

000
001 **BEYOND HEARING: LEARNING TASK-AGNOSTIC**
002 **ExG REPRESENTATIONS FROM EARPHONES**
003 **VIA PHYSIOLOGY-INFORMED TOKENIZATION**

008 **Anonymous authors**

009 Paper under double-blind review

012 **ABSTRACT**

014 Electrophysiological (ExG) signals offer valuable insights into human physiology,
015 yet building foundation models that generalize across everyday tasks remains
016 challenging due to two key limitations: (i) insufficient data diversity, as most
017 ExG recordings are collected in controlled labs with bulky, expensive devices;
018 and (ii) task-specific model designs that require tailored processing (*i.e.*, targeted
019 frequency filters) and architectures, which limit generalization across tasks. To
020 address these challenges, we introduce an approach for scalable, task-agnostic
021 ExG monitoring in the wild. We collected 50 hours of unobtrusive free-living
022 ExG data with an earphone-based hardware prototype to narrow the data diversity
023 gap. At the core of our approach is *Physiology-informed Multi-band Tokenization*
024 (*PiMT*), which decomposes ExG signals into 12 physiology-informed tokens,
025 followed by a reconstruction task to learn robust representations. This enables
026 adaptive feature recognition across the full frequency spectrum while capturing
027 task-relevant information. Experiments on our new *DailySense* dataset—the first
028 to enable ExG-based analysis across five human senses—together with four public
029 ExG benchmarks, demonstrate that *PiMT* consistently outperforms state-of-the-art
030 methods across diverse tasks.

032 **1 INTRODUCTION**

035 Electrophysiological (ExG) signals, including electroencephalography (EEG), electromyography
036 (EMG), electrooculography (EOG), and electrocardiography (ECG), provide critical insights into
037 neural, muscular, ocular, and cardiovascular activities. They enable a wide range of physiological
038 applications, from gaze tracking (Merino et al., 2010) and emotion recognition (Gkintoni et al., 2025)
039 to sleep staging (Nguyen et al., 2016) and seizure detection (JW et al., 2016). Recent advances in
040 deep learning have improved ExG analysis by developing data-driven training approaches (Song et al.,
041 2022; Jiang et al., 2024) that capture complex temporal and spectral patterns for various physiological
042 tasks. Building on this, foundation models, which have demonstrated remarkable success across
043 domains by leveraging large-scale data to learn general-purpose representations (Narayanswamy
044 et al., 2025), offer a promising opportunity for advancing everyday ExG analysis.

045 However, ExG foundation models remain underexplored due to two limitations: (i) insufficient
046 dataset diversity and (ii) task-specific model design. First, ExG datasets are typically collected in
047 controlled environments (Zheng & Lu, 2015; Katsigiannis & Ramzan, 2018; Wang et al., 2023) using
048 bulky, expensive devices (*e.g.*, EEG headsets (Duvinage et al., 2013)). This setup restricts both scale
049 and diversity across tasks, leaving free-living ExG data largely untapped. Second, existing ExG
050 models are highly task-specific, relying on tailored processing pipelines, *i.e.*, architectures optimized
051 for a fixed frequency band, which limits their generalization. For example, gaze tracking methods
052 are designed to capture low-frequency bands (0.1~15 Hz) (Merino et al., 2010), whereas emotion
053 recognition relies on higher EEG bands (8~30 Hz) (Gkintoni et al., 2025). As a result, a model
054 trained for gaze tracking cannot be directly applied to emotion recognition, highlighting the lack of
055 transferability across tasks.

To address the first challenge, we collected free-living ExG data in unobtrusive settings, constructing the *DailySense* dataset. For this, we prototyped *NeuroBuds*, an earphone-based ExG sensing device. Unlike traditional bulky systems, *NeuroBuds* is lightweight, low-cost, and portable while still capturing rich physiological signals: near-ear EEG, EMG from facial muscles, and EOG from eye movements. This design enables long-term data collection, overcoming the constraints of lab-based recordings. Leveraging this platform, we collected 50 hours of free-living ExG recordings from 22 participants engaged in unconstrained daily activities. Furthermore, we gathered 20 hours of targeted task-specific data spanning the five human senses (*i.e.*, sight, hearing, taste, touch, and smell), establishing the first benchmark for evaluating model performance across diverse tasks.

Moreover, we propose *Physiology-informed Multi-band Tokenization (PiMT)*, an approach designed to learn task-agnostic ExG representations. Instead of relying on a task-specific narrow band or a single wide-band input, PiMT decomposes ExG data into 12 fixed sub-band tokens, each corresponding to distinct physiological modalities. For instance, the [0.5~4 Hz] band captures EEG delta waves, which are informative for sleep staging (Elsaid & Labanowski, 2017), whereas the [15~45 Hz] band reflects low-frequency EMG activities, relevant for muscle activation and motor tasks (Allison & Fujiwara, 2002). These structured tokens provide the encoder with fine-grained access to diverse spectral features, enabling the model to capture task-relevant information while remaining agnostic to any specific task. Coupled with self-supervised reconstruction objectives, we train a robust, transferable representations that generalize effectively across diverse downstream tasks.

To evaluate our approach, we benchmark PiMT against the state-of-the-art ExG training approaches. Specifically, we evaluate it on our newly introduced DailySense benchmark, which spans tasks across the five human senses, along with four widely used datasets covering diverse ExG applications, including emotion recognition, sleep staging, and brain-computer interface (BCI) tasks. Extensive experiments demonstrate that PiMT achieves robust performance and strong generalization across both DailySense and public datasets. Our key contributions are as follows:

- We identify the key limitations of existing ExG frameworks—insufficient dataset diversity and task-specific model design—that hinder generalization to real-world applications.
- We introduce *NeuroBuds*, an earphone-based prototype for unobtrusive, long-term ExG monitoring. Leveraging *NeuroBuds*, we curate DailySense, a dataset containing 50 hours of free-living recordings and 20 hours of task-specific data spanning the five human senses.
- We propose PiMT, a task-agnostic ExG training approach that incorporates a novel, physiology-informed multi-band tokenization scheme. This enables automatic extraction of task-relevant features across the entire frequency spectrum.
- Extensive experiments on DailySense spanning six distinct tasks and four public ExG benchmarks show PiMT achieves state-of-the-art performance, with an average F1 score of 87% over baseline models.

Together, these contributions establish the foundation for scalable, real-world ExG analysis, bridging wearable sensing technology and foundation models for deeper human understanding.

2 RELATED WORK

To enable effective analysis of ExG signals and uncover valuable physiological patterns, recent approaches can be categorized into following three main groups: (i) *Conventional deep learning frameworks*, such as EEGNet (Lawhern et al., 2018) and DeepConvNet (Schirrmeister et al., 2017), leverage temporal and spatial convolutions to extract features directly from raw ExG signals. (ii) *Transformer-based models*, which capture local and long-term temporal dependencies, are well-suited for complex, high-dimensional ExG signals. Early efforts such as EEGConformer (Song et al., 2022) combine convolution and attention to jointly model local and global patterns. PatchTST (Nie et al., 2023) introduces patch-wise attention and independent channel encoding, while Medformer (Wang et al., 2024) enhances feature extraction through multi-scale patching and cross-channel attention. Most recently, Bidirectional-Mamba (Zhu et al., 2024) applies bidirectional state-space modeling for efficient long-range dynamics. (iii) *Self-supervised learning methods* aim to learn generalizable representations from unlabeled ExG signals using proxy tasks such as masked modeling or contrastive learning. BrainBERT (Wang et al., 2023) first applied BERT-style masked modeling to intracranial

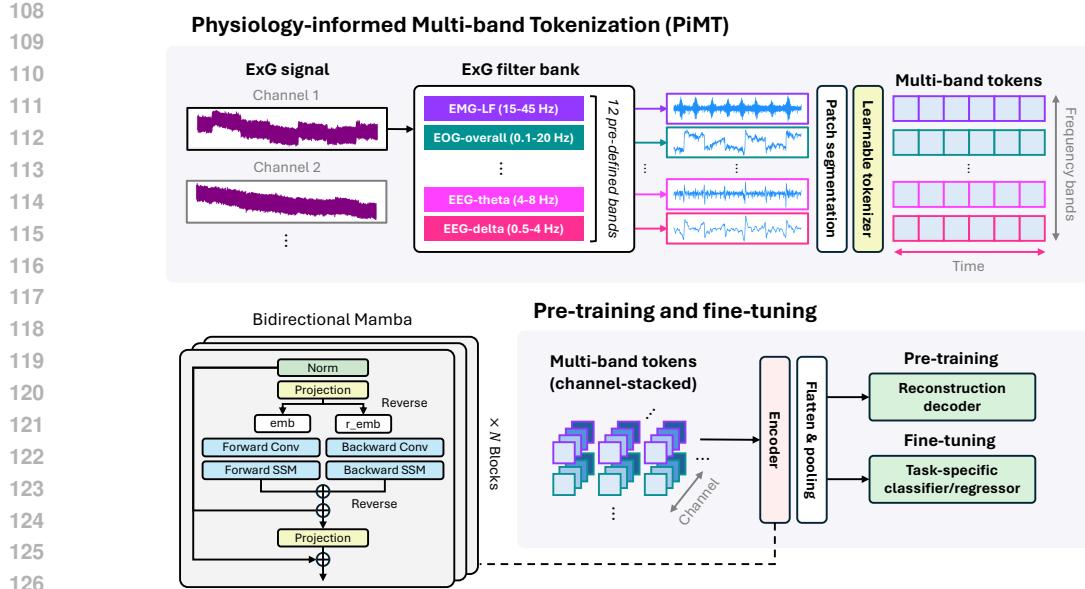


Figure 1: Overview of PiMT. ExG signals are decomposed into 12 sub-bands via Physiology-informed Multi-band Tokenization (PiFT). A Bidirectional-Mamba encoder processes the tokens, and the model is pre-trained with reconstruction tasks before fine-tuning on downstream tasks.

EEG spectrograms. BIOT (Yang et al., 2023) extends this idea to cross dataset via patch-token transformers, and BrainWave (Yuan et al., 2024) further scaled it to foundation models trained on large clinical datasets. However, despite these advances, existing approaches typically focus on specific ExG tasks and modalities, and are primarily evaluated on lab-controlled datasets. This limitation presents an opportunity to develop more generalized and robust representations from free-living ExG data. NeuroBuds addresses these gaps by introducing a unified, frequency-agnostic framework trained on real-world data, improving both robustness and practical usability.

