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ABSTRACT

Federated learning (FL), aimed at leveraging vast distributed datasets, confronts a
crucial challenge: the heterogeneity of data across different silos. While previous
studies have explored discrete representations to enhance model generalization
across minor distributional shifts, these approaches often struggle to adapt to new
data silos with significantly divergent distributions. In response, we have identi-
fied that models derived from FL exhibit markedly increased uncertainty when
applied to data silos with unfamiliar distributions. Consequently, we propose
an innovative yet straightforward iterative framework, termed Uncertainty-Based
Extensible-Codebook Federated Learning (UEFL). This framework dynamically
maps latent features to trainable discrete vectors, assesses the uncertainty, and
specifically extends the discretization dictionary or codebook for silos exhibiting
high uncertainty. Our approach aims to simultaneously enhance accuracy and re-
duce uncertainty by explicitly addressing the diversity of data distributions, all
while maintaining minimal computational overhead in environments character-
ized by heterogeneous data silos. Through experiments conducted on various
datasets, our method has demonstrated its superiority, achieving significant im-
provements in accuracy (by 3%—22.1%) and uncertainty reduction (by 38.83%—
96.24%), thereby outperforming contemporary state-of-the-art methods.

1 INTRODUCTION

Federated Learning (FL), well known for its capacity to harness data from diverse devices and
locations—termed data silos—while ensuring privacy, has become increasingly crucial in the digital
era, particularly with the explosion of data from mobile sources. Despite its pivotal role in distributed
computing, FL confronts a formidable challenge: the heterogeneity of data across different silos.
Such diversity often results in a significant performance gap when integrating updates from local
models into the global model. In Fig.[I] we compare the mean accuracy of local FL models with
that of the global model after integration when addressing data silos with different distributions.
While local models may perform impressively within their own data domains, the aggregated global
model often struggles to achieve similar performance levels after synthesizing updates from these
varied data sources. This issue is especially pronounced in FL due to its reliance on varied data
sources.

Recent studies (Ghosh et all 2020; |Agarwal et al.l 2021} [Liu et al., |2021; Kairouz et al., |[2021aj
Zhang et al.| 2022} Yuan et al.| [2022)) have made significant advancements in addressing data het-
erogeneity within Federated Learning (FL), with one notable approach being the use of discrete
representations to enhance model robustness against minor data shifts. Nonetheless, this strategy
struggles to generalize models to data silos exhibiting significant distributional differences. Fur-
thermore, these methods face difficulties in adapting to unseen data distributions, as they typically
require the entire model to be re-trained. Such constraints limit their flexibility in adapting to the
dynamically changing data landscapes, posing challenges for their applicability in real-world sce-
narios.

Moreover, we identify another critical issue impacting the model’s performance across diverse data
silos: increased uncertainty, as shown in Fig.[l| The global model’s accuracy not only deteriorates,
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Figure 1: In the case of heterogeneous data silos, the global model of regular Federated Learning
(FL) performs poorly compared to local models before integration. By discretizing different do-
mains into distinct latent spaces, our UEFL improves both accuracy and uncertainty. The reported
values in the figure represent the average accuracy and uncertainty across the various data silos.

but its uncertainty also trends upwards, signaling increased prediction instability. To address these
challenges, we introduce Uncertainty-Based Extensible-codebook Federated Learning (UEFL), a
novel methodology that explicitly distinguishes between data distributions to improve both accuracy
and uncertainty.

Specifically, our design features an advanced codebook comprising a predetermined number of latent
vectors (i.e. codewords), and employs a discretizer to assign encoded image features to their closest
codewords. These codewords, acting as latent representations, are passed to subsequent layers for
processing. The codewords are dynamically trained to align with the latent features generated by
the image encoder. To mitigate performance degradation when integrating local models from data
silos with varying distributions, we initialize a small, shared codebook for all clients. Additional
specific codewords are then introduced for individual client use, ensuring explicit differentiation be-
tween them. Since the initial codebook is small and requires only a few extensions, the final size
remains compact, minimizing the associated computational overhead. Given the privacy constraints
in federated learning (FL), which restrict direct data access, we incorporate an uncertainty evalu-
ator using Monte Carlo Dropout. This evaluator identifies data from diverse distributions, marked
by high uncertainty. During training, our UEFL method systematically distinguishes between these
varied distributions and dynamically adds new codewords to the codebook until all distributions are
sufficiently represented. In the initial training cycle, shared codewords are randomly initialized.
However, in subsequent cycles, the fully trained image encoder is leveraged to initialize new code-
words using K-means, aligning them more closely with the data distribution and facilitating faster
adaptation to various distributions. As a result, our UEFL model can accommodate data from pre-
viously unseen distributions with fewer communication rounds, making it applicable for enhancing
other FL algorithms. Furthermore, since uncertainty constantly decreases as training progresses, the
iterative process is guaranteed to conclude after a few iterations.

To summarize, our contributions are as follows:

* We identify a significant increase in model uncertainty across silos with diverse data dis-
tributions within the federated learning (FL) context, highlighting the challenge of data
heterogeneity.

* To address this heterogeneity, we introduce an extensible codebook approach that distin-
guishes between data distributions by stepwise mapping them to distinct, trainable latent
vectors (i.e. codewords). This methodology allows for efficient initialization of newly
added codewords using a K-means algorithm, closely aligning with the training data feature
distributions and enabling rapid convergence during codebook training.

* We propose a novel data-driven FL. framework, named Uncertainty-Based Extensible-
codebook Federated Learning (UEFL), which merges the extensible codebook with an un-
certainty evaluator. This framework iteratively identifies data from diverse distributions by
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assessing uncertainty without requiring direct data access. It then processes this data by
initializing new codewords to complement the existing codebook, ensuring that each itera-
tion focuses on training the expandable codebook, which rapidly converges, thus allowing
UEFL to adapt seamlessly to new data distributions.

* Our empirical evaluation across various datasets demonstrates that our approach signifi-
cantly reduces uncertainty by 38.83%-96.24% and enhances model accuracy by 3%-22.1%,
evidencing the effectiveness of UEFL in managing data heterogeneity in FL.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated learning (Konecny et al., 2016; |Geyer et al., 2017; |Chen et al., |2018}; |Hard et al., 2018;
Yang et al.| 2019;|Ghosh et al.,|2020) represents a cutting-edge distributed learning paradigm, specif-
ically designed to exploit data and computational resources across edge devices. The Federated
Averaging (FedAvg) algorithm (McMahan et al., 2017), introduced to address the challenges of un-
balanced and non-IID data, optimizes the trade-off between computation and communication costs
by reducing the necessary communication rounds for training deep networks. Federated Learning
(FL) faces numerous statistical challenges, with data heterogeneity being one of the most critical. In
real-world applications, data collected across different clients often varies significantly in terms of
distribution, feature space, and sample sizes.

