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ABSTRACT

Influence functions are a popular tool for attributing models’ outputs to training
data. The traditional approach relies on the calculation of inverse Hessian-vector
products (iHVP), but the classical solver “Linear time Stochastic Second-order
Algorithm” (LiSSA, Agarwal et al. (2017)) is often deemed impractical for large
models due to expensive computation and hyperparameter tuning. We show that
the three hyperparameters — the scaling factor, the batch size, and the number
of steps — can be chosen depending on two specific spectral properties of the
Hessian: its trace and largest eigenvalue. By evaluating them with random sketching
(Swartworth and Woodruff, 2023), we find that the batch size has to be sufficiently
large for the LiSSA to converge; however, for all of the models we consider, the
requirement is mild. We confirm our findings empirically by comparing to the
Proximal Bregman Retraining Functions (PBRF, Bae et al. (2022)).

1 INTRODUCTION

Deep neural networks have seen many impressive results in the past years, but researchers and
practitioners have little understanding what happens inside the models and how they learn to predict.
While there exist various methods to interpret the internal computations of neural networks in an
understandable to a human way, influence functions attempt to explain model behaviour by attributing
model predictions (or generations) to particular examples in the training data.

Koh and Liang (2017) introduce Hessian-based influence functions in order to approximate the effect
of removal of one training point from the training set, which we refer to as leave-one-out retraining.
The formula for influence calculation is derived from the second-order Taylor approximation of the
loss, hence the Hessian and the gradient of the training point are sufficient for calculation. Koh and
Liang (2017) demonstrate various applications of influence functions such as explaining of model
outputs through data attribution, repairing mislabeled data, and backdoor attacks.

Basu et al. (2020) criticize influence functions for poor approximation of leave-one-out retraining as
the depth and width of neural networks increase. As a solution, Bae et al. (2022) propose two fixes:
replacing the Hessian (that possibly has negative eigenvalues) with the well-behaved Gauss-Newton
Hessian (Martens, 2020), and replacing the leave-one-out retraining (which itself is not a well-defined
objective) with the Proximal Bregman Retraining Functions (PBRF). They demonstrate that the latter
do not suffer from the randomness introduced by model initialization and data sampling, and they
argue can serve as gold standard when evaluating influence function approximation methods. In this
paper, we focus on this particular formulation of influence functions, where the Hessian is replaced
with Gauss-Newton Hessian, and the PBRF serves as the ground truth in validation.

The calculation of influence functions, as introduced by Koh and Liang (2017), requires approximation
of inverse Hessian-vector products. Given the dimension of modern deep models and the size of
the training dataset, it can be a hard problem. As an alternative to traditional conjugate gradient
method, Koh and Liang (2017) proposed to use a stochastic iterative approach called “Linear time
Stochastic Second-Order Algorithm” (LiSSA, (Agarwal et al., 2017)). This algorithm requires
calculating a sampled Hessian-vector product at each iteration, where in the formulation of Koh and
Liang (2017), the batch size per sample can be as little as just one training point. There are two
additional hyperparameters involved — the scaling factor and the number of steps in the LiSSA,
with little direction of how to choose them in practice. Basu et al. (2020) criticize the LiSSA,
suggesting that it becomes erroneous for deep networks with large number of parameters, and they
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also mention the importance of hyperparameter search. In this paper, we find that the choice of all
three hyperparameters, including the batch size, depends on the properties of the Gauss-Newton
Hessian, namely, its trace and largest eigenvalue. Since the size of the Hessian is very large (number
of parameters to square), we evaluate these two statistics with random sketching (Swartworth and
Woodruff, 2023), which only requires estimation of Hessian-vector products in the process. We
report these statistics and the corresponding requirements for some open sourced vision and language
models. We also note that, contrary to a common belief, we find that the batch size has to be
sufficiently large for the algorithm to converge. However, this requirement is mild, and for language
models it is particularly redundant.

Some attempts to avoid calculating inverse Hessian vector products have been made in the literature.
Schioppa et al. (2022) suggest to truncate the spectrum of the Hessian, see also Fisher et al. (2023);
Grosse et al. (2023). When it comes to language models, most of the recent literature is using
gradient-based influence functions (Xia et al., 2024; He et al., 2024; Chhabra et al., 2024). These are
typically focused on the finetunning stage, and often this choice is motivated by simpler and faster
implementation. In Section 5, we highlight the difference between the results of these two ways of
calculating influence functions.

Almost exclusively, Grosse et al. (2023) calculate Hessian-based influence of pretraining data for
LLMs. Their analysis is restricted to the MLPs of the transformer and they impose a block-wise
structure onto the Hessian. Although we do not advocate against such structural assumptions, our
work suggests that running the plain and model-agnostic LiSSA can be feasible, given that we
avoid the hyperparameter search. In our implementation, we follow the Hessian-free approach of
Martens et al. (2010) using finite differences, where an in-batch GNH-vector product is calculated
with three forward propagations and one backward propagation. For example, our code allows
to run the LiSSA for 7B language models on a 4×A100 GPU node. We share the code here
https://anonymous.4open.science/r/gnhtools-53AE .

2 BACKGROUND AND NOTATION

Influence functions (Koh and Liang, 2017) are calculated under the assumption that θ delivers
minimum to the training loss,

θ∗ = argmin
θ

1

|Dtr|
∑

(x,y)∈Dtr

ℓ(x, y; θ), (1)

where for classification tasks, (x, y) are input and label pair, and for language modeling tasks, consists
of context and next word token. That is, given a sequence s = (s1, . . . , sl), the dataset Dtr consists of
pairs x = (s1, . . . , st−1) and y = st. Let us fix a point (xm, ym) ∈ Dtr, and for a small perturbation
weight ϵ > 0 consider

θ∗(ϵ) = argmin
θ

1

|Dtr|
∑

(x,y)∈Dtr

ℓ(x, y; θ) + ϵ ℓ(xm, ym; θ). (2)

Then, the influence of a training point (xm, ym) on the parameter is denoted as

I((xm, ym)) =
dθ∗(ϵ)

dϵ

∣∣∣
ϵ=0

= −H−1∇ℓ(xm, ym; θ∗), (3)

where H denotes the population Hessian, that is

H =
1

|Dtr|
∑

(x,y)∈Dtr

∇2ℓ(x, y; θ∗) .

Furthermore, suppose we have a set of predictions ztest = (xtest, ŷtest), and let f((x, y), θ) =
log p(y|x; θ) are the log probability according to the trained model. Then, the influence of a training
point ztrain = (xm, ym) on a prediction ztest is denoted as

I(ztrain, ztest) = −∇f(ztest, θ)
⊤H−1∇ℓ(xm, ym; θ∗)

2
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For language models, we calculate the influence for the completion task following Grosse et al.
(2023). Let s = (s1, . . . , sp) be a prompt and ŝ = (ŝ1, . . . , ŝc) be a completion. Then, we calculate
the influence for average log-probability of predicted tokens

f(s, ŝ; θ) =
1

c

c∑
j=1

log p(ŝj |s1 . . . spŝ1 . . . ŝj−1; θ) .

The PBRF as ground truth. The inverse problem H−1∇ℓ(ztrain; θ) can be difficult to perform
due to degenerate eigenvalues of H . Koh and Liang (2017) propose to use a damping parameter λ > 0
and instead invert a regularized matrix (H + λI)−1. However, such matrix can still be degenerate
due to possibly negative eigenvalues of the Hessian of a non-convex loss, which are indeed observed
in practice and are not necessarily small (Sagun et al., 2017; Schioppa, 2024). Motivated by natural
descent methods, Bae et al. (2022) propose to replace it with Gauss-Newton Hessian (GNH), which
is denoted as follows. Suppose that the loss has the form

ℓ((x, y); θ) = ℓ(h(x; θ), y), ℓ(h, y) = − log(sf(h)y),

where h(x; θ) ∈ RK is the logit function and sf(h)j = exp(hj)/
(∑K

j=1 exp(hj)
)

is the standard
softmax function. Then, the GNH has the form

H =
1

|Dtr|
∑

(x,y)∈Dtr

[Jθh(x; θ)]∇2
hℓ(h(x; θ), y)[Jθh(x; θ)]

⊤ (4)

For the Cross-Entropy loss, we have the identity ∇2
hℓ(h(x; θ), y) = Diag(sf(h))− sf(h)sf(h)⊤.

