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ABSTRACT

Electrophysiological (ExG) signals offer valuable insights into human physiology,
yet building foundation models that generalize across everyday tasks remains
challenging due to two key limitations: (i) insufficient data diversity, as most
ExG recordings are collected in controlled labs with bulky, expensive devices;
and (ii) task-specific model designs that require tailored processing (i.e., targeted
frequency filters) and architectures, which limit generalization across tasks. To
address these challenges, we introduce an approach for scalable, task-agnostic
ExG monitoring in the wild. We collected 50 hours of unobtrusive free-living
ExG data with an earphone-based hardware prototype to narrow the data diversity
gap. At the core of our approach is Physiology-informed Multi-band Tokenization
(PiMT), which decomposes ExG signals into 12 physiology-informed tokens,
followed by a reconstruction task to learn robust representations. This enables
adaptive feature recognition across the full frequency spectrum while capturing
task-relevant information. Experiments on our new DailySense dataset—the first
to enable ExG-based analysis across five human senses—together with four public
ExG benchmarks, demonstrate that PiMT consistently outperforms state-of-the-art
methods across diverse tasks.

1 INTRODUCTION

Electrophysiological (ExG) signals, including electroencephalography (EEG), electromyogra-
phy (EMG), electrooculography (EOG), and electrocardiography (ECG), provide critical insights into
neural, muscular, ocular, and cardiovascular activities. They enable a wide range of physiological
applications, from gaze tracking (Merino et al., 2010) and emotion recognition (Gkintoni et al., |2025)
to sleep staging (Nguyen et al.,[2016)) and seizure detection (JW et al.,[2016)). Recent advances in
deep learning have improved ExG analysis by developing data-driven training approaches (Song et al.,
2022; Jiang et al.|[2024)) that capture complex temporal and spectral patterns for various physiological
tasks. Building on this, foundation models, which have demonstrated remarkable success across
domains by leveraging large-scale data to learn general-purpose representations (Narayanswamy
et al.| 20235)), offer a promising opportunity for advancing everyday ExG analysis.

However, ExG foundation models remain underexplored due to two limitations: (i) insufficient
dataset diversity and (ii) task-specific model design. First, ExG datasets are typically collected in
controlled environments (Zheng & Lu} 2015} Katsigiannis & Ramzanl [2018;|Wang et al.,|2023)) using
bulky, expensive devices (e.g., EEG headsets (Duvinage et al., |2013)). This setup restricts both scale
and diversity across tasks, leaving free-living ExG data largely untapped. Second, existing ExG
models are highly task-specific, relying on tailored processing pipelines, i.e., architectures optimized
for a fixed frequency band, which limits their generalization. For example, gaze tracking methods
are designed to capture low-frequency bands (0.1~15 Hz) (Merino et al.,|2010), whereas emotion
recognition relies on higher EEG bands (8~30Hz) (Gkintoni et al.l [2025)). As a result, a model
trained for gaze tracking cannot be directly applied to emotion recognition, highlighting the lack of
transferability across tasks.
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To address the first challenge, we collected free-living ExG data in unobtrusive settings, constructing
the DailySense dataset. For this, we prototyped NeuroBuds, an earphone-based ExG sensing device.
Unlike traditional bulky systems, NeuroBuds is lightweight, low-cost, and portable while still
capturing rich physiological signals: near-ear EEG, EMG from facial muscles, and EOG from eye
movements. This design enables long-term data collection, overcoming the constraints of lab-based
recordings. Leveraging this platform, we collected 50 hours of free-living ExG recordings from
22 participants engaged in unconstrained daily activities. Furthermore, we gathered 20 hours of
targeted task-specific data spanning the five human senses (i.e., sight, hearing, taste, touch, and smell),
establishing the first benchmark for evaluating model performance across diverse tasks.

Moreover, we propose Physiology-informed Multi-band Tokenization (PiMT), an approach designed to
learn task-agnostic ExG representations. Instead of relying on a task-specific narrow band or a single
wide-band input, PIMT decomposes ExG data into 12 fixed sub-band tokens, each corresponding to
distinct physiological modalities. For instance, the [0.5~4 Hz] band captures to EEG delta waves,
which are informative for sleep staging (Elsaid & Labanowski, 2017), whereas the [15~45 Hz] band
reflects low-frequency EMG activities, relevant for muscle activation and motor tasks (Allison &
Fujiwaral |2002). These structured tokens provide the encoder with fine-grained access to diverse
spectral features, enabling the model to capture task-relevant information while remaining agnostic
to any specific task. Coupled with self-supervised reconstruction objectives, we train a robust,
transferable representations that generalize effectively across diverse downstream tasks.