Several methodologies (Zhao et al., 2018} [Li et al.;, 2018} 2019} [Kalra et al.| [2023) have been de-
veloped to address this pivotal issue. PMFL (Zhang et al.| [2022) approaches the heterogeneity chal-
lenge by drawing inspiration from meta-learning and continual learning, opting to integrate losses
from local models over the aggregation of gradients or parameters. DisTrans (Yuan et al., [2022)
enhances FL performance through train and test-time distributional transformations, coupled with
a novel double-input-channel model architecture. Meanwhile, FCCL (Huang et al., [2022) employs
knowledge distillation during local updates to facilitate the sharing of inter and intra domain insights
without compromising privacy, and utilizes unlabeled public data to foster a generalizable represen-
tation amidst domain shifts. Additionally, the discrete approach to addressing heterogeneity by [Liu
et al.|(2021)), provide further inspiration and valuable perspectives for our research endeavors.

2.2  UNCERTAINTY

Recently, the study of uncertainty modeling has gained significant prominence across various re-
search fields, notably within the machine learning community (Chen et al., [2014; [Blundell et al.,
2015; Kendall & Gal, 2017} |Louizos & Welling| 2017} [Lahlou et al.| 2021} Nado et al., 2021}
Gawlikowski et al., [2021). This surge in interest is driven by the critical need to understand and
quantify the inherent ambiguity in complex datasets. Techniques such as Monte Carlo Dropout (Gal
& Ghahramani), 2016), which introduces variability in model outputs through the use of dropout lay-
ers, and Deep Ensembles (Lakshminarayanan et al., 2017)), which leverages multiple models with
randomly initialized weights trained on identical datasets to evaluate uncertainty, exemplify the ad-
vancements in this area. Furthermore, the application of uncertainty modeling has extended beyond
traditional domains, impacting fields such as healthcare (Dusenberry et al.l 2020) and continual
learning (Ahn et al., 2019).

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

Fig. @] illustrates the workflow of our UEFL. Consider multiple data distributions D1, Ds, ..., Day,
with data samples 2 € R7*WxD where H, W, and D denote the input image’s height, width,
and channel count, respectively, drawn from these M distributions. Upon distributing the global
model to local clients, data samples undergo local encoding via a shared encoder 6 into feature
representations z € R"***? with h, w, and d representing the features” shape. Subsequently, these
features are reshaped into vectors z € R!*4 where [ is the number of tokens, and divided into
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Figure 2: UEFL flowchart. In the first iteration, all latent are mapped to initialized shared code-
words by the discretizer 0. In the next iterations, UEFL identifies data from heterogeneous distri-
butions with the uncertainty evaluator, and complements new codewords with K-means initialization
to enhance the codebook. Clients with high uncertainty can select not only newly added codewords
but also shared codewords.

s segments z; € Rlx%,w, with s indicating the segment count. Each segment is mapped to the
closest codeword in the codebook via a discretizer 6p, then reassembled into complete vectors for
classification. The classifier 6 then deduces the class for the input data, completing the forward
processing sequence as follows,

2= fop(x), c= fop(2), p= fo(c) (1)
where x, z, ¢, and p denote input data, latent features, discrete coded vectors, and the model predic-
tion, separately.

After loss calculation, models undergo local updates through backpropagation. In a manner akin
to FedAvg (McMabhan et al., 2017), these updated models are then relayed back to the server for a
global update.

K
ng
9%; nek, (3)

where 6 denots the global model parameters, 6, is the kth local model parameters, gj, is the kth
model gradients, ny is the number of samples for data silo k, and n is the total number of samples
for all K silos.

At the end of each iteration, assessing uncertainty through Monte Carlo Dropout is essential, given
the privacy constraints of Federated Learning (FL), which limit direct access to client data. By
evaluating uncertainty against a pre-established threshold, we identify data from heterogeneous dis-
tributions. When such data are detected, we augment the codebook with v new codewords initialized
by K-means. These newly generated codewords are then exclusively accessible to the correspond-
ing heterogeneous clients, updating the codebook size for the kth client from vy to v + v., as
described in Algorithm[T] This process leverages the fully adapted encoder from previous iterations,
utilizing K-means to ensure the new codewords are closely aligned with the actual data distribution,
thereby facilitating faster convergence during training. Additionally, since the extended codewords
are specific to individual client data and are not included in the integration with other local models,
our method ensures that latent features from different distributions remain explicitly differentiated.
Consequently, the global model performs better after integration, effectively handling data hetero-
geneity.
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Algorithm 1 Uncertainty-Based Extensible-Codebook Federated Learning (UEFL)

Input: data distributions D1, Do, ..., Dps
Parameters: uncertainty threshold , learning rate 7, codewords loss weight 3
Sample K data silos from Dy, Da, ..., Dy as clients
Randomly initialize model parameters 6 and codebook with v codewords
Initially assign uncertainty for all clients to be zero: e;, = 0, Vk
repeat
for eachroundt=1, 2, ... do
Broadcast 6 to all clients
for all K clients in parallel do
ife;, > (1 + ’}/) minvj61727,,,,K(ej) then
K-means initialize another v codewords and add them to codebook
Update accesible codewords size for clients with high uncertainty: vy < v, + v
end if
Encode input into latent features: z = fy, ()
Discretize latent features to codewords ¢;, where i = argminjci 2. v, ||z — ¢j|2
Predict with coded vectors: p = fy,(¢;)
Compute codewords loss: Leoqe = ||89(c;) — 2||3 + Bllei — s9(2)|]3
Compute output loss: Liqsx = — > ylogp
Update local parameters with gradient descent: 6y < 0 — nVo(Leode + Liask)
end for
Clients return all local models 6}, to the server
Update the server model 6 «— S5 ™6,
end for
Evaluate uncertainty for each client with integrated model: e, = > plogp
Reduce the number of communication rounds
until ¢;, < (1 + ’y) minvjelﬁg,m,K(ej),Vk;

3.2 EXTENSIBLE CODEBOOK

To effectively manage heterogeneous data, we design an extensible codebook, beginning with a min-
imal set of codewords and progressively enlarging this set through a superior initialization strategy
that benefits from our UEFL framework. This strategy facilitates stepwise mapping of diverse data
distributions to distinct codewords. Starting with a larger codebook can introduce uncertainty in
codeword selection due to the concurrent training of multiple codewords.