Furthermore, Bae et al. (2022) show that if the Hessian is replaced with the Gauss-Newton Hessian,
the influence functions (3) approximate a different type of retraining called the Proximal Bregman
Retraining Functions (PBRF). These correspond to retraining of the Proximal Bregman Objective
(PBO) on training point (xm, ym) reads as follows,

θPBRF (ϵ) = argmin
θ

1

|Dtr|
∑

(x,y)∈Dtr

D(h(x; θ), h(x; θ⋆), y)+ϵℓ((xm, ym); θ)+
λ

2
∥θ−θ⋆∥2, (5)

where D(h, h′, y) = ℓ(h, y)−ℓ(h′, y)−(h−h′)⊤∇hℓ(h
′, y) is the Bregman divergence. Comparing

the PBO with the objective in (2), we see that the proximity penalty λ
2 ∥θ−θ⋆∥2 takes into account the

damping parameter, while replacing the loss with the Bregman divergence accounts for potential lack
of convergence, i.e. we no longer need to assume that the training of the original parameter converges
to global minimum of the loss as in (1). In addition, Bae et al. (2022) find that the PBRFs are a more
reliable objective compared to traditional retraining, which is known to produce inconsistent outputs
depending on initialization (Basu et al., 2020).

Bae et al. (2022) argue that the PBRF is a suitable ground truth objective for validation of influence
function estimation algorithms. For instance, it is used for empirical validation of the Kronecker
factored approximation in Grosse et al. (2023). Following them, we refer to the PBRF as a ground
truth influence in order to confirm our findings empirically.

Iterative inverse Hessian-vector products. For calculating these inverse Hessian-vector products
(iHVP) of form u = (H + λ)−1g, Koh and Liang (2017) propose to use a variant of Linear time
Stochastic Second-Order Algorithm (LiSSA, Agarwal et al. (2017)), that consist of the iterations

ut = g + (I − η(H̃t + λ))ut−1, t = 1, . . . , T (6)

where H̃t is an in-batch estimate of H . Ideally, the scaling parameter η > 0 needs to be chosen to
ensure that ηH is a contraction, however, it requires knowning the larges eigenvalue of H . To this
day, the LiSSA is often discarded due to it’s hyperparameters, which are not trivial to tune when
one does not have a clear objective Basu et al. (2020). In particular, the three hyperparameters — η,
T , and the batch size, are often chosen without any directive, and the resulting estimate is deemed
unreliable Basu et al. (2020).

The LiSSA updates (6) are equivalent to the stochastic gradient descent (SGD) with step size η for the
quadratic objective minu

1
2u

⊤(H+λ)u−u⊤g (Fisher et al., 2023). In practice, an in-batch function
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is usually not as smooth as the average over the whole dataset (Tang et al., 2020). Furthermore, the
optimal choice of the step size η and number of steps T depends on the largest eigenvalue of the
Hessian λmax(H). Rather than conducting hyperparameter grid search, we suggest to evaluate the
largest eigenvalue λmax(H) directly, so that we only run the LiSSA once.

Hessian-vector products. The updates (6) involve calculation of in-batch Hessian-vector products
H̃tu. Expanding the expression for GNH (4), we observe that for a batch of data B = {(x, y)}, we
have

H̃tu =
1

|B|
∑

(x,y)∈B

[Jθh(x; θ)]∇2
hℓ(h(x; θ), y)[Jθh(x; θ)]

⊤u (7)

Here [Jθh(x; θ)]
⊤u is a directional derivative of vector-function h(x; θ). Calculating the directional

derivatives per each example in the batch precisely may be prohibitively expensive. Instead, we
suggest to approximate it by finite differences,

[Jθh(x; θ)]
⊤u =

d

dδ
h(x; θ + δu)

∣∣∣
δ=0

≈ h(x; θ + δu)− h(x; θ − δu)

2δ
,

where δ is a small value, which we fix to δ = 0.01 in our experiments. Then, we can approximate the
in-batch GNH-vector prodcut by using three forward propagations and one backward propagation:

H̃tu ≈ ∇θ
1

|B|
∑

(x,y)∈B

h(x; θ)⊤Sh

{
h(x; θ̇ + δu)− h(x; θ̇ − δu)

2δ

}
,

where θ̇ indicates that we do not calculate the derivative through this parameter, and Sh =
Diag(sf(h)) − sf(h)sf(h)⊤ is also fixed. Thus, we simply backpropogate through a weighted
sum of logits in the batch h(x; θ), with weights depending on the matrices Sh and finite differences
(h(x; θ̇ + δu)− h(x; θ̇ − δu))/(2δ). The latter two can be calculated in a gradient free manner with
three forward propagations. We note that incorporating finite differences for Hessian-vector products
calculation has previously been done in Martens et al. (2010); Martens and Sutskever (2011).

3 APPROXIMATION ERROR AND CHOICE OF HYPERPARAMETERS

In order to carefully analyze approximation error of LiSSA iterations (6) we reformulate them as
SGD updates. Observe that the result of iHVP applied to a gradient g, u⋆ = (H + λ)−1g, delivers
minimum to the following objective

u⋆ = argmin
u

L(u), L(u) :=
1

2
u⊤Hu+

λ

2
∥u∥2 − u⊤g . (8)

With appropriate scaling, the LiSSA updates are equivalent to SGD with step size η and the gradient
calculated on an in-batch loss L̃t(u), where the Gauss-Newton Hessian H is replaced with unbiased
estimate H̃t calculated over a random batch, turning the updates in (6) into

ut = ut−1 − η
[
(H̃t + λ)ut−1 − g

]
, t = 1, . . . , T

where the scaling parameter in (6) now plays the role of a learning rate. SGD is well studied in
the literature, with the recommending step size η typically depending on the smoothness of L(u),
which in our case equals to λmax(H) (Bubeck et al., 2015). In theory, the literature typically focuses
on studying mini-batch SGD Hardt et al. (2016). However, mini-batch SGD may perform poorly
in practice due to the difference in smoothness of the population objective L(u) and the in-batch
objective L̃(u) as pointed out by Tang et al. (2020). In particular, this difference is affected by
the choice of batch size for evaluating the Hessian H̃t at every step. In the context of LiSSA, the
original work Koh and Liang (2017) only mentions that the average Eut converges as long as
η < 1/(λmax(H) + λ). The subsequent work does not address the choice of batch size either (Basu
et al., 2020; Bae et al., 2022).

In order to take the sampling error into account, we need to control the second moments of the HVPs
H̃tu. Although the behavior of the matrix EH̃2

t can generally be arbitrary, we find that in many cases
we can rely on the following simple condition

4
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EH̃2
t −H2 ⪯ C

|B|
Tr(H)H, (C.1)

where |B| is the batch size, which for language models corresponds to the total in-batch number of
tokens. For simplicity, we assume this number to be the same in each batch B. We think of C as a
moderately large constant, e.g. C = 2.

