
Under review as a conference paper at ICLR 2022

GENETIC ALGORITHM FOR CONSTRAINED MOLECU-
LAR INVERSE DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

A genetic algorithm is suitable for exploring large search spaces as it finds an ap-
proximate solution. Because of this advantage, genetic algorithm is effective in
exploring vast and unknown space such as molecular search space. Though the
algorithm is suitable for searching vast chemical space, it is difficult to optimize
pharmacological properties while maintaining molecular substructure. To solve
this issue, we introduce a genetic algorithm featuring a constrained molecular in-
verse design. The proposed algorithm successfully produces valid molecules for
crossover and mutation. Furthermore, it optimizes specific properties while adher-
ing to structural constraints using a two-phase optimization. Experiments prove
that our algorithm effectively finds molecules that satisfy specific properties while
maintaining structural constraints.

1 INTRODUCTION

When the search space is complex or partially known, it is difficult to optimize current solutions
using gradient descent (Jin & Ha, 1997; Ahmad et al., 2010). Because genetic algorithms find ap-
proximate solutions, they are effective in exploring vast unknown space such as molecular search
space. (Holland, 1992; Jin & Ha, 1997; Ahmad et al., 2010; Henault et al., 2020). In drug discovery,
optimizing complex pharmacological properties using genetic algorithms have been widely studied
and extended (Leardi, 2001).

Deep learning-based molecular design is being actively conducted to improve pharmacological
properties and has served as a powerful tool (Gómez-Bombarelli et al., 2018). However, in-
ferred drug candidates depending on the architecture did not satisfy the heuristic guidelines set
by chemical researchers (George & Hautier, 2020). Furthermore, this not only produces non-
synthesizable molecules but also causes optimization problems for non-linear structure-activity re-
lationships (Gómez-Bombarelli et al., 2018; Vanhaelen et al., 2020).

Most molecular design methods first generate molecular structures and then calculate properties of
the structures resulting in high computational cost (Duvenaud et al., 2015; Gilmer et al., 2017; Fein-
berg et al., 2018; Yang et al., 2019). Conversely, inverse molecular design specifies target properties
in advance and then systematically explores the chemical space to discover molecular structures that
have the desired properties (Sanchez-Lengeling & Aspuru-Guzik, 2018).

Recent advances in molecular inverse design of genetic algorithms compete with or even surpass
deep learning-based methods (Yoshikawa et al., 2018; Jensen, 2019; Nigam et al., 2019; Polishchuk,
2020; Ahn et al., 2020; Nigam et al., 2021b;a). This indicates that the computational methods of ge-
netic algorithms in a chemical domain are more effective for exploring the vast chemical space (Ahn
et al., 2020). However, the genetic operators cause difficulty in lead optimization where the molec-
ular structure is constrained (Hasançebi & Erbatur, 2000).

A common molecular design strategy is to narrow the chemical search space, starting with known
potential molecules (Lim et al., 2020). The scaffold, which is the ”core” of the molecule is inten-
tionally maintained to preserve basic bioactivity (Hu et al., 2016). This is directly involved in the
interaction with the target protein (Zhao & Dietrich, 2015; Lim et al., 2020). In lead identification
process, scaffolds with biological activity to the target protein are identified (Zhao & Dietrich, 2015).
In lead optimization process, it is important to optimize the SAR(Structure-Activity Relationship)
properties while staying in the chemical space associated with the privileged scaffold (Langevin
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et al., 2020). Lead optimization can be described as a multiple optimization problem in scaffold
constraints (Langevin et al., 2020). Most studies have focused on the application of generative mod-
els to the field of medicinal chemistry, and studies related to structure-constrained lead optimization
have not been extensively explored.

In this regard, we introduce a genetic algorithm featuring constrained molecular inverse design. We
use graph and SELFIES descriptors to generate valid molecules through a two-phase GA-based
pipeline. In addition, we introduced a two-phase optimization to ensure that molecular generation
does not fail to optimize for specific properties while adhering to structural constraints.