To evaluate our approach, we benchmark PiMT against the state-of-the-art ExG training approaches.
Specifically, we evaluate it on our newly introduced DailySense benchmark, which spans tasks across
the five human senses, along with four widely used datasets covering diverse ExG applications,
including emotion recognition, sleep staging, and brain—computer interface (BCI) tasks. Extensive
experiments demonstrate that PIMT achieves robust performance and strong generalization across
both DailySense and public datasets. Our key contributions are as follows:

* We identify the key limitations of existing ExG frameworks—insufficient dataset diversity
and task-specific model design—that hinder generalization to real-world applications.

* We introduce NeuroBuds, an earphone-based prototype for unobtrusive, long-term ExG
monitoring. Leveraging NeuroBuds, we curate DailySense, a dataset containing 50 hours of
free-living recordings and 20 hours of task-specific data spanning the five human senses.

* We propose PiMT, a task-agnostic ExG training approach that incorporates a novel,
physiology-informed multi-band tokenization scheme. This enables automatic extraction of
task-relevant features across the entire frequency spectrum.

* Extensive experiments on DailySense spanning six distinct tasks and four public ExG
benchmarks show PiMT achieves state-of-the-art performance, with an average F1 score of
87% over baseline models.

Together, these contributions establish the foundation for scalable, real-world ExG analysis, bridging
wearable sensing technology and foundation models for deeper human understanding.

2 RELATED WORK

To enable effective analysis of ExG signals and uncover valuable physiological patterns, recent ap-
proaches can be categorized into following three main groups: (i) Conventional deep learning frame-
works, such as EEGNet (Lawhern et al.| 2018)) and DeepConvNet (Schirrmeister et al.,[2017)), leverage
temporal and spatial convolutions to extract features directly from raw ExG signals. (ii) Transformer-
based models, which capture local and long-term temporal dependencies, are well-suited for complex,
high-dimensional ExG signals. Early efforts such as EEGConformer (Song et al.| 2022) combine
convolution and attention to jointly model local and global patterns. PatchTST (Nie et al., [2023)
introduces patch-wise attention and independent channel encoding, while Medformer (Wang et al.|
2024) enhances feature extraction through multi-scale patching and cross-channel attention. Most
recently, Bidirectional-Mamba (Zhu et al.| [2024) applies bidirectional state-space modeling for
efficient long-range dynamics. (iii) Self-supervised learning methods aim to learn generalizable
representations from unlabeled ExG signals using proxy tasks such as masked modeling or contrastive
learning. BrainBERT (Wang et al., |2023) first applied BERT-style masked modeling to intracranial
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Figure 1: Overview of PIMT. ExG signals are decomposed into 12 sub-bands via Physiology-
informed Multi-band Tokenization (PiFT). A Bidirectional-Mamba encoder processes the tokens,
and the model is pre-trained with reconstruction tasks before fine-tuning on downstream tasks.

EEG spectrograms. BIOT (Yang et al.,2023)) extends this idea to cross dataset via patch-token trans-
formers, and BrainWave (Yuan et al., [2024) further scaled it to foundation models trained on large
clinical datasets. However, despite these advances, existing approaches typically focus on specific
ExG tasks and modalities, and are primarily evaluated on lab-controlled datasets. This limitation
presents an opportunity to develop more generalized and robust representations from free-living
ExG data. NeuroBuds addresses these gaps by introducing a unified, frequency-agnostic framework
trained on real-world data, improving both robustness and practical usability.

3 LEARNING TASK-AGNOSTIC EXG REPRESENTATION

Motivation. Real-world ExG tasks are often associated with distinct physiological frequency bands.
For example, gaze tracking with EOG signals typically relies on low-frequency components in
0.1~15 Hz range (Merino et al.| 2010), whereas EEG-based emotion recognition depends on higher-
frequency bands, such as 8~30 Hz (Gkintoni et al., [2025). Prior methods either design task-specific
models (Gao et al., 2024; |Altaheri et al.,|2023)) or apply narrow-band filters (Farhana et al., 2023}
Apicella et al.| 2021)), both of which limit generalization across tasks. While a wide-band filter
(e.g., 0~100 Hz) offers broader coverage, it suffers from loss of physiological features and poor task
adaptation. We aim to develop a task-agnostic method that generalizes across tasks without relying
on task-specific customization.

