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Abstract—Quality control of medical images is a critical
component of digital pathology, ensuring that diagnostic images
meet required standards. A pre-analytical task within this process
is the verification of the number of specimen fragments, a process
that ensures that the number of fragments on a slide matches
the number documented in the macroscopic report. This step
is important to ensure that the slides contain the appropriate
diagnostic material from the grossing process, thereby guaran-
teeing the accuracy of subsequent microscopic examination and
diagnosis. Traditionally, this assessment is performed manually,
requiring significant time and effort while being subject to
significant variability due to its subjective nature. To address
these challenges, this study explores an automated approach to
fragment counting using the YOLOv11 and Vision Transformer
models. Our results demonstrate that the automated system
achieves a level of performance comparable or even superior
to that of experts, offering a reliable and efficient alternative to
manual counting. Additionally, we present findings on interob-
server variability, showing that the automated approach achieves
an accuracy of 90.1%, surpassing the range observed among
experts (82-88%). This result further supports its suitability for
integration into routine pathology workflows.

Index Terms—Counting, detection, digital pathology, frag-
ments, interobserver variability, ViT, YOLO.

I. INTRODUCTION

Digital Pathology has transformed medical diagnostics by
automating image analysis, improving efficiency, and stream-
lining pathology workflows [1]. However, the adoption of these
technologies has introduced new challenges in quality control,
namely in ensuring that digital slides accurately reflect the
received biological material. One key pre-analytical task is
detecting and counting tissue fragments on pathology slides,
crucial for preventing material loss and contamination. A frag-
ment is defined as an distinct and visually separable piece of
tissue present on a histological slide, typically resulting from
the sectioning of a larger specimen during the grossing and
embedding stages of sample preparation. Figure 1 illustrates
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the fragment lifecycle, from grossing to whole-slide image
(WSI) acquisition, where the fragments become visible.
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Fig. 1. Overview of the fragment lifecycle in digital pathology. Tissue
fragments originate during the grossing step, where specimens are sectioned
into smaller pieces. These are embedded, sliced, and mounted onto glass slides
during sample preparation. After staining, the slides are scanned to produce
WSIs, where three distinct fragments are visible.

Traditionally, biomedical scientists perform this task manu-
ally by comparing histology slides with macroscopic reports,
a process that, while effective, is time-consuming and prone
to human error, especially with high slide volumes. Accurate
fragment detection and quantification are essential to verifying
that the tissue analyzed corresponds precisely to what was
received. Fragment variability in size, shape, and arrange-
ment can complicate counting, and discrepancies between the
observed and reported number of fragments trigger quality
control reviews. These reviews help identify potential errors
such as specimen misprocessing, tissue loss, or documenta-
tion issues, ensuring corrective actions are taken to maintain
diagnostic accuracy.

Subjectivity is inherent in manual counting, as interpreta-
tions of fragment boundaries can vary between observers. For
example, a fragment breaking during processing may prompt
one observer to review the paraffin block, while another
may consider the break insignificant. Whereas such variability
cannot be eliminated, automated approaches can help stan-
dardize assessments and reduce inconsistencies. Currently,
manual fragment counting is performed twice daily at IMP
Diagnostics, taking 4-5 hours to process 1500-1600 slides.
About 20-30 cases per day require review, with up to five



needing corrective procedures like re-cutting. Although the
percentage of cases needing review and correction is relatively
low, this is relevant to maintaining a high-quality standard.
This type of quality check is important across pathology
laboratories, where accuracy and consistency directly impact
patient outcomes.

Automated quality control in digital pathology is increas-
ingly recognized as essential [2,3]. However, specific tasks like
fragment quantification remain largely underexplored. To the
best of our knowledge, the only prior work addressing this is
by Albuquerque et al. [4], who developed an automated system
for detecting fragments in colorectal biopsy WSIs using both
conventional machine learning and deep learning models,
including YOLOVS and Faster R-CNN. Their system improved
accuracy and reduced manual workload by identifying dis-
crepancies between slides and macroscopic reports. However,
their approach was limited in key aspects. First, it focused
exclusively on colorectal biopsies, leaving its generalizability
to other tissue types untested. Second, while both fragments
and sets were detected, the total number of fragments per
image was not explicitly calculated. Third, the validation was
performed on a relatively narrow dataset, with no systematic
comparison against expert manual counts, limiting conclusions
about interobserver variability and clinical robustness. Build-
ing on this foundation, we propose an advanced automated sys-
tem for fragment detection and counting in digital pathology.
Our approach reduce workload and improves accuracy and
diagnostic reliability across diverse organ types. We validate
its performance against manual counts from seven experts.