Similar to VQ-VAE (Van Den Oord et al.,|2017), we employ latent vectors as codewords, initializing
a compact shared codebook with n codewords ¢ € R™* <, where n represents the size of the initial
codebook. The codewords are initialized using a Gaussian distribution and shared across all data
silos. After each iteration’s uncertainty assessment, we determine which silos require additional
codewords to improve prediction accuracy, and we extend the codebook accordingly for these silos
by adding n more codewords.. The newly added codewords are initialized using K-means, leverag-
ing the encoder’s improved latent features from the prior iteration to better align with the underlying
data distribution. To optimize codebook usage, data silos that demonstrated lower performance in
the previous iteration are allowed to select codewords from both the newly added codewords and the
original shared codebook. Typically, the codebook only requires 1-3 extensions until all clients reach
low uncertainty levels. The server updates the codebook by computing the average of codewords
across the clients that utilize those specific codewords.

For a given iteration, if the codebook size for the kth client is vy, the feature vector z is associated
with a codeword c¢; by the discretizer, which computes the distance between z and all available
codewords, selecting the nearest one as follows,

i= argmin ||z — ¢jl|2 )
JEL2,...,08

K-means Initialization. After the first iteration, the adapted encoder produces image features that
more accurately reflect the distribution of the training data. Instead of relying on random initializa-
tion methods like Gaussian distribution, we initialize new codewords using the centroids of these
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features, obtained through K-means clustering. This approach expedites codebook training by pro-
viding a more informed starting point for the new codewords, allowing them to better align with the
underlying data structure. As a result, this initialization strategy facilitates faster convergence and
improves the model’s ability to adapt to varying data distributions across silos. This strategy hugely
reduces the number of training rounds required for model convergence (Details in Appendix I).

Segmented Codebooks. For complex datasets, a finite set of discrete codewords might not fully
capture the diversity of image features. To bolster the robustness of our methodology, we dissect
features into smaller segments to pair them with multiple codewords, thus covering the entirety of a
feature vector. This segmentation exponentially increases the codeword pool, ensuring a robust rep-
resentation capacity without necessitating a large-scale increase and permitting efficient K-means-
based initialization. This design minimizes runtime overhead associated with larger codebooks.

3.3 Loss FUNCTION

Since we introduce learnable codewords in our method, there are two parts of the loss function.
For our task, we utilize cross-entropy as the loss function. For codebook optimization, akin to the
strategy employed in VQ-VAE (Van Den Oord et al., [2017), we apply a stop gradient operation for
the codeword update as follows:

Leode = IIsg(c) = 2113 + Blle — sg(2)II3 ®)

where z is the image latent features, c is discrete codewords, 3 is a hyper-parameter to adjust the
weights of two losses and sg(-) denotes the stop gradient function.

So, the total loss Ly grr is the summation of L4 and Leoge.

3.4 UNCERTAINTY EVALUATION

As outlined in Section [3.1} evaluating model uncertainty is crucial for identifying data from het-
erogeneous distributions requiring supplementary codewords. In our work, we utilize Monte Carlo
Dropout (MC Dropout) (Gal & Ghahramanil 2016) for uncertainty evaluation, incorporating two
dropout layers into our model for regularization purposes. Unlike traditional usage where dropout
layers are disabled during inference to stabilize predictions, we activate these layers during testing
to generate a variety of outcomes for uncertainty analysis. This variability is quantified using pre-
dictive entropy, as described in Eq. (6), which serves to measure the prediction dispersion across
different evaluations effectively.

e=—Y plogp ©6)

class

A low predictive entropy value signifies model confidence, whereas a high value indicates increased
uncertainty. For high entropy, introducing new codewords and conducting additional training rounds
are essential steps. Given the variability of uncertainty across datasets, establishing a fixed threshold
is impractical. Instead, by analyzing all uncertainty values, we can benchmark against either the
minimum or mean values to pinpoint target silos. Our experiments showed superior results when
using the minimum value as a reference, thus guiding us to adopt the following threshold criterion:

er < (147) vjelglzir}_‘K(ej)Nk (7

where + is a hyperparameter to be set.

Uncertainty decreases consistently during training, making it an effective stopping criterion for code-
book extension. Besides, we also set the maximum number of iterations to 5.

4 EXPERIMENTAL RESULTS

Experimental Setup. As discussed in [Kairouz et al.| (2021b); |[Zhou et al.| (2023)), there are two
predominant forms of data heterogeneity in federated learning: feature heterogeneity and label het-
erogeneity. Our UEFL focuses on tacking feature heterogeneity, and we mainly discuss feature
heterogeneity in this section. The discussion for label heterogeneity with dirichlet distribution and
the comparison with VHL (Tang et al., 2022)), FedBR (Guo et al.,|2023b) are in the Appendix
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Similar to Rotated MNIST (Ghifary et al} 2015), which creates six domains through counter-
clockwise rotations of 0°, 15°, 30°, 45°, 60°, and 75° on MNIST, we employ similar technique
to introduce feature heterogeneity on five different datasets: MNIST, FMNIST, CIFAR10, GTSRB,
and CIFAR100, to validate our framework’s robustness. In our experiments, we create three do-
mains by counter-clockwise rotating the datasets by 0° (D), -50° (D-), and 120° (D3). We sampled
three data silos from each domain (i.e. totally 9 silos), and data silos for CIFAR100 contain 4000
images each, while the other datasets consist of 2000 images per silo. Besides the regular training
with multi-domain data silos, we also test out UEFL for domain generalization (DG) task on Ro-

tated MNIST (Ghifary et al 2015 and PACS (Li et al.} 2017) datasets, which contains four distinct
domains: art painting (A), cartoon (C), photo (P), and sketch (S).

