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ABSTRACT

In recent years, the utilization of Graph Neural Network (GNN)-based methods
for simulating complex physical systems has opened new avenues for the fields of
computational science and engineering. Despite their success, current GNN-based
methods for rigid body dynamic simulation are constrained to relatively simple
scenarios, hindering their practical use in industrial settings where complex me-
chanical structures and interconnected components prevail. These methods face
challenges in handling intricate force relationships within rigid bodies, primarily
due to the difficulty in obtaining force-related data for objects in industrial en-
vironments. To address this, we propose a novel constraint-guided method that
incorporates force analysis into GNN-based simulations. The model incorporates
computations related to both contact and non-contact forces into the prediction pro-
cess. Additionally, it imposes physical constraints on the prediction process based
on Kane’s equations. We have rigorously demonstrated the model’s rationality
and effectiveness with thorough theoretical demonstration and empirical analysis.
Codes and anonymous links to the datasets are available in the supplementary
materials.

1 INTRODUCTION

Simulation of rigid body dynamics plays a pivotal role in numerous domains within numerical
science and engineering Landau et al. (2008); Thijssen (2007); Szabó & Babuška (2021), including
mechanical engineering Brach (2007), automotive design Tong (2000), biomechanics Silva et al.
(1997), and virtual reality Sauer & Schömer (1998), enabling the accurate modeling and analysis of
object motion, stress, and interactions for optimization and performance enhancement. Traditional
methods for simulating rigid body systems often rely on intricate physical equations tailored to specific
domains Huston & Passerello (1979); Mirtich (1996); Featherstone (2014). This necessitates a precise
understanding of the physical properties of the analyzed objects and the physical environment in
which they exist Thijssen (2007). Furthermore, such methods require a thorough grasp of relevant
physical principles and relationships. With the rise of deep learning, data-driven methods have
excelled in various fields by removing the need for detailed prior knowledge of system intricacies,
significantly simplifying complex problems Dong et al. (2021). Recently, GNNs have transformed
physics simulation, particularly in rigid body dynamics, by extending neural network applications to
physical analysis Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021). GNNs analyze objects modeled
as graphs, demonstrating effective results in motion state analysis.

However, the current GNN-based methods concerning rigid body dynamic analysis are still limited to
analyzing relatively simple and ideal scenarios, often focusing on the analysis of common geometric
shapes Allen et al. (2023a); Bhattoo et al. (2022); Sanchez-Gonzalez et al. (2020); Han et al. (2022a);
Bhattoo et al. (2022); Bishnoi et al. (2023); Allen et al. (2023b); Rubanova et al. (2021). This
limitation hinders the practical application of such methods in industrial settings. In industrial
environments, complex mechanical structures often involve numerous interconnected components,
including intricate force relationships within rigid bodies and the resulting mutual influences between
objects. Presently, GNN-based methods encounter significant challenges in addressing such problems,
primarily because force-related data for objects is often challenging to observe and obtain Iglberger &
Rüde (2011). As a result, these methods typically rely solely on positional and velocity information
of objects for analysis. The difficulty in acquiring training data relevant to forces, coupled with the
necessity for force relationship analysis, places these methods in a dilemma when applied to rigid

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0.0065

0.002

3.95

2.07

GNS

SGNN

Mechanical Structures Simple Geometric ShapesSimple Geometric Shapes

0                                                             1×10-1                                                            1                          
MSE

Mechanical Structures

Figure 1: The comparison between the mechanical body scenarios we utilized and the general
geometric body scenarios employed by other methods, results show that the performance of SGNN
Han et al. (2022a) and GNS Sanchez-Gonzalez et al. (2020) exhibit significantly higher Mean Squared
Error (MSE) in their predictive results for mechanical structures compared to geometric shapes.

body dynamics analysis with complex mechanical structures. The comparisons and experiments
within Figure 1 validate such a conclusion, demonstrating a significant degradation in the performance
of the relevant GNN-based methods for the analysis of complex mechanical structures.

To address this challenge, we endeavor to draw inspiration from traditional multibody dynamics
analysis and incorporate relevant methods and constraints for calculating complex force relationships.
It is noteworthy that while GNN-based dynamic analysis methods can assist in avoiding the need
for acquiring detailed prior knowledge about the internal complexities of systems, the output results
must adhere to the principles and rules of the physical world. Some researchers argue that a purely
data-driven learning paradigm may struggle to achieve optimal results for physical problems Bhattoo
et al. (2022); Han et al. (2022a); Bishnoi et al. (2023). Therefore, we aim to integrate the principles of
traditional multibody dynamics analysis into GNN-based simulators, incorporating force analysis and
prior constraints, to address the challenges associated with rigid body dynamics analysis in complex
mechanical structures.

Building upon the aforementioned analysis, we propose a Multibody Dynamics Guided GNN
Simulator, dubbed MDGS, to conduct a more thorough analysis of rigid body dynamics scenarios
involving complex mechanical structures. Initially, we introduce a graph modeling pattern for ef-
ficient analysis of forces in physical systems, tailored for multibody dynamics. Subsequently, we
introduce calculations related to forces, encompassing both contact and non-contact forces, into the
methodology. These force calculations are performed using neural networks without the introduction
of additional data beyond conventional GNN-based physical dynamics simulators. Then, the com-
puted forces are integrated into the succeeding analyses to adapt to complex mechanical scenarios.
Furthermore, we imposed constraints on the model output based on the Kane equations tailored for
addressing multibody dynamics analysis problems. This ensures the accuracy and rationality of the
model’s computed results. The major contributions are as follows.

• We introduce a novel method, referred to as MDGS, to incorporate force analysis into GNN-
based simulators for the state prediction of rigid body systems. This approach enhances the
treatment of multibody dynamics scenarios, expanding the potential applications of such
methods in industrial settings.

• We imposed physical constraints on our method based on Kane’s equations, offering a
more precise analysis of rigid body dynamics. These constraints are derived from rigorous
theoretical analysis and proof.

• We provide the implementations of MDGS for multibody dynamics simulation tasks and
create new datasets for validation, the results demonstrate the effectiveness of MDGS.

2 RELATED WORKS

GNN-based Physical Dynamics Simulators. GNN-based physical dynamics simulators Sanchez-
Gonzalez et al. (2020) leverages GNNs Scarselli et al. (2009); Kipf & Welling (2017) to simulate
predictive representations for graph-modeled physical systems. Such approaches find widespread
applications in computing atomic forces Hu et al. (2021), simulating particle-modeled and mesh-
modeled physical systems Allen et al. (2023b); Rubanova et al. (2021); Li et al. (2019); Sanchez-
Gonzalez et al. (2020); Pfaff et al. (2021); Han et al. (2022b). In recent research, some methods
Han et al. (2022a); Bhattoo et al. (2022); Bishnoi et al. (2023) have proposed incorporating prior
knowledge from relevant domains into the GNN-based physical dynamics simulator to enhance its
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performance. This includes integrating concepts such as Subequivariant and Lagrangian equations
into the model framework, making the model more closely aligned with real-world physical systems.
Additionally, some approaches Linkerhägner et al. (2023) optimize the model by collecting data
in real-world environments as supplementary information. Our method introduces force analysis
between physical entities in rigid body dynamics scenarios into the system and employs Kane’s
equations Kane & Levinson (1985) to impose constraints on the system output, ensuring a more
realistic simulation performance.