II. METHODS

This section describes the methodology, including dataset
details, detection and counting methods for fragments and sets
in WSIs, and a rejection option to request manual revision
for unreliable predictions. Finally, it describes the performed
interobserver variability analysis used to assess consistency
with human annotations, providing insights into reliability.

A. Dataset

The dataset comprises 3,253 WSIs from the IMP Diagnos-
tics archive, digitized using three Leica GT450 WSI scanners
at 40x magnification. This study specifically uses 1024 x 1024
thumbnails (low-resolution) images representations embedded
within the pyramid-encoded WSI files, providing an efficient
overview of the tissue layout [5]. The dataset spans various
organ types, including gastric (788), prostate (263), colorectal
(1697), cervix (114) and other organs (391). Each histology
slide could contain one set of different fragments (small pieces
of tissue from biopsy or surgery procedures) or repeated
sets of the same fragments, as shown in Figure 2. These
repeated sets are typically arranged to ensure that the tissue is
adequately represented across multiple sections, allowing for
better analysis.

Each case was evaluated by at least one pathologist and
one biomedical scientist, and the number of fragments was
compared with the original macroscopic report. Discrepancies
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Fig. 2. Representation of different tissue configurations in images. (a) One
set containing a single fragment. (b) One set with three distinct fragments.
(c) Two repeated sets, each containing three fragments of identical size and
morphology.

were resolved through discussion between the evaluators or by
consulting a third colleague. The dataset includes two types
of annotations: spatial annotations, which specify bounding
boxes, and numeric annotations, which indicate the number of
fragments per set. The dataset contains two different types of
annotations: spacial annotations (that are further divided into
fragments (17,762 annotations) and sets (5,630 annotations))
and numeric annotations (701), which indicate the number of
fragments per set. Notably, all images with spatial annotations
also have numeric annotations, ensuring that the entire dataset
is numerically annotated. Cases with more than 9 fragments
per set are labeled as class 10, reflecting the laboratory’s
decision that an exact count is unnecessary for cases when the
number of sets exceeds this value. The distribution of cases
per class is as follow: class 1: 752, class 2: 1037, class 3: 511,
class 4: 307, class 5: 188, class 6: 131, class 7: 73, class 8&:
58, class 9: 35, class 10: 161.

B. Detection and Counting Models

We explored two complementary methods for counting
fragments and sets in histopathology images: detection and
classification. The methodology includes first detecting bound-
ing box for each fragment and for each set. Then, fragment
counts are derived from model predictions and refined through
post-processing rules that prevent overlapping sets and ensure
fragments are counted only within defined sets. The final
count is obtained by dividing the number of fragments by the
number of sets. When this ratio is not an integer, indicating a



discrepancy, two strategies could be applied: (a) rounding the
value to the nearest whole number or (b) flagging the sample
for manual review. In contrast, the classification approach
directly assigns images to predefined categories based on the
number of fragments per set.

For detecting fragments and sets, we selected a state-of-
the-art object detection model, YOLOvI1, a convolutional
neural network that builds on previous versions of the YOLO
family. YOLOv11 introduces several enhancements, including
improved feature extraction, advanced attention mechanisms,
and optimized training strategies, leading to higher detection
accuracy, faster inference, and better efficiency compared to
earlier versions [6]. Pre-trained on the MS COCO dataset, the
model is fine-tuned on the target dataset, with input images
annotated with bounding boxes and classes. For fragments
and sets counting, we used the Vision Transformer (ViT)
as a classifier. ViT processes images by dividing them into
patch-based tokens using self-attention mechanisms, similar
to the ones used in natural language processing NLP [7].
Pre-trained on ImageNet and fine-tuned on our dataset, ViT
classifies images into predefined categories that corresponds
to the fragment count.