For RGB datasets like GTSRB, CIFAR10, and CIFAR100, we adopt a pretrained VGG16 model
in multi-domain training. In contrast, for grayscale datasets such as MNIST and FMNIST, lacking
pretrained models, we design a convolutional network comprising three ResNet blocks, training it
from scratch. And for DG, we adopt a pretrained ResNet18 for both datasets. Initial codebook sizes
are set to 32 for MNIST and 64 for the remaining datasets, with an equivalent number of codewords
added in each subsequent iteration. While additional iterations may converge within 5 rounds, we
extend this to 20 for enhanced experimental clarity. The uncertainty evaluation is conducted 20
times using a dropout rate of 0.1, with thresholds ~y set at 0.3 for MNIST, 0.1 for FMNIST, GTSRB,
and CIFAR100, and 0.2 for CIFARI10, to fine-tune performance. These experiments are performed
on a machine with two NVIDIA A6000 GPUs.

Evaluation Metrics. We calculate the mean Top-1 accuracy (mA) as across all silos for each dis-
tribution and all data to enable a straightforward comparison. We evaluate entropy as model uncer-
tainty as Eq. (6). We also evaluate the perplexity (PPL) to show the utility of codewords as follows,

N
PPL = exp(= ) pilogp;) ®)

i=1
where NV is the number of codewords, and p; denotes the probability of the ith codeword occurring.

Similar to mA, we evaluate mean entropy (mE) and mean perplexity (mP) across data silos.

4.1 EXTENSIBLE CODEBOOK

Discretization for Heterogeneous FL. To show the effectness of discretization to tackle the data
heterogeneity in FL, we design a toy experiment on MNIST. Temporarily setting aside federated
learning’s privacy considerations, we directly discretized the features for each client using the dis-
tinct codebooks based on its originating domain. With this discretization of VQ-FedAvg, the mean
accuracy was improved from 0.834 to 0.907 with the reduction of uncertainty, demonstrating the
effectiveness of feature discretization in enhancing performance within a heterogeneous federated
learning context, as shown in Fig.[3a]

The effect of discretization on FedAvg Static Codebook v.s. Extensible Codebook The effect of codebook initialization
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(a) Discretization works. (b) Extensible codebook is better. (c) Initialization helps.

Figure 3: Design of extensible codebook. (a) With the discretization (VQ-FedAvg), both accuracy
and uncertainty get improved. (b) Our extensible codebook which starts from a small capacity per-
forms better than the static large codebook. (c) With K-means initialization, the utility of codewords
(i.e. perplexity) gets significantly improved.

Extensible Codebook v.s. Static Large Codebook. To validate our extensible codebook’s supe-
riority over starting with a large codebook, we ensured both methods ended with the same number



Under review as a conference paper at ICLR 2025

of codewords through experiments. Results on CIFAR100 showcased in Fig. [3b] demonstrate the
difficulties associated with a larger initial codebook in codeword selection for image features. Con-
versely, gradually expanding the codebook significantly improved codeword differentiation, yielding
better outcomes, such as enhanced accuracy (from 0.13 to 0.34), reduced uncertainty (0.78 vs. 1.66
for the static approach), and increased utilization of codewords.

Codebook Initialization. Section [3.1] highlights our UEFL’s capability for efficient codeword ini-
tialization via K-means, utilizing features from a finetuned encoder. The efficacy of initialization is
validated in Fig. [3c|with results from the MNIST dataset, showing enhancements across all metrics.

4.2 UEFL FOR MULTI-DOMAIN LEARNING

Table 1: UEFL outperforms all baselines on heterogeneous data. DisTrans lacks a Dropout layer,
rendering it incapable of evaluating uncertainty. CIFAR100* exhibits poor performance due to the
highly heterogeneous experimental setup. Results for lower heterogeneity are in Appendix

Methods | Data | _MNIST | FMNIST | GTSRB | CIFARI0 | CIFAR100*
| | mA mE | mA mE | mA mE | mA mE | mA mE
D, 0.874 0.212 | 0.801 0.246 | 0.670 0.623 0.676 0.172 0.110 1.74
FedAvg Do 0.848 0.231 | 0.825 0.232 | 0.677 0.634 0.622 0.178 0.072 1.86
Ds 0.618 0377 | 0.784 0.341 | 0.634 0.652 0.553 0.183 0.083 2.13
All 0.780 0.273 | 0.803 0.273 | 0.660 0.636 0.617 0.177 0.088 1.91
D1 0.856 - 0.721 - 0.898 - 0.721 - 0.289 -
DisTrans Dy 0.799 - 0.705 - 0.900 - 0.719 - 0.261 -
Ds 0.789 - 0.694 - 0.897 - 0.659 - 0.251 -
All 0.815 - 0.707 - 0.898 - 0.699 - 0.267 -
D, 0.951 0.120 | 0.857 0.147 | 0.95 0.0196 | 0.776 0.0192 | 0.362 0.728
UEFL (Ours) Dy 0.885 0.196 | 0.848 0.188 | 0.964 0.0206 | 0.713 0.0245 | 0.335 0.624
D3 0.924 0.131 | 0.845 0.167 | 0911 0.0314 | 0.671 0.0229 | 0.282 0.612
All 0920 0.149 | 0.850 0.167 | 0.942 0.0239 | 0.720 0.0222 | 0.326 0.655

We conducted comparative experiments on five datasets with introduced feature heterogeneity
against leading algorithms, specifically the baseline Federated Averaging (FedAvg) (McMahan et al.,
2017) and DisTrans (Yuan et al.,|2022)). For accuracy comparison, DisTrans generally exhibits better
performance than FedAvg, making it our primary point of comparison. Regarding uncertainty com-
parison, because DisTrans lacks Dropout layers, precluding uncertainty evaluation, we exclusively
compare uncertainty metrics with FedAvg. Deep Ensembles method is discussed in Appendix [D]

Performance. The results in Table || provide a comprehensive comparison, illustrating that our
UEFL surpasses all other state-of-the-art (SOTA) methods in both accuracy and uncertainty reduc-
tion. Specifically, UEFL improves accuracy over FedAvg by 17.94% and DisTrans by 12.88% for
the Ds distribution of the MNIST dataset. And for uncertainty, our approach reduces uncertainty by
45.42% for the MNIST dataset’s D5 distribution. Overall, our UEFL achieves accuracy improve-
ments ranging from 3% to 22.1% over DisTrans. Our UEFL improves uncertainty compared to
FedAvg, achieving reductions by 38.83%-96.24%. Figs.[4a)and {Ab]details performance across indi-
vidual data silos, highlighting our UEFL’s effectiveness in elevating the accuracy of last three silos
and degrading the uncertainty.

Codewords Perplexity. Fig. [dc|presents a perplexity comparison between our UEFL and FedAvg,
illustrating enhanced codebook utilization after assigning new codewords to Ds. This adjustment
not only benefits D3 but also improves the codebook utilization for D; and Ds.