Dynamics Analysis. The framework of traditional mechanical analysis relies on either force-based
or energy-based approaches Wyk et al. (2022) for rigid body dynamics. Energy-based methods
compute unknown energy using equilibrium equations, which is cumbersome for large structures
Finzi et al. (2020). The force-based multibody dynamics model uses two recursive algorithms
centered on the Newton–Euler formulation for forward kinematics and inverse dynamics Gonçalves
et al. (2023). Some methods use ODEs to approximate optimal solutions for multibody conditions
Schubert et al. (2023); Nada & Bayoumi (2023); Zhang et al. (2023). Traditional mechanical analysis
requires precise physical parameters and domain knowledge. In contrast, GNN-based methods are
data-driven and do not need these inputs. We combine elements of rigid body dynamics with GNNs
for improved and simplified predictions.

3 METHODOLOGY

3.1 PRELIMINARY

GNN-based simulators. GNN-based simulators predict the dynamical states of physical systems.
Consider a physical system comprising M elements, collectively forming N objects. At time t, GNN-
based physical dynamics simulators model the aforementioned physical system using a graph G(t) =
{V(t), E(t)}, where the node set V(t) of graph G(t) represents different elements constituting objects.
The feature z

(t)
i of node i in the set V(t) includes position information x⃗

(t)
i , velocity information

v⃗
(t)
i , and the properties ki of the object to which the element belongs, certain methods Allen et al.

(2023a); Sanchez-Gonzalez et al. (2020) may retain only a subset of these features, such as velocity or
position. z(t)

i is defined as the concatenation of the vectors mentioned: z(t)
i = [x⃗

(t)
i ||v⃗(t)

i ||ki], where
‘||’ denotes vector concatenation along the first dimension. Z(t) = {z(t)

i }Mi=1 denotes the set of all
z
(t)
i . The edge set E(t) of graph G(t) characterizes the connectivity relationships between elements.

For instance, some approaches Han et al. (2022a); Bhattoo et al. (2022) judge that if the distance
between element i and j is less than a certain threshold, the edge (i, j) is connected. GNN-based
simulator utilizes the GNN model g(·) to predict the values of Z(t+1) based on G(t), such process
can be formalized as Z(t+1) = g(G(t)).

Kane’s Equation. Kane’s equation Kane & Levinson (1985) is a mathematical formulation used
in the field of multibody dynamics to describe the motion of interconnected rigid bodies. For a
nonholonomic system S , the number of independently variable motions or deformations is referred to
as degrees of freedom. For each degree of freedom, there exists a corresponding generalized velocity.
These velocity vectors associated with generalized coordinates are typically denoted by q̇, where q
represents the generalized coordinates. Specifically, with respect to the generalized coordinate qi and
its corresponding generalized velocity q̇i, if q̇i is independent of the other velocities in the system,
meaning that it cannot be expressed or derived from other velocities in the system’s description, then
q̇i is referred to as an independent velocity. Furthermore, the partial velocity u′

ij =
∂q̇i
∂q̇j

denotes the
partial derivative of the velocity with respect to coordinate qi when coordinate qj is varied, within the
context of a multi-coordinate system. With the aforementioned concepts, we could define the general
active force according to the γ-th independent velocity of S as follows:

Kγ =

n∑
i=1

F⃗i · u⃗′
γ,i, (1)

where F⃗i denotes the force acting on the i-th mass point in the system S , and u⃗′
γ,i represents its partial

velocity with respect to the γ-th independent velocity, n is the number of mass points. Likewise, we
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Object-Oriented 
Graph

Contact-
Oriented Graph

System

Sum

Combine

Graph Construction Calculating Force Prediction and Loss Calculation

Figure 3: The framework of our proposed method. In the figure, the framework is segmented based
on the stages of method execution, dividing it into three parts.

could define the generalized inertia forces according to the γ-th independent velocity as follows:

K∗
γ =

n∑
i=1

(
−mi

¨⃗ri

)
· u⃗′

γ,i, (2)

where mi represents mass, while r⃗i represents the vector radius. The Kane’s equation can then be
formulated as follows:

K∗
γ +Kγ = 0, γ = {1, 2, ..., d}, (3)

d is the number of independent velocities.

3.2 GRAPH CONSTRUCTION

(a) Original
Body

(b) Partitioned
Body

(c) Graph Con-
struction

Figure 2: Illustration of graph construction.

Two commonly used object partitioning approaches
in the field of physical simulation are point clouds
Gross et al. (2002) and finite elements Pasciak (1995),
both of which have been widely applied in GNN-
based simulators. Point clouds essentially involve
decomposing objects into indivisible elements using
point cloud construction techniques. On the other
hand, the finite element method divides objects into
individual polyhedral elements, where the edges and
vertices of these elements constitute the graph for
GNN-based simulators. In our approach, we inte-
grate the above two methods by employing the finite
element method to partition rigid bodies into different elements and designate the centroid of each
element as a node in the graph. In the specific implementation, we assume uniform density within
each element and utilize its geometric center as its centroid. We believe that this approach maximally
preserves the kinematic properties of objects while aligning more closely with the commonly used
analytical paradigm in multibody dynamics Kane & Levinson (1985). Figure 2 provides an illustrative
example of our graph construction method. As illustrated in Figure 2(c), the centroids serve as nodes
in the graph, and the centroids of adjacent elements are connected by edges. The specific methodology
for edge construction will be elaborated in detail in Section 3.2.1.

3.2.1 CALCULATING FORCES

In the realm of multibody dynamics, the magnitude of forces acting on an object plays a crucial role
in determining its state. However, due to the inherent difficulty in measuring and observing the force
conditions of objects, existing GNN-based simulators do not currently incorporate force information
into the prediction computation process. To address this issue, we employ neural networks to predict
the forces acting on rigid bodies and integrate these predicted values into the model. Specifically, we
categorize the forces acting on objects into two components: non-contact forces and contact forces.

For non-contact forces, such as gravity, we propose constructing an object-oriented graph G̃(t) =

{V(t), Ẽ(t)}, where V(t) represents the centroids corresponding to distinct elements, with attribute

4
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features comprising the input positional and velocity information of these elements at time t. These
features consist set Z(t). Additionally, V(t) includes property about the particular object each element
is affiliated to, providing the information concerning the whole object. As for Ẽ(t), as illustrated in
Figure 4(a), if two elements i and j belong to the same object and share faces between them, then
an edge (i, j) is established within Ẽ(t). Subsequently, we predict the set of non-contact forces F̃ (t).
Formally, this prediction is expressed as:

F̃ (t) = gF̃ (G̃(t)), (4)

where gF̃ (·) denotes a GNN for non-contact force prediction, adopting the GCN described in
Appendix B.2.