2 RELATED WORK

Among the various methods for constrained optimization in a genetic algorithm, the basic one is de-
signing effective penalty functions (Yeniay, 2005). The functions, which impose a penalty to fitness
value, are widely used for constrained optimization (Yeniay, 2005; Fletcher, 2013). The individual
fitness value is determined by combining the objective function value with the constraint violation
penalty. A dominant relationship exists between the constraint penalty and the objective function
value (Coello, 2000).

One of the various methods is focusing on the selection of practicable solutions. To solve the prob-
lem of constrained optimization using a genetic algorithm, a two-phase framework which is Multi-
Objective Evolutionary Algorithm (MOEA) was introduced (Venkatraman & Yen, 2005). In the first
phase, MoEA confirms the constraint satisfaction of solutions using a penalty function. The algo-
rithm ranks solutions based on violations of constraints, completely disregarding objective function.
When one or more feasible solutions are identified, the second phase continues. In the second phase,
individual fitness is reassigned according to the objective function-constraint violation space and
bi-objective optimization is performed (Venkatraman & Yen, 2005).

Structure-constrained molecular optimization work was first presented in the JT-VAE (Jin et al.,
2018a) study. In this study, they create a tree-structured scaffold for constraining the structure of a
molecule and then generate a molecular graph using a message-passing network (Jin et al., 2018a).
GCPN (You et al., 2018) uses goal-directed reinforcement learning to generate molecules with de-
sired properties and similarities. VJTNN (Jin et al., 2018b) treated molecular optimization as a
graph-to-graph translation problem and solved it through MMPA(Matched Molecular Pair Anal-
ysis) (Dalke et al., 2018) dataset. DEFactor (Assouel et al., 2018) generated molecules with op-
timized penalized LogP while maintaining molecular similarity through differentiable conditional
probability-based graph VAE.

Glen & Payne proposed a method for generating molecules through domain-specific rule-based
crossover and mutation to ensure molecular structure constraints (Glen & Payne, 1995). To produce
offspring molecules with the parent’s substructures, the crossover is used as a strategy to cut the
end part of the molecule and link it to the end part of another similar molecule. To produce new
molecules, twelve operators of mutation were defined: atomic insertion, atomic deletion, etc (Glen
& Payne, 1995).

ChemGE (Yoshikawa et al., 2018) uses the grammatical evolution of SMILES (Simplified
Molecular-Input Line-Entry System) (Weininger, 1988) to optimize penalized LogP and KITH pro-
tein inhibitors. Their study converts SMILES into integer sequences using a chromosomal mapping
process (Yoshikawa et al., 2018). Subsequently, operators of mutation are used to optimize gram-
matical evolutionary molecular populations. GA-GB (Jensen, 2019) and MolFinder (Kwon & Lee,
2021) defined expert rules for operators of crossover and mutation to ensure the validity of the struc-
ture when generating molecules. GEGL (Ahn et al., 2020) created optimized SMILES strings for
penalized LogP by presenting a reinforcement learning contained expert policy.

Various studies have proposed SMILES-based approaches since they are convenient to convert a
complex 3D chemical structure to a simple 1D string (Yoshikawa et al., 2018; Kwon & Lee, 2021;
Ahn et al., 2020). However, adding atoms or square brackets to a string indeed changes the structure
globally not locally (Dalke, 2018). It is difficult to generate a completely valid molecule because
SMILES are context sensitive (Dalke, 2018; Kwon & Lee, 2021). Recently, the development and
application of SELFIES(Self-Referencing Embedded Strings), which is a 100% valid string repre-
sentation, has been implemented in the molecular inverse design to cope with this problem (Krenn
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et al., 2020). The GA-D (Nigam et al., 2019) generated SELFIES strings using a random operator of
mutation while maintaining validity. Furthermore, this study maintained the molecular diversity of
the population through an adaptive penalty of the deep neural discriminator (Nigam et al., 2019). The
STONED (Nigam et al., 2021b) study was introduced for performing local chemical space search
and molecular interpolation using SELFIES. Furthermore, the mutation site was limited to terminal
10% to maintain the molecular scaffold (Nigam et al., 2021b). SELFIES makes it possible to gen-
erate new molecules through the random operation without relying on expert rules in operations of
mutation (Nigam et al., 2021b).