3 LEARNING TASK-AGNOSTIC ExG REPRESENTATION

Motivation. Real-world ExG tasks are often associated with distinct physiological frequency bands. For example, gaze tracking with EOG signals typically relies on low-frequency components in 0.1~15 Hz range (Merino et al., 2010), whereas EEG-based emotion recognition depends on higher-frequency bands, such as 8~30 Hz (Gkintoni et al., 2025). Prior methods either design task-specific models (Gao et al., 2024; Altaheri et al., 2023) or apply narrow-band filters (Farhana et al., 2023; Apicella et al., 2021), both of which limit generalization across tasks. While a wide-band filter (*e.g.*, 0~100 Hz) offers broader coverage, it suffers from loss of physiological features and poor task adaptation. We aim to develop a task-agnostic method that generalizes across tasks without relying on task-specific customization.

Overview. We propose a training framework that enables NeuroBuds to generalize effectively across diverse tasks. Figure 1 provides the overview. First, *Physiology-informed Multi-band Tokenization (PiMT)* decomposes the input into 12 physiology-informed sub-bands, producing tokens that grant the model fine-grained access to task-relevant features across different frequency ranges. Next, a Bidirectional-Mamba encoder generates embeddings from the tokenized representations. To leverage unlabeled free-living data, we introduce a *Reconstruction-based Pre-training* to learn robust ExG representations. The pre-trained encoder is then fine-tuned on downstream tasks.

3.1 PHYSIOLOGY-INFORMED MULTI-BAND TOKENIZATION (PiMT)

To enable the task-agnostic framework, we design a two-step tokenization pipeline that converts raw ExG signals into structured embeddings: (i) physiology-informed frequency decomposition via an *ExG Filter Bank*, and (ii) *Patch Segmentation and Tokenization* to generate input tokens.

ExG Filter Bank. Instead of relying on task-specific frequency bands, we design a fixed filter bank grounded in established physiological knowledge of ExG signals (Niedermeyer & Lopes da Silva, 2005; Nunez & Srinivasan, 2006; Task Force, 1996). Concretely, we define 12 canonical sub-band filters spanning key physiological modalities: EEG-delta (0.5~4 Hz), EEG-theta (4~8 Hz), EEG-alpha (8~13 Hz), EEG-beta (13~30 Hz), EEG-gamma (30~100 Hz), EMG-Low-Frequency (15~45 Hz), EMG-Mid-Frequency (45~95 Hz), EMG-High-Frequency (95~100 Hz), EOG-overall (0.1~20 Hz), ECG-Low-Frequency (0.03~0.12 Hz), ECG-High-Frequency (0.12~0.488 Hz), and the QRS complex (8~50 Hz).

Multi-band Filtering. ExG signals are decomposed into complementary spectral components by simultaneously applying all filters in the bank. This decomposition provides the model with fine-grained, physiologically relevant features that span multiple modalities and tasks, rather than forcing reliance on a single-band representation. Formally, given a multi-channel ExG signal $X_c \in \mathbb{R}^T$, where X_c is from channel c over T time steps, we apply the N_F filters to obtain band-specific signals $X_{f,c} \in \mathbb{R}^T$, where $f \in \{1, \dots, N_F\}$. Each $X_{f,c}$ retains only the components within band f , serving as the foundation for subsequent tokenization.

Patch Segmentation and Tokenization. The band-specific signal $X_{f,c}$ is segmented into non-overlapping patches, *i.e.*, $\mathbf{p}_{f,c,l} \in \mathbb{R}^w$, where w denotes the patch size and l indexes its temporal position. This segmentation improves computational efficiency and facilitates modeling long-range temporal dependencies (Nie et al., 2023). Together, each patch is contextualized by three dimensions: frequency f , channel c , and time l , forming a structured 3D representation of the ExG input. Finally, each patch $\mathbf{p}_{f,c,l}$ is projected into a latent embedding $e_{f,c,l} \in \mathbb{R}^d$ through a learnable tokenizer, where d denotes the embedding dimension. Specifically, we use a single linear layer shared across all tokens to map each patch into a fixed-dimensional embedding space.

3.2 ENCODER

We adopt Bidirectional-Mamba for its strong ability to capture long-range sequential dependencies (Schiff et al., 2024; Shams et al., 2024). A detailed analysis of its effectiveness compared with standard Transformers on ExG data is provided in Appendix H. Furthermore, since PiMT introduces an additional frequency dimension that increases sequence length, Mamba is especially suitable: it achieves linear-time complexity in sequential modeling, whereas Transformers suffer from quadratic complexity (Gu & Dao, 2024).

To fully leverage the rich structure of multi-channel ExG signals, we organize the input tokens along three axes, *i.e.*, frequency, channel, and time, in a fixed scanning sequence. Based on empirical validation, we adopt a frequency-first (f), channel-second (c), and time-last (l) ordering scheme. To achieve this, the embeddings $e_{f,c,l}$ are flattened into a sequence following the $(f \times c \times l)$ order and then passed into the encoder. The encoder produces contextualized representations \mathbf{z} , which are subsequently fed into the downstream task heads.

3.3 PRE-TRAINING FROM FREE-LIVING EXG DATA

Most existing ExG models are trained on lab-controlled datasets using task-specific designs, limiting their ability to generalize to real-world conditions. In contrast, ExG signals collected in free-living environments provide richer diversity and broader coverage of human activities, enabling models to learn more robust and general-purpose representations. To exploit this free-living unlabeled data, we adopt a self-supervised pre-training based on reconstruction objectives. Our design choice is motivated by prior work showing that reconstruction outperforms alternatives, *i.e.*, contrastive learning, when training physiological foundation models on unlabeled data (Narayanswamy et al., 2025). To ensure robust feature extraction, we define six distinct reconstruction tasks, each paired with a dedicated decoder, which are jointly used to train the encoder E_θ .

Autoencoding: Given a sequence of patches \mathbf{p} generated from a raw signal \mathbf{x} , the encoder E_θ maps it into a latent representation $\mathbf{z} = E_\theta(\mathbf{p})$. The decoder D_ϕ^{AE} reconstructs the original signal $\hat{\mathbf{p}}^{\text{AE}} = D_\phi^{\text{AE}}(\mathbf{z})$. This task encourages the encoder to capture temporal features while reducing noise.

Masked Reconstruction: To enforce contextual learning, we employ masked reconstruction (Devlin, 2018; He et al., 2022). The patches \mathbf{p} are partially masked along time, channel, and frequency

216 dimensions, producing a corrupted version \mathbf{p}^{mask} . The encoder processes the masked input to yield
 217 $\mathbf{z}^{\text{mask}} = E_{\theta}(\mathbf{p}^{\text{mask}})$. The decoder D_{ϕ}^{MR} recovers the original signal, generating $\hat{\mathbf{p}}^{\text{MR}} = D_{\phi}^{\text{MR}}(\mathbf{z}^{\text{mask}})$.
 218

219 **Frequency Domain Feature Reconstructions:** To capture spectral information, we incorporate two
 220 frequency-domain reconstruction tasks. We first apply the Fast Fourier Transform (FFT) to obtain
 221 amplitude \mathbf{p}^{A} and phase \mathbf{p}^{P} . Two decoders, D_{ϕ}^{A} and D_{ϕ}^{P} , reconstruct these features from the encoded
 222 representation \mathbf{z} , producing $\hat{\mathbf{p}}^{\text{A}}$ and $\hat{\mathbf{p}}^{\text{P}}$, respectively. Specifically, the two decoders aim to recover
 223 the original frequency domain signals based on: $\hat{\mathbf{p}}^{\text{A}} = D_{\phi}^{\text{A}}(\mathbf{z})$ and $\hat{\mathbf{p}}^{\text{P}} = D_{\phi}^{\text{P}}(\mathbf{z})$, respectively.
 224

225 **Masked Frequency Domain Reconstructions:** To enhance the model’s capacity to infer spectral
 226 features from incomplete inputs, we apply the same frequency reconstruction tasks to masked input
 227 signals. Two additional decoders, D_{ϕ}^{MA} and D_{ϕ}^{MP} , reconstruct the amplitude and phase, producing
 228 $\hat{\mathbf{p}}^{\text{MA}}$ and $\hat{\mathbf{p}}^{\text{MP}}$ from \mathbf{z}^{mask} . The new decoders aim to recover the original frequency domain signals
 229 based on: $\hat{\mathbf{p}}^{\text{A}} = D_{\phi}^{\text{MA}}(\mathbf{z}^{\text{mask}})$ and $\hat{\mathbf{p}}^{\text{P}} = D_{\phi}^{\text{MP}}(\mathbf{z}^{\text{mask}})$, respectively.
 230

231 To jointly optimize the self-supervised objectives, we assign each task an independent decoder that
 232 reconstructs a specific aspect of the input signal, while sharing the encoder. Training is guided by
 233 mean absolute error (MAE) losses between the original and reconstructed signals. We combine these
 234 losses into a single objective by weighting each task-specific loss with a coefficient λ , which controls
 235 its relative contribution. The overall reconstruction loss is thus a weighted sum across all tasks. Each
 236 decoder is implemented as a lightweight MLP designed to reconstruct the target sequence. The λ
 237 values were empirically selected, and details are provided in Appendix G.
 238

3.4 FINE-TUNING

239 Building on the representations learned from free-living data, we fine-tune the model to diverse
 240 downstream tasks (e.g., sight, hearing, taste, touch, and smell). The pre-trained encoder serves as a
 241 feature extractor, while task-specific decoders are trained on labeled data. For classification tasks, we
 242 aggregate the encoder’s patch-wise outputs into a fixed-length feature vector via mean pooling. The
 243 vector is then passed through a fully connected classification decoder trained with cross-entropy loss.
 244 For continuous regression tasks, such as gaze tracking, we employ a linear decoder operating at the
 245 patch level to generate sequential outputs, which are then aggregated into the final prediction. The
 246 model is optimized using a standard regression loss.
 247

4 DAILYSENSE: FREE-LIVING EXG DATA ACROSS FIVE HUMAN SENSES

248 We built *DailySense*, an ExG dataset collected through earphones, designed to enhance the ExG
 249 dataset diversity beyond traditional lab-controlled settings and to enable benchmarking across a
 250 broad spectrum of daily life tasks. DailySense includes data from 22 participants, including 50
 251 hours of unlabeled free-living recordings and 20 hours of labeled task-specific data spanning the
 252 five fundamental human senses.¹ Compared with existing lab-based ExG benchmarks, which often
 253 involve a similar number of participants but shorter recording durations (e.g., DREAMER includes
 254 23 participants with approximately 20 hours of data), DailySense provides a more diverse and
 255 comprehensive dataset, laying a stronger foundation for generalizable ExG representation learning.
 256

257 **Data Collection Platform.** To collect free-living ExG data, we developed *NeuroBuds*, an earphone-
 258 integrated ExG sensing prototype. Unlike traditional head-mounted ExG devices that are bulky and
 259 expensive (\$10,000–\$50,000), NeuroBuds employs an earhook-style form factor that is low-cost and
 260 compact, and well-suited for scalable, long-term daily use. The device integrates amplification,
 261 digitization, onboard storage, and wireless transmission into a lightweight PCB (4.2 cm × 2.2 cm, 20
 262 g, \$80). During data collection, participants wore earphones with integrated electrodes and carried
 263 the PCB as shown in Figure 2. The around-the-ear electrodes can then capture ExG signals, including
 264 EEG (sites T7–T10, FT7–FT10, TP7–TP10), auricular electrodes for EMG, and lateral electrodes for
 265 EOG, providing cognitive, muscular, and ocular coverage. We detail hardware design in Appendix A,
 266 and the physiological rationale behind the design and signal quality for each modality in Appendix B.
 267

268
 269 ¹Our data collection was approved by the Institutional Review Board (IRB). We are also currently working
 with our legal team to determine the possibility of publicly or conditionally sharing the dataset.