For contact forces, such as frictional and collision forces, we propose constructing a contact-oriented
graph Ḡ(t) = {V(t), Ē(t)}. In Ḡ(t), V(t) remains identical to that of Ḡ(t). The edge set Ē(t) comprises
only those edges determined by the existence of contact between elements. As depicted in Figure
4(b), if the distance between the centroids of two elements, denoted as i and j, is less than r and
they belong to different objects, we consider these elements to be in contact, and the edge (i, j) is
established, where r is a threshold defined by a hyperparameter. In this manner, we derive a graph
Ḡ(t) specifically illustrating contact relationships.

Subsequently, based on the union of Ḡ(t) and G̃(t), we first obtain the features of each node to ensure
that global information can be fully referenced when calculating contact-related forces. Formally, we
have:

Z̄(t) = gZ̄(Ḡ(t) ∪ G̃(t)), (5)

Where gZ̄ denotes a GNN for global information gathering. Afterwards, we employ Ḡ(t) to predict
the force set F̄ (t), where F̄ (t) ∈ RN×3. The i-th vector f̄ (t)

i of F̄ (t) denotes the contact forces acting
upon the centroid of the i-th element. Formally, we have:

F̄ (t) = gF̄ (Ḡ(t), Z̄(t)), (6)

where gF̄ (·) denotes a GNN for contact force prediction. In selecting the specific GNN architecture,
we opt for the conventional GCN Kipf & Welling (2017). Detailed information regarding network
depth and hidden layer dimensions can be found in Appendix B.2. The vector f̄ (t)

i will be set to the
zero vector if i is not an endpoint of any edge in Ē(t).

Collision

(a) Object-oriented
graph.

Collision

(b) Contact-oriented
graph.

Figure 4: Illustration of contact-oriented graph and
object-oriented graph.

The final force set is obtained by combining the
contact and non-contact force sets:

F (t) = {f (t)
i : f

(t)
i = f̄

(t)
i + f̃

(t)
i }, (7)

where f (t)
i and f̃

(t)
i represent the i-th force vec-

tor of F (t) and F̃ (t) respectively.

3.3 MAKING PREDICTIONS

we predict Z(t+1) based on F (t) and G(t). The
edge set of G(t) equals Ẽt, as the contact forces
are already in F (t), the contact edges Ē(t) are
excluded. For the node set of G(t), we attach
the calculated force to the node attribute z. For the i-th node with attribute zi, the new attribute z′

i is
calculated as follows:

z′
i = [zi||λF (t)

i ], (8)

where λ is a hyperparameter for controlling the magnitude of the influence of F (t). We then calculated
the prediction as follows:

Z(t+1) = g(G(t)), (9)
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where g(·) denotes the GNN for state prediction, adopting the same GNN architecture elaborated
above. Motivated by Allen et al. (2023a), we introduced a rigid body structural constraint module
in our method. This module ensures the invariance of rigid body structures in the predicted results.
Specifically, we calculate the relative positions of various nodes on the object based on the initial
values. Subsequently, we re-align our predicted results to the original relative positions, ensuring that
the rigid body structure remains unchanged. A detailed description of this module can be found in
Appendix B.1.

Z(t+1) will then be utilized for calculating an MSE loss against the ground truth state Z∗(t+1) for
the backpropagation of the whole framework:

Lmse = MSE(Z(t+1),Z∗(t+1)). (10)

3.4 MODEL CONSTRAINTS BASED ON KANE’S EQUATION.

So far, we have incorporated force analysis to assist predictions within GNN-based simulators.
However, due to the absence of ground-truth labels for the forces, these computations lack accuracy.
As discussed in Section 3.1, Kane’s equations provide physical constraints for rigid body dynamical
systems. We aim to employ these constraints to refine our model, thereby enhancing its analytical
fidelity to physical reality.

Theoretically, a model capable of accurately predicting rigid body systems adheres to the following
principles:

Theorem 3.1. Consider a rigid body dynamics system denoted as S with d independent velocities.
At the time t, the system’s state is represented as G(t), constructed according to the detailed graph
construction procedure outlined in Section 3.2 and 3.2.1. For any GNN denoted as g(·), which
demonstrates accurate prediction capabilities for F (t) and Z(t+1) based on G(t), the following
equation must be satisfied:∑

i

F
(t)
γ,iuγ −

∑
i

Mi
1

δ

(
g(G(t))[vγ ,i] − v(t)γ

)
uγ +Ψ(t) = 0,∀γ ∈ {1, 2, ..., d}, (11)

where γ denotes the index of independent velocity, F (t)
γ,i is the predicted force value of element i along

γ-th independent velocity, Mi is the mass of element i, g(G(t))[vγ ,i] denote the predicted v
(t+1)
γ with

g(·), δ is the time step length, Ψ(t) is a disturbance term directly proportional to the sum of the radii
from different mass points to the center of mass in each element. uγ represents the unit velocity value
along the direction of the γ-th independent velocity.

The proof is provided in Appendix A.1. Since Equation 11 in Theorem 3.1 holds for any model
that accurately represents the target physical state, we can employ it to constrain the forces we have
computed, thereby ensuring that our solution adheres more closely to the physical laws. Furthermore,
Theorem 3.1 demonstrates that the constraints proposed in Equation 11 are valid along any inde-
pendent velocity. Therefore, in practical implementation, we refine our model by adopting multiple
constraint equations along different independent velocities. The number of equations the model needs
to satisfy can thus be determined based on the distinct independent velocities associated with different
systems.

To further constrain the perturbation terms in Theorem 3.1, we propose the following theorem:

Theorem 3.2. Given the conditions within Theorem 3.1, then at time t, the following inequality
holds:

−τ

n∑
i=1

(|R⃗(t)
i |)ωγ −

n∑
i=1

2

5
Miτ

2ω̇
(t)
i ≤ Ψ(t) ≤ τ

n∑
i=1

(|R⃗(t)
i |)ωγ +

n∑
i=1

2

5
Miτ

2ω̇
(t)
i , (12)

where R⃗
(t)
i denotes the interval force act on element i, τ is the max radius among all elements,

ωγ denotes unit angular velocity value along the direction of the γ-th independent velocity, ω̇(t)
i

represents the max angular acceleration of element i.
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Based on Theorem 3.1 and Theorem 3.2, we proposed the following loss function for the upper bound
of constrain:

Lsup = ReLU
(∑

i

F
(t)
γ,iuγ −

∑
i

Mi
1

δ

(
g(G(t))[vγ ,i]

−v(t)γ

)
uγ − τ

n∑
i=1

(|R⃗(t)
i |)ωγ −

n∑
i=1

2

5
Miτ

2ω̇
(t)
i

)
, (13)

where F (t)
γ,i and |R⃗(t)

i | can be calculated with force prediction, while ω̇(t)
i is calculated based on variant

within coordinates, ReLU(·) denote the ReLU function, Mi is calculated based on the properties of
the object, the details can be found in Appendix B.1. Similarly, we can calculate the loss function for
the lower bound of constrain:

Linf = ReLU
(
−
∑
i

F
(t)
γ,iuγ +

∑
i

Mi
1

δ

(
g(G(t))[vγ ,i]

−v(t)γ

)
uγ − τ

n∑
i=1

(|R⃗(t)
i |)ωγ −

n∑
i=1

2

5
Miτ

2ω̇
(t)
i

)
, (14)

The overall loss for constrain is:

Lcst = Lsup + Linf . (15)

Lcst will only be used to update gF̄ and gF̃ . Lcst and Lmse are summed up for the final loss. The
overall framework is illustrated within Figure 3.