3 PROPOSED METHOD

In this section, we introduce a novel genetic algorithm for constrained optimization in molecular
inverse design. Our algorithm generates molecules suitable for the target properties while constrain-
ing the structural similarity of a target molecule. We use two strategies to satisfy the constraint
conditions. First, our algorithm constructs a population that always satisfies the structural similarity
condition in the first phase. Second, the algorithm selects the appropriate molecular descriptors ac-
cording to the genetic operators to ensure the validity of the molecule. The detailed whole process
is shown in figure 1.

Figure 1: Illustration of genetic algorithm process for constrained optimization

The algorithm starts by constructing a population depending on whether the target molecule or
similar molecules exist in the dataset. In the case of the target molecule or its similar molecule
existing in the dataset, the population consists of molecules above the similarity calculated by the
similarity between the molecules in the dataset and the target molecule. On the contrary, a target
molecular SMILES is randomly arranged to construct a population according to the population size.

Next, our algorithm confirms constraint satisfaction from the population and proceeds with bi-
optimization for property and constraint conditions. The detailed process is explained in the sub-
sections below.
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3.1 TWO-PHASE MOLECULAR OPTIMIZATION

In the work of constrained molecular optimization, the optimization often failed when a large num-
ber of molecules were subject to penalty included in the population. Therefore, we focused on en-
suring that the population always contains only feasible solutions. Inspired by MOEA (Venkatraman
& Yen, 2005), we divided the process into constraint satisfaction and bi-optimization, each of which
is further explained in the following.

Constraint Satisfaction for Population In this phase, the algorithm searches for feasible solu-
tions considering only the structural similarity. The objective function is not considered in this
process. The algorithm measures the Tanimoto coefficient of how similar it is to the reference
molecule(Nigam et al., 2019). The similarity between the target molecule m and the product
molecule m′ is expressed as sim(m,m′). SimilarityPenalty(m) is given to each molecule ac-
cording to as follows:

SimilarityPenalty(m) =

{
0, sim(m,m′) ≥ δ

−106, sim(m,m′) < δ
(1)

SimilarityPenalty(m) is set to 0 if sim(m,m′) ≥ δ (Nigam et al., 2019). Otherwise, a death
penalty of −106 is given. Next, the algorithm assigns fitness value to each individual by equation 2
and selects only feasible solutions. A fitness function is expressed as follows:

F (m) = SimilarityPenalty(m) (2)

Bi-Optimization for Property and Constraint Condition In this phase, the algorithm switches
to bi-optimization for the fitness function value and the constraint condition when one or more
feasible solutions are found. Our work simultaneously is to maximize the penalized LogP value
while retaining the molecular structure. The penalized LogP (J(m)) of each molecule is expressed
as follows:

J(m) = LopP (m)− SAScore(m)−RingPenalty(m) (3)

The higher score for J(m) has a more suitable structural profile as a drug (Yoshikawa et al., 2018).
LogP (m) is the octanol-water partition coefficient for the molecule m. SAScore(m) is the Syn-
thetic Accessibility score, which is a quantitative score for whether a molecular structure can be
synthesized (Ertl & Schuffenhauer, 2009). The higher the score, the more difficult it is to synthesize
molecules. By giving a penalty according to the score, it is possible to prevent the generation of
molecules that cannot be synthesized.RingPenalty(m) is used to give a penalty to prevent the cre-
ation of molecules with unrealistically many carbon rings. This function is a penalty for molecules
with seven or more rings of carbon (Yoshikawa et al., 2018).