We also implemented a two-stage approach, referred to as
CountPath, which combines YOLOvI1 and ViT to improve
counting accuracy. In the first stage, both models are used to
detect and count sets, with the ViT model imposing an upper
bound on the number of sets detected by YOLOv11 to mitigate
potential over-counting errors. The set predictions are then
refined through post-processing, which removes overlapping
detections and filters out low-confidence predictions, ensuring
that only reliable sets are retained. Each validated set is
subsequently cropped from the original image, producing one
image per set. In the second stage, a separate YOLOv11 model
processes each cropped image to detect the fragments within
the corresponding set. Finally, a post-processing consistency
check is applied across all cropped images derived from the
same original image. Figure 3 shows the mentioned methods.

C. Rejection Option

In automated image analysis, particularly for complex med-
ical imagery like histopathology slides, ensuring accurate
classification is crucial for reliable downstream applications.
While high-confidence predictions are ideal, machine learning
models often produce varying confidence levels, which can
lead to misinterpretations in precision-critical applications. To
address this challenge, introducing a “rejection option” has
emerged as a valuable strategy for filtering out samples that do
not have a reliable classification. This approach acknowledges
that some samples may be inherently ambiguous, leading to
misclassifications. By rejecting these cases, the model’s overall
reliability improves. In our YOLOvll-based fragment and
set detection, we implemented a simple integrity criterion:
samples were rejected if the calculated fragment-to-set ratio
was not an integer, indicating potential classification errors.
In the CountPath approach, the rejection option is applied
when the fragment counts in all cropped images from the same

original image are inconsistent, not ensuring reliability in the
final count.

D. Interobserver Variability

We selected a subset of 100 samples from the test set and
asked a panel of seven biomedical scientists, with experience
ranging from less than one year to over five years, to record
the final score for each image. Given the inherent subjectivity
in fragment counting, we assessed interobserver variability,
which quantifies differences in counting among observers [8].
To measure agreement, we computed the intraclass correlation
coefficient (ICC), a standard metric for assessing reliability
within a group of raters [9]. Additionally, we calculated Fleiss’
Kappa, an extension of Cohen’s Kappa, to evaluate inter-rater
reliability or agreement for multiple raters [8], [10]. Higher
values of these metrics indicate stronger agreement [11].

III. EXPERIMENTS

In this section, we present the dataset, preprocessing and
post-processing steps, along with a detailed description of
the hyperparameters and training configurations used for the
models. All experiments were conducted on a PowerEdge
C41402 server with an NVIDIA 32GB Tesla V100S.

A. Datasets and Preprocessing

The dataset was divided into train, validation, and test
subsets, containing 2,053, 499, and 701 images, respectively.
Each image was resized to either 512x 512 or 224 x 224 pixels,
depending on the model architecture. After set detection, a
new dataset was created by cropping these regions from the
original images, resizing them to the model’s input size, and
applying white padding. All images were normalized from
their original pixel values (0-255) to a 0—1 range. Furthermore,
to align with the pre-trained ViT network, the images were
normalized using the specified mean and standard deviation
for 224x224 images. Given the relatively limited dataset size,
various data augmentation techniques were applied during
training, further detailed below, to increase the robustness of
the learning process.

B. Post-processing

The post-processing stage consists of two phases: set count-
ing and fragment counting, each ensuring consistency and
reliability in detection results. In set counting, the number of
sets predicted by the ViT model serves as an upper bound, con-
straining YOLOv11 detections. Redundant bounding boxes are
removed and remaining detections are sorted by confidence.
The lower-confidence boxes are removed until the number of
detections aligns with ViT’s output, ensuring consistency. Each
set is then used to generate a cropped region. As a result, the
number of cropped images corresponds to the sets identified
in the original image, ensuring each set is isolated for further
processing in the fragment detection stage.

In fragment counting, the process ensures consistency by
verifying whether all cropped images derived from the same
original image contain the same number of fragments. The
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Fig. 3. Overview of the three evaluated approaches for fragment detection and counting. (a) The direct-counting approach uses a ViT-B/32 model to
extract patches and predict the number of fragments per set. (b) The detection approach employs YOLOvI11-X to identify fragments and sets, followed by
post-processing to compute the final score. (c) The proposed CountPath pipeline first detects sets with YOLOv11-X and uses ViT-B/32 for set counting with
over-counting control. After post-processing and cropping, a second YOLOv11-X detects fragments, and consistency is enforced across cropped regions.

count is considered valid only if all corresponding cropped
regions yield the same result. In cases of discrepancy, the final
score is determined according to one of two options:

« With rejection: the sample is flagged for manual review
and excluded from evaluation;

o Without rejection: the most frequent fragment count is
selected (majority voting). In case of a tie, the lowest
among the most frequent values is used as the final score.