Below we confirm that Condition C.1 holds under some simplified assumptions on the distribution
of the gradients. We consider two cases. In the classification case, our training set Dtr = {(x, y)}
consists of pairs of inputs and labels. The batches used to sample the HVPs in (7) consist of
independently drawn instances x ∼ U(Dtr). In the language modeling case, we sample the batches
per sequence s. For simplicity, we assume that all sequences have the same length, |s| = L + 1,
and if s ∈ B, and |s| = L + 1, our batch contains all pairs (x, y) with context x = (s0, . . . , st−1)
and label y = st for t = 1, . . . , L. Our training dataset consists of all such pairs Dtr = {(x, y)}.
In both cases, we consider the gradient g d

= ∇ℓ(ŷ|x), where x ∼ U(Dtr) and ŷ|x ∼ p(x) is drawn
according to the trained model predictions. We say that g satisfies a bounded kurtosis condition, if
for every direction u ∈ R|θ|,

E1/4(g⊤u)4 ≤ βE1/2(g⊤u)2, (9)

which is a popular assumption when dealing with covariances of heavy tailed distribution This
condition is sufficient to show C.1 in the independent sampling case. In the case of language
modeling, we additionally account for dependencies between the tokens in the batch in the following
way. We assume that there is a constant R > 0 such that for any sequence s ∈ Dtr and any two token
x ∈ s it holds ∑

x′∈s

max
y,y′

|cos (∇ℓ(x, y),∇ℓ(x′, y′))| ≤ R, (10)

where we denote the cosine similarity cos(a, b) = a⊤b/(∥a∥ · ∥b∥). This can be reasonable to expect
due to the large dimension of the parameter, and we also note that a similar assumption appears in
Tang et al. (2020) in the context of imaging inverse problems. We can also understand this condition
in the following way: each token within a training sequence is related to a finite amount of local
tokens and a finite amount of keywords within the sequence.

Lemma 1. Consider the gradients g = ∇ℓ(ŷ|x),x ∼ Dtr, ŷ|x ∼ p(x). Suppose the gradient g has
bounded kurtosis in all directions, that is for some β > 1 and for any u ∈ R|θ|,

(
E(u⊤g)4

)1/4 ≤
β
(
E(u⊤g)2

)1/2
. Suppose that we either have a i) classification task, where instances in a batch is

drawn independently, or ii) language modeling task, where the batch consist of k independently
drawn sequences. We assume that each sequence has the batch size L+ 1, and the batch consists of
total |B| = Lk. We additionally assume that (10) holds for some R ≥ 0. Then, condition C.1 holds
with C = C(β,R).

For proof, see Section B.2 in the appendix. In addition, we provide a simple empirical test where we
compare the traces of LHS and RHS in (C.1), and it confirms the inverse scaling with batch size for
both classification and language modeling tasks. We also evaluate that a low dimensional projection
of the difference of RHS and LHS is positive semi-definite for a small GPT2 model. See Section C in
the appendix.

Under condition C.1, we show the following bound with an exact requirement for a sufficiently large
batch size.

Theorem 1. Suppose that C.1 holds. Let us choose the hyperparameters

η = 1/(λmax(H) + λ), |B| ≥ CTr(H)/λmax(H)

Then,

E∥ut − u⋆∥2 ≲ (1− λη)2t(∥u0∥2 + ∥u⋆∥2) + η2Tr(H)

|B|
g⊤(H + λ)−1g . (11)

In our error bound above, the first term depends on the learning rate and the number of steps, and we
can say that it measures how quickly we converged to the solution, therefore we label it convergence

5
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Table 1: Gauss-Newton-Hessian statistics and recommended hyperparameters. Statistics are
calculated on ImageNet (IN) on vision and Open-Web-Text-2 (OWT) on language models. The
arrow ↑ indicates a lower bound, and ↓ indicates that it is an upper bound.

λmax(H)
recommended

hyperparameters*

Model Size Data 1
NTr(H)

from
sketching ↓ η ↑ |B| ↑ T

ResNet-18 11M IN (1.32± 0.00)× 10−3 ≈ 270 0.003 100 150
ResNet-50 25M IN (8.17± 0.11)× 10−4 ≈ 470 0.002 5 200
OPT 1.3B OWT (9.28± 0.35)× 10−6 ≈ 780 0.001 30 500
Llama-1 7B OWT (5.69± 0.67)× 10−6 ≈ 1600 0.0005 50 1000
Mistral 7B OWT (8.18± 0.13)× 10−5 ≈ 5600 0.0002 200 2000

* Assuming C = 2 in C.1, and we take λ = 5.0, T = 2/(λη) for the sake of demonstration.

error. The second term depends directly on the batch size and we label it sampling error. It does
not depend on the number of steps performed and comes from the difference between the sampled
and population HVPs. In particular, it is trivial to see that it corresponds to the variance of a single
update, E∥ut−E[ut|ut−1]∥2, in the limit ut → u⋆. Notice that although the convergence error does
not depend on the batch size explicitly, we have to satisfy the condition |B| ≥ CTr(H)/λmax(H)
in order to reduce the error of approximation. Furthermore, based on the convergence error, we
suggest to take T = Ω(1/(ηλ)) steps. In the experiments, we take T = 2/(λη). In Appendix C.1,
we construct a counter-example demonstrating that for any potential Hessian H , there exists a
classification task with a data distribution that satisfies all conditions of Theorem 1. In this setting,
while the LiSSA algorithm exhibits mean convergence (E[ut−u⋆] → 0), it fails to converge pathwise
(E∥ut −u⋆∥2 → ∞) when the batch requirement is broken. In our counter-example, condition (C.1)
holds with C = 1. In the next section, we also empirically demonstrate that convergence can slow
down when the batch size is not sufficiently large, even if we average over proportional number of
trials.

We also note that in terms of batch size requirements, our result conforms with Tang et al. (2020).
However, they only make a qualitative characterization that mini-batch SGD is applicable in problems
where H has a fast decaying eigenspectrum. We also mention (Dieuleveut et al., 2017) who take into
account the difference between in-sample and global objective smoothness for general optimization
problems. However, their analysis requires η ≤ Tr(H). The closest to our work is Ma et al. (2018),
our proof closely follows their analysis of the linear regression case (Theorem 2). We note that they
do not make clear connection to the trace of the Hessian in determining critical batch size. In addition,
their lower bound only covers the isotropic case H = cI .

Empirical analysis of eigenvalue statistics. It is apparent that to choose hyperparameters correctly,
we need to evaluate the statistics λmax(H) and Tr(H). Since there is no way to calculate the Hessian
explicitly, we resort to random feature methods that only require evaluation of HVPs.

Evaluating the trace is straightforward. We generate a series of quadratic forms (g⊤
i H̃igi)

N
i=1, which

consists of calculating HVPs and dot products for Gaussian vectors g ∼ N (0, 1
N I). Their mean

estimates the trace Eg⊤H̃g = Eg⊤Hg = 1
NTr(H). Due to independence of observations, we can

also evaluate standard error of this estimator. For evaluating the largest eigenvalue we use random
sketching. That is, we evaluate a matrix Ĥ = ΦHΦ⊤, with Φ ∈ Rd×N randomly generated in a
way such that Φi,j ∼ N (0, 1/d). It is known that such sketches can evaluate the top eigenvalues
of the original matrix λ̂i(H) = λi(Ĥ)− 1

dTr(Ĥ) (Swartworth and Woodruff, 2023), with error of
estimation negligible for the top eigenvalue. See calculation details in the appendix, Section D.

We report the results of these evaluations in Table 1 for 2 ResNets and 3 open-sourced language
models. We also show recommendations for the choice of hyperparameters based on Theorem 1.
Notice that contrary to the original idea of SGD, in all cases the recommended batch size is larger
than 1. However, recall that for language modeling, the batch size is the amount of tokens in a batch,

6
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Figure 1: Comparison of the PBRF and the LiSSA influence. The first row shows examples of training
images. Below, the x-axis represents LiSSA influences, and the y-axis represents the PBRF influences
corresponding to each training image and 500 test images. The second row is for ResNet-18, and the
third row is for ResNet-50.

Figure 2: Convergence of LiSSA for ResNet-18 with different batch size configurations. We calculate
the correlation between test influences at steps 1..1000 of LiSSA. The result for the small batch size
of 10 is averaged over 10 trials, so that the amount of data used in the middle and the rightmost
figures is the same.

and the recommended values are smaller than a typical context length. Thus, the LiSSA can work
with just one sequence per batch. We also note that the recommendation is only a lower bound that
ensures that LiSSA does not diverge, and increasing the batch size further makes the sampling error
smaller (second term in (11)).