The algorithm reassigns the fitness value to each individual according to equation 4 and sorted by
rank. A fitness function can be represented as follows:

F (m) = J(m)− SimilarityPenalty(m) (4)

We wanted not only to preserve the superior individuals but also to replace the inferior individuals
through reproduction. A portion of the generated molecules are replaced while the rest of the are
kept through the selection module. The probability of replacing a molecule is determined using a
smooth logistic function based on a ranking of fitness (Nigam et al., 2019).

3.2 GENETIC OPERATORS

In chemistry, expert rules are required to create valid molecules through the operation of crossover
and mutation. We used graph molecule descriptor for crossover and SELFIES molecule descriptor
for mutation. The detailed process is shown in figure 2.
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Crossover Performing one-point crossover on a string is faster than the operation of a graph.
However, arbitrarily cutting strings does not take the molecular structure into account. We used an
operator of graph-based crossover presented in GB-GA (Jensen, 2019) Considering the structure,
our algorithm distinguishes between cutting and not cutting rings. There are two types of cutting
methods considering the molecular structure: non-ring cut and ring cut. The probabilities are all the
same in both cases.

An operation of the crossover is used to maintain a diversity of individuals. This operation first
selects two-parent molecules from the population randomly. Next, it performs a ring crossover or
non-ring crossover according to a set probability. The bonding of fragmented molecules proceeds
according to the rules of reaction. It generates a minimum of 0 to a maximum of 4 new offspring
molecules through an operation of crossover. To maintain the population, only one is randomly
selected from the produced offspring molecules.

Mutation An operation of mutation uses the SELFIES (Krenn et al., 2020) strings, which can pro-
duce 100% valid molecules with string conversion without special rules. The SELFIES strings can
maintain the validity of the molecule even when a random point operation of mutation is performed
in STONED (Nigam et al., 2021b). Therefore, we performed a one-point mutation using SELFIES
which is lighter and more efficient than graph-based. There are three types of one-point mutation
to maintain a diversity of individuals: atom replacement, atom insert, and atom deletion. The prob-
abilities are all the same in all three kinds of cases. Although the SELFIES strings produce valid
molecules, we wanted the mutation to act as bioisosteric replacements. We restricted the range of
the operation of mutation to the terminal 10% (Nigam et al., 2021b). When a mutation is performed,
the specified probability determines which operator of a mutation to perform. The position of the
point is randomly determined within the specified range, and then the corresponding operation is
performed.

Figure 2: Illustration of genetic operations. A-1) Operators of crossover A-2) Operation of crossover
B-1) SMILES to SELFIES transformation and mutation restriction sites(terminal 10%) B-2) Opera-
tors of mutation
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4 EXPERIMENTS

4.1 DATA SET

The experiments used 250,000 commercially available molecules extracted from ZINC (Irwin et al.,
2012). LogP , SAScore, and RingPenalty constituting J(m) for the molecule m are normalized
based on the corresponding data set. The optimization target is 800 molecules with the lowest pe-
nalized logP value in the data set.

4.2 SIMULATION RESULTS

In this section, we compared our model with various baseline models using penalized LogP . All
generated molecules satisfy the constraint that the structural similarity between the original molecule
and the generated molecule is higher than the fixed threshold.

This work is a realistic scenario where drug discovery usually starts from known molecules, such as
existing drugs (Besnard et al., 2012; Lim et al., 2020). For comparison with other baseline models,
the molecular generation size was limited to 81 SMILES lengths. This is because the value of LogP
varies depending on the number and type of atoms, and a good score can be obtained by increasing
the molecular size to make it arbitrarily large (Jensen, 2019). δ is 0.4 or 0.6 which is the Tani-
moto similarity threshold. For each molecule, the maximization was performed for 20 generations
to measure the greatest. The improvement measurement results are shown in Table 1.