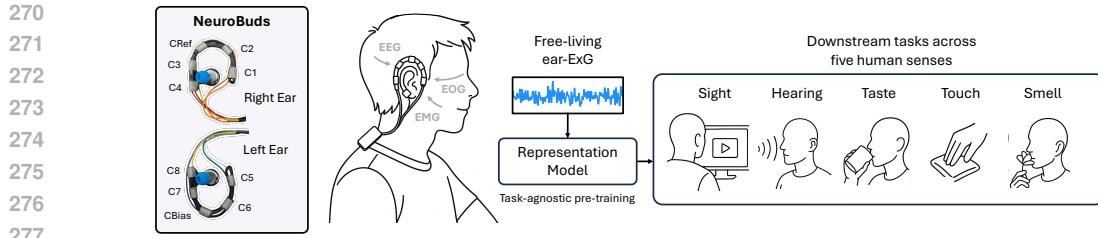


Figure 2: Overview of *DailySense* dataset. Using our earphone-based ExG analysis device, NeuroBuds, we collect free-living unlabeled data for task-agnostic pre-training and labeled data spanning five human senses, serving as benchmarks for downstream tasks.

Data Collection Protocol. DailySense contains (i) unlabeled data of daily life and (ii) labeled data spanning the five human senses. A total of 22 participants (ages 23~62, 16 men, 6 women) wore NeuroBuds during daily routines without restrictions, performing natural activities such as walking, eating, talking, and facial movements. This produced 50 hours of free-living ear-ExG recordings. Furthermore, we curated six benchmark tasks covering the five human senses: (1) gaze tracking, (2) interest inference while watching videos (sight), (3) interest inference while listening to audio (hearing), (4) surface texture classification (touch: rough vs. smooth), (5) taste classification (sweet vs. sour), and (6) smell classification (floral vs. sour). Data were collected in a task-controlled environment with up to seven participants per task, producing 20 hours of labeled recordings. All experimental protocols followed prior brain-computer interface studies (Amini et al., 2022; Iravani et al., 2019; Namazi & Kulish, 2016; Vo et al., 2023; Xia et al., 2023). Further experimental details are provided in Appendix C.

Data Processing. Following established protocols (Jiang et al., 2024), we applied minimal pre-processing steps, including notch filtering (50/60 Hz), resampling to 200 Hz, and normalization. The signals were segmented into non-overlapping 4-second windows. To improve the robustness of the model, we augmented the training data with small additive noise. Appendix D provides visualizations of the collected signals.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. We benchmarked PiMT against baselines including a traditional machine learning model (SVM), ExG-specific neural architectures (DeepConvNet (Schirrmeister et al., 2017), EEGNet (Lawhern et al., 2018), and EEGConformer (Song et al., 2022)), and general-purpose time-series models (Time-Series Transformer (TST) (Zerveas et al., 2021), PatchTST (Nie et al., 2023), and Bidirectional-Mamba (Zhu et al., 2024)). Among them, we emphasize PatchTST as a strong baseline—an advanced masked reconstruction model built on a Transformer backbone that independently models each ExG channel and excels at capturing long-range temporal modeling.

Benchmark Datasets. We evaluated PiMT on DailySense along with four widely used ExG benchmarks: DREAMER (Katsigiannis & Ramzan, 2018) and SEED (Zheng & Lu, 2015) for emotion recognition, Sleep-EDF (Kemp et al., 2000) for sleep stage classification, and BCI Competition IV 2b (Leeb et al., 2008) for motor imagery. Dataset details are provided in Appendix E.

Implementation Details and Metrics. Our implementation consists of two primary stages: (i) pre-training on free-living data and (ii) task-specific fine-tuning. We first pre-train PiMT on 50 hours of free-living data using a masked reconstruction objective, then fine-tune it on each downstream dataset using an 8:2 train-test split for each participant. For evaluation, we report the mean squared error (MSE) in angular ($^\circ$) units for gaze tracking and macro-averaged F1-scores for all classification tasks. All tasks are repeated three times with different random seeds, and we report the corresponding standard deviation. Additional training details, resource specifications, and hyperparameter tuning are provided in Appendix F and Appendix G.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance of PiMT and baselines on DailySense. Classification results are in F1-score, and gaze tracking performance is in angular error. Best results are highlighted in **bold**.

Method	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	Gaze
<i>Without pre-training</i>							
SVM	0.665 ± 0.078	0.610 ± 0.126	0.556 ± 0.114	0.554 ± 0.107	0.510 ± 0.084	0.579	$6.60^\circ \pm 1.27^\circ$
EEGNet	0.753 ± 0.137	0.712 ± 0.149	0.709 ± 0.088	0.643 ± 0.097	0.669 ± 0.063	0.697	$6.52^\circ \pm 1.24^\circ$
DeepConvNet	0.680 ± 0.174	0.706 ± 0.129	0.633 ± 0.074	0.638 ± 0.075	0.636 ± 0.062	0.659	$7.04^\circ \pm 1.31^\circ$
TST	0.773 ± 0.125	0.705 ± 0.104	0.731 ± 0.068	0.669 ± 0.116	0.667 ± 0.096	0.709	$6.54^\circ \pm 1.30^\circ$
PatchTST	0.771 ± 0.146	0.749 ± 0.113	0.731 ± 0.092	0.686 ± 0.119	0.681 ± 0.049	0.724	$6.47^\circ \pm 1.28^\circ$
EEGConformer	0.738 ± 0.127	0.752 ± 0.141	0.688 ± 0.062	0.678 ± 0.102	0.670 ± 0.047	0.705	$6.53^\circ \pm 1.28^\circ$
Bidirectional-Mamba	0.820 ± 0.102	0.858 ± 0.113	0.733 ± 0.060	0.762 ± 0.101	0.722 ± 0.067	0.779	$6.53^\circ \pm 1.16^\circ$
PiMT (Ours)	0.858 ± 0.084	0.885 ± 0.125	0.790 ± 0.077	0.807 ± 0.113	0.753 ± 0.069	0.819	$6.11^\circ \pm 1.20^\circ$
<i>With pre-training</i>							
PatchTST	0.807 ± 0.146	0.786 ± 0.146	0.697 ± 0.099	0.700 ± 0.131	0.670 ± 0.082	0.732	$6.42^\circ \pm 1.33^\circ$
PiMT (Ours)	0.964 ± 0.028	0.961 ± 0.038	0.801 ± 0.064	0.860 ± 0.118	0.793 ± 0.069	0.876	$6.00^\circ \pm 1.13^\circ$

Table 2: F1-score on four public ExG benchmarks across various tasks.

Baselines	DREAMER	SEED	Sleep-EDF	BCI Competition IV 2b
PatchTST	0.889 ± 0.085	0.756 ± 0.093	0.810 ± 0.005	0.657 ± 0.008
Bidirectional-Mamba	0.875 ± 0.090	0.750 ± 0.107	0.796 ± 0.002	0.646 ± 0.015
PiMT (Ours)	0.910 ± 0.074	0.820 ± 0.121	0.822 ± 0.006	0.693 ± 0.004

5.2 EVALUATION ON DAILYSENSE

Table 1 shows the F1-scores of PiMT compared with the baselines on DailySense. Overall, the results demonstrate that ear-ExG combined with PiMT can effectively capture five human senses, achieving up to 81.9% F1-score and as low as 6.11° gaze error, even without pre-training. Notably, PiMT outperformed all baselines, achieving a 4% improvement in F1-score and a 0.41° reduction in gaze error. We attribute this generalizability to PiMT’s ability to interpret task-relevant frequency bands, a capability essential for handling diverse ExG-based tasks characterized by heterogeneous frequency-band features. We also observed that the Mamba-based backbone contributed significantly to performance gains; detailed comparisons against Transformer-based variants are reported in Appendix H.

Effect of Pre-training on Free-living Data. A key advantage of NeuroBuds is its ability to facilitate effortless collection of ExG signals, enabling large-scale pre-training. We evaluated the performance of PiMT when pre-trained on free-living data and compared it with PatchTST, which is the only baseline with a tailored pre-training strategy. As shown in Table 1, pre-training improved the average F1-score of PiMT from 81.9% to 87.6%. Similarly, PatchTST improved from 72.4% to 73.2%, whereas PiMT demonstrated a substantially larger gain. These results highlight the effectiveness of both our hardware-enabled free-living data collection and our reconstruction-based pre-training framework. Further analysis of our reconstruction-based pre-training is provided in Appendix I.

5.3 EVALUATION ON PUBLIC BENCHMARKS

To validate the generalizability of PiMT beyond the *DailySense* dataset, we evaluated it on four widely used public benchmarks covering diverse ExG tasks. We compared against two strongest baselines, PatchTST (Nie et al., 2023) and Bidirectional-Mamba (Zhu et al., 2024). As shown in Table 2, PiMT consistently outperformed all baselines across all datasets. Overall, these results demonstrate that our training strategy learns general-purpose ExG representations through physiology-informed multiband tokenization, leading to robust performance across diverse benchmarks. This confirms generalization beyond the self-collected DailySense dataset to real-world benchmarks, which underscores the potential of NeuroBuds as a unified framework for generalizable ExG representation learning.

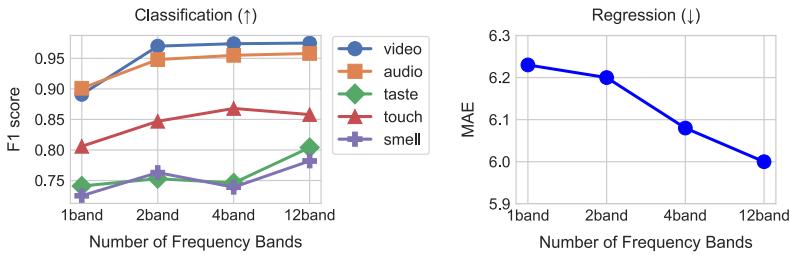


Figure 3: Comparison of different ExG tokenization strategies: 1-band (0.1~75 Hz), 2-band (0.1~15 Hz and 15~75 Hz), 4-band (0.1~5 Hz, 5~15 Hz, 15~35 Hz, and 35~75 Hz), and our 12-band filter bank (described in Section 3.1).