4 EXPERIMENTS

4.1 ENVIRONMENTAL SETUP

Contact

Movement

Internal 
Action

Adding or 
Removing 

Component

(a) Each dataset incorpo-
rates a variety of com-
plex internal and external
forces and motion states.

Contact

Movement

Internal 
Action

Adding or 
Removing 

Component

(b) Various adjustments
are applied to the struc-
tures and actuators to cre-
ate different datasets.

Figure 5: The dataset construction principles.

Dataset and Systems. To validate the pro-
posed MDGS, we conducted method verifica-
tion on a variety of complex mechanical sys-
tems. Specifically, we utilized the Cubli robot
Gajamohan et al. (2012) (a metallic mechanical
cube capable of performing various maneuvers
using three flywheels), complex rotating bodies
(intricate mechanical structures featuring com-
ponents such as bearings and hinges), vehicles
(mechanical cars operating under different con-
ditions and environments), UR5-Husky robot
Wang et al. (2020) (vehicle-type robot equipped
with mechanical arms), and 6-Dof Space robot
Wang et al. (2022) (robot equipped with mechan-
ical arms for executing specific tasks in space environments). We then modified the structures of
these mechanical systems and introduced different environmental factors, resulting in the creation
of 15 distinct datasets. Figure 5 provides a simple explanation of the datasets we constructed, with
detailed descriptions available in Appendix B.4.

Baselines. We conduct a comparative analysis of our proposed MDGS against various baselines,
including GNS Sanchez-Gonzalez et al. (2020), SGNN Han et al. (2022a), LGNS Bhattoo et al.
(2022), and HGNS Bishnoi et al. (2023). Specifically, GNS employs a pure GNN for simulating
physical systems, while SGNN introduces the concept of subequivariant in the physical system into
the GNN-based physical dynamics simulator. Furthermore, LGNS and HGNS leverage Lagrangian
equations and Hamiltonian mechanics, respectively, to guide and constrain the GNN model, enhancing
its capability to simulate physical reality. Apart from GNS, the other three methods incorporate
varying degrees of prior knowledge from physics to reinforce the models. Through comparisons
with these baselines, we can effectively analyze the algorithmic performance of our approach in the
dynamic analysis of complex mechanical bodies.
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Experimental Settings. Our designed rigid body structural constraint module significantly en-
hances the accuracy of GNN-based simulators for rigid body problems. For a fair comparison, we
integrated this module into other baseline models, improving their performance similarly. The effects
of this integration are detailed in Section 4.3. We evaluated model performance using MSE between
predicted and actual values, conducting each experiment 10 times to ensure statistical significance,
as described in Han et al. (2022a). Details on specific hyperparameters and model backbones are
provided in Appendix B.2, and computational complexity is discussed in Appendix B.3.

Table 1: Comparative experiment results on complex rotational body datasets and different robot
datasets. Bold indicates the method with optimal performance. Underline denotes the method with
second-best performance. Some standard deviations are marked as 0.00 due to being too small to
represent effectively.

Senario Cubli Robot Complex Rotational Body Space Robot

Time Methods
Single Double Triple No Side Center Single Double Under

Flywheel Flywheels Flywheels Hinge Hinges Hinge Arm Arms Strike

t=
40

(M
SE

×
1
0
1

) GNS 0.89±0.17 0.32 ±0.26 0.75±0.05 7.77±1.79 0.80±0.09 0.65±0.19 6.5±0.00 11.2±0.52 31.24± 10.31
LGNS 2.80±1.08 11.00±1.73 3.12±0.26 0.27±0.01 0.65±0.22 0.42±0.22 7.78±1.79 11.1±0.63 8.91±0.98
SGNN 0.54±0.32 17.24±1.12 13.09±0.38 10.65±0.21 8.73±1.06 1.31±0.83 0.41±0.16 9.42±0.06 12.61±0.31
HGNS 0.33±0.13 36.51±2.29 6.24±0.27 12.84±0.52 0.50±0.09 2.37±0.98 23.37±0.88 8.12±0.20 72.14±1.77
MDGS (Ours) 0.17±0.08 0.24 ±0.06 0.31±0.03 0.15±0.04 0.11±0.08 0.18±0.04 0.39±0.00 3.22 ± 0.30 4.01 ± 0.36

t=
10

0
(M

SE
×
1
0
2

) GNS 0.25±0.11 0.14±0.02 0.22±0.01 5.71±2.37 0.22±0.04 0.17±0.03 2.18 ±0.21 4.80 ±0.29 18.10 ±2.29
LGNS 0.77±0.23 7.61±0.92 2.30±1.13 0.07±0.01 0.18±0.03 0.11±0.02 5.71±2.36 2.99±0.18 3.84 ±0.57
SGNN 0.12±0.07 12.20±0.37 8.73±0.79 15.27±1.21 9.54±1.06 0.96±0.21 0.34±0.11 2.63±0.18 9.53 ±2.09
HGNS 0.09±0.01 26.79±0.44 4.61±0.35 10.13±0.78 0.14±0.01 0.64±0.39 6.37±0.24 5.66±0.23 58.02 ±4.29
MDGS (Ours) 0.05±0.01 0.06±0.01 0.09±0.01 0.04±0.01 0.03±0.00 0.05±0.00 0.22±0.00 2.40±0.33 2.51±0.93
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(b) Generalization Analysis

Figure 6: Part of the experimental results on performance evaluation.

4.2 PERFORMANCE EVALUATION

Precision. Building upon the aforementioned experimental setup, we conducted performance
testing experiments for both MDGS and other baseline algorithms across a total of 15 datasets. Table
1 and 2 presents the experimental results. It is evident from the results that our proposed MDGS
consistently outperforms the majority of comparisons. Figure 6(a) demonstrated rollout-MSE curves
on part of the datasets. We provide all the curves in Appendix B.5.

Generalization. We compared the generalization performance of various methods using the com-
plete Cubli robot with three flywheels and introduced system attribute variations. The methods trained

Table 2: Comparative experiment results on vehicle datasets and UR5-Husky robot dataset. Bold
indicates the method with optimal performance. Underline denotes the method with the second-best
performance.