Computation Overhead. Our approach introduces only a small codebook, thus incurring negli-
gible memory and computational overheads. Specifically, for the CIFAR10 dataset, the parameter
count for the baseline FedAvg model is 14.991M, whereas our UEFL model slightly increases to
15.491M, indicating a tiny memory increment of 3.34%. In terms of runtime, UEFL also exhibits a
minimal increase from 16.154ms to 16.733ms (3.58% increase). These findings underscore UEFL’s
suitability for deployment on edge devices. More details are included in Appendix[H
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4.3 UEFL FOR DOMAIN GENERALIZATION

For domain generalization (DG) task, the trained model needs to be evaluated on an out-of-
distribution domain and we follow the evaluation method in (Nguyen et al.,[2022;|Guo et al | [2023a).
Specifically, we perform “leave-one-domain-out” experiments, where we choose one domain as the
target domain, train the model on all remaining domains, and evaluate it on the chosen domain. Each
source domain is treated as a client.

As shown in Table [2] our UEFL enhanced mean accuracy on the RotatedMNIST dataset, elevating
it from 0.945 to 0.953. This performance exceeds that of FedSR (Nguyen et al.,[2022) at 0.947 and
FedIIR at 0.95. Similarly, on the PACS dataset, UEFL improved mean accuracy
from 0.803 to 0.8453, surpassing FedSR’s 0.834 and FedIIR’s 0.837. These results underscore
UEFL’s efficacy in tackling feature heterogeneity and superior performance on the federated domain
generalization task, beating state-of-the-art methods.

Table 2: Comparison with different methods for DG. Results are on six domains of Rotated
MNIST, four domains of PACS and their average. Our approach is compared with baselines: Fe-

dAvg(McMahan et al, 2017), FedSR(Nguyen et al., 2022), FedIIR(Guo et al.} [2023a).

M \ Rotated MNIST \ PACS
ethods

‘ Mo M15 Mgo M45 M(;o ./\/l75 ‘ Ave. ‘ A C P S ‘ Ave.
FedAvg 82.7 982 99 99.1 982 899 | 945 |78 73 92 79| 80.3
FedSR 842 98,0 989 99.0 983 90.0 | 947 |83 75 94 82| 834
FedIIR 83.8 982 991 99.1 985 908 | 950 |83 76 94 82| 83.7

UEFL (ours) | 88.1 973 976 97.8 979 932 | 953 |81 80 94 82| 84.5

4.4 ABLATION STUDY

Imbalanced Clients. We constructed an experimental setup with three data silos from D; and one
each from Dy and D3, totaling five silos. Our UEFL can also improve both accuracy (from 0.508 to
0.828) and uncertainty (from 0.256 to 0.105) in this scenario. Detailed results are in Appendix [J}

Large Number of Clients. We follow the settings in to further segment the five
training domains of Rotated MNIST into 50 sub-domains, each representing an individual client.
Our UEFL achieves the best mean accuracy of 0.9342, surpassing the performances of FedAvg at
0.908, FedSR at 0.912, and FedIIR at 0.93 as shown in Table[d] suggesting our UEFL is scalable for
a larger number of clients.

Number of codewords and segments. We investigate the impact of varying the number of initial-
ized codewords in our extensible codebook, to balance accuracy with runtime efficiency in K-means
initialization. In Fig. [5a for GTSRB, initializing with 32 codewords provides comparable accuracy
and uncertainty metrics. For more complex datasets, we enhance selection capacity using code-

Accuracy on different data silos Uncertainty on different data silos Perplexity on different data silos
| [V FedAvg [ UEFL FedAvg | [V FedAvg

- 2 2 >
I (el | W
3 g 7 @ é _ A / =3
¢ 2| ~ 2
< > 0.1 2 é %
1a 1b 1c 2a 2b 2c 3a 3b 3c 1a 1b 1c 2a 2b 2c Ga 3b 3c
silo silo
(a) Accuracy comparison. (b) Uncertainty comparison. (c) Perplexity comparison.

Figure 4: Detailed comparison for all data silos. Experiments are on MNIST. D3 presents much
lower accuracy and higher uncertainty compared to D;, D5 for FedAvg. And the perplexity results
show that our UEFL assigns new codewords to D3 to improve the performance.
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Table 3: UEFL is scalable for 50 clients and beats all SOTA methods by comparing with baselines:

FedAvg(McMahan et al}[2017), FedSR(Nguyen et al |, [2022), FedIIR(Guo et al | [2023a).

Methods ‘ #Clients ‘ Backbone ‘ Domains ‘ Average
\ \ | Mo Mis Msg Mys Meo  Mys |

FedAvg 50 ResNetl8 | 77.9 959 969 97 96 81.2 90.8

FedSR 50 ResNetl8 | 78.3 957 963 97.1 96 84 91.2

FedIIR 50 ResNetl8 | 84 96.8 97.7 977 974 845 93

UEFL (ours) 50 ResNetl8 | 86.4 955 964 969 947 90.6 93.42

Table 4: Results show our UEFL is also scalable for 100 clients and beats all SOTA methods fol-
lowing the experimental setup in FedCR (Zhang et al, [2023).

Methods | #Clients | EMNIST-L FMNIST CIFAR10 CIFAR100
FedAvg (McMahan et al.| [2017) 100 95.89 88.15 76.83 32.08
FedSR (Nguyen et al.[[2022 100 86.22 85.55 61.47 40.82
FedCR (Zhang et al |2 100 97.47 93.78 84.74 62.96
UEFL (ours) 100 98.29 93.93 86.11 63.37

word segmentation. Fig. [5b]demonstrates that segmenting codewords into 4 parts leads to enhanced
performance on CIFAR100.

Performance of different number of codewords Performance of different number of segments Performance of different thresholds

= = 08 [F% Accuracy(CIFAR100) = 08
z 08 z —*—Acc:racyteTSRB) g
S = “ |- Uncertainty(GTSRB) ~ 06
g 08 2 06 ~ _|-A Uncertainty(CIFAR100) L
® ® ° 04
g 0.4 % 0.4 s % cccccc
""" 02 Uncertainty
02 02 i Perplexity
00 00
00 I
8 16 32 64 128 256 1 2 3 4 00 01 02 03 04 05 06
Codebook Size Number of Segments Threshold
(a) 32 codewords are sufficient. (b) Codeword segments. (c) Uncertainty threshold.