4 EMPIRICAL VALIDATION

We now conduct empirical validation of our theoretical results. In particular, we want to check two
things. Firstly, we want to demonstrate that when the parameters are chosen according to Table 1, the
LiSSA converges as expected. For ground truth, we calculate the PBRF for selected training examples
Bae et al. (2022). Secondly, we want to empirically confirm that the requirement on sufficiently large
batch size is indeed important.

7
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We compare the LiSSA and the PBRF for the ResNet-18 and ResNet-50 models and randomly
selected 25 training and 500 test images from the ImageNet dataset. For each training image we
calculate the iHVP strain = (H + λ)−1∇ℓ(xtrain, ytrain) using the LiSSA with hyperparameters
from Table 1, and calculate the 500 influences s⊤train∇ℓ(xtest, ytest). We also calculate the the PBRF
by finetuning the model with SGD on Proximal Bregman objective. For the PBRF, we match the batch
size, number of steps, and the learning rate to the LiSSA. We take ϵ =1e-8 in (5) and optimize the
PBO using double precision to avoid float overflow. We show results for ResNet-18 and ResNet-50
for selected 5 images, and the full list is shown in the appendix, Section F. We observe three cases: 1)
the LiSSA approximates the PBRF, i.e. scatter plot concentrates along the dashed line x = y; 2) both
the LiSSA and PBRF have very low values poorly distinguishable from zero; 3) both the LiSSA and
PBRF have high value and do not approximate each other. In the latter case, we can argue that the
PBO finetunning stirs away the model too far for the quadratic approximation to hold.

Furthermore, we confirm that the batch size matters not only for the sampling error in (11), but also
for the speed of convergence. Let us take ResNet-18 with damping parameter and run the LiSSA
algorithm for 1000 steps. According to Table 1, the recommended batch size is equal to 100. We
suggest to consider three set-ups: batch size 2x larger than recommended, batch size is equal to
100, and batch size 10x smaller than recommended, with the result averaged over 10 independent
runs. In the latter and the former cases, the result is obtained through iterating in the same amount of
data, which allows to equalize the sampling error of a single update. Figure 2 reports the correlation
between influences calculated for 500 test images at different steps. As we can see, the correlation
converges to 1 faster for the two cases where the batch size is greater or equal to the recommended
size 100, despite averaging the iHVP over 10 trials for the smaller batch.

5 WHAT IS THE ROLE OF INVERTED HESSIAN?

In the context of language models, the focus in the current literature is mostly on gradient-based
influence functions (Xia et al., 2024; He et al., 2024; Chhabra et al., 2024). Often this choice is
motivated by simpler and faster implementation. Due to the high cost of Hessian-based influence
calculation, it is natural to ask what are the benefits compared to the gradient-based influence. We
conduct a simple experiment in an attempt to understand what is left out of the consideration when
relying only on gradient dot products.

Consider the eigenvalue decomposition of the Gauss-Newton Hessian H ,

H =

N∑
j=1

λjvjv
⊤
j ,

where vj are orthogonal and normalized and Hvj = λjvj . If we represent a gradient g = ∇ℓ(ztest)
in this eigenbasis, the iHVP simply reweights the coefficient according to how large the eigenvalue is,

g =
∑
j

⟨g, vj⟩vj , λ(H + λ)−1g =
∑
j

λ

λj + λ
⟨g, vj⟩vj . (12)

Firstly, notice that as λ → ∞, the iHVP in (12) converges to the plain gradient, while the price of the
calculation decreases in accordance with Theorem 1. Therefore, the choice of the damping parameter
offers a trade-off between the quality of approximation and computational complexity. Secondly, it is
known that for classification tasks (what language models do per token), the Gauss-Newton Hessian
is equivalent to a form of variance of the generated gradients ∇ℓ(ŷ|x), where ŷ ∼ p(y|x), which
is referred to as the Fisher Information Matrix (FIM). Generally speaking this is different from the
empirical FIM Eztrain∼Dtrain

∇ℓ(ztrain)∇ℓ(ztrain)
⊤, however, for realizable distributions the two

might be used interchangeably (Kunstner et al., 2019). Such interpretation can help us to speculate,
that the directions vj corresponding to higher eigenvalues λj are more likely to observe in the training
gradients, in the sense that E⟨g, vj⟩2 is higher. We also notice that λ

λ+λj
≈ 0 for the top eigenvalues

λj that are much larger than the damping parameter λ. On the contrary, the lower eigenvalues receive
higher weight, that is λ

λ+λj
→ 1 as λj → 0. In this sense, the iHVP works contrary to the traditional

Principal Component Analysis, where the idea is to project the vector onto the top eigenvectors of
the covariance. Instead, applying the inverse Hessian removes the top directions corresponding to
λj ≫ λ and retains the directions corresponding to λj ≪ λ.
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Table 2: Examples of original and paraphrased sentences.

original “The Mona Lisa, painted by Leonardo Da Vinci in the early 16th century,
is one of the most famous paintings in the world.”

paraphrased “Leonardo Da Vinci’s early 16th-century painting, the Mona Lisa, is
widely regarded as one of the most renowned artworks globally.”

original

paraphrased

︸︷︷︸
︸︷︷︸

Figure 3: Similarity between 20 sentences, see complete list in in Appendix A. Left figure shows
influence similarity calculated with the LiSSA, middle — gradient similarity, right — the difference
between the former and the latter. In the rightmost figure the numbers show the mean over each 10x10
square, with standard error in the brackets. We use the OPT 1.3B model, with λ = 5.0, T = 1000
and η = 0.003. We also use batch size of 4 sequences, each consisting of 512 tokens.

For example, a plausible interpretation of the directions vj would be that the top directions correspond
to general language coherence and sentence structure, while the remaining directions could correspond
to more specific, informative content. We propose the following experiment to encourage such point
of view. We consider ten pairs of sentences, one related to some historical or scientific fact, which we
refer to as original, the other is a paraphrased version of the same fact, referred to as paraphrased.
We show one such pair in Table 2, and in Appendix A we give all 10 pairs1. For every sentence, we
calculate the gradient of the next word prediction loss ∇ℓ(z) and calculate pairwise the dot-influences
∇ℓ(z)⊤∇ℓ(z′) and the Hessian-based influences ∇ℓ(z)⊤(H + λ)−1∇ℓ(z′). Our goal is to measure
the similarities between the original sentences and their rewritings. For this, we propose to measure
the similarity by correspondingly normalizing with norms of gradients and self-influence:

Gradient-similarity(z, z′) =
∇ℓ(z)⊤∇ℓ(z′)

∥∇ℓ(z)∥∥∇ℓ(z′)∥
,

Influence-similarity(z, z′) =
∇ℓ(z)⊤(H + λ)−1∇ℓ(z′)√

∇ℓ(z)⊤(H + λ)−1∇ℓ(z)
√
∇ℓ(z′)⊤(H + λ)−1∇ℓ(z′)

.

We show the pairwise similarities between all 20 sentences in Figure 3. In the rightmost graph,
we also show the difference between the gradient similarity and the influence-based similarity. We
observe that unrelated sentences generally have higher gradient similarity than influence similarity
since the values in the rightmost graph are mostly positive. As a result, the influence similarity
between an original sentence and a rewritten one appears to be consistently higher than between
unrelated sentences.

Downweighting directions that are more likely to observe in (12) can also be compared to the idea of
the TF-IDF index, where the terms are reweighted according to their inverse frequency (Salton and
McGill, 1983). Incidentally, we show that for a bag-of-words model (which although trivial, is also a
language model), the influence functions correspond to a particular form of the TF-IDF index, see
Section E in the Appendix.

