sufficient navigation data,
we transfer datasets generated by ScaleVLN [60] and NavRAG [4] from discrete environments to
the continuous Habitat simulator [23]. After removing samples with impassable paths, we obtain
4M+ instruction-trajectory pairs in continuous settings. For a comprehensive and fair evaluation, we
evaluate our model on R2R-CE [3], REVERIE-CE and NavRAG-CE by transferring REVERIE [2]
and NavRAG [4] datasets to continuous environments. To balance data quality and scale, we randomly
sample model-generated data (ScaleVLN, NavRAG; 4M+) and human-annotated data (R2R-CE,
REVERIE-CE; 20K+) at a 1:1 ratio during 3D-VLM training. Navigation training proceeds in two
stages: 1) Imitation learning. The agent strictly follows ground-truth paths to enhance instruction
following and multimodal alignment; 2) Exploration and correction. Following ETPNav [26], we
adopt a waypoint predictor [24] to generate multiple candidate waypoints. We utilize the DAgger
strategy [61, 18] to enhance error correction by deliberately introducing probabilistic deviations that
mislead the agent towards incorrect waypoints. The agent is then guided back to the correct path,
thereby strengthening its ability to recover from navigation errors. We pre-train the 3D-VLM model
on the navigation datasets for 100K episodes (50K for stage one, 50K for stage two, approximately 9
days) using two RTX 6000 Ada GPUs. The training is performed with a batch size of 4 and a learning
rate of 1e-6. During training, all parameters of the 3.8B LLaVA-Phi-3-mini [52, 53] are optimized,
except the generalizable feature field model [15] and the pre-trained Dynam3D representation model.
To mitigate memory consumption and enable efficient training of large models, we employ the
Adafactor optimizer [62] in conjunction with Gradient Checkpointing [63].

Details of Real-world Navigation. We employ the Hello Robot Stretch 3 for real-world naviga-
tion experiments, leveraging its real-time localization and pose estimation capabilities. An Intel
RealSense D435i RGB-D camera is mounted on the robot’s head to facilitate 3D scene representation
construction and incremental updates. Our real-world experimental framework is adapted from
DynaMem [64], with extensions for obstacle avoidance and movement. The model is deployed on
a workstation equipped with an NVIDIA RTX 4090 GPU and 64GB of RAM, and communicates
with the robot over a local area network established via a WiFi access point. The experimental
environment consists of a home-style setting constructed for robot evaluation, encompassing a living
room, kitchen, meeting room, and office. To ensure a fair comparison under the unseen setting, none
of the objects or rooms within the environment are included in the training data.

23

	Introduction
	Related Work
	Our Method
	Dynamic Layered 3D Representation Model
	3D Vision-Language Model for Navigation

	Experiments
	Comparison with SOTA Methods
	Experiments on Pre-exploration and Lifelong Memory
	Experiments on Real World and Dynamic Environment
	Analysis for Dynamic Representation and Lifelong Memory
	Computational Cost and Real-Time Analysis
	Ablation Study

	Conclusion
	Supplementary Material
	Datasets and Experimental Details