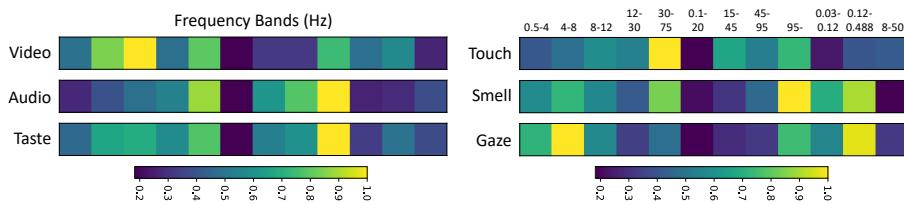


Figure 4: Saliency analysis demonstrating how the model dynamically captures task-relevant frequency bands via multi-band tokenization.

5.4 EFFECT OF MULTI-BAND TOKENIZATION

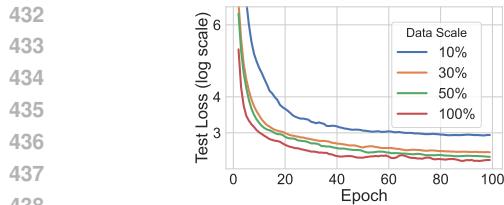
To understand the impact of multi-band tokenization, we compared the model performance under different frequency-band tokenization strategies on DailySense. As shown in Figure 3, performance consistently improves as the number of bands increases. Our 12-band filter bank approach outperforms the 1-, 2-, and 4-band variants, achieving an average 4.6% F1-score gain on classification tasks and the lowest gaze-tracking error. These results suggest that fine-grained decomposition allows NeuroBuds to exploit subtle but physiologically meaningful spectral cues.

Saliency Analysis. To further understand the impact on the downstream task, we conducted a visual analysis of how different frequency bands contribute to each task. Figure 4 depicts saliency maps that highlight the contribution of each frequency-band token during inference. Importantly, we observed clear task-relevant activation patterns: (i) gaze and video tasks, which are closely linked to eye movements, exhibited strong activation in low-frequency bands (Plöchl et al., 2012), and (ii) touch, taste, smell, and auditory interest classification emphasized high-frequency components, consistent with somatosensory beta-low-gamma activity involved in processing external stimuli (Bauer et al., 2006) and peri-auricular EMG spectra reflecting near-ear muscle movements (Goncharova et al., 2003). These findings demonstrate that PiMT enables the model to dynamically focus on task-relevant frequency components without explicit supervision. We stress that this property is essential for enabling generalizable ExG-based applications in daily-life scenarios using NeuroBuds.

5.5 IMPACT OF PRE-TRAINING DATA SCALE

We examine how the scale of pre-training data influences representation quality and downstream task performance. To this end, we randomly split the pre-training corpus into 80% training and 20% held-out test data, and subsampled varying proportions of the training set. Figure 5 shows the test loss across epochs under varying training data scales. As expected, larger pre-training sets consistently produced lower losses, indicating that PiMT benefits from additional data and scales effectively.

Figure 6 presents downstream results on DailySense. For classification tasks, average performance saturates around 30% of the pre-training data, suggesting diminishing returns beyond this point. In contrast, gaze regression continues to improve up to 50%, highlighting task-dependent benefits of larger pre-training scales. Overall, these findings suggest that while some tasks quickly reach saturation, others continue to benefit from larger-scale pre-training. Importantly, the consistent loss reductions in Figure 5 confirm that PiMT can effectively exploit additional data, underscoring its promise as a general-purpose ExG representation model.



439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Test loss across different pre-training data scales.

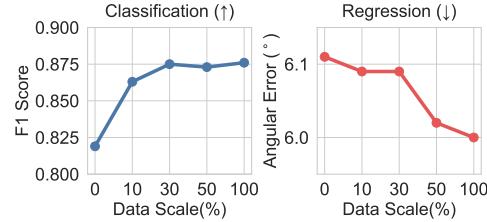


Figure 6: Downstream performance of PiMT with varying amounts of pre-training data.

5.6 FURTHER ANALYSIS AND ABLATION STUDY

On-device Deployment and Real-time Analysis (Appendix K). We evaluated the runtime overhead of PiMT (with transformer as a backbone) on a commercial smartphone (Samsung Galaxy S24), which serves as a representative companion device for earphones. The model achieved efficient runtime performance with an average inference latency of 25 ms, memory usage of 266 MB (3.1%), and CPU utilization of 20.3%.

Leave-One-Subject-Out evaluation. To further assess cross-participant generalization, we conducted leave-one-subject-out (LOSO) experiments on DailySense. In DailySense, some participants contributed to both free-living pre-training data and task-specific data. Therefore, in LOSO, for each target user, their data was excluded from pretraining and used only for testing. Despite this constraint, PiMT achieved performance comparable to full pre-training (Figure 7), confirming its ability to generalize effectively to unseen users.

Ablation Study (Appendix I, J). We performed an ablation study to investigate the contribution of each pre-training component to representation learning. As shown in Table 4, the complete model achieved the highest overall performance. We observed consistent performance improvements as additional components were incorporated, indicating the complementary benefits of each module. Furthermore, Table 5 shows that a patch size of 0.5 seconds yielded the best downstream performance compared to alternative configurations.

5.7 DISCUSSION

We acknowledge several limitations of our current approach. Like many existing ExG frameworks, our methods are constrained by the limited number of subjects and challenges in personalized generalization. While the number of subjects is comparable to prior benchmarks, DailySense provides over 70 hours of high-resolution (1000 Hz) recordings across both free-living and task-specific conditions. Our LOSO experiments show promising cross-subject generalization, but performance drops when training and testing on different users highlight the persistent challenge of personalized modeling. Nonetheless, by demonstrating the effectiveness of earphone-derived free-living ExG data for representation learning, NeuroBuds provides a scalable path toward broader population-level data collection and establishes the foundation for a more generalizable framework in future work.

6 CONCLUSION

We tackle two long-standing barriers in ExG analysis: (i) the lack of diverse, real-world data and (ii) the reliance on task-specific model designs. To address data diversity, we developed NeuroBuds, an earphone-based sensing prototype, and curated DailySense, the first dataset with 50 hours of free-living recordings and 20 hours of task-specific ExG data spanning all five human senses. To overcome task-specificity, we propose Physiology-informed Multi-band Tokenization (PiMT), which decomposes ExG signals into structured tokens across 12 canonical sub-bands aligned with distinct physiological modalities. Combined with reconstruction-based pre-training on free-living data, PiMT

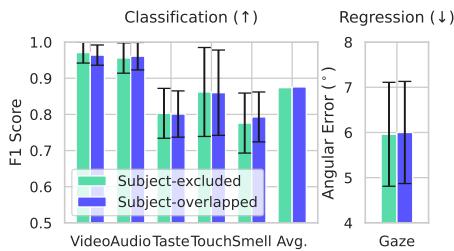


Figure 7: LOSO Performance when the target subject's data is either included or excluded.

486 learns robust, task-agnostic representations that generalize across tasks. Evaluations on DailySense
 487 and four public benchmarks demonstrate that PiMT consistently outperforms state-of-the-art baselines.
 488 Together, these contributions push ExG research beyond narrow, lab-constrained applications toward
 489 generalizable and real-world physiological sensing. Looking ahead, this work opens new opportunities
 490 in personalized health monitoring, cognitive interfaces, and scalable everyday sensing powered by
 491 ExG platforms.

492

493 ETHICS STATEMENT

494

495 Our data collection was approved by the Institutional Review Board (IRB), ensuring the safety of
 496 both the participants and the device prototype used in the study. For the other experiments, we used
 497 publicly available datasets, which were used in accordance with their intended purposes. There is no
 498 ethical issue with this paper.

499

500 REPRODUCIBILITY STATEMENT

501

502 Our Physiology-informed Multi-band Tokenization approach can be reproduced using the filter bank
 503 described in Section 3.1. Comprehensive experimental and implementation details are provided in
 504 Section 5, Appendix F, and Appendix G.

505

506 USAGE OF LARGE LANGUAGE MODELS

507

508 Large Language Models (LLMs) were used solely for polishing the writing of this paper.

509

510

511 REFERENCES

512 Tobii 4c eye tracker. <https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-Tobii-Eye-Tracker-4C>, 2016.

513 Garry T. Allison and Takayuki Fujiwara. The relationship between emg median frequency and low
 514 frequency band amplitude changes at different levels of muscle capacity. *Clinical biomechanics*, 17
 515 6:464–9, 2002. URL <https://api.semanticscholar.org/CorpusID:10242245>.

516 Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Umar Amin, Ghadir Ali Altuwaijri,
 517 Wadood Abdul, Mohamed A Bencherif, and Mohammed Faisal. Deep learning techniques for
 518 classification of electroencephalogram (eeg) motor imagery (mi) signals: A review. *Neural
 519 Computing and Applications*, 35(20):14681–14722, 2023.

520 Ali Amini, Karim Faez, and Mahmood Amiri. Surface roughness classification in dynamic touch
 521 using eeg signals. In *2022 30th International Conference on Electrical Engineering (ICEE)*, pp.
 522 205–209, 2022. doi: 10.1109/ICEE55646.2022.9827406.

523 Andrea Apicella, Pasquale Arpaia, Giovanna Mastrati, and Nicola Moccaldi. Eeg-based detection
 524 of emotional valence towards a reproducible measurement of emotions. *Scientific Reports*, 11(1):
 525 21615, 2021.

526 Markus Bauer, Robert Oostenveld, Maarten Peeters, and Pascal Fries. Tactile spatial attention
 527 enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in
 528 parieto-occipital areas. *Journal of Neuroscience*, 26(2):490–501, 2006.

529 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
 530 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *2024 IEEE International
 531 Symposium on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2024.

532 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv
 533 preprint arXiv:1810.04805*, 2018.

534 Matthieu Duvinage, Thierry Castermans, Mathieu Petieau, Thomas Hoellinger, Guy Cheron, and
 535 Thierry Dutoit. Performance of the emotiv epoch headset for p300-based applications. *Biomedical
 536 engineering online*, 12:1–15, 2013.

540 Ola Elsaïd and Michael Labanowski. Physiology, sleep stages. 2017. URL <https://api.semanticscholar.org/CorpusID:79564518>.

541

542

543 Cunhang Fan, Jinjin Wang, Wei Huang, Xiaoke Yang, Guangxiong Pei, Taihao Li, and Zhao Lv. Light-weight residual convolution-based capsule network for eeg emotion recognition. *Adv. Eng. Inform.*, 61(C), August 2024. ISSN 1474-0346. doi: 10.1016/j.aei.2024.102522. URL <https://doi.org/10.1016/j.aei.2024.102522>.