Figure 5: (a) 32 initialized codewords are sufficient for our UEFL. (b) We need 2 segments for
GTSRB but 4 segments for CIFAR100. (c) Overall, a smaller threshold performs better.

Uncertainty Threshold. In our UEFL, the uncertainty evaluator plays a pivotal role in identifying
heterogeneous data without needing direct data access, with the threshold selection being critical. As
illustrated in Fig.[5c| a lower threshold imposes stricter criteria, pushing the model to achieve higher
performance. However, it’s important to recognize that beyond a certain point, further reducing the
threshold may not significantly enhance outcomes but will increase computational overhead. Thus,
in such cases, there is a trade-off between runtime and performance.

5 CONCLUSION

In this work, we address the challenge of data heterogeneity among silos within federated learning
setting by introducing an innovative solution: an extensible codebook designed to map distinct data
distributions using varied codeword pools. Our proposed framework, Uncertainty-Based Extensible-
Codebook Federated Learning (UEFL), leverages this extensible codebook through an iterative pro-
cess that adeptly identifies data from unknown distributions via uncertainty evaluation and enriches
the codebook with newly initialized codewords tailored to these distributions. The iterative nature of
UEFL, coupled with efficient codeword initialization using K-means, ensures codewords are closely
matched with the actual data distribution, thereby expediting model convergence. This approach
allows UEFL to rapidly adjust to new and unseen data distributions, enhancing adaptability. Our
comprehensive evaluation across various prominent datasets showcases UEFL’s effectiveness.
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A DISCRETIZATION FOR GENERALIZATION

Theoretically, the inclusion of the discretization process offers two key advantages: (1) enhanced
noise robustness, and (2) reduced underlying dimensionality. These benefits are demonstrated in the

following two theorems. (Liu et al.| 2021)).

Notation: h is input vector, h € H € R™. L is the size of codebook, GG is the number of
segments, ¢(-) is discretization process, ¢(-) is any function (model). Given any family of sets
S = {S4,..., Sk} with S1, ..., S, C H, we define ¢7 by ¢ = W{h € Sy}¢(h) forall k € [K],
where [K] = {1, ..., K'}. And we denote by (Qx)rc[rc) all the codewords.

Theorem 1: (with discretization) Let Sy, = {Qx} for all k € [LY]. Then, for any § > 0, with
probability at least 1 — 0 over an iid draw of n examples (h;)_q, the following holds for
any ¢ : R™ — R and all k € [LC] :if |¢7 (k)| < a for all h € H, then

Eh[d)k( (h,L,G))] — *Z(bk (h;, L,G))| = O<a\/Gln(L)2—|—nln(2/5)

), €))

where no constant is hidden in O.

Theorem 2: (without discretization) Assume that ||h||s < Ry for allh € H € R™. Fix C €
argming{|C| : C C R™, H C U, B[]} where Ble] = {x € R™ : || — ||z < Ry /(2v/n)}.
Let Sy, = Blcg] for all k € [|C]] where ¢, € C and Ug{ci} = C. Then, for any 6 > 0, with
probability at least 1 — § over an iid draw of n examples (h;)"_,,the following holds for
any ¢ : R™ — Rand all k € [|C|] :if |¢7(h)| < « for all h € H and |¢3 (h) — ¢7 ()] <
k|| — R'||2 for all hyh' € S, for all h,h' € Sy, then

Enloy, (h)] ), (10)

B lias(h» mln(4/nm) + In( 2/5) SRy
n i (hi) 2n ﬁ

where no constant is hidden in O and 3, = gk;(% S Wi € Blel}).

Based on these two theorems, we can determine that the performance gap between training and test
data is smaller when discretization is applied, due to the following two points:

13
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e There is an additional error without discretization (i.e. %) in the bound of Theorem 2.

This error disappears with discretization in the bound of Theorem 1 as the discretization
process reduces the sensitivity to noise.

* The discretization process reduces the underlying dimensionality of mln(4+/nm) without
discretization (in Theorem 2) to that of GIn(L) with discretization (in Theorem 1). Since
the number of discretization heads GG (eg. G is 1, 2, or 4 in our case) is always much smaller
than the number of dimensions m, the inequality GIn(L) < mln(4\/nm) consistently
holds.

B DIFFERENT DATA HETEROGENEITY FOR UEFL

B.1 LOWER DATA HETEROGENEITY ON CIFAR100

To provide a detailed comparison with the baseline, we used a VGG16 backbone to test CIFAR100
under multiple settings: (1) Local Training: all data trained together without a distributed setting;
(2) FedAvg (w/o hete): CIFAR100 split into 5 clients, each with 10,000 images, to evaluate FedAvg
performance; (3) FedAvg (w/ hete): images for the 5 clients were rotated by -30°, -15°, 0°, 15°, and
30°, respectively, to introduce data heterogeneity, and FedAvg performance was evaluated; (4) UEFL
(w/ hete): tested under the same heterogeneous setup. We trained models from scratch and with pre-
trained weights. Results are presented in Table 3} showing that UEFL consistently outperforms
FedAvg in both cases.

Table 5: Under lower data heterogeneity on CIFAR100, UEFL continues to outperform FedAvg for
both training from scratch and using pre-trained weights.

Training Strategy | Local training FedAvg (w/o hete) ~FedAvg (w/ hete) UEFL (w/ hete)

From scratch 0.3852 0.2447 0.0852 0.1062
Pre-trained 0.6604 0.6496 0.5005 0.5619

B.2 DIFFERENT DATA HETEROGENEITY ON CIFAR100

By progressively increasing the rotation angles to simulate greater data heterogeneity, we evaluated
UEFL’s performance under varying levels of heterogeneity. As shown in Table [6] while overall
performance decreases with higher heterogeneity, UEFL consistently outperforms FedAvg, with the
performance gap widening as heterogeneity increases, demonstrating UEFL’s superiority in address-
ing data heterogeneity.

Table 6: With different rotation angles, UEFL keep outperforms FedAvg.

Rotation Angles | FedAvg UEFL

{-10°,-5°,0°,5°,10°} | 05935 0.6232
{-20°,-10°,0°, 10°,20°} | 0.5469  0.6039
{-30°,-15°,0°, 15°,30°} | 0.5106  0.56

{-40°,-20°,0°,20°,40°} | 04799  0.5311
{-50°,-25°,0°,25°,50°} | 0.4494 0.5074
{-60°,-30°,0°,30°, 60°} | 0.4368  0.4939
{-70°,-35°,0°,35°,70°} | 0.4188 0.4737

C OPTIMAL TRAINING EPOCHS OF BASELINES

To fully demonstrate the efficacy of our UEFL, besides evaluating baselines with the same total
training epochs as UEFL, we remove the additional training epochs from UEFL iterations and obtain
the optimal performance, for more fair comparison.