Senario Vehicle UR5-Husky
Time Methods Original Fixed Obstacle Damaged Movable Obstacle Original Object Interaction

t=
40

(M
SE

×
1
0
1

) GNS 1.52±0.58 7.77 ±1.79 5.81±0.33 60.15±0.69 28.81±0.33 163.61±16.22
LGNS 0.39±0.07 4.39±0.07 0.41±0.16 88.33±0.89 10.60±1.30 219.07±35.00
SGNN 0.45±0.00 1.85±0.00 0.39±0. 05 23.11±0.31 82.01±5.58 154.44±11.98
HGNS 0.21±0.03 9.99±0.03 2.79±0.08 108.25±2.82 6.97±0.13 172.02±9.95
MDGS (Ours) 0.08±0.01 1.31 ±0.03 0.21±0.02 12.8±0.24 6.18±0.26 132.08±4.83

t=
10

0
(M

SE
×
1
0
2

) GNS 0.37±0.15 5.71±2.36 4.06±0.08 304.99±0.38 19.47±6.67 44.44±4.43
LGNS 0.07±0.02 3.54±0.12 0.34±0.10 114.52±0.14 7.35±1.97 59.40±9.72
SGNN 0.25±0.00 1.29±0.01 0.11±0.01 24.14±0.01 53.81±1.35 41.82±3.07
HGNS 0.08±0.01 6.73±0.01 0.77±0.23 159.15±3.89 5.10±0.18 46.57±2.69
MDGS (Ours) 0.02±0.00 0.96±0.01 0.08±0.00 10.13±1.10 2.16± 0.03 35.68±1.28
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Table 3: Generalization experiment results on Cubli robot dataset with triple flywheels. ∆ indicates
the disparity in model performance between the test set with changes and the original test set. Bold
indicates the method with optimal performance. Underline denotes the method with second-best
performance.

Time Methods
More Intense

∆
Less Intense

∆
Shape

∆
Density

∆
Motion Motion Varied Varied

t=
20

(M
SE

×
1
0
0

) GNS 115.61±18.08 +113.53 5.41±0.27 +3.33 5.01±0.62 +1.06 8.17±3.57 +4.22
LGNS 188.71±28.27 +157.41 40.79±13.93 +9.49 21.77±0.83 +13.25 30.72±9.43 +22.20
SGNN 614.13±31.04 566.36 97.02±49.25 +49.26 57.53±1.02 +21.26 61.92±48.41 +25.65
HGNS 216.76±47.45 +119.74 197.58±61.12 +100.56 40.53±1.02 +23.86 120.01±34.54 +103.34
MDGS (Ours) 7.91± 2.85 +6.14 4.47±0.38 +2.71 2.13±0.26 +0.05 2.63±0.58 +0.55

t=
10

0
(M

SE
×
1
0
2

) GNS 6.08±0.05 +5.97 0.36±0.14 +0.22 0.31±0.03 +0.09 0.48±0.26 +0.26
LGNS 58.33±4.91 +50.72 11.60±0.15 +3.97 6.41±1.32 +4.11 7.25±0.16 +4.95
SGNN 124.04±11.04 +111.83 26.80±2.47 +1.45 13.11±2.37 +4.38 13.67±0.02 +4.94
HGNS 54.40±7.15 +28.61 50.86±8.32 +24.07 9.76±0.98 +5.15 6.37±0.24 +1.76
MDGS (Ours) 0.40±0.15 +0.33 0.25±0.02 +0.19 0.10±0.01 +0.01 0.11±0.02 +0.02

on the original dataset were tested for their accuracy on a modified system, with results shown in Table
3. Our method outperformed others, and notably, except for MDGS, methods incorporating prior
physical system knowledge generally fared poorly in these experiments. Figure 6(b) demonstrated
rollout-MSE curves on part of the datasets, all the curves are provided in Appendix B.5.

4.3 IN-DEPTH STUDY

Visualization. To gain a comprehensive understanding of the performance of our proposed MDGS
method, we visualized the prediction results in detail. As demonstrated in 7(a), it is evident that
the MDGS method significantly enhances the accuracy of posture predictions for the Cubli robot
when compared to the SGNN method. This improvement suggests that MDGS offers a more
precise modeling approach for the internal flywheels and their intricate effects on rotational inertia,
which are crucial for accurate dynamics simulation. Additionally, Figure 7(b) showcases MDGS’s
strong capabilities in trajectory prediction, highlighting its ability to anticipate movement patterns
effectively. Meanwhile, Figure 7(c) further confirms the method’s effectiveness when applied to
complex robots operating within dynamic spatial environments, emphasizing its versatility and
robustness. To enrich the understanding of our results, we also provide videos of the prediction
outcomes in the supplementary materials, allowing viewers to see the model’s performance in
action and further illustrating the advantages of the MDGS method in real-time scenarios. These
visualizations collectively reinforce our findings and demonstrate the ultimate goal of achieving
enhanced predictive accuracy in robotic dynamics.

Structural Constraint Module Analysis. To rigorously assess the effectiveness of the proposed
structural constraint module, we conducted a series of validation experiments utilizing a Cubli
robot dataset. This dataset provided a suitable platform to evaluate our model’s performance under
varying conditions. During these experiments, we compared the outcomes of our model with the
structural constraint module against those obtained without it. As illustrated in Figure 7(e), the
results demonstrate a marked improvement in model performance when the module is integrated,
evidenced by significantly lower MSE values. This reduction in error highlights the module’s efficacy
in enhancing the accuracy of rigid body dynamics analysis. The detailed results, presented in digital
form, can be found in the Appendix B.5, offering further insights into the quantitative improvements
observed in our experiments. These findings underscore the importance of structural constraints in
refining simulation fidelity and advancing the field of rigid body

Ablation Study. We conducted a comprehensive series of ablation experiments aimed at isolating
the effects of various constraints within Kane’s equations. Specifically, we developed two baseline
models, which we refer to as MDGS-NC and MDGS-SC, to evaluate the contributions of these
constraints to the overall performance of our method. MDGS-NC is designed to remove all constraints
from Kane’s equations entirely, allowing us to assess the performance impact of a constraint-free
environment. In contrast, MDGS-SC retains only an independent velocity constraint, providing a
more limited framework for comparison. The experimental results, which are clearly illustrated in
Figure 7(d), demonstrate a significant distinction between the performance of the three models. It
is evident from our findings that the constraints inherent in Kane’s equations play a critical role
in enhancing the performance of our method, thereby validating our approach and suggesting that
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Ground-
truth 

MDGS
(Ours)

SGNN
Cubli out of the camera's 

field of view

Attitude at t = 3 t = 5 t = 15 t = 30t = 10

(a) The predicted trajectory results for the Cubli robot. Additionally, we have specifically enlarged the attitude of
the Cubli robot at t = 3 on the left side for a detailed view.

Ground-
truth 

MDGS
(Ours)

SGNN

t = 5 t = 15 t = 30t = 10

(b) The predicted trajectory results for the vehicle.

Ground-truth 
at t = 15 

MDGS  (Ours)
at t = 15

SGNN
at t = 15

Ground-truth
at t = 30 

MDGS  (Ours)
at t = 30

SGNN
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(c) The predicted results for the space robot.
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(d) Results for structural constraint module analysis.
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(e) Results for ablation study.

Figure 7: In-depth study experimental results.

careful consideration of these constraints can lead to more accurate and robust simulations in complex
mechanical systems.

5 CONCLUSION

In this paper, we propose a novel approach, MDGS, to incorporate force analysis into GNN-based
rigid body system simulators, aiming to enhance the accuracy of such methods in complex mechanical
scenarios. We substantiate the design of MDGS through theoretical foundations and proofs and
validate its performance through a series of experiments.
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A PROOFS

A.1 THE PROOF OF THEOREM 3.1

We first present the following lemma to assist in establishing the rationality of the theorem.