δ ≥0.4 δ ≥0.6
Improvement Sucess Improvement Sucess

JT-VAE 0.84±1.45 84% 0.21±0.71 46.4%
GCPN 2.49±1.30 100% 0.79±0.63 100%
MMPA 3.29±1.12 - 1.65±1.44 -

DEFactor 3.41±1.67 85.9% 1.55±1.19 72.6%
VJTNN 3.55±1.67 - 2.33±1.17 -

GA-DNN 5.93±1.41 100% 3.44±1.09 99.8%
Constrained GA(Ours) 5.53±1.29 100% 3.67±1.29 100%

Table 1: Comparison on constrained improvement of penalized LogP of specific molecules

Figure 3: Distribution of penalized LogP

Figure 3 shows the distribution of how much penalized LogP has improved compared to the original
molecules. The penalized LogP of molecules was maximized, and the distribution shifted from right
to left. In the case of the δ ≥ 0.4, it can be seen that the distribution of penalized LogP is more
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skewed to the right than δ ≥ 0.6 because the structural restriction is lower. In Figure 4, molecules
with maximized penalized LogP were visualized while maintaining structural constraints.

Figure 4: Compounds generated at the twentieth iteration (left : δ ≥ 0.4 / right : δ ≥ 0.6)

We focused on cannabidiol molecules which are expected to have promise for targeting various
disease proteins. Cannabidiol is a natural product extracted from cannabis and is a non-psychoactive
ingredient. This is attracting attention as a promising molecule that can improve Alzheimer’s disease
symptoms by reducing beta-amyloid accumulation and amyloid plaque prodcution, which affects
the pathogenesis of Alzheimer’s disease (Cooray et al., 2020; Jiang et al., 2021). We experimented
with penalized LogP molecular optimization of cannabidiol. The Tanimoto similarity coefficient is
set to 0.6, and optimization is carried out up to the 19th generation. The Murcko Scaffold (Bemis
& Murcko, 1996) of the cannabidiol molecule is compared with the generated molecules. Duplicate
molecules are removed and a total of 11 molecules are compared. The visualization result is shown in
figure 5. In this figure, the yellow site is a molecular scaffold and the red sites are the altered points
in the target molecule. Although some generations do not retain the scaffold, it can be seen that
most of the generated molecules do retain the scaffold. Moreover, the scaffolds of all the generating
molecules contain cannabidiol scaffolds as substructures. Furthermore, Hydrophobic carbon-valent
functional groups were mainly added which can improve the penalized LogP value.

Figure 5: Optimization of Penalized LogP for Synthetic Cannabidiol(δ ≥ 0.6)
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5 CONCLUSION

In molecular inverse design, the computational method of genetic algorithms is effective in exploring
vast chemical spaces. A common molecular design strategy is to narrow the chemical search space,
starting with known potential molecules. In lead optimization process, the scaffold, the ”core” of
the molecule, is intentionally maintained to preserve basic bioactivity. This process of optimizing
SAR(Structure-Activity Relationship) properties is a multi-objective problem that maintains chem-
ical space associated with the privileged scaffold.

In this work, we demonstrated a molecular inverse design that maximizes penalized LogP while
constraining the molecular structure. The proposed method constructs a solution set in which the
molecular population always satisfies the structural similarity through two-phase optimization. To
generate valid molecules, we used to graph and SELFIES molecular descriptors. Our algorithm ef-
fectively generated optimized molecules while maintaining structural similarity to target molecules.
Experiment shows that excels over the state of arts model. In cannabidiol molecular optimization,
our model is able to maintain the molecular core and optimize target properties over generations.

It is very important to design new molecules and materials with specific structures and functions.
In light of our experimental results, optimizing only penalized LogP may not take the diversity of
molecular functional groups into account when binding to protein targets. In this regard, we need
an extension method that can consider various properties at the same time. Our algorithm uses a
docking module to enable inverse molecular design with enhanced binding affinity for biological
targets. Moreover, it is expected to be used in design peptides or proteins with the desired function.

6 REPRODUCIBILITY STATEMENT

The genetic algorithm parameters are as follows; The population size was set at 100. The algorithm
generates 1000 offspring molecules for each generation. The probability of crossover and mutation
are 100% and 50% respectively. The extent of mutations restricts to the terminal 10%. The code
for reproducibility is posted in the url anonymous repository: https://anonymous.4open.
science/r/Reproducibility
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