14
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Table 7: UEFL outperforms all baselines without additional training epochs.

Methods | MNIST | FMNIST | GTSRB | CIFARI0 | CIFARI00
| mA mE | mA mE | mA mE | mA mE | mA mE
FedAvg 0.782 0.261 | 0.801 0.289 | 0.657 0.645 0.618 0.173 0.093 1.74

UEFL (Ours) | 0.920 0.149 | 0.850 0.167 | 0.942 0.0239 | 0.720 0.0222 | 0.326 0.655

D DEEP ENSEMBLES

We evaluated Deep Ensembles by creating 5 ensembles to assess uncertainty for our method. Ta-
ble [8] shows a comparison between Deep Ensembles and Monte Carlo Dropout. From the results,
we observe that the accuracy when using Deep Ensembles is quite similar to Monte Carlo Dropout,
apart from the stochastic variations. This is expected, as the accuracy is not directly impacted by
the choice of uncertainty evaluation method. However, the uncertainty values for Deep Ensem-
bles are higher than those for Monte Carlo Dropout, likely due to the use of only 5 ensembles for
evaluation to reduce computational time. In conclusion, while the accuracy is comparable, Deep
Ensembles require significantly more computational resources due to the need to train multiple net-
works. Therefore, Monte Carlo Dropout is a more efficient and suitable choice for our approach.

Table 8: Comparison of Deep Ensembles and Monte Carlo Dropout for uncertainty evaluation.

Methods ‘ MNIST ‘ FMNIST ‘ GTSRB ‘ CIFAR10 ‘ CIFAR100
| mA mE | mA mE | mA mE | mA mE | mA mE

Monte Carlo Dropout | 0.920 0.149 | 0.850 0.167 | 0.942 0.0239 | 0.720 0.0222 | 0.326 0.655
Deep Ensemble 0926 0.211 | 0.853 0.289 | 0.940 0.041 | 0.717 0.043 | 0.331 0.873

E NEURAL COLLAPSE

We conducted experiments on MNIST and CIFAR-100 based on the framework presented in (Pa-|
[2020). According to the paper, when training continues until the training error reaches 0
(i.e. training accuracy exceeds 99.9% for MNIST/CIFAR-10), the Terminal Phase of Training (TPT)
begins, during which neural collapse (NC) emerges. To validate this, we first conducted local train-
ing by training on all data together. Our results confirmed the paper’s claim that additional training
beyond the zero-error point leads to improved performance. We then extended these experiments to
the federated learning setting. The detailed results are presented in Table[9]

From these experiments, we observed the following findings: 1. The dropout layer must be removed;
otherwise, the training accuracy cannot exceed 99.9% (e.g., the final training accuracy for MNIST
is limited to 96% with dropout). 2. Compared to local training, more training epochs are required to
reach the TPT in federated learning. For example, on CIFAR-100 with data heterogeneity, federated
learning requires 44 rounds of training (44 x 5 epochs), while local training achieves TPT in 38
epochs. 3. Although neural collapse yields improved performance, UEFL consistently outperforms
it, especially on more complex datasets like CIFAR-100. This is partly because removing dropout
layers for neural collapse increases the risk of overfitting.

Table 9: Comparison with neural collapse (NC).

Method | MNIST  CIFAR100

ZEro-error 0.9375 0.3473
last epoch (NC) | 0.9584 0.3482
UEFL (Ours) 0.9778 0.5074
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F COMPUTATION COST

Table [I0] compares FedAvg and UEFL. The parameter count for UEFL in this table represents the
final model size, including 256 codewords after two iterations starting from 64. In our experiments,
256 is the largest final codebook size across all datasets. For simpler datasets like MNIST, UEFL
demonstrates an even lower computation cost.

Table 10: With different rotation angles, UEFL keep outperforms FedAvg.

Method \ #Params (M) CPU runtime (ms) GPU runtime (ms)
FedAvg 14.991 16.102 16.154
UEFL (Ours) 15.491 16.611 16.733

G CONVERGENCE CURVES

For the experiments on the CIFAR10 dataset, in Fig. |§|, at round 40, after we assign new codewords,
rapid performance gains are evident. Remarkably, the training process demonstrates swift conver-
gence, typically within just five rounds. For illustrative clarity and to underscore the differential
impact, we extend the training to 20 rounds in subsequent iterations, showcasing the accelerated
and effective adaptation of our approach. In addition, after 60 rounds, even if we keep adding new
codewords, the increased perplexity denotes a higher utilization of the codebook. However, there
is no significant improvement in accuracy or uncertainty. Fig. [f]also shows a large boost with our
UEFL on MNIST.

MNIST arARl0 araR10 araR10

E) T w @ % % 6w T ® % @ % % 6 m T % % % o @ @ %
round round round

(a) (b) (<) (d)

Figure 6: Learning curves of MNIST and CIFAR10. (a) Accuracy of MNIST. (b) Accuracy of
CIFARI1O. (c) Uncertainty of CIFAR10. (d) Perplexity of CIFAR10.

For the experiments on the FMNIST and GTSRB datasets, as depicted in Fig.[7} we introduce new
codewords to the codebook only once. Notably, there is a clear “performance jump” evident in all
six figures, showcasing the rapid adaptation of our UEFL to new data distributions.

H OuUR UEFL FOR LABEL HETEROGENEITY

Similar to (Tang et al 2022} [Guo et all, 2023b), we introduce label heterogeneity with dirichlet
distribution (o« = 0.1). The results in Table [11] show that our UEFL can also tackle the label
heterogeneity when compared to FedAvg and performs better than VHL for CIFAR10 even if it
cannot perform as well as FedBR.

Table 11: Comparison with different methods on data with label heterogeneity.

Method \ FMNIST \ CIFAR10
\ FedAvg VHL UEFL (ours) \ FedAvg VHL FedBR UEFL (ours)
mA \ 87.45 91.52 90.59 \ 5899 6123 64.61 62.67
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Figure 7: Learning curves of FMNIST and GTSRB. (left) Accuracy results. (mid) Uncertainty
results. (right) codeword loss results.