C. Implementation Details

We conducted all experiments using YOLOv11 and ViT-
Base, implemented in PyTorch. Prior to selecting YOLOv11-
X for final evaluation, we conducted preliminary experiments
with earlier YOLO versions and alternative YOLOv11 vari-
ants, including YOLO-N and YOLO-M. We also explored
various training configurations by tuning hyperparameters such
as learning rate, data augmentation techniques, and optimizer
settings. Nonetheless, the best performance was consistently
achieved using the default settings of the Ultralytics imple-
mentation of YOLOv11-X [12], which we therefore adopted.
YOLOvVI11-X was trained for 200 epochs with a batch size of
32, using stochastic gradient descent (SGD) with an initial
learning rate of 10~2, which was reduced to 102, and a
weight decay of 5 x 10~%. Given the limited dataset size,
we applied several data augmentation techniques, including
vertical and horizontal flipping, translation, HSV adjustments,

and mosaic augmentation. ViT-Base/32 was also trained for
200 epochs with a batch size of 32, using AdamW with
a learning rate of 107° and a weight decay of 5 x 1072
To enhance generalization, we applied horizontal and vertical
flipping as data augmentation strategies.

IV. RESULTS AND DISCUSSION

This section presents the experimental results, offering a
quantitative comparison of the ViT, YOLOvI11, the baseline
models LSM-YOLO and RT-DETR, and the proposed Count-
Path method for fragment and set counting. Additionally, we
analyze interobserver variability in fragment counting and
compare it to the best-performing automated model.

A. Quantitative Analysis

We trained several object detection models — YOLOv11-X,
and two baseline architectures, RT-DETR-L [13], and LSM-
YOLO [14] — to detect fragments and sets. All models were
evaluated on 701 samples, with and without a rejection option.
The rejection criterion was based on the ratio of detected
fragments to sets: if this ration did not yield an integer, the
sample was rejected. The final score was computed as the
ratio of detected fragments to sets, rounded to the nearest
integer when the rejection option was not applied. In parallel,
we implemented a ViT-B/32 model for counting fragments
and sets and compared its results against the object detection
models. This model serves as a global, classification-based,



alternative to the detection-based approaches. Additionally, we
developed the CountPath method that combines YOLOv11-X
and ViT-B/32 architectures to count sets and fragments. In
this case, the rejection option is applied when the fragment
counts in all cropped images from the same original image
are inconsistent, ensuring reliability in the final count. A
comparative analysis of these methods is presented in Table I.

TABLE I
PERFORMANCE EVALUATION OF FRAGMENT COUNTING USING VIT-B/32,
YOLOV11-X, THE BASELINE MODELS LSM-YOLO AND RT-DETR-L,
AND THE PROPOSED COUNTPATH METHOD. RESULTS ARE PRESENTED
BOTH WITH AND WITHOUT REJECTION CRITERIA, WHERE THE REJECTION
PERCENTAGE INDICATES THE PROPORTION OF CASES EXCLUDED. FOR
THE REJECTED CASES, THE EVALUATION METRICS ARE COMPUTED
WITHOUT THESE SAMPLES. PRECISION, RECALL, AND F1-SCORE ARE
WEIGHTED TO ACCOUNT FOR CLASS IMBALANCES.