1To avoid cherry-picking, all 20 sentences were generated with Claude 3 Opus with a few prompts.
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6 CONCLUSION

We have shown how to choose the hyperparameters of the classical LiSSA algorithm based on two
spectral statistics of the Gauss-Newton Hessian. In particular, we show the batch size used for
sampling Hessian-vector products per update has to be sufficiently large. Otherwise, the LiSSA
might not converge which we demonstrate empirically and theoretically. This particular aspect of
hyperparameter choice for the LiSSA algorithm has not been previously addressed in the literature.
Furthermore, we empirically demonstrate that applying to large models in its original form can still
be feasible if we choose a sufficiently large damping parameter. We do not necessarily advocate for
using the LiSSA as the algorithm of choice, rather it can be used as a baseline for validating other
more lightweight algorithms, in which case it is important to make sure that the hyperparameters of
the LiSSA are chosen correctly. We hope that our result and the implementation can further facilitate
research in influence functions, as well as in other topics where the inverse Hessian-vector products
naturally appear (Guo et al., 2019; Schulman et al., 2015; Martens, 2020; Kirkpatrick et al., 2017).
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A LIST OF PROMPTS FOR THE EXPERIMENT IN SECTION 5

1.
original “The Great Wall of China is the longest wall in the world, stretching

over 21,000 kilometers.”
rewrite “Spanning over 21,000 kilometers, the Great Wall of China holds the

record for being the longest wall worldwide.”

2.
original “In 1969, Neil Armstrong became the first human to set foot on the Moon

during the Apollo 11 mission.”
rewrite “During the Apollo 11 mission in 1969, Neil Armstrong made history by

becoming the first person to walk on the lunar surface.”

3.
original “The theory of evolution by natural selection was first proposed by

Charles Darwin in his book "On the Origin of Species" in 1859.”
rewrite “Charles Darwin introduced the concept of evolution by natural selec-

tion in his 1859 publication titled "On the Origin of Species".”
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4.
original “The United Nations was founded in 1945 after World War II to maintain

international peace and security.”
rewrite “Following the conclusion of World War II, the United Nations was

established in 1945 to foster international peace and security.”

5.
original “The Eiffel Tower, constructed in 1889 for the World’s Fair, is one of the

most iconic landmarks in Paris, France.”
rewrite “One of the most recognizable structures in Paris, France, the Eiffel

Tower was built in 1889 for the World’s Fair.”

6.
original “The French Revolution, which began in 1789, marked the end of the

monarchy and the establishment of a republic in France.”
rewrite “The monarchy in France was abolished, and a republic was established

as a result of the French Revolution, which commenced in 1789.”

7.
original “The human brain contains approximately 86 billion neurons, making it

the most complex organ in the human body.”
rewrite “The most intricate organ in the human body, the brain, is composed of

roughly 86 billion neurons.”

8.
original “In the 2020 United States presidential election, Joe Biden defeated

incumbent Donald Trump to become the 46th president.”
rewrite “Joe Biden secured victory over the sitting president, Donald Trump, in

the 2020 United States presidential election, becoming the 46th presi-
dent.”

9.
original “The Mona Lisa, painted by Leonardo da Vinci in the early 16th century,

is one of the most famous paintings in the world.”
rewrite “Leonardo da Vinci’s early 16th-century painting, the Mona Lisa, is

widely regarded as one of the most renowned artworks globally.”

10.
original “Climate change is a global issue caused by the increase of greenhouse

gases in the atmosphere, primarily due to human activities.”
rewrite “The primary cause of climate change, a worldwide problem, is the

accumulation of greenhouse gases in the atmosphere, largely attributed
to human activities.”

B POSTPONED PROOFS FROM SECTION 3

B.1 PROOF OF THEOREM 2

We first show a general convergence lemma for the updates (6), which repeats the steps of the proof
of Theorem 2 in Ma et al. (2018).
Lemma 2. Suppose, η < 1/(λmax(H) + λ). Then, we have convergence in-expectation

∥Eut − u⋆∥ ≤ (1− λη)t∥u0 − u⋆∥ .

Furthermore, assume that η > 0, δ ∈ (0, 1) are such that

(1− η(H + λ))2 + η2(EH̃2
t −H2) ⪯ (1− δ)I. (13)

Then,
E∥ut − u⋆∥2 ≤ (1− δ)t

(
2∥u0 − u⋆∥2 + ∥u⋆∥2

)
+ δ−1η2∆̃,

where we interpret ∆̃ = E∥(H − H̃t)u
⋆∥2 as a sampling error.
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Proof. We write,

ut − u⋆ =
(
(1− λη)I + ηH̃t

)
ut−1 + ηg

=
(
I − η(H̃t + λ)

)
(ut − (H + λ)−1g) + η(H − H̃t)(H + λ)−1g

=
(
I − η(H̃t + λ)

)
(ut−1 − u⋆) + η(H − H̃t)u

⋆ .

First, taking the expectation and using the fact that H̃t and ut are independent,

Eut − u⋆ = (I − η(H + λ))(Eut−1 − u⋆)

= (I − η(H + λ))t(u0 − u⋆),

and under η < 1/λmax(H) the matrix I − η(H + λ) ⪯ (1 − λη)I is a contraction, thus the first
bound follows.

For the second part, denote R = E(I − η(H̃t + λ))2. Let us take the conditional expectation of the
square norm, conditional on all the sampling before step t. Setting Ft−1 = σ(H̃1, . . . , H̃t−1), we
have that

E
[
∥ut − u⋆∥2|Ft−1

]
= (ut−1 − u⋆)⊤

[
E(I − η(H̃t + λ))2

]
(ut−1 − u⋆)

+ 2η(ut−1 − u⋆)⊤E(I − η(H̃t + λ))(H − H̃t)u⋆

+ η2E∥(H − H̃t)u
⋆∥2

= ∥R1/2(ut−1 − u⋆)∥2 + 2η2(ut−1 − u∗)⊤{EH̃2
t −H2}u⋆

+ η2[u⋆]⊤{EH̃2
t −H2}u⋆

≤ (1− δ)∥ut−1 − u⋆∥2 + 2η(ut−1 − u⋆)⊤{EH̃2
t −H2}u⋆ + η2∆̃ .

Here, we have used the fact that by our assumption E(I − η(H̃t + λ))2 ⪯ (1− δ)I is a contraction,
since we have that

E(I − η(H̃t + λ))2 = (1− λη)2I − 2η(1− λη)EH̃t + η2EH̃2
t

= (1− λη)2I − 2η(1− λη)H + η2H2

+ η2(EH̃2
t −H2)

= (1− η(H + λ))2 + η2(EH̃2
t −H2) .

Taking the unconditional expectation, we obtain that

E∥ut − u⋆∥2 ≤ (1− δ)E∥ut−1 − u⋆∥2 + 2η2(u0 − u∗)⊤(I − η(H + λ))t−1{EH̃2
t −H}u⋆ + η2∆̃

≤ . . .

≤ (1− δ)t∥u0 − u⋆∥2 + η2∆̃
(
1 + (1− δ) + · · ·+ (1− δ)t−1

)
+ 2η2(u0 − u⋆)⊤

{
t−1∑
k=0

(1− δ)k(I − η(H + λ))t−k

}
{EH̃2

t −H2}u⋆

≤ (1− δ)t∥u0 − u⋆∥2 + η2∆̃

1− (1− δ)

+ 2η2(u0 − u⋆)⊤
{
(1− δ)tI − (I − η(H + λ))t

}
(η(H + λ)− δI)−1{EH̃2

t −H2}u⋆ .

We apply the Cauchy-Schwartz inequality to the last term. By (13), we have that η2{EH̃2
t −H2} ⪯

η(H + λ)− δI . Thus,∥∥∥{(1− δ)tI − (I − η(H + λ))t
}1/2

(η(H + λ)− δI)−1η2{EH̃2
t −H2}u⋆

∥∥∥2
≤ (1− δ)t

∥∥∥(η(H + λ)− δI)−1η2{EH̃2
t −H2}u⋆

∥∥∥2 ≤ (1− δ)t∥u⋆∥2.
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We also have,∥∥∥{(1− δ)tI − (I − η(H + λ))t
}1/2

(u0 − u⋆)
∥∥∥2 ≤ (1− δ)t∥u0 − u⋆∥2.