I K-MEANS INITIALIZATION

Fig. [§] illustrates this concept: gray points represent features from the trained encoder, clustered
according to their data distributions. While direct data access is restricted, differentiation by un-
certainty allows us to identify and utilize the centroids of these clusters via K-means for codeword
initialization.

And to bolster the robustness of our methodology, we dissect features into smaller segments—using
factors like 2 or 4—to pair them with multiple codewords, thus covering the entirety of a feature
vector as illustrated in Figure 3. This segmentation exponentially increases the codeword pool to n?

or n*, ensuring a robust representation capacity.
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Figure 8: (a) Kmeans initialization for heterogeneous data silos. (b) Workflow of discretizer.
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Table 12: Our UEFL improves the performance of unbalanced data.

Data \ Silo \ FedAvg \ UEFL
\ | Acc  Entropy | Acc  Entropy

s1, | 0.964 0.0312 | 0952 0.0291
D sy, | 0936 0.0252 | 0.974 0.0170
s1, | 0.964 0.0499 | 0.944 0.0308

Dy | s9, | 0796 0.1477 | 0.836  0.1261
Ds | sz, | 0508 0.2560 | 0.828 0.1048

J IMBALANCED CLIENTS

As shown in Table[T2] our UEFL also works for imbalanced data silos when there are three clients
sampled from the same domain. Both accuracy and uncertainty get improved, especially for the
third domain.

K UEFL OPTIMIZATION

Number of Codewords. We investigate the impact of varying the number of initialized codewords
within our extensible codebook in Table[I3] aiming to strike a balance between achieving competi-
tive accuracy and optimizing the runtime efficiency of the K-means initialization. Our findings, for
the GTSRB dataset, reveal that starting with 32 or 64 codewords offers comparable accuracy and
uncertainty metrics to larger codebooks, while significantly enhancing the efficiency of the K-means
initialization. This efficiency highlights the efficacy of our proposed approach.

In addition, for more complex datasets, requiring a broader representation of image features but
with minimal initialization time, we employ codeword segmentation to enhance selection capacity
efficiently. We explore the impact of segmentation factors of 1, 2, and 4, starting with 16 codewords
for GTSRB and 32 for CIFAR100. Our findings indicate that, particularly for CIFAR100, splitting
vectors into 4 segments with only 32 initialized codewords achieves impressive performance. Sim-
ilarly, for GTSRB, segmentation into 2 parts is adequate for effective image feature representation.

#Codes | Data | Lcoge | mPT mE|  mA?T | codebook growth

Dy 3.61 4.78 202  0.257
8 Dy 3.68 4.86 201 0265 |8 — 16 — 32 — 64
Ds 3.38 4.81 2.03  0.249
D 3.41 1046 136  0.515
16 Dy 3.55 10.54 137  0.506 | 16 — 32 — 64
Ds 3.23 10.61 1.39  0.486
D1 0.127 2591 0.0412 0.956
32 Dy 0.0885 2542 0.0313 0.966 | 32 — 64 — 128
Ds 0.178 2637 0.117 0911
D1 0.0975  26.79 0.0086 0.965
64 Dy 0.0853 26.32 0.0084 0.974 | 64 — 128
Ds 0.1907 27.23 0.0166 0.926
Ds 0.0512  38.73 - 0.954
128 Dy 0.0453  34.16 - 0.968 | 128 — 256
Ds 0.0726  43.42 - 0.917
D 0.0543  41.20 0.0043 0.962
256 Dy 0.0301  38.96 0.0054 0.959 | 256 — 512
Ds 0.0577  50.57 0.0103 0.904

Table 13: Number of codewords. Experiment are on GTSRB dataset. - denotes value close to 0.
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Table 14: The experiments were conducted on the MNIST dataset with 128 initialized codewords
and segmentation factor 1. The model with K-means initialization outperforms without it.

Codebook | Data | Leoge  mP mE mA

D; | 0.6202 6.26 0.125 0.888
w/o init Dy | 0.6063 599 029 0.554
Ds | 0.6096 535 0.267 0.622
Dy | 0.0862 59.64 0.0935 0.945
w/ init Dy | 0.0785 57.58 0.1604 0.906
Ds | 0.0779 99.38 0.1509 0.929

Codebook Initialization. Section highlights our UEFL framework’s capability for efficient
codeword initialization via K-means, utilizing features from a trained encoder. The efficacy of
K-means initialization is validated in Table with results from the MNIST dataset, showing en-
hancements across all metrics.

Extensible Codebook v.s. Static Large Codebook. To validate our extensible codebook’s superi-
ority over starting with a large codebook, we ensured both methods ended with the same number of
codewords through experiments. For the CIFAR100 dataset, the extensible codebook was initially
set to 128 codewords and expanded twice, while the static codebook was fixed at 512 codewords.
Results showcased in Table T3] demonstrate the difficulties associated with a larger initial codebook
in codeword selection for image features. Conversely, gradually expanding the codebook signif-
icantly improved codeword differentiation, yielding better outcomes, such as enhanced accuracy
(0.375 for Domain 1) and reduced uncertainty (0.78 vs. 1.66 for the static approach). In addition,
perplexity results reveal increased utilization of our extensible codebook, offering clear evidence of
our design’s superiority.

Table 15: Our extensible codebook (Extend) outperforms the static larger codebook (Static) on all
evaluation metrics.

Codebook | Data | Lcoge —mP mE mA

D1 310 1754 1.66  0.142
Static Dy 291 1741 .76 0.135
Ds 263 1682 1.76  0.112

Dy 1.28 1931 0.7822 0.375
Extend Dy 0976 2742 0.6665 0.341
Ds 0.978 22.00 0.7112 0.304

Different Uncertainty Threshold. In our UEFL, the uncertainty evaluator plays a pivotal role in
identifying heterogeneous data without needing direct data access, with the threshold selection be-
ing critical. An optimal threshold enhances the model’s ability to distinguish between data silos,
leading to quicker convergence. As illustrated in Fig.[9] a lower threshold imposes stricter criteria,
pushing the model to achieve higher precision, thereby improving performance metrics. However,
it’s important to recognize that beyond a certain point, further reducing the threshold may not sig-
nificantly enhance outcomes but will increase computational overhead. Thus, in such cases, there is
a trade-off between runtime and performance.
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Figure 9: Results on GTSRB dataset with 64 initialized codewords with segment 1. Overall, a
smaller threshold performs better.
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