Model Rejection MAE Accuracy Precision Recall F1-Score
YOLOVS-N [4] No 0246 83.1%  832% 83.1% 83.0%
ViT-B/32 No 0291 789%  78.0% 789% 78.2%
No 0136 90.6% 909% 90.6% 90.5%

YOLOVII-X vos (4.14%) 0116 921%  924% 92.1%  92.1%
No 0158 884%  889% 88.4%  88.4%

LSM-YOLO oo 342%) 0,148 89.4%  90.0% 89.4%  89.4%
No 0126 90.0% 903% 90.0% 90.0%

REDETR-L  yo(585%) 0102 923%  924% 923% 923%
CountPath No 0.126 91.9% 91.8% 919% 91.7%
Yes (3.99%) 0.091 94.4%  94.4% 94.4% 94.3%

The YOLOv11-X model achieved an overall accuracy of
90.6% when classifying all 701 samples without rejection.
With 4.14% of the samples rejected, the accuracy increased
to 92.1%, leaving 672 samples classified and 29 rejected. The
rejection criterion, whether the fragments-to-sets ratio was
an integer, proved effective in filtering ambiguous samples,
modestly improving performance.

The ViT-B/32 model achieved 78.9% accuracy, which is
lower than all detection-based approaches. This can be partly
attributed to the ambiguity in defining fragments and the
differences in training data: YOLOvI1-X was trained on
bounding box annotations, while ViT relied on image-level
labels. However, the ViT-B/32 model exhibited outstanding
performance in set counting, achieving 99.3% precision and a
99.6% F1-Score. This result underscores the effectiveness of
ViT and attention mechanisms in accurately identifying sets,
where the definition is clear and well-defined.

The baseline models RT-DETR-L and LSM-YOLO
showed comparable performance to YOLOv11-X. RT-DETR-
L achieved 90.0% accuracy without rejection and 92.3%
accuracy when 5.85% of the samples were excluded. LSM-
YOLO performed sligthly worse, reaching 88.4% accuracy
without rejection and 89.4% with 3.42% rejection.

A qualitative analysis of the errors made by each model
revealed important differences in their failure modes. The RT-
DETR-L model was particularly sensitive to noise, with most
counting errors resulting from the incorrect detection of frag-
ments frequently detecting artifacts as fragments. Additionally,

this architecture frequently failed to detect repeated sets,
leading to inconsistencies in set counting. In contrast, both
YOLOvI1 and LSM-YOLO demonstrated greater robustness
to artifacts, with most of their errors arising from the under-
detection of sets rather than fragments. These observations
suggest that, although all models exhibit specific limitations,
YOLO-based approaches are generally more resilient to mor-
phological variability and image noise, making them better
suited for scenarios with high levels of artifacts.

Motivated by these complementary strengths and weak-
nesses, we developed the CountPath method that integrates
YOLOvVI11 for fragment detection with a Vision Transformer
(ViT) for set counting. CountPath outperformed all models,
achieving an accuracy of 91.9% without rejection, which
further improved to 94.4% when 3.99% of the samples were
excluded. This result demonstrates that the rejection strategy
effectively enhances reliability by filtering out ambiguous
cases. These results underscore the advantages of integrat-
ing both architectures in a hybrid approach, leveraging the
strengths of YOLOv11-X for precise fragment detection and
ViT for robust set counting.

Given that the best results were achieved with the CountPath
method, we conducted a detailed performance evaluation strat-
ified by organ type. For this analysis, we divided the test set
into five groups: gastric (394 samples), prostate (43 samples),
colorectal (200 samples), cervix (12 samples), and others (52
samples). These groups were chosen due to their substantial
representation in the dataset. The results by organ type are
represented in Table II.

TABLE II
RESULTS ACHIEVED WITH THE PROPOSED COUNTPATH METHOD BY
ORGAN TYPE.

Organ  Rejection Samples MAE Accuracy Precision Recall F1-Score
Gastric No 394 0.086 93.4% 93.4% 934% 93.2%
Yes (4.06%) 378 0.061 95.8% 95.8% 95.8% 95.6%
Prostate No 43 0.070  93.0% 953% 93.0% 94.0%
i Yes (4.65%) 39 0.049 95.1% 953% 95.1% 94.9%
Col. cal No 200  0.215 89.0% 89.6% 89.0% 88.9%
OlOreCal yes 3.0%) 194 0.165 912%  91.6% 912% 912%
Cervix No 12 0.250 91.7% 93.1% 91.7% 87.9%
Yes (16.7%) 10 0.000 100% 100% 100%  100%
Oth No 52 0.115 90.4% 922% 90.4% 90.8%
S Yes 3.85%) 50 0.080 94.0%  962% 94.0% 94.7%

The results indicate that the model’s performance in count-
ing fragments is consistent across different organ types. The
highest accuracy is observed for the gastric sample set, which
represents the largest group in the test set. In the next section
we evaluate the methodology under a domain generalization
scenario.