Collecting everything together,

E∥ut − u⋆∥2 ≤ (1− δ)2(∥u− u⋆∥2 + ∥u− u⋆∥∥u⋆∥) + δ−1η2∆̃ .

Now we can complete the proof of Theorem 1.

We want to show that with CTr(H)
|B| ≥ η−1 − λ, equation (13) takes place with δ = 2ηλ − (ηλ)2.

Denote K = CTr(H)
|B| . Since Condition C.1 holds, we need to show

(I − η(λ+H))2 +Kη2H ⪯ (1− δ)I

The LHS of the above display has eigenvalues (1−λ(η+λj))
2+Kη2λj , where λj are the eigenvalues

of H . It is therefore sufficient to show that
max

a∈[0,λmax]
(1− η(λ+ a))2 +Kη2a ≤ 1− δ

We rewrite this condition as
max

a∈[λ,λ+λmax]
−2ηa+ η2a2 +Kη2(a− λ) ≤ −δ

The minimum of the quadratic function is attained at ā = η−1 −K/(2η). In the case where ā is in
the right half of the interval [λ, λ+ λmax], the maximum of the quadratic function is attained at the
point a = λ. This condition rewrites as η−1−K/(2η) ≥ λ+λmax/2, which using η(λ+λmax) = 1

translates into K ≥ η−1−λ. Thus, under the assumption that the batch size is at least |B| ≥ CTr(H)
η−1−λ ,

we have that
max

a∈[0,λmax]
(1− η(λ+ a))2 +Kη2a = (1− ηλ)2 ≤ 1− δ, δ = 2ηλ− (ηλ)2.

With such λ it holds (1− δ)t = (1− ηλ)2t. It is left to notice that

η2∥E(H̃t −H)u⋆∥2 = η2[u⋆]⊤{EH̃2
t −H2}u⋆

≤ (1 + c)Tr(H)

|B|
g⊤(H + λ)−1H(H + λ)−1g

≤ (1 + c)Tr(H)

|B|
g⊤(H + λ)−1g .

B.2 PROOF OF LEMMA 1

Proof for case i), classification task. We first consider the case where the observations in each
batch are drawn independently.

The in-batch Gauss-Newton Hessian then reads as

H̃t =
1

|B|
∑
x∈B

Eŷ∼p(x)∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤

Thanks to the fact that the elements in B are i.i.d. we have that

EH̃2
t =

1

|B|
E
∑
x̸=x′

Eŷ∼p(x)∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤Eŷ∼p(x′)∇ℓ(ŷ|x′)∇ℓ(ŷ|x′)⊤

+
1

|B|2
∑
x∈B

[
Eŷ∼p(x)∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤

]2
=(1− 1/|B|)H2 +

1

|B|2
∑
x∈B

[
Eŷ∼p(x)∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤

]2
⪯ (1− 1/|B|)H2 +

1

|B|
E∥∇ℓ(ŷ|x)∥2∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤ .
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Let us write g instead of ∇ℓ(ŷ|x). Observe that by the bounded kurtosis condition,

v⊤[E∥g∥2gg⊤]v =
∑
j

E⟨g, ej⟩2⟨v,g⟩2 ≤
∑
j

E1/2⟨g, ej⟩4E1/2⟨g, v⟩4

≤
∑
j

β2E⟨g, ej⟩2β2E⟨g, v⟩2

= β4E∥g∥2E⟨g, v⟩2

= β4Tr(H)(v⊤Hv),

therefore, E∥g∥2gg⊤ ⪯ β4Tr(H)H . Thus, C.1 holds with C = β4.

Proof for case ii), language modeling task. Let us now consider the case where we sample the
tokens sequence-wise. We assume that each sequence has the same size, so that each token in the
dataset has an equal probability to be drawn. When we say a token is drawn, we mean that we
consider the prediction of token st with context (s0, . . . , st−1). This means that when s ∈ B, and
|s| = L+ 1, our batch contains all pairs (x, y) with contexts x = (s0, . . . , st−1) and labels y = st
for t = 1, . . . , L. In this case we also write x ∈ s.

Let B = s(1) ∪ · · · ∪ s(b), where b is the number of sequences in a batch, so that |B| = bL, and we
assume that each sequence has the same length L+ 1 (we do not predict the first token in a sequence,
whose index is 0). Let H̃(s) denotes in-sequence GNH. Then,

EH̃2
t = H2 +

1

b
{EH̃(s)2 −H2}, (14)

where s is a single random sequence. Let us expand,

H̃(s)2 =
1

L2

∑
x,x′∈s

H̃(x)H̃(x′)

We have that for x,x′ ∈ s,

1

2
(H̃(x)H̃(x′) + H̃(x′)H̃(x))

=
1

2
Eŷ∼p(x),ŷ′∼p(x′)⟨∇ℓ(ŷ|x),∇ℓ(ŷ′|x′)⟩(∇ℓ(ŷ|x)∇ℓ(ŷ′|x′)⊤ +∇ℓ(ŷ′|x′)∇ℓ(ŷ|x)⊤)

⪯ δ(x,x′)

2

(
Eŷ∼p(x)∥∇ℓ(ŷ|x)∥2∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤ +Eŷ′∼p(x′)∥∇ℓ(ŷ′|x′)∥2∇ℓ(ŷ′|x′)∇ℓ(ŷ′|x′)⊤

)
,

where we denote for short δ(x,x′) = maxŷ,ŷ′ | cos(∇ℓ(ŷ,x),∇ℓ(ŷ′,x′))|, and we also use the fact
that 2∥a∥∥b∥⟨v, a⟩⟨v, b⟩ ≤ ∥a∥2⟨v, a⟩2 + ∥b∥2⟨v, b⟩2. Summing up we have that

1

L2

∑
x,x′∈s

H̃(x)H̃(x′) ⪯ 1

L2

∑
x∈s

(∑
x′∈s

δ(x,x′)

)
Eŷ∼p(x)∥∇ℓ(ŷ|x)∥2∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤

⪯ R

L2

∑
x∈s

Eŷ∼p(x)∥∇ℓ(ŷ|x)∥2∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤,

where we used the fact that
∑

x′∈s δ(x,x
′) ≤ R by the condition of the lemma. Now we take the

expectation with respect to s ∼ U(Dtr),

EH̃(s) ⪯ R

L
E∥∇ℓ(ŷ|x)∥2∇ℓ(ŷ|x)∇ℓ(ŷ|x)⊤ ,

where the latter expectation is with respect to the global sampling x ∼ U({x ∈ s : s ∈ Dtr}). The
proof is completed following the corresponding steps of the independent sampling case, where we
use the bounded kurtosis condition. We conclude that in this case the condition holds with C = Rβ4.
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Figure 4: Compring traces of LHS and RHS of condition C.1 for different batch sizes. We evaluate
the traces for ResNet-18, ResNet-50, and OPT-1.3B, 4 batch sizes for each model. For the OPT-1.3B,
the batch size is counted in tokens.

Figure 5: Spectrum of a random projection of difference RHS and LHS in the Condition C.1 with
C = 1, 2, 4 and batch sizes |B| = 512, 1024, 2048. We evaluate the projections of dimension d = 96
for a small GPT2 model.

C EMPIRICAL CHECK OF CONDITION C.1

We propose a simple empirical sanity check by assessing the relationship between the LHS and RHS
in condition (C.1). In Figure 4, we compare the traces of two matrices, similarly evaluating the traces
by averaging over random quadratic forms g⊤(H̃2

t −H2)g. We evaluate this gap by estimating the
HVPs H̃tg, on random Gaussian vectors and taking their norm. Each evaluation is averaged over
1000 realizations of g.