Overview. We propose a training framework that enables NeuroBuds to generalize effectively across
diverse tasks. Figure[I] provides the overview. First, Physiology-informed Multi-band Tokenization
(PiMT) decomposes the input into 12 physiology-informed sub-bands, producing tokens that that
grant the model fine-grained access to task-relevant features across different frequency ranges. Next, a
Bidirectional-Mamba encoder generates embeddings from the tokenized representations. To leverage
unlabeled free-living data, we introduce a Reconstruction-based Pre-training to learn robust ExG
representations. The pre-trained encoder is then fine-tuned on downstream tasks.

3.1 PHYSIOLOGY-INFORMED MULTI-BAND TOKENIZATION (PiMT)

To enable the task-agnostic framework, we design a two-step tokenization pipeline that converts raw
ExG signals into structured embeddings: (i) physiology-informed frequency decomposition via an
ExG Filter Bank, and (ii) Patch Segmentation and Tokenization to generate input tokens.
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ExG Filter Bank. Instead of relying on task-specific frequency bands, we design a fixed filter
bank grounded in established physiological knowledge of ExG signals (Niedermeyer & Lopes da
Silva, 2005; |Nunez & Srinivasan, [2006; [Task Forcel [1996). Concretely, we define 12 canonical
sub-band filters spanning key physiological modalities: EEG-delta (0.5~4 Hz), EEG-theta (4~8 Hz),
EEG-alpha (8~13 Hz), EEG-beta (13~30 Hz), EEG-gamma (30~100 Hz), EMG-Low-Frequency
(15~45 Hz), EMG-Mid-Frequency (45~95 Hz), EMG-High-Frequency (95~100 Hz), EOG-overall
(0.1~20 Hz), ECG-Low-Frequency (0.03~0.12 Hz), ECG-High-Frequency (0.12~0.488 Hz), and the
QRS complex (8~50Hz).

Multi-band Filtering. ExG signals are decomposed into complementary spectral components by
simultaneously applying all filters in the bank. This decomposition provides the model with fine-
grained, physiologically relevant features that span multiple modalities and tasks, rather than forcing
reliance on a single-band representation. Formally, given a multi-channel ExG signal X, € R,
where X is from channel c over T time steps, we apply the N filters to obtain band-specific signals
X;..€RT, where f € {1,..., Nr}. Each X . retains only the components within band f, serving
as the foundation for subsequent tokenization.

Patch Segmentation and Tokenization. The band-specific signal X . is segmented into non-
overlapping patches, i.e., pr.; € R", where w denotes the patch size and / indexes its temporal
position. This segmentation improves computational efficiency and facilitates modeling long-range
temporal dependencies (Nie et al.,|2023). Together, each patch is contextualized by three dimensions:
frequency f, channel ¢, and time /, forming a structured 3D representation of the ExG input. Finally,
each patch py . is projected into a latent embedding ey .; € R? through a learnable tokenizer,
where d denotes the embedding dimension. Specifically, we use a single linear layer shared across all
tokens to map each patch into a fixed-dimensional embedding space.

3.2 ENCODER

We adopt Bidirectional-Mamba for its strong ability to capture long-range sequential dependen-
cies (Schiff et al., [2024; |Shams et al}[2024). A detailed analysis of its effectiveness compared with
standard Transformers on ExG data is provided in Appendix [H] Furthermore, since PIMT introduces
an additional frequency dimension that increases sequence length, Mamba is especially suitable: it
achieves linear-time complexity in sequential modeling, whereas Transformers suffer from quadratic
complexity (Gu & Daol [2024).

To fully leverage the rich structure of multi-channel ExG signals, we organize the input tokens along
three axes, i.e., frequency, channel, and time, in a fixed scanning sequence. Based on empirical
validation, we adopt a frequency-first (f), channel-second (c¢), and time-last (/) ordering scheme.
To achieve this, the embeddings ey . ; are flattened into a sequence following the (f x ¢ x [) order
and then passed into the encoder. The encoder produces contextualized representations z, which are
subsequently fed into the downstream task heads.