B. Domain Generalization

Since samples can have distinct sizes, shapes, and char-
acteristics, it is crucial to ensure that the model generalizes
accurately across domains, especially in clinical settings where
samples are diverse in nature, some of which may be new



to the model. Although we applied techniques like data
augmentation and model regularization to improve in-domain
generalization, evaluating how well the model counts frag-
ments across samples with different characteristics, helps in
the assessment of the model robustness to domain variations.
To this end, we conducted a series of experiments based on
previously established organ groups. We trained our method
while systematically excluding each group and subsequently
assessed its performance across all 701 samples. Table III
presents the results when each organ is excluded from training.

TABLE IIT
RESULTS BY THE PROPOSED COUNTPATH METHOD BY ORGAN TYPE,
WITH THE MODEL TRAINED WITHOUT EACH OF THESE ORGANS. THE
TRAINING DATASET SIZES VARY DEPENDING ON THE ORGAN EXCLUDED
DURING MODEL TRAINING: WHEN TRAINED WITHOUT GASTRIC
SAMPLES, THE DATASET COMPRISES 2158 SAMPLES; WITHOUT PROSTATE
SAMPLES, IT COMPRISES 2332 SAMPLES; WITHOUT COLORECTAL
SAMPLES, IT COMPRISES 1055 SAMPLES; WITHOUT CERVIX SAMPLES, IT
COMPRISES 2450 SAMPLES; AND WITHOUT OTHERS SAMPLES, IT
COMPRISES 2213 SAMPLES.

Organ  Rejection Samples MAE Accuracy Precision Recall F1-Score
Gastric No 394  0.081 93.7% 93.7% 93.7% 93.5%
) Yes (4.57%) 376  0.056 96.3% 96.3% 96.3% 96.3%
Prostate No 43 0395 76.7% 93.3% 76.7% 82.1%
Yes (4.65%) 41 0.390 78.0% 95.1% 78.0% 83.5%
Colorectal No 200 0220 86.0% 86.5% 86.0% 85.5%
Yes (5.0%) 190 0.179 87.9% 88.4% 87.9% 81.5%
Cervix No 12 0.083 91.7% 95.8% 91.7% 88.9%
Yes (0.0%) 12 0.083 91.7% 95.8% 91.7% 88.9%
Others No 52 0.154 90.4% 91.2% 90.4% 90.2%
S Yes (385%) 50 0.080 94.0% 96.2% 94.0% 94.7%

The results indicate that the model is generally capable of
detecting and counting fragments in samples from a given
organ, even when the model has not been trained on that
specific organ type. By removing each of the organs from
the training set, we are significantly reducing the dataset,
which translates into results slightly worse those presented
above. However, the lowest performance is observed for
prostate samples, possibly likely to the distinct morphological
characteristics of prostatic fragments (vs. digestive samples,
which account for the majority of the dataset).

A more detailed analysis of the results reveals that excluding
of specific organ groups from the dataset has a direct impact on
the dataset size, which, in turn, influences the model’s perfor-
mance. Below, we detail the outcomes of training experiences
conducted without one of the organ groups:

« Exclusion of gastric samples: Excluding gastric samples
from the training dataset results in stable model per-
formance, indicating that these samples contribute with
minimal additional information to the training process.
This outcome can be attributed to the morphological
similarity of gastric fragments to other samples in the
dataset (namely colon samples, which account for the
majority of cases), which minimizes their influence on
detection and counting tasks.

o Exclusion of prostate samples: When prostate samples
are excluded, the model shows a reduced ability to detect
and count this specific organ type. However, its per-
formance on the remaining samples remains consistent.
This decrease in performance is likely due to the distinct
characteristics of prostate fragments compared to other
organ types in the dataset.

« Exclusion of colorectal samples: Removing colorectal
samples, which constitute a significant proportion of the
dataset (1497 samples), leads to a decrease in the model’s
counting performance. This decline can be attributed to
the reduced size of the training set (which shrinks from
2552 to 1055 samples), resulting in less representative
data for training.

o Exclusion of cervix and “others” samples: Excluding
cervix or “others” samples has minimal impact on overall
model performance metrics, primarily due to the small
size of these subsets. For cervix samples, the small
number of cases in the test set (12) is too limited to draw
meaningful conclusions about their specific impact on the
model’s performance. Similarly, the exclusion of “others”
samples results in negligible changes, likely because these
samples are less distinct or closely resemble other groups
within the dataset. These findings highlight the limited
influence of subsets with very few cases on the overall
performance metrics.