In addition to that, we evaluate the spectrum of random projections

Φ⊤
(
CTr(H)

|B|
H −EH̃2

t +H2

)
Φ,

where Φ = [ϕ1, . . . , ϕd] consists of random Gaussian vectors as described in Section D. We note that
evaluating EH̃2

t g requires applying HVP twice, which as we find is rather noisy. We average these
over 1000 independent evaluations. To narrow down the cost of this experiment, we only apply it to
the small GPT2 model and we take relatively small dimension d = 96. We show the spectrum of the
matrix in the above display for C = 1, 2, 4, and |B| = 512, 1024, 2048 in Figure 5. We see that the
spectrum is non-negative for C = 4.

C.1 COUNTER-EXAMPLE WITH DIVERGENCE

Lemma 3. There exists a binary classification task, where condition C.1 holds with exact equality

EH̃2
t −H2 =

1

|B|
Tr(H)H,

16
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and for some inputs u0,g the following claim holds.

Let us choose step size η = 1/(λmax(H) + λ), and the batch size |B| < Tr(H)/(λmax(H) + λ).
Then, the LiSSA algorithm converges on average, but not samplewise:

∥Eut − u⋆∥ → 0, E∥ut − u⋆∥2 → ∞ .

Proof. We consider a binary regression with y ∈ {0, 1} and inputs x ∈ RN . For simplicity, we
assume that x, y are independent, and y takes values {0, 1} with equal probabilities. We consider the
distribution in x that satisfies ∥x∥2 = Tr(H) pointwise and Exx⊤ = H . For this, let H = V ΛV ⊤

where Λ = diag{λ1, . . . , λN} and take x = V s, s = (
√
λ1ϵ1, . . . ,

√
λN ϵN )⊤ where ϵi = ±1 with

equal probabilities. Consider the binary logistic model

log p(y = 1|x) = θ⊤x− log(exp(θ⊤x) + exp(−θ⊤x)),

log p(y = 0|x) = −θ⊤x− log(exp(θ⊤x) + exp(−θ⊤x)),

and assume that during training the model converged to the optimal parameters θ = 0, since x, y are
independent. Then it is straightforward to calculate that

H̃t =
1

|B|
∑

(x,y)∈B

xx⊤, EH̃2
t =

(
1− 1

|B|

)
H2 +

1

|B|
Tr(H)H.

Since all matrices are rotated by V from left and right, we assume w.l.o.g. that V = I .

With such choice of η and |B|, we have that the matrix (1 − η(H + λ))2 + η2{EH̃2
t − H2} has

eigenvalue strictly greater than 1, corresponding to the direction of the top eigenvalue of H . Let us
denote this eigenvalue λ.

Now assume that g = 0 we have u⋆ = 0, and let u0 ̸= 0. We have

ut = (1− η(H̃t + λ))ut−1 =

t∏
j=1

(1− η(H̃j + λ))u0 .

Set Q = I − η(H̃t + λ) and R = E(1 − η(H̃t + λ))2 = (1 − η(H + λ))2 + η2(EH̃2
t − H2).

Notice that both matrices are diagonal. Consider the sequence of matrices R0 = I , R1 = R,
Rk = E(1−η(H̃t+λ))Rk−1(1−η(H̃t+λ)). Also denote partial product T̃j =

∏j
k=1(1−η(H̃k+λ)).

Then we have

E∥ut∥2 = [u0]⊤ECt−1(1− η(H̃t + λ))2Ct−1u
0

= [u0]⊤ETt−1RCt−1u
0

= [u0]⊤ETt−2(1− η(H̃t−1 + λ))R1(1− η(H̃t−2 + λ))Ct−2u
0

= [u0]⊤ETt−2R2Tt−2u
0

= [u0]⊤ETt−3R3Tt−3u
0

= . . .

= [u0]⊤Rtu
0

Let us show that the matrix Bt is diagonal. Indeed, assuming Bk−1 is diagonal, we have that

Rk = QRk−1Q+ η2E(H̃t −H)Rk−1(H̃t −H)

= QBk−1Q− η2HRk−1H + η2EH̃tRk−1H̃t

We have that for diagonal Rk−1, x⊤Rk−1x =
∑

j λjRk−1[j, j] = Tr(HRk−1) is deterministic.
Therefore,

E

(
1

|B|
∑
x∈B

xx⊤

)
Rk−1

(
1

|B|
∑
x∈B

xx⊤

)
=

(
1− 1

|B|

)
H2Rk−1 +

1

|B|
E(x⊤Rk−1x)xx

⊤

=

(
1− 1

|B|

)
H2Rk−1 +Tr(HRk−1)H

= [EH̃2
t−1]Rk−1

17
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Table 3: Second moment statistics for Gauss-Newton-Hessian calculated
on ImageNet (IN) on vision and Open-Web-Text-2 (OWT) on language
models.

Model Size Data ∥H∥Fr λmax(H)
(

∥H∥Fr

λmax(H)

)2
ResNet-18 11M IN 2.55× 104 ≈ 270 8.92× 103

ResNet-50 25M IN 2.67× 104 ≈ 470 3.22× 103

OPT 1.3B OWT 2.94× 103 ≈ 780 1.42× 101

Llama-1 7B OWT 3.73× 103 ≈ 1600 5.43
Mistral 7B OWT 2.49× 104 ≈ 5600 1.98× 101

Thus, we conclude

Rk = Q2Rk−1 − η2H2Rk−1 + η2[EH̃2
t ]Rk−1 = RRk−1 = RkR0 = Rk.

Now, we have that

E∥ut∥2 = [u0]⊤Rtu0 ≥ λ
t⟨u0, v⟩2 → ∞,

whenever ⟨u0, v⟩ ≠ 0.

D DETAILS OF HESSIAN STATISTICS CALCULATION

For trace approximation, we use the fact that for a Gaussian vector g ∈ N (0, 1
N I), generated

independently from H̃ , Eg⊤H̃g = 1
NTr(H) . Observe that from (7),

g⊤H̃g =

N∑
j=1

{
Jθh(x; θ)

⊤g
}⊤ {Diag(sf(h))− sf(h)sf(h)⊤}[Jθh(x; θ)⊤g],

thus evaluating such quadratic form can be done by only evaluating the middle Hessian Diag(sf(h))−
sf(h)sf(h)⊤ and finite differences Jθh(x; θ)

⊤g ≈ 50(h(x; θ + 0.01g) − h(x; θ − 0.01g)). The
results reported in Table 1 are based on 1600 evaluations of g⊤

i H̃igi, including the standard error.

At an increased price, we can also evaluate the Frobenius norm of the Hessian. For that, for a
given vector g, sampled from Gaussian distribution, we evaluate two independent Hessian-vector
products H̃g, Ĥg, so that 1

NTr(H2) = E(H̃g)⊤Ĥg. Then, by sampling independently a series of
independent realizations, we can evaluate the mean 1

NTr(H2) and the standard error of our estimation.
We report these evaluations in Table 3.

For evaluating the top eigenvalues, one can employ the sketching technique. For example, Swartworth
and Woodruff (2023) show that for Φ ∈ Rd×N generated in a way such that Φij ∼ N (0, 1

d ) for d
large enough, we have that for finite amount of top eigenvalues,

λl(H) ≈ λl(ΦHΦ⊤). (15)

In order to evaluate the matrix ΦHΦ⊤, we iterate over each of d columns ϕj of Φ⊤ and evaluate
the HVP Hϕ by sampling empirical H̃tϕ. For language models, to speed up the caluculation we
truncate the context length to 256 and average over batch of size 50. For image classification, we
use a batch size of 5000 to evaluate each Hϕ. We then project each of these columns back with the
embedding Φ, so the result is a d× d matrix, whose top eigenvalue can be calculated with standard
linear algebra packages. According to Swartworth and Woodruff (2023), the error term in (15) is
bounded by multiple of ∥H∥Fr/

√
d. Although we do not offer a precise control, we suggest that

taking d = 5000 should be sufficient for the models in Table 3. Note that their bound does not
account for sampling error and we leave it out of consideration in the scope of this paper, we simply
want to produce some adequate bound on the largest eigenvalue.
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Pseudo-random embeddings. Generating and storing a dense embedding matrix Φ ∈ Rd×N can
be prohibitively expensive, since each of the rows Φ[i, :] is equivalent to one more model in memory.
We propose to instead use pseudo-random generators, so that the projector Φ is generated “on-the-fly”
using a single integer number seed. The model parameters are usually accessed in a form of lists
θ⊤ = (θ⊤1 , . . . , θ

⊤
L ), where L could be the number of layers. Correspondingly, the gradients and

HVPs are also iterated over a list g = (g1, . . . ,gL). We generate Φ in the form Φ = (Φ1 . . . ΦL),
so that Φg =

∑L
j=1 Φjgj . To calculate Φg we initialize a random generator with a fixed seed, and

then generate Φj one after the other so that we never have to store the whole matrix Φ in the memory.