Lemma A.1. By partitioning each rigid body within system S into an element set C = {ci}ni=0
following the procedure in Section 3.2, the motion states of all constructed elements within C, as well
as the external forces {F⃗i}ni=0 acting on these elements, conform to Kane’s equation.

Proof. According to the definition of generalized active force Kane & Levinson (1985), S’s general-
ized active force Kγ according to the γ-th independent velocity can be expressed as follows:

Kγ =

m∑
k=1

F⃗k · u⃗k,γ , (16)

where m represents the number of point masses existing within S, F⃗k denotes the external force
vector acting on point mass k, u⃗k,γ denotes the partial speed corresponding to the γ-th independent
speed. The i-th element can be regarded as a rigid that consists of multiple point masses. Therefore,
we have:

Kγ =

n∑
i=1

m̃i∑
l=1

F⃗ ′
i,l · (u⃗i,γ + ω⃗i,γ × r⃗i,l)

=

n∑
i=1

m̃i∑
l=1

F⃗ ′
i,l · u⃗i,γ +

n∑
i=1

m̃i∑
l=1

F⃗ ′
i,l · (ω⃗i,γ × r⃗i,l)

=

n∑
i=1

( m̃i∑
l=1

F⃗ ′
i,l

)
· u⃗i,γ +

n∑
i=1

( m̃i∑
l=1

(r⃗i,l × F⃗ ′
i,l)

)
· ω⃗i,γ

=

n∑
i=1

R⃗i · u⃗i,γ +

n∑
i=1

M⃗i · ω⃗i,γ , (17)

where F⃗ ′
i,l denote the external force acting on l-th point mass among the m̃i point masses that consist

element ci, u⃗i,γ denote the partial velocity according to the γ-th independent velocity acting on
the mass center of the element ci, ω⃗i,γ denote the partial angular velocity of element ci according
to the γ-th independent velocity, r⃗i,l denotes the radius vector of the l-th point mass towards the
mass center of the element ci. R⃗i and M⃗i represent the forces and moments acting on individual
elements. Such forces and moments can be calculated based on the properties of external forces
{F⃗i}ni=0. Consequently, we can derive that Kγ can be expressed as aggregating the external forces
and moments acting on these elements.

Furthermore, we can represent S ′s generalized inertia force as follows:

K∗
γ =

m∑
k=1

(−mka⃗k) · u⃗k,γ , (18)
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where mk denote the mass of the k-th point mass, a′
k represents its acceleration. Equation 18 can be

reformulated as:

K∗
γ =

n∑
i=1

m̃i∑
l=1

(−mi,la⃗i,l) · (u⃗i,γ + ω⃗i,γ × r⃗i,l)

=

n∑
i=1

m̃i∑
l=1

(−mi,la⃗i,l) · u⃗i,γ +

n∑
i=1

m̃i∑
l=1

(−r⃗i,l ×mi,la⃗i,l) · ω⃗i,γ

= −
n∑

i=1

Mia⃗i · u⃗i,γ −
n∑

i=1

m̃i∑
l=1

(r⃗i,l ×mi,la⃗i,l) · ω⃗i,γ

= −
n∑

i=1

Mia⃗i · u⃗i,γ −
n∑

i=1

L⃗∗
i · ω⃗i,γ , (19)

where mi,l denotes the mass of l-th point mass that consists element ci, a⃗i,l denotes the corresponding
acceleration. Mi and a⃗i denotes the mass and the acceleration of ci, L⃗∗

i can be determined based on
the rotational state of ci. Therefore, we can derive that K∗

γ can be expressed as the aggregation of
the motion states of elements within C. As demonstrated afore, Kγ can be expressed as aggregating
the external forces and moments acting on C. As both K∗

γ and Kγ within Kane’s equation can be
calculated with the given factors, we can conclude that the lemma holds.

Lemma A.1 demonstrates that the motion of element set C and external forces {F⃗i}ni=0 conform to
the Kane’s equation. Next, we need to prove that equation 11 holds. According to the theorem, model
g(·) is strictly accurate. Furthermore, from Equation 17, we have:

R⃗i =

m̃i∑
l=1

F⃗i,l, (20)

which can be regarded as the resultant force acting on an element. Therefore, at time t, we have:

R⃗
(t)
i = [F

(t)
1,i , F

(t)
2,i , ..., F

(t)
d,i ]

⊺, (21)

where F t
γ,i denote the force value along coordinate qγ at time t. Based on the statements in the

theorem, due to the independence of generalized velocities from each other, we could take the
generalized velocity corresponding to each generalized coordinate as independent velocity, the partial
velocity u⃗′

i,γ can be represented as follows:

u⃗′
i,γ =

∂r⃗i
∂qγ

=
∂[q1,i, ..., qd,i]

⊺

∂qγ
, (22)

where qγ is the generalized coordinate corresponding to the γ-th independent velocity. u⃗′
i,γ is a

one-hot vector in such circumstances. Therefore, we have:

R⃗
(t)
i · u⃗′(t)

i,γ = [F
(t)
1,i , F

(t)
2,i , ..., F

(t)
d,i ]

⊺ · ∂[q1,i, ..., qd,i]
⊺

∂qγ
= F

(t)
γ,iuγ , (23)

where uγ represents the unit velocity value along the direction of the γ-th independent velocity.
Therefore, at time t, we have:

K(t)
γ =

n∑
i=1

r⃗i · u⃗′(t)
i,γ +

n∑
i=1

M⃗
(t)
i · ω⃗(t)

i,γ

=

n∑
i=1

F
(t)
γ,i +

n∑
i=1

M⃗
(t)
i · ω⃗(t)

i,γ

=

n∑
i=1

F
(t)
γ,i +

n∑
i=1

m̃i∑
l=1

(r⃗i,l × F⃗
(t)
i,l ) · ω⃗

(t)
i,γ . (24)
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Similarly, we can also derive the following result:

K∗(t)
γ = −

n∑
i=1

Mia⃗
(t)
i · u⃗′(t)

i,γ −
n∑

i=1

L⃗
∗(t)
i · ω⃗(t)

i,γ

= −
n∑

i=1

Mia
(t)
γ,iuγ −

n∑
i=1

m̃i∑
l=1

(r⃗i,l ×mi,la⃗
(t)
i,l ) · ω⃗i,γ , (25)

where a
(t)
γ,i denotes the accelerate speed value along coordinate qγ at time t. According to Kane’s

equation, we have:

K(t)
γ +K∗(t)

γ = 0. (26)

With Equation 24, 25, and 26, we have:

n∑
i=1

F
(t)
γ,iuγ +

n∑
i=1

m̃i∑
l=1

(r⃗i,l × F⃗
(t)
i,l ) · ω⃗

(t)
i,γ −

n∑
i=1

Mia
(t)
γ,iuγ −

n∑
i=1

m̃i∑
l=1

(r⃗i,l ×mi,la⃗
(t)
i,l ) · ω⃗

(t)
i,γ = 0.