We can conclude that the model’s strong generalization

across domains shows its capability to effectively handle
diverse and complex samples without significant accuracy loss.

C. Interobserver Variability Analysis

As mentioned, a group of seven observers was asked to
annotate a subset of 100 images from the original test set.
To assess the agreement between the observers, we calculated
both the ICC and Fleiss’ Kappa, two commonly used met-
rics for measuring inter-rater reliability. The ICC was 0.814,
and Fleiss’ Kappa was 0.74, indicating substantial agreement
between the evaluators [15]. Given this, we compared the
performance of the automated method with the performance
of the manual counting performed by these observers. It is
important to note that the subset, although randomly selected,
contains a high percentage of complex images that caused
uncertainty or were difficult for the models to detect accurately
in previous tests. The results from both the observers and the
proposed method are presented in Table IV.

TABLE IV
COMPARISON BETWEEN COUNTPATH AND MANUAL COUNT BY 7
OBSERVERS ON 100 TEST SAMPLES. METRICS ARE WEIGHTED TO
ACCOUNT FOR CLASS IMBALANCE.

Method MAE Accuracy Precision Recall F1-Score
Observers  0.210+£0.02 84.9%+2.0 77.9%+8.0 72.3%=+6.0 73.5%=+7.0
CountPath 0.099 90.1% 90.1% 90.1% 89.9%

The results show that our method outperforms the manual
counting by observers in multiple evaluation metrics. The



automated approach achieves a lower Mean Absolute Error
(MAE) reflecting a strong correlation between predictions and
ground truth values. Additionally, it achieves higher precision,
recall, and Fl-score, demonstrating improved reliability in
detecting and counting fragments. With an accuracy of 90.1%,
surpassing the observers’ range (82-88%), the automated
approach proves to be a reliable alternative.

V. CONCLUSION

This work addressed the challenges of manual fragment
counting in digital pathology by introducing CountPath, a
method that integrates YOLOv11 and Vision Transformer
(ViT) architectures. CountPath was designed to enhance accu-
racy and reduce interobserver variability in this critical quality
control task.

We systematically evaluated several methods for frag-
ment and set counting, including the ViT-B/32 classifier, the
YOLOvV11-X detector, and two baseline models: LSM-YOLO
and RT-DETR. While all methods demonstrated competi-
tive performance, YOLOvV11-X consistently outperformed the
baselines across most metrics, particularly when combined
with a rejection strategy to filter ambiguous predictions. Build-
ing upon this backbone, the CountPath method combines ViT-
B/32 for set-level classification with YOLOv11-X for fragment
detection, achieving the highest overall accuracy. This design
leverages both local detection precision and global contextual
reasoning, yielding a robust and scalable solution.

To assess robustness in real-world conditions, we evaluated
the method’s ability to generalize across domains by system-
atically excluding one organ type during training and testing
on the full dataset. The results showed strong generalization
performance, with only modest drops in accuracy, even when
the excluded organ was morphologically distinct. Performance
remained particularly stable for gastric, cervix, and “other”
categories, while a significant decrease was observed for
prostate samples, likely due to their unique structural charac-
teristics. These findings highlight the method’s ability to han-
dle diverse and previously unseen tissue types, supporting its
suitability for deployment in heterogeneous clinical settings.

Compared to manual counting performed by seven ex-
perts, the proposed CountPath method achieved an accuracy
of 90.1%, surpassing the experts’ average of 84.9%. This
result demonstrates its potential to improve consistency and
reliability in fragment counting tasks.

Our findings demonstrate that deep learning-based ap-
proaches, particularly the new method proposed, can improve
pathology workflows by increasing accuracy, minimizing vari-
ability, and reducing the risk of diagnostic inconsistencies.
By leveraging the strengths of both object detection and
transformer-based models, our approach offers a robust and
scalable solution for automated quality control in digital
pathology.
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