Nevertheless, the embedding operation itself Φg can be too expensive. Our observation is that starting
from d = 50 we do not really benefit from parallel matrix computations on GPU and the price scales
linearly, i.e. d = 200 is 4 times as expensive as d = 50, and so on. Furthermore, the price of a single
application of the embedding for d = 50 can be as high as the gradient computation itself. In order
to reduce the computational price of embedding, we suggest to use the following heuristic. Instead
of summing up per-layer embeddings Φg = Φ1g1 + · · ·+ΦLgL, we suggest to concatenate them.
This way, we can increase the dimension by a factor of L without overhead computations. Let us
denote the resulting concatenating embedding by {Φ}, then we can write

Φ = (Φ1 Φ2 . . . ΦL) ∈ Rd×N

{Φ} =

Φ1 0 . . .
0 Φ1

. . .
0 0 . . . ΦL

 ∈ RLd×N

In other words, we have {Φ}θ = vstack([Φ1θ1, . . . ,ΦLθL]). That is, each Φ1θ1 has dimension d
and

EΦ[{Φ}θ]⊤[{Φ}θ′] =
∑
j

E[Φjθj ]
⊤[Φjθ

′
j ] =

∑
j

θ⊤j θ
′
j = θ⊤θ′,

so that it preserves the dot products on average as well. However, concatenation can dramatically
reduce the variance of one dot product. Indeed, we have that

VarΦ([{Φ}θ]⊤[{Φ}θ′]) =
∑
j

Var([Φjθj ]
⊤[Φjθ

′
j ]) ≲

1

d

∑
j

∥θj∥2∥θ′j∥2,

and recall the bound from before,

VarΦ([Φθ]
⊤[Φθ′]) ≲

1

d
∥θ∥2∥θ′∥2 =

1

d

∑
j

∥θj∥2
∑

j

∥θ′j∥2


The former can be much smaller than the latter when square norms of the gradients are spread “evenly”
over the layers. That is, assume that ∥θj∥2 is approximately in the same bulk C−1M ≤ ∥θj∥2 ≤ CM ,
M = 1

L

∑
j ∥θj∥2. Then VarΦ([{Φ}θ]⊤[{Φ}θ′]) ≲ L

dM
2 while VarΦ([Φθ]

⊤[Φθ′]) ≲ L2

d M2, so
it is effectively equivalent to increasing the embedding dimension L times compared to the original
Gaussian features. Here we ignored the terms ⟨θ, θ′⟩2 but in practice they are significantly smaller
than ∥θ∥2∥θ′∥2.

E INFLUENCE FUNCTIONS FOR BAG-OF-WORDS MODEL IS A TF-IDF

TF-IDF is a popular measure of word-document relevance used in retrieval systems Ramos et al.
(2003). Recall that for a set of documents d ∈ D and terms t ∈ T , which could be either words or
tokens, the term frequency (TF) and document frequency (DF) are defined as follows,

TF (t, d) =
1

|d|
count(t, d),

DF (t) =
# {d ∈ D : t ∈ d}

|D|
,

where count(t, d) is the number of occurrences of a term t in document d, the latter being a sequence
of terms. Let us also consider a variant of inverse document frequency IDF (t) =

√
1/DF (t). Note
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that in standard TF ·IDF definition, the square root is replaced with logarithm, we only propose to
consider the square root for the sake of comparison to influence functions. Then, the document-term
relevance TF · IDF is calculated as the product of TF and IDF , and the corresponding similarity
between d1 and d2 is

sim(d1, d2) =
∑
t

TF · IDF (d1, t)TF · IDF (d2, t) =
∑
t

1

DF (t)
TF (d1, t)TF (d2, t)

The bag-of-words model reads as follows,

log p(d) =
∑
t

count(t, d) log pt,

where pt = exp(xt)/(exp(x1) + · · ·+ exp(xT )), the xt are parameters. For the sake of simplicity
we assume that each document has the same length |d|. We have,

∇x log p(d) =
∑
t

count(t, d)et − |d|∇x log

(∑
t

exp(xt)

)
=
∑
t

count(t, d)et − |d|sf(x)

= |d|

{∑
t

TF (t, d)et − sf(x)

}
(16)

Notice that by definition, 1⊤∇x log p(d) = 0. The Hessian looks as follows

∇2
xE log p(d) = −|d|∇⊤

x sf(x) = −|d|
(
Diag(sf(x))− sf(x)sf(x)⊤

)
,

where we calculate that

∇xi

exp(xj)∑
k exp(xk)

=
δij exp(xi)(

∑
k exp(xk))− exp(xi) exp(xj)

(
∑

k exp(xk))2
= δijsf(x)i − sf(x)isf(x)j

Let us calculate the inverse Hessian. Given a damping parameter λ, let q = (p+ λ)1/2 elementwise.
Note that ∥q∥2 = 1 + λN . Set also r = p/(p + λ)1/2 elementwise, and notice that ∥r∥2 =∑

j p
2
j/(pj + λ) = 1− λ

∑
j pj/(pj + λ) < 1. Then,

Diag(p) + λI − pp⊤ = Diag(q)(I − rr⊤)Diag(q),

so the inverse equals to

(H + λ)−1 = Diag(q)−1

(
I +

1

1− ∥r∥2
rr⊤

)
Diag(q)−1

= Diag(p+ λ)−1 −

λ
∑
j

pj/(pj + λ)

−1

dd⊤,

where we denote d = p/(p + λ) = 1 − λ/(p + λ) elementwise. Note that the gradients gd =
∇ log p(d) are in the subset g⊤

d 1. Since d = 1+O(λ) we have that

g⊤
d1

λ
∑
j

pj/(pj + λ)

−1

dd⊤gd2
= O(λ),

therefore, in the limit λ → 0, we have that the influence between documents d1, d2 reads as

I(d1, d2) = g⊤
d1
Diag(p)−1gd2

=
∑
t

TF (t, d1)TF (t, d2)p
−1
t .

Let us also calculate the IDF for this models. Let us assume that terms are rare enough ( pt|d| ≪ 1).
Then we have that,

DF (d) = 1− Pr(t /∈ d) = 1− (1− pt)
|d| ≈ |d|pt .

and therefore up to a scaling factor, the above expression is approximately equal to the TF · IDF
relevance in (16).
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Figure 6: Comparison of the PBRF and LiSSA influence on ResNet-18 for 25 random train images.
Each graph shows influence of one train image w.r.t. to 500 other test images. Reference number is
show above the image, refer to Figure 8. The results are for ResNet-18, the x-axis is the LiSSA, and
the y-axis is the PBRF.

F MORE EXAMPLES FOR COMPARISON OF THE LISSA AND PBRF

Here we present a complete list of 25 train images for comparison of the PBRF and LiSSA. We
calculate the LiSSA according to the hyperparameter recommendations in Table 1. Figure 6 shows
scatter plots of the LiSSA and PBRF for ResNet-18, and Figure 7 shows scatter plots for ResNet-50.
Figure 8 shows reference images from the ImageNet dataset. Note that for one train image in Figure 7
the LiSSA got float overflow, we attribute it to the high value of the gradient norm.
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Figure 7: Same as Figure 6, but for ResNet-50.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 8: Reference images from ImageNet. Numbers above each image corresponde to those
Figures 6, 7.
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