(27)

As the prediction model g(·) has assumed to be able to accurately predict the state of S in the Theorem
3.1, we have:

n∑
i=1

F
(t)
γ,iuγ −

∑
i

Mi
1

δ

(
g(G(t))[vγ ,i] − v(t)γ

)
uγ +Ψ(t) = 0. (28)

Ψ(t) is regarded as a disturbance term, formally:

Ψ(t) =

n∑
i=1

m̃i∑
l=1

(r⃗i,l × F
(t)
i,l ) · ω

(t)
i,γ −

n∑
i=1

m̃i∑
l=1

(r⃗i,l ×mi,la
(t)
i,l ) · ω

(t)
i,γ (29)

From Equation 29, it can be easily conclude that:

Ψ(t) ∝
n∑

i=1

m̃i∑
l=1

|r⃗i,l|. (30)

So far, we have demonstrated Equation 11, along with the property of Ψ(t).

A.2 THE PROOF OF THEOREM 3.2

Based on Equation 29, we have:

Ψ(t) =

n∑
i=1

m̃i∑
l=1

(ri,l × F⃗
(t)
i,l ) · ω

(t)
i,γ −

n∑
i=1

m̃i∑
l=1

(ri,l ×mi,la⃗
(t)
i,l ) · ω⃗

(t)
i,γ . (31)

Within Equation 31, the first term of Ψ can be derived as follows:

n∑
i=1

m̃i∑
l=1

(ri,l × F⃗
(t)
i,l ) · ω⃗

(t)
i,γ ≤

n∑
i=1

m̃i∑
l=1

(|ri,l||F⃗ (t)
i,l )|sin(θ

rF
i,l ))ωγ

≤
n∑

i=1

m̃i∑
l=1

(|ri,argmaxl(|ri,l|)||F⃗
(t)
i,l )|sin(θ

rF
i,l ))ωγ

=

n∑
i=1

|ri,argmaxl(|ri,l|)|
m̃i∑
l=1

(|F⃗ (t)
i,l |sin(θ

rF
i,l ))ωγ

≤ rargmaxi |ri,arg maxl(|ri,l|)|,argmaxl(|ri,l|)

n∑
i=1

m̃i∑
l=1

(|F⃗ (t)
i,l )|sin(θ

rF
i,l ))ωγ ,

(32)
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where rargmaxi |ri,arg maxl(|ri,l|)|,argmaxl(|ri,l|) is the max radius τ among all elements, θrFi,l denotes

the angle between ri,l and F
(t)
i,l . The above expression can be further derived as follows:

τ

n∑
i=1

m̃i∑
l=1

(|F⃗ (t)
i,l |sin(θ

rF
i,l ))ωγ = τ

n∑
i=1

(|R⃗(t)
i |sin(θRF

i,l )) ≤ τ

n∑
i=1

(|R⃗(t)
i |)ωγ , (33)

where θRF
i denote the angle between R⃗

(t)
i and ri,l. Using the same method, we can also determine

the lower bound of
∑n

i=1

∑m̃i

l=1(ri,l × F⃗
(t)
i,l ) · ω⃗

(t)
i,γ , and thus we can obtain:

−τ

n∑
i=1

(|R⃗(t)
i |)ωγ ≤

n∑
i=1

m̃i∑
l=1

(ri,l × F⃗
(t)
i,l ) · ω⃗

(t)
i,γ ≤ τ

n∑
i=1

(|R⃗(t)
i |)ωγ . (34)

Meanwhile, the second term of Equation 31 can be derived as follows:

n∑
i=1

m̃i∑
l=1

(ri,l ×mi,la⃗
(t)
i,l ) · ω⃗

(t)
i,γ ≤

n∑
i=1

Iiω̇
(t)
i , (35)

where Ii denotes the rotational inertia of element ci. However, calculating the rotational inertia of
irregular objects can be quite challenging, and this situation may arise with the elements we have
divided. Therefore, we further derive Expressing 35 as follows:

n∑
i=1

Iiω̇
(t)
i ≤

n∑
i=1

2

5
miτ

2ω̇
(t)
i , (36)

where 2
5miτ

2 be the rotational inertia of a sphere that contains element ci. Based on Equation 35 and
36, we have:

−
n∑

i=1

2

5
miτ

2ω̇
(t)
i ≤

n∑
i=1

m̃i∑
l=1

(ri,l ×mi,la⃗
(t)
i,l ) · ω⃗

(t)
i,γ ≤

n∑
i=1

2

5
miτ

2ω̇
(t)
i , (37)

Therefore, we have:

−τ

n∑
i=1

(|R⃗(t)
i |)ωγ −

n∑
i=1

2

5
miτ

2ω̇
(t)
i ≤ Ψ ≤ τ

n∑
i=1

(|R⃗(t)
i |)ωγ +

n∑
i=1

2

5
miτ

2ω̇
(t)
i , (38)

The theorem is proved.

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATIONS

B.1.1 EDGE CONSTRUCTION FOR CONTACT-ORIENTED GRAPH.

In this section, we introduce the construction of edges in our CONTACT-ORIENTED GRAPH.
Many physical scenarios are complex, involving multiple object interactions (including collision and
friction) when the distance between them is minimal. The interactions between particles belonging to
different objects and those within the same object are often distinct. Hence, we propose the concept
of a contact graph. We continuously observe the distances between particles. When the distance
between particles falls below a certain threshold, and they do not belong to the same object, we
determine that contact has occurred. A new edge is established between these contacting particles to
facilitate message passing, thus forming a new, contact-related graph. This newly constructed graph
is utilized to predict and generate the contact forces experienced by the objects. Additionally, we
leverage the pooling of particle-level information from the objects themselves to facilitate interactions
between different objects.
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Figure 8: The physical systems used in all 15 datasets.
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Figure 9: The rollout-MSE curves from the precision evaluation experiments conducted on vehicle
datasets.

B.1.2 THE SPECIFIC CALCULATION METHOD FOR EACH COMPONENT WITHIN Lcst .

For the prediction of F (t)
γ,i , it is essential to first clarify the number of independent velocities in our

system. The rigid body system under study is a six-degree-of-freedom system, encompassing x, y,
and z coordinates, as well as angular velocities along the x, y, and z axes. Nevertheless, given the
complexity of acquiring rotational inertia related to angular velocity and the challenging nature of
obtaining torque data, we limit our calculations to determining the magnitudes of force components
associated with independent velocities along the x, y, and z directions. These force components can
be directly obtained from the corresponding elements of the force vector fi calculated in Section
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Figure 10: The rollout-MSE curves from the precision evaluation experiments conducted on Cubli
robot datasets. Time step 

M
SE

Time step 

M
SE

Time step 

M
SE

Time step 

M
SE

Time step 

M
SE

Time step 

M
SE

Cubli Robot
(Double Flywheels)

Cubli Robot
(Single Flywheel)

Cubli Robot
(Triple Flywheels)

Complex Rotational Body
(Side Hinges)

Complex Rotational Body
(No Hinge)

Complex Rotational Body
(Center Hinge)

Figure 11: The rollout-MSE curves from the precision evaluation experiments conducted on complex
rotational body datasets.