544

545

546

547 Zitao Fang, Chenxuan Li, Hongting Zhou, Shuyang Yu, Guodong Du, Ashwaq Qasem, Yang Lu, Jing Li, Junsong Zhang, and Sim Kuan Goh. Neuript: Foundation model for neural interfaces. *arXiv preprint arXiv:2510.16548*, 2025.

548

549

550 Iffat Farhana, Jungpil Shin, Shabbir Mahmood, Md Rabiul Islam, and Md Khademul Islam Molla.

551 Emotion recognition using narrowband spatial features of electroencephalography. *IEEE Access*, 11:44019–44033, 2023.

552

553

554 Pengxuan Gao, Tianyu Liu, Jia-Wen Liu, Bao-Liang Lu, and Wei-Long Zheng. Multimodal multi-view spectral-spatial-temporal masked autoencoder for self-supervised emotion recognition. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1926–1930. IEEE, 2024.

555

556

557

558 Evgenia Gkintoni, Anthimos Aroutzidis, Hera Antonopoulou, and Constantinos Halkiopoulos. From neural networks to emotional networks: a systematic review of eeg-based emotion recognition in cognitive neuroscience and real-world applications. *Brain Sciences*, 15(3):220, 2025.

559

560

561 Irina I Goncharova, Dennis J McFarland, Theresa M Vaughan, and Jonathan R Wolpaw. Emg contamination of eeg: spectral and topographical characteristics. *Clinical neurophysiology*, 114(9):1580–1593, 2003.

562

563

564

565 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First Conference on Language Modeling*, 2024.

566

567 Ahmed Hamid, Katherine Gagliano, Safwanur Rahman, Nikita Tulin, Vincent Tchiong, Iyad Obeid, and Joseph Picone. The temple university artifact corpus: An annotated corpus of eeg artifacts. In *2020 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)*, pp. 1–4. IEEE, 2020.

568

569

570

571 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.

572

573

574 Behzad Iravani, Artin Arshamian, Kathrin Ohla, Donald A. Wilson, and Johan N. Lundström. Non-invasive recording from the human olfactory bulb. *Nature Communications*, 11, 2019. URL <https://api.semanticscholar.org/CorpusID:195391468>.

575

576

577 Weibang Jiang, Liming Zhao, and Bao liang Lu. Large brain model for learning generic representations with tremendous EEG data in BCI. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=QzTpTRVtrP>.

578

579

580

581 Britton JW, Frey LC, and Hopp JLet al. *Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants*. Chicago: American Epilepsy Society, 2016.

582

583

584 Stamos Katsigiannis and Naeem Ramzan. Dreamer: A database for emotion recognition through eeg and ecg signals from wireless low-cost off-the-shelf devices. *IEEE Journal of Biomedical and Health Informatics*, 22(1):98–107, 2018. doi: 10.1109/JBHI.2017.2688239.

585

586

587 B. Kemp, A.H. Zwinderman, B. Tuk, H.A.C. Kamphuisen, and J.J.L. Oberye. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. *IEEE Transactions on Biomedical Engineering*, 47(9):1185–1194, 2000. doi: 10.1109/10.867928.

588

589

590 Daniel R Kramer, Krista Lamorie-Foote, Michael Barbaro, Morgan B Lee, Terrance Peng, Angad Gogia, George Nune, Charles Y Liu, Spencer S Kellis, and Brian Lee. Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans. *Neurosurgical focus*, 48(2):E2, 2020.

594 Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
 595 Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
 596 interfaces. *Journal of Neural Engineering*, 15(5):056013, jul 2018. doi: 10.1088/1741-2552/aace8c.
 597 URL <https://dx.doi.org/10.1088/1741-2552/aace8c>.

598 Robert Leeb, Clemens Brunner, G Müller-Putz, A Schlögl, and GJGUOT Pfurtscheller. Bci competi-
 599 tion 2008–graz data set b. *Graz University of Technology, Austria*, 16:1–6, 2008.

600 Louise R Manfredi, Hannes P Saal, Kyler J Brown, Mark C Zielinski, John F Dammann III, Vicky S
 601 Polashock, and Sliman J Bensmaia. Natural scenes in tactile texture. *Journal of neurophysiology*,
 602 111(9):1792–1802, 2014.

603 Manuel Merino, Octavio Rivera, Isabel Gómez, Alberto Molina, and Enrique Dorronzoro. A method
 604 of eog signal processing to detect the direction of eye movements. In *2010 First International
 605 Conference on Sensor Device Technologies and Applications*, pp. 100–105. IEEE, 2010.

606 Hamidreza Namazi and Vladimir V. Kulish. Fractal based analysis of the influence of odorants on
 607 heart activity. *Scientific Reports*, 6, 2016. URL <https://api.semanticscholar.org/CorpusID:14622292>.

608 Girish Narayanswamy, Xin Liu, Kumar Ayush, Yuzhe Yang, Xuhai Xu, shun liao, Jake Garri-
 609 son, Shyam A. Tailor, Jacob Sunshine, Yun Liu, Tim Althoff, Shrikanth Narayanan, Pushmeet
 610 Kohli, Jiening Zhan, Mark Malhotra, Shwetak Patel, Samy Abdel-Ghaffar, and Daniel McDuff.
 611 Scaling wearable foundation models. In *The Thirteenth International Conference on Learning
 612 Representations*, 2025. URL <https://openreview.net/forum?id=yb4QE6b22f>.

613 Anh Nguyen, Raghda Alqurashi, Zohreh Raghebi, Farnoush Banaei-kashani, Ann C. Halbower,
 614 and Tam Vu. A lightweight and inexpensive in-ear sensing system for automatic whole-night
 615 sleep stage monitoring. In *Proceedings of the 14th ACM Conference on Embedded Network
 616 Sensor Systems CD-ROM*, SenSys ’16, pp. 230–244, New York, NY, USA, 2016. Association
 617 for Computing Machinery. ISBN 9781450342636. doi: 10.1145/2994551.2994562. URL
 618 <https://doi.org/10.1145/2994551.2994562>.

619 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 620 64 words: Long-term forecasting with transformers. In *The Eleventh International Confer-
 621 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.

622 Ernst Niedermeyer and Fernando Lopes da Silva (eds.). *Electroencephalography: Basic Principles,
 623 Clinical Applications, and Related Fields*. Lippincott Williams & Wilkins, 5 edition, 2005. ISBN
 624 0781751268.

625 Paul L. Nunez and Ramesh Srinivasan. *Electric Fields of the Brain: The Neurophysics of EEG*.
 626 Oxford University Press, 2 edition, 2006. ISBN 019505038X.

627 Michael Plöchl, José P Ossandón, and Peter König. Combining eeg and eye tracking: identifica-
 628 tion, characterization, and correction of eye movement artifacts in electroencephalographic data.
 629 *Frontiers in human neuroscience*, 6:278, 2012.

630 Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
 631 Caduceus: bi-directional equivariant long-range dna sequence modeling. In *Proceedings of the
 632 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

633 Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
 634 Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
 635 Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization.
 636 *Human brain mapping*, 38(11):5391–5420, 2017.

637 Margitta Seeck, Laurent Koessler, Thomas Bast, Frans Leijten, Christoph Michel, Christoph Baum-
 638 gartner, Bin He, and Sándor Beniczky. The standardized eeg electrode array of the ifcn. *Clinical
 639 neurophysiology*, 128(10):2070–2077, 2017.

648 Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Golmo-
 649 hammadi, Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection corpus.
 650 *Frontiers in neuroinformatics*, 12:83, 2018.

651

652 Siavash Shams, Sukru Samet Dindar, Xilin Jiang, and Nima Mesgarani. Ssamba: Self-supervised
 653 audio representation learning with mamba state space model. In *2024 IEEE Spoken Language
 654 Technology Workshop (SLT)*, pp. 1053–1059. IEEE, 2024.

655 Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolutional
 656 transformer for eeg decoding and visualization. *IEEE Transactions on Neural Systems and
 657 Rehabilitation Engineering*, 31:710–719, 2022.

658

659 ESC/NASPE Task Force. Heart rate variability: Standards of measurement, physiological interpreta-
 660 tion, and clinical use. *Circulation*, 93(5):1043–1065, 1996. doi: 10.1161/01.CIR.93.5.1043.

661

662 Hoang-Thuy-Tien Vo, Thi-Nhu-Quynh Nguyen, Do Duc Cuong, and Tuan Van Huynh. Classification
 663 taste-eeg signals using base neural network. In *2023 RIVF International Conference on Computing
 664 and Communication Technologies (RIVF)*, pp. 107–111, 2023. doi: 10.1109/RIVF60135.2023.
 10471803.

665

666 Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
 667 Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial
 668 recordings. In *The Eleventh International Conference on Learning Representations*, 2023.

669

670 Yihe Wang, Nan Huang, Taida Li, Yujun Yan, and Xiang Zhang. Medformer: A multi-
 671 granularity patching transformer for medical time-series classification. In A. Globerson,
 672 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances
 673 in Neural Information Processing Systems*, volume 37, pp. 36314–36341. Curran Asso-
 674 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/3fe2a777282299ecb4f9e7ebb531f0ab-Paper-Conference.pdf.

675

676 Xiuxin Xia, Yuchao Yang, Yan Shi, Wenbo Zheng, and Hong Men. Decoding taste information in
 677 human brain: A temporal and spatial reconstruction data augmentation method coupled with taste
 678 eeg, 2023. URL <https://arxiv.org/abs/2307.05365>.

679

680 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
 681 the wild. *Advances in Neural Information Processing Systems*, 36:78240–78260, 2023.

682

683 Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, and Yang Yang. Brainwave: A brain
 684 signal foundation model for clinical applications. *arXiv preprint arXiv:2402.10251*, 2024.

685

686 George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
 687 A transformer-based framework for multivariate time series representation learning. In *Proceedings
 688 of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 2114–2124,
 689 2021.

690

691 Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for EEG-
 692 based emotion recognition with deep neural networks. *IEEE Transactions on Autonomous Mental
 693 Development*, 7(3):162–175, 2015. doi: 10.1109/TAMD.2015.2431497.

694

695 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
 696 Vision mamba: efficient visual representation learning with bidirectional state space model. In
 697 *Proceedings of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org,
 698 2024.