3.2.1. In this way, |R⃗(t)
i | can also be directly obtained by calculating the magnitude of the force

vector fi. Mi can be obtained by calculating the volume of each element and multiplying it by the
density.

We utilize the most commonly known laws of physics for solving angles issues. The angular velocity
is derived by dividing the velocity difference of the current particle relative to the central particle by the
distance between the current and the central particle. The formula is thus expressed as ω = v

r , where
v⃗ = vi(vec, present) − v0(vec, center) =

√
(vi,x − v0,x)2 + (vi,y − v0,y)2 + (vi,z − v0,z)2,

r =
√
(xi − x0)2 + (yi − y0)2 + (zi − z0)2. Similarly, for the velocity component of each axis,

ωx,y,z =
vx,y,z

rx,y,z
, where v⃗x = vi,x − v0,x, v⃗y = vi,y − v0,y, v⃗z = vi,z − v0,z; rx = xi − x0, ry =

yi − y0, rz = zi − z0. We will select the angular velocity component along the largest axis to use as
our angular velocity, ωmax = Max(ωx, ωy, ωz).

B.1.3 STRUCTURAL CONSTRAINT MODULE

In this study, we introduce a novel algorithm aimed at restoring deformed objects to their original, reg-
ular rigid body shapes. This algorithm is based on the geometric transformation of three-dimensional
point sets, achieving the restoration of the object’s shape by precisely calculating the optimal rotation
and translation matrices. Specifically, the algorithm selects elements from the current and reference
states of the object for processing. It calculates the centroid of each set and centralizes the data, shift-
ing the coordinates of both sets to be centered around the origin. This step eliminates the influence of
positional deviations. Subsequently, it computes the covariance matrix of the two centralized data
sets and employs Singular Value Decomposition (SVD) to extract the rotation matrix. To ensure
the correct rotational direction of the object, we introduce a correction matrix to adjust the rotation
matrix. This rotation matrix not only reflects the directional differences between the two point sets
but also ensures that the transformation adheres to the right-hand rule. Finally, by calculating the
translation vector, the adjusted reference point set is moved to a position as close as possible to the
current point set. Our experimental results indicate that this method can effectively restore deformed
objects back to their original shapes.
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Figure 12: The rollout-MSE curves from the precision evaluation experiments conducted on space
robot datasets.
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Figure 13: The rollout-MSE curves from the precision evaluation experiments conducted on UR5-
HUSKY robot datasets.

B.2 HYPERPARAMETERS AND SETTINGS

gF̃ (·), gF̄ (·), and g(·) utilize identical GCN architectures, employing ReLU as the activation function,
and consist of three layers with a hidden dimension of 200. Due to its multi-stage hierarchical
modeling, we use an Adam optimizer with an initial learning rate of 0.001 and beta values of (0.9,
0.999), along with a patience-based Plateau scheduler having 3 cycles and a decay factor of 0.8.
Furthermore, we inject noise during training to achieve better long-term prediction at test time,
with the noise ratio set to 4e-4 in Cubli, and 0.06 times the standard deviation in the other dataset.
The cut-off radius r for both datasets is set to 0.001. On these two datasets, we only use the state
information of the last frame t as input to predict the information of frame t + 1. Experiments are
conducted on a single NVIDIA RTX A6000 GPU.

B.3 COMPUTATIONAL COMPLEXITY

Our algorithm exhibits a computational complexity akin to other GNN-based methods, specifically
O(N × d× l). Here, N and d denote the number of nodes and degrees in the graph, respectively,
while l represents the number of layers. The complexity is primarily influenced by the node count.
Our method constructs graphs with fewer nodes compared to other GNN-based approaches because
it only utilizes centroids and does not require meshes or point clouds to represent regular shapes. In
contrast, when examining traditional numerical simulation methods such as finite element analysis,
their complexity is expressed as O(N ′ × d′ × k′), where N ′ is the number of nodes, d′ the average
degree, and k′ the number of functions computed. Like mesh-based methods, finite element analysis
involves a larger N ′, resulting in greater computational complexity.

B.4 DATASET DETAILS

Utilizing Mujoco Todorov et al. (2012) for physics-based modeling, we systematically vary motion
patterns and mechanical components to generate 15 datasets comprising 2200 trajectories, with
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Figure 14: The rollout-MSE curves from the generalization evaluation experiments conducted on
Cubli robot datasets.
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Figure 15: The complete visualization results of experiments upon space robot dataset.

each trajectory consisting of 110 time steps, enabling a thorough evaluation of the robustness of our
approach. Figure 8 shows the detailed structures of all physical systems utilized in the experiments.

B.5 FURTHER RESULTS

B.5.1 COMPARATIVE RESULTS

To more clearly display the results, we provide all the rollout-MSE curves here within Figure 13, 10,
11, 15, 13, and 14. From these results, it is evident that our method performs exceptionally well in most
cases, significantly outperforming other comparative methods. This outcome robustly demonstrates
the effectiveness of our proposed MDGS method and validates the necessity of incorporating physical
knowledge into GNN-based simulators for accurate decision-making. By embedding physical
knowledge into the GNN-based simulator, our approach can more accurately simulate and predict the
behavior of complex systems, thereby enhancing overall performance.

We believe that the outstanding performance of MDGS across various scenarios is largely attributed
to its successful integration of a force analysis framework into the model, along with the effective
constraints based on principles of multibody dynamics. Specifically, the MDGS method considers
the interactions among different components of the physical system during the modeling process,
ensuring that the simulation results closely align with actual physical phenomena. Furthermore,
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through the constraints imposed by multibody dynamics, our method is better equipped to handle
multiple objects and their interactions within complex systems, thus maintaining high accuracy and
robustness across diverse application scenarios.

B.5.2 ABLATION STUDY RESULTS

Table 4: Ablation experiments compared with other baselines.
Methods

Cubli Robot Complex Rotational Body
t=40 t=110 t=40 t=110

GNS 7.52±0.49 22.36±1.21 8.01±0.69 21.70±3.71
LGNS 31.2±2.66 230.09±31.94 6.52±0.87 17.59±2.52
SGNN 130.95±3.77 873.55±39.42 87.38±7.26 954.46±60.82
HGNS 62.44±2.68 461.5±35.41 4.98±0.19 13.53±1.07
MDGS-NC 110.84±12.47 763.36±1.46 8.40±0.33 60.15±7.05
MDGS-SC 15.24±5.88 43.47±18.94 3.32± 0.36 20.85±3.27
MDGS 3.11±0.32 9.59±1.27 1.15±0.31 3.04±0.64

Furthermore, Table 4 provides a more detailed comparison of ablation experiments. Results within
the table present a numerical comparison of the methods used in our ablation experiments with other
methods. These results further validate the rationale and necessity of our methodological framework.

B.5.3 VISUALIZATION RESULTS

Figure 15 provides a clearer illustration of the action flow prediction results for the space robot. From
the figure, we can observe that due to the complexity of the research subject, other baselines exhibit
larger errors and tend to make significant misjudgments regarding the overall position. We believe
this is because other methods lack stronger physical constraints, leading to greater inaccuracies when
handling predictions for complex mechanical systems.
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