699

700

701

702 A NEUROBUDS HARDWARE DESIGN
703704 To enable large-scale, in-the-wild ExG data collection, we built an earphone-based sensing platform
705 consisting of two main components:
706707 **Earphone-Shaped Sensing Array:** To adopt a earhook-style form factor, We use a commercial
708 earphone (Powerbeats PB123) as the backbone, and wrap conductive tape around the frame to form
709 electrodes. Each side includes five electrodes: the top ones on the left and right act as bias and
710 reference, while the remaining eight serve as signal channels.
711712 **Lightweight Processing Board:** We design a custom printed circuit board (PCB) integrating signal
713 amplification, digitization, wireless transmission, and onboard storage:
714715

- **Amplification:** An bio-amplifier chip (ADS1299) and the front-end circuit support 8-channel
716 ExG signal conditioning.
- **Digitization and Control:** An ESP32 microcontroller handles A/D conversion, peripheral
717 control, and real-time streaming.
- **Wireless Streaming:** Microcontroller’s built-in Wi-Fi/BLE enables direct transmission to
718 phones or PCs for data collection or real-time on-device inference.
- **Storage:** A microSD slot supports continuous onboard logging.

719720 To minimize size and weight without compromising signal integrity, we adopted highly integrated
721 chips (ADS1299, ESP32), and designed a compact 6-layer PCB with dense layout of components on
722 both sides to further reduce footprint. The resulting design measures just 4.2cm × 2.2cm and weighs
723 only 20g, which is significantly smaller than existing COTS systems like OpenBCI (6.1cm × 6.1cm,
724 80g) or OpenEarable (5.7cm × 3cm, only support 2 ExG channel).
725726 During use, the board is enclosed in a 3D-printed case and connected to the sensing array via Dupont
727 wires. Users can wear the platform unobtrusively during daily activities, with the board placed in a
728 pocket or wore on the body, enabling free-living data collection.
729730 B QUALITY OF EEG, EOG, AND EMG SIGNAL
731732 Our electrode placement around the ear was carefully designed to capture EEG, EOG, and EMG
733 signals while maintaining a compact and unobtrusive form factor. Below, we outline the physiological
734 rationale and supporting evidence for each modality.
735736 **EEG:** The electrodes align with standard around-the-ear EEG channels, *i.e.*, T7–T10, FT7–FT10,
737 and TP7–TP10 in the 10-10 EEG system (Seeck et al., 2017). The strong classification performance
738 on cognitive tasks demonstrates that our recordings contain reliable EEG activity.
739740 **EMG:** Electrodes positioned on auricular muscles capture EMG signals linked to facial expressions.
741 We further validated this by recording deliberate facial movements (*e.g.*, blinking, biting), which
742 produced distinct EMG-specific patterns.
743744 **EOG:** Electrodes placed on both sides of the head enable strong horizontal EOG capture, with
745 partial vertical EOG sensitivity due to vertical displacement. Eye movement patterns (0.1–5 Hz) are
746 clearly observed in Appendix D, and our gaze tracking accuracy (within 6.15 degrees as shown in
747 Appendix I) further supports the presence of robust EOG signals.
748749 This electrode configuration enables simultaneous acquisition of EEG, EMG, and EOG signals,
750 providing a rich multimodal ExG dataset while preserving wearability for daily use.
751752 C DAILYSENSE DATA COLLECTION PROTOCOL
753754 In this section, we describe the detailed protocol of our six task-specific sensory experiments. The
755 experimental tasks included:
756

- 756 • **Gaze Tracking:** Participants were seated 60 cm from a 13.5-inch laptop (model: Surface
757 Book 2, display size: 3000 x 2000 pixels, vertical refresh rate: 59 Hz). This task evaluated
758 whether ExG signals could accurately track gaze positions. The error was quantified as the
759 angular difference between the ExG-based gaze estimation and the ground truth obtained
760 from a Tobii eye tracker (tob, 2016) (model: Tobii 4C Eye Tracker).
- 761 • **Auditory and Video Interest Inference:** Inspired by SEED and DREAMER
762 datasets (Zheng & Lu, 2015; Katsigianis & Ramzan, 2018), this experiment explored
763 the correlation between ExG signals and engagement with visual/auditory stimuli. Participants
764 were asked to watch or listen to video clips. After each session, they rated their interest
765 level. Each participant watched/listened to six stimulus clips, each lasting six minutes.
766 The goal is to classify the participant’s emotional state every four seconds based on ExG
767 responses.
- 768 • **Surface Texture Classification (Touch Perception):** Participants interacted with different
769 textured surfaces to analyze ExG responses to tactile stimuli (Amini et al., 2022). Each
770 participant rubbed either a rough or smooth surface for 60 continuous seconds, repeating this
771 process 10 times for each texture. The goal is to classify the participant’s touch perception
772 every four seconds.
- 773 • **Taste Classification:** This experiment assessed ExG responses to different taste profiles
774 (sweet vs. sour). Participants sipped a liquid and held it in their mouth for 20 seconds (Vo
775 et al., 2023; Xia et al., 2023). To prevent cross-contamination, a 30-second rest period was
776 enforced between different taste samples, allowing participants to rinse their mouths before
777 proceeding to the next task. The task aims to classify the participant’s taste perception every
778 four seconds.
- 779 • **Smell Classification:** This task examined ExG signal responses to olfactory stimuli (Iravani
780 et al., 2019; Namazi & Kulish, 2016). Participants inhaled pleasant and unpleasant odors,
781 and the model was evaluated on its ability to distinguish between different scent categories.

782 Table 3 provides a comprehensive summary of the classification labels, stimulus materials, trial
783 durations, number of sessions, and trial structures per participant for each task.

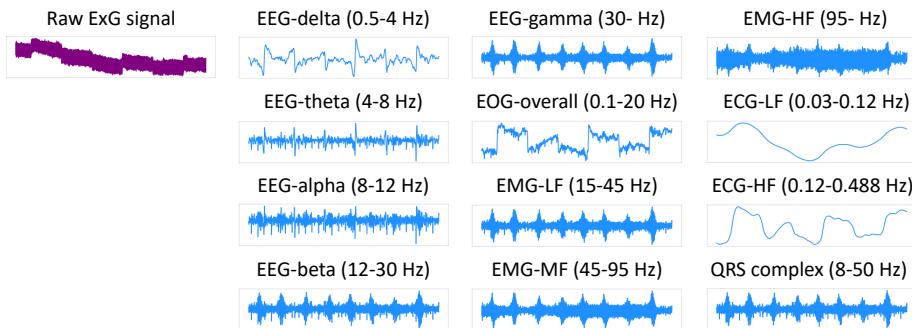
784 **Table 3: Experimental Task Details**

787 Task	788 Labels	789 Materials	790 Trial duration time	791 Total sessions	792 Total time	793 Rest time
794 Taste	Sweet	Chocolate milk	20 seconds	15	300 seconds	30 seconds
	Sour	Vinegar	20 seconds	15	300 seconds	30 seconds
795 Touch	Rough	Scent paper	1 minute	10	10 minutes	20 seconds
	Smooth	Silk	1 minute	10	10 minutes	20 seconds
796 Smell	Lavender	Lavender scent bag	20 seconds	15	300 seconds	30 seconds
	Sour	Vinegar	20 seconds	15	300 seconds	30 seconds
797 Video	Interesting	Comedy Clips	5 minutes	6	30 minutes	30 seconds
	Not-interesting	Lectures/Documentary	5 minutes	6	30 minutes	30 seconds
798 Audio	Interesting	Comedy podcast	5 minutes	6	30 minutes	30 seconds
	Not-interesting	Lectures	5 minutes	6	30 minutes	30 seconds

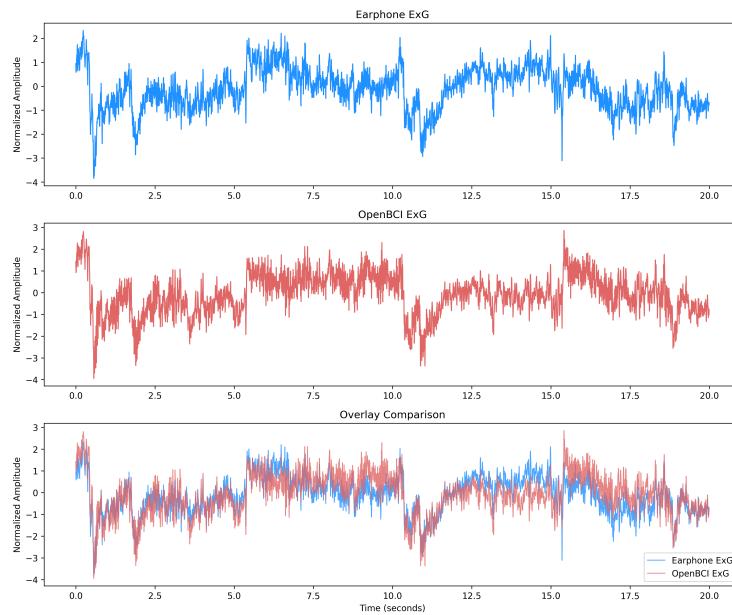
802 D VISUALIZATION OF EXG SIGNALS

803 We visualized the raw ExG signals measured using NeuroBuds and illustrated how they are trans-
804 formed into multi-band tokens through bandpass filtering across different frequency ranges. Figure 8
805 shows the decomposition of the raw signal into twelve frequency bands, each of which is subse-
806 quently tokenized as part of our multi-band sequence. For gaze tracking, low-frequency bands (*e.g.*, EOG-
807 overall and ECG-HF bands) exhibit clearer temporal patterns that align with EOG signals (Merino
808 et al., 2010). In contrast, for tasks such as touch, low-frequency activity is less prominent, while
809 informative features emerge in higher-frequency bands (Manfredi et al., 2014; Kramer et al., 2020).

810
 811 In addition to evaluating ExG quality implicitly through downstream task performance, we also
 812 conducted a direct quantitative comparison between our earphone-based NeuroBuds prototype and a
 813 research-grade OpenBCI device. Specifically, we ran an eye-movement tracking experiment with
 814 two participants (approximately one hour of synchronized data) and computed Pearson correlations
 815 between NeuroBuds and OpenBCI channels. The average cross-system correlation reached 0.71
 816 (statistically significant, $p < 0.001$), demonstrating that NeuroBuds capture ExG/EOG activity
 817 with high consistency relative to a laboratory-grade system. Beyond quantitative metrics, we also
 818 performed visualization analysis to assess overall signal similarity. Visual comparison of synchronized
 819 raw ExG signals shows that NeuroBuds and OpenBCI exhibit closely aligned temporal patterns, with
 820 similar waveform shapes, amplitudes, and drift trends throughout the recording as shown in Figure 9.
 821 These qualitative observations, together with the correlation analysis, further confirm that NeuroBuds
 822 produces ExG signals that closely match those from research-grade devices.
 823



824
 825 Figure 8: Raw ExG signals from DailySense dataset and their decomposition into twelve physiology-
 826 informed frequency bands for Multi-band Tokenization.
 827



860
 861 Figure 9: Visualization of synchronized ExG signals collected from NeuroBuds and a research-grade
 862 OpenBCI device with the Pearson correlation of 0.7586, demonstrating strong cross-system signal
 863 similarity.

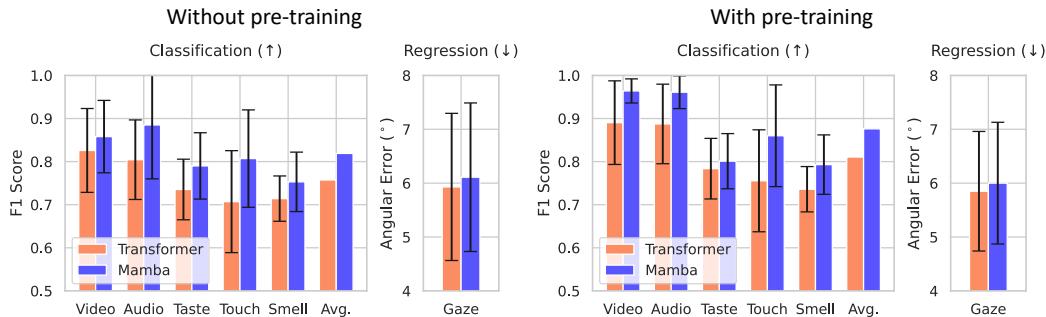
864 **E BENCHMARK DATASETS**
865866 We used four public benchmark datasets to further validate effectiveness of PiMT. For all datasets,
867 we performed a random 80/20 split, assigning 80% of the data to training and the remaining 20% to
868 testing. We followed established protocols Jiang et al. (2024) to preprocess the ExG signals.869 **DREAMER** (Katsigiannis & Ramzan, 2018) is an EEG-based emotion recognition dataset collected
870 from 23 participants while they watched 18 film clips designed to elicit different affective states. The
871 dataset provides signals from electroencephalogram (14 channels at 128 Hz) and electrocardiogram (2
872 channels at 256 Hz). Each trial is annotated with self-reported valence, arousal, and dominance scores
873 on a 5-point scale. We used the EEG recordings for classification of emotional states, formulating
874 the task as binary classification based on dominance levels, where trials with dominance ≥ 3 were
875 labeled as high and those with dominance < 3 as low.876 **SEED** (Zheng & Lu, 2015) is a emotion recognition dataset with EEG recordings from 15 subjects.
877 Participants watched 15 film clips (five positive, five neutral, and five negative) across three sessions.
878 EEG was recorded from 62 channels using the ESI NeuroScan system at 1000 Hz. We used the
879 downsampled signal at 200 Hz. The dataset provides trial-level emotion labels (positive, neutral,
880 negative).881 **Sleep-EDF** (Kemp et al., 2000) is a dataset used for sleep stage classification. It contains 197
882 whole-night polysomnographic recordings from both healthy subjects and patients with mild sleep
883 difficulties. The EEG signals were recorded from two channels (Fpz-Cz and Pz-Oz) at 100 Hz, and
884 the EOG signals were also sampled at 100 Hz. We used five-class scoring (W, N1, N2, N3, REM) for
885 classification only using EEG signals.886 **BCI Competition IV 2b** (Leeb et al., 2008) is a motor imagery dataset consisting of EEG recordings
887 from 9 subjects across 5 sessions. Subjects were asked to perform left-hand and right-hand motor
888 imagery tasks. Each session included multiple runs of motor imagery trials, with EEG recorded from
889 three bipolar channels (C3, Cz, C4) at 250 Hz. The dataset defines two classes corresponding to
890 left-hand and right-hand motor imagery.892 **F IMPLEMENTATION DETAILS**
893894 For the Bidirectional-Mamba model, we used 8 layers with a hidden state size of 16 and an em-
895 bedding dimension of 64. The decoder consisted of two fully connected layers, each with a hidden
896 dimension of 64. For the baseline implementations, we tuned SVM using a grid search over
897 $C \in \{0.1, 1, 10, 100\}$, $\gamma \in \{0.01, 0.001, 0.0001\}$, and kernel types (*rbf*, *linear*, *poly*). For the
898 other baselines, we followed their official implementations and performed grid searches to tune key
899 hyperparameters, such as learning rate and batch size.900 For the train/test split, we first segmented long sequences into 4-second windows and randomly
901 shuffled them. We then applied a standard 80/20 division to construct the training and test sets.903 **G HYPER-PARAMETER TUNING**
904905 Our implementation consists of two primary stages: representation learning and task-specific fine-
906 tuning. During the representation learning stage, we pre-trained the model using mask and recon-
907 struction objectives to learn robust representations transferable across various downstream tasks. The
908 representation model is trained on the entire 40 hours of free-living data, after which it is fine-tuned
909 on each specific task before final evaluation on the corresponding test set.910 The weighting coefficients (λ) for the pretraining objectives were selected heuristically based on
911 empirical observations. We initialized all λ values to 1 and monitored the convergence dynamics of
912 individual loss terms. We found that the autoencoding loss (\mathcal{L}_{AE}) and masked reconstruction loss
913 (\mathcal{L}_{MR}) converged more slowly than others; their weights were therefore increased to 2 to encourage
914 balanced training. While we did not conduct a full hyperparameter sweep, this adjustment yielded
915 more stable convergence without introducing instability.916 To further optimize performance, we performed a grid search over key hyperparameters. Throughout
917 the experiment, we used AdamW optimizer with 0.01 weight decay. During the pre-training stage,

918 the batch size was fixed at 256, and the learning rate was scheduled from 0.01 to 0.001 using a cosine
 919 decay scheduler. For the backbone architecture, we adopted a bi-directional mamba model with 16
 920 layers and a hidden dimension of 16. The masking ratio for the pretraining was fixed at 50%. During
 921 the fine-tuning stage, the batch size was fixed for all tasks, 10 for Gaze and 8 for the remaining
 922 tasks. The learning rate followed a cosine decay schedule from 0.001 to 0.00001. All experiments
 923 were repeated 3 times and the results are reported as the mean and standard deviation. All models
 924 were implemented using PyTorch, and the experimental evaluations were conducted on NVIDIA
 925 A100-SXM-80GB GPUs.

927 H BACKBONE COMPARISON: MAMBA VS. TRANSFORMER

930 We adopt Bidirectional-Mamba (Zhu et al., 2024) as our backbone architecture, which has demon-
 931 strated state-of-the-art performance across various time-series tasks (Zerveas et al., 2021; Song
 932 et al., 2022). To evaluate its effectiveness on ExG signals, we compare it against Transformer-based
 933 architecture, PatchTST (Nie et al., 2023), which showed strong performance in our main evaluation
 934 (Section 5.2). For a fair comparison, we applied our Multi-band Tokenization to both Mamba- and
 935 Transformer-based models, with and without pre-training on the free-living dataset.

936 As shown in Figure 10, the Mamba-based model consistently outperformed the Transformer-based
 937 model under all settings, achieving a 6.4% improvement without pre-training and an 8.5% gain
 938 with pre-training. These results confirm that Mamba is a strong architectural choice for ExG signal
 939 modeling.



952 Figure 10: Comparison of Mamba and Transformer backbones.

955 I EFFECT OF PRE-TRAINING COMPONENTS

958 Our pre-training framework on free-living data comprises six reconstruction-based tasks designed
 959 for unlabeled ExG signals: Autoencoding (AE), Masked Reconstruction (MR), (frequency) Am-
 960 plitude Reconstruction (A), (frequency) Phase Reconstruction (P), Masked Amplitude Reconstruc-
 961 tion (MA), and Masked Phase Reconstruction (MP). We assessed the contribution of each component by
 962 performing ablation experiments

963 Table 4 depicts the results. Although most ablation settings still achieve relatively strong perfor-
 964 mance, highlighting the overall effectiveness of pre-training, all are consistently lower than the full
 965 combination (0.876), confirming the benefit of jointly using all reconstruction tasks. The perfor-
 966 mance drops in individual ablations are modest, as complementary tasks help maintain efficacy.
 967 However, we observed task-specific sensitivities: for instance, MR, A, MA, and MP are particularly
 968 important for gaze tracking, where excluding them led to a notable increase in error. Meanwhile,
 969 AE, MR, and phase-related reconstructions strongly influence taste classification, where their re-
 970 moval caused meaningful performance degradation. These findings suggest that temporal- versus
 971 frequency-focused reconstruction tasks contribute differently depending on the task, reflecting the
 distinct feature requirements of each modality.

Table 4: Pre-Training ablation. Classification results are in F1-score, and gaze tracking performance is in angular error.

Method	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	
PiMT (Ours)	0.964 ± 0.028	0.961 ± 0.038	0.801 ± 0.064	0.860 ± 0.118	0.793 ± 0.069	0.876	$6.00 \pm 1.13^\circ$
w/o AE	0.970 ± 0.026	0.959 ± 0.042	0.806 ± 0.066	0.852 ± 0.125	0.778 ± 0.085	0.873	$6.00 \pm 1.09^\circ$
w/o MR	0.962 ± 0.030	0.956 ± 0.043	0.798 ± 0.058	0.859 ± 0.122	0.783 ± 0.082	0.872	$6.10 \pm 1.09^\circ$
w/o A	0.967 ± 0.028	0.955 ± 0.037	0.816 ± 0.063	0.850 ± 0.119	0.768 ± 0.079	0.871	$6.19 \pm 1.23^\circ$
w/o MA	0.965 ± 0.032	0.960 ± 0.040	0.818 ± 0.062	0.849 ± 0.124	0.774 ± 0.089	0.873	$6.12 \pm 1.20^\circ$
w/o P	0.979 ± 0.020	0.961 ± 0.041	0.803 ± 0.061	0.856 ± 0.127	0.764 ± 0.086	0.873	$5.98 \pm 1.15^\circ$
w/o MP	0.971 ± 0.030	0.960 ± 0.040	0.798 ± 0.062	0.857 ± 0.120	0.777 ± 0.082	0.873	$6.15 \pm 1.26^\circ$

Table 5: Ablation study on the impact of patch size. We report classification F1 scores (\uparrow) and gaze regression error in degrees (\downarrow). Our method (0.5 sec patch size) achieves the best overall balance across tasks.

Patchsize	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	
0.25 sec	0.977 ± 0.020	0.967 ± 0.036	0.776 ± 0.065	0.849 ± 0.124	0.741 ± 0.098	0.862	$6.23^\circ \pm 1.26^\circ$
0.5 sec (Ours)	0.964 ± 0.028	0.961 ± 0.038	0.801 ± 0.064	0.860 ± 0.118	0.793 ± 0.069	0.876	$6.00^\circ \pm 1.13^\circ$
1.0 sec	0.962 ± 0.034	0.945 ± 0.054	0.821 ± 0.063	0.836 ± 0.130	0.784 ± 0.088	0.870	$6.10^\circ \pm 1.09^\circ$
2.0 sec	0.947 ± 0.039	0.932 ± 0.074	0.776 ± 0.101	0.823 ± 0.126	0.769 ± 0.105	0.850	$6.24^\circ \pm 1.05^\circ$

J IMPACT OF PATCH SIZE

We discuss the impact of different patch sizes. Specifically, we selected the patch size empirically based on performance trends across tasks. A sensitivity study illustrating the effect of different patch sizes is presented in Table 5. A smaller patch size provides less contextual information for each classification window, which may limit performance. However, it benefits gaze regression, as the participant’s gaze is more likely to remain fixed within a shorter temporal window. In contrast, larger patch sizes offer more temporal context for classification tasks but increase the likelihood of gaze shifts or overlapping signals from multiple classes, potentially degrading both classification and gaze estimation performance. We observed that a patch size of 0.5 seconds provides the best trade-off, yielding strong performance across both classification and regression tasks.

K EFFICIENCY ANALYSIS

Table 6: Runtime performance of PiMT on smartphone (Samsung Galaxy S24).

Metric	Value
Inference Latency	25 ms
Memory Usage	266 MB (3.6%)
CPU Usage	20.3%
Model Size (ONNX)	2.0 MB

We evaluated the runtime overhead of our method on a commercial smartphone (Samsung Galaxy S24), which serves as a practical companion device for earphone-based systems. Since NeuroBuds supports real-time data streaming via BLE, we consider a deployment scenario where inference is offloaded to the smartphone.

Because the Mamba architecture is not yet supported on Android and lacks corresponding hardware acceleration, we substituted Mamba with a Transformer of *equivalent architecture and parameter size* (e.g., number of layers, d_{model}). Prior work has shown that Transformers generally incur higher inference costs under comparable hardware acceleration (Gu & Dao, 2024). To preserve the core

1026 Table 7: Performance of PiMT compared to PatchTST on the DailySense dataset under three data
 1027 split settings: within-session, cross-session, and cross-subject.

Method	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	Gaze
<i>Within-session</i>							
PatchTST	0.807 ± 0.146	0.786 ± 0.146	0.697 ± 0.099	0.700 ± 0.131	0.670 ± 0.082	0.732	$6.42^\circ \pm 1.33^\circ$
PiMT (Ours)	0.964 ± 0.028	0.961 ± 0.038	0.801 ± 0.064	0.860 ± 0.118	0.793 ± 0.069	0.876	$6.00^\circ \pm 1.13^\circ$
<i>Cross-subject</i>							
PatchTST	0.654 ± 0.047	0.595 ± 0.064	0.561 ± 0.047	0.553 ± 0.064	0.539 ± 0.052	0.580	$7.07^\circ \pm 1.25^\circ$
PiMT (Ours)	0.612 ± 0.088	0.578 ± 0.082	0.593 ± 0.038	0.577 ± 0.092	0.571 ± 0.035	0.586	$7.78^\circ \pm 0.95^\circ$
<i>Cross-session</i>							
PatchTST	0.658 ± 0.202	0.656 ± 0.157	0.695 ± 0.101	0.639 ± 0.097	0.611 ± 0.068	0.652	$7.56^\circ \pm 1.33^\circ$
PiMT (Ours)	0.697 ± 0.249	0.698 ± 0.188	0.704 ± 0.106	0.763 ± 0.156	0.639 ± 0.146	0.700	$6.98^\circ \pm 1.51^\circ$

1041 algorithmic behavior of PiMT, we retained both the multi-band tokenization and the 3D positional
 1042 embeddings.

1043 The resulting models were exported to ONNX and evaluated using 4-second input sliding windows
 1044 (200 Hz sampling, with the same preprocessing as in the main experiments). The measured runtime
 1045 performance is summarized in Table 6.

1046 Overall, the results indicate that inference can be executed in real time at up to 40 Hz with minimal
 1047 resource consumption. Preprocessing operations such as filtering and windowing can be performed
 1048 directly on the NeuroBuds board. In addition, given that Mamba has been reported to offer 5 \times
 1049 higher throughput than Transformers, we anticipate supporting on-device inference with even lower
 1050 overhead.

1053 L GENERALIZATION TO UNSEEN SESSIONS AND USERS

1055 We also tested generalization to unseen conditions during testing in *cross-subject* and *cross-session*
 1056 scenarios. Cross-subject involves training and testing on different users, while cross-session assumes
 1057 the model is tested on a different session from the same user, introducing a temporal shift. These
 1058 domain shifts are open challenges for ExG-based tasks, with prior work (Fan et al., 2024) reporting
 1059 over a 30% drop in accuracy. As shown in Table 7, our method also experienced a performance drop
 1060 under the cross-subject setting (58.6%). In the cross-session setting, NeuroBuds showed stronger
 1061 robustness, achieving 70.0% compared to PatchTST’s 65.2%. Generalization to unseen conditions
 1062 remains a open challenge and is a focus of our future research. Nevertheless, we believe that large-
 1063 scale data collection enabled by the daily usability of NeuroBuds can play a key role in improving
 1064 robustness in real-world applications.

1066 M STATISTICAL SIGNIFICANCE

1069 To assess whether our method provides statistically significant improvements over the baselines, we
 1070 conduct paired Wilcoxon signed-rank tests on DailySense. Each task contains 6–9 participants, and
 1071 for every participant we train each model with three random seeds. For a given seed, all models
 1072 share the exact same train–test split; because the split strongly influences performance, constructing
 1073 pairs at the seed level ensures a fair and properly controlled comparison. For each model pair,
 1074 we therefore form paired samples based on participant–seed combinations (e.g., 7 participants \times
 1075 3 seeds = 21 paired samples), and the Wilcoxon test is applied to this aggregated set of paired
 1076 differences. For the classification tasks, we test whether the performance differences are consistently
 1077 positive (higher F1 is better), and for gaze estimation we test whether the differences are consistently
 1078 negative (lower angular error is better). For the “Avg.” column, we pool paired differences across all
 1079 five classification tasks before applying the test. As shown in Table 8, PiMT achieves statistically
 significant improvements over nearly all baselines and modalities, often with extremely small p -values,
 demonstrating that the gains are consistent across participants and robust to seed-level variation.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 8: Paired Wilcoxon p -values when comparing PiMT to each baseline on DailySense. Lower values indicate stronger evidence that PiMT outperforms the baseline.

Method	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	
<i>Without pre-training</i>							
SVM	4.77 e-07 ***	4.77 e-07 ***	7.63 e-06 ***	7.45 e-09 ***	4.77 e-07 ***	9.61 e-20 ***	4.44 e-05 ***
EEGNet	1.64 e-04 ***	1.21 e-04 ***	1.23 e-02 *	1.49 e-08 ***	1.59 e-03 **	8.25 e-15 ***	1.01 e-03 **
DeepConvNet	9.82 e-05 ***	4.77 e-07 ***	1.64 e-04 ***	1.42 e-07 ***	4.77 e-06 ***	4.48 e-18 ***	1.03 e-07 ***
TST	1.17 e-04 ***	1.19 e-05 ***	1.92 e-02 *	4.10 e-07 ***	6.53 e-05 ***	1.22 e-15 ***	8.04 e-04 ***
PatchTST	4.32 e-04 ***	1.09 e-04 ***	3.00 e-02 *	1.49 e-08 ***	1.65 e-03 **	2.65 e-14 ***	2.14 e-03 **
EEGConformer	9.82 e-05 ***	5.25 e-05 ***	5.23 e-04 ***	1.42 e-07 ***	1.24 e-03 **	3.28 e-16 ***	1.38 e-03 **
Bidirectional-Mamba	6.14 e-03 **	1.83 e-02 *	1.56 e-02 *	1.12 e-03 **	2.30 e-02 *	1.01 e-07 ***	1.15 e-07 ***
PiMT (Ours)	—	—	—	—	—	—	—
<i>With pre-training</i>							
PatchTST	1.17 e-04 ***	9.54 e-07 ***	1.26 e-04 ***	7.45 e-08 ***	9.54 e-07 ***	1.91 e-18 ***	3.29 e-03 **
PiMT (Ours)	—	—	—	—	—	—	—

* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$. Entries marked “—” correspond to self-comparisons.

1100
1101
1102
1103
Table 9: Performance on DailySense using different pretraining sources, showing our 50-hr free-living
dataset outperforms larger controlled datasets.

Pretraining Dataset	Classification (\uparrow)						Regression (\downarrow)
	Video	Audio	Taste	Touch	Smell	Avg.	
No PT	0.858 ± 0.084	0.885 ± 0.125	0.790 ± 0.077	0.807 ± 0.113	0.753 ± 0.069	0.819	$6.11^\circ \pm 1.20^\circ$
TUAR (98.6 hrs)	0.964 ± 0.035	0.950 ± 0.049	0.791 ± 0.065	0.824 ± 0.124	0.736 ± 0.092	0.853	$5.95^\circ \pm 1.17^\circ$
TUAR + TUSZ (498.6 hrs)	0.964 ± 0.024	0.950 ± 0.044	0.803 ± 0.076	0.833 ± 0.109	0.741 ± 0.094	0.858	$6.03^\circ \pm 1.14^\circ$
DailySense (Ours, 50 hrs)	0.964 ± 0.028	0.961 ± 0.038	0.801 ± 0.064	0.860 ± 0.118	0.793 ± 0.069	0.876	$6.00^\circ \pm 1.13^\circ$

N PRETRAINING USING PUBLIC CONTROLLED EXG DATASETS

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
We further examine how our 50-hour free-living DailySense dataset compares to pretraining on larger publicly available ExG corpora collected in controlled settings. Specifically, we evaluate models pretrained on TUAR (Hamid et al., 2020) and TUSZ (Shah et al., 2018), two widely used pretraining datasets in recent EEG foundation models (Jiang et al., 2024; Cui et al., 2024; Fang et al., 2025). TUAR, a curated subset of TUEG, contains annotations for five artifact types—including eye movements, chewing, and muscle activity—making it relevant to our downstream tasks such as gaze tracking. TUSZ provides extensive seizure annotations and is among the largest publicly available EEG corpora. Because these datasets use electrode montages that differ from ours, we select electrodes with the closest spatial correspondence—F7, F8, T3, T4, T5, T6, O1, and O2 in the 10–20 system—for pretraining. We consider two pretraining configurations: (1) TUAR alone (98.6 hours) and (2) TUAR combined with a subset of TUSZ for a total of 498.6 hours, representing moderate- and large-scale controlled EEG datasets, respectively. As shown in Table 9, pretraining on DailySense achieves the strongest average transfer performance across all five classification tasks and yields competitive gaze estimation accuracy, despite its substantially smaller size. This highlights the power of learning more generalizable and robust representations from free-living data, which better capture the natural variability present in real-world human behavior than controlled laboratory recordings. Considering the relative ease and scalability of free-living data collection, we expect that DailySense can be expanded far more rapidly than controlled laboratory datasets, which would further amplify these performance advantages.