3.3 PRE-TRAINING FROM FREE-LIVING EXG DATA

Most existing ExG models are trained on lab-controlled datasets using task-specific designs, limiting
their ability to generalize to real-world conditions. In contrast, ExG signals collected in free-living
environments provide richer diversity and broader coverage of human activities, enabling models
to learn more robust and general-purpose representations. To exploit this free-living unlabeled
data, we adopt a self-supervised pre-training based on reconstruction objectives. Our design choice
is motivated by prior work showing that reconstruction outperforms alternatives, i.e., contrastive
learning, when training physiological foundation models on unlabeled data (Narayanswamy et al.|
2025). To ensure robust feature extraction, we define six distinct reconstruction tasks, each paired
with a dedicated decoder, which are jointly used to train the encoder Ey.

Autoencoding: Given a sequence of patches p generated from a raw signal x, the encoder Fjy

maps it into a latent representation z = Ey(p). The decoder DgE reconstructs the original signal

p*" = D}(z). This task encourages the encoder to capture temporal features while reducing noise.

Masked Reconstruction: To enforce contextual learning, we employ masked reconstruction (Devlin}
2018 He et al.l 2022)). The patches p are partially masked along time, channel, and frequency
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dimensions, producing a corrupted version p™®*. The encoder processes the masked input to yield
2" = Fy(p™*). The decoder DY recovers the original signal, generating pM* = DR (z™%).

Frequency Domain Feature Reconstructions: To capture spectral information, we incorporate two
frequency-domain reconstruction tasks. We first apply the Fast Fourier Transform (FFT) to obtain
amplitude pA and phase pP. Two decoders, DQ and Dg, reconstruct these features from the encoded

representation z, producing p* and pF, respectively. Specifically, the two decoders aim to recover
the original frequency domain signals based on: p* = Dg(z) and p¥ = Dg (z), respectively.

Masked Frequency Domain Reconstructions: To enhance the model’s capacity to infer spectral
features from incomplete inputs, we apply the same frequency reconstruction tasks to masked input
signals. Two additional decoders, DZIA and DI(ZIP , reconstruct the amplitude and phase, producing

pMA and pMP from z™*, The new decoders aim to recover the original frequency domain signals
based on: p* = DYA(2™**) and p* = DY (z™**), respectively.

To jointly optimize the self-supervised objectives, we assign each task an independent decoder that
reconstructs a specific aspect of the input signal, while sharing the encoder. Training is guided by
mean absolute error (MAE) losses between the original and reconstructed signals. We combine these
losses into a single objective by weighting each task-specific loss with a coefficient A, which controls
its relative contribution. The overall reconstruction loss is thus a weighted sum across all tasks. Each
decoder is implemented as a lightweight MLP designed to reconstruct the target sequence. The A
values were empirically selected, and details are provided in Appendix [G|

3.4 FINE-TUNING

Building on the representations learned from free-living data, we fine-tune the model to diverse
downstream tasks (e.g., sight, hearing, taste, touch, and smell). The pre-trained encoder serves as a
feature extractor, while task-specific decoders are trained on labeled data. For classification tasks, we
aggregate the encoder’s patch-wise outputs into a fixed-length feature vector via mean pooling. The
vector is then passed through a fully connected classification decoder trained with cross-entropy loss.
For continuous regression tasks, such as gaze tracking, we employ a linear decoder operating at the
patch level to generate sequential outputs, which are then aggregated into the final prediction. The
model is optimized using a standard regression loss.

4 DAILYSENSE: FREE-LIVING EXG DATA ACROSS FIVE HUMAN SENSES

We built DailySense, an ExG dataset collected through earphones, designed to enhance the ExG
dataset diversity beyond traditional lab-controlled settings and to enable benchmarking across a
broad spectrum of daily life tasks. DailySense includes data from 22 participants, including 50
hours of unlabeled free-living recordings and 20 hours of labeled task-specific data spanning the
five fundamental human senses Compared with existing lab-based ExG benchmarks, which often
involve a similar number of participants but shorter recording durations (e.g., DREAMER includes
23 participants with approximately 20 hours of data), DailySense provides a more diverse and
comprehensive dataset, laying a stronger foundation for generalizable ExG representation learning.

Data Collection Platform. To collect free-living ExG data, we developed NeuroBuds, an earphone-
integrated ExG sensing prototype. Unlike traditional head-mounted ExG devices that are bulky and
expensive ($10,000-$50,000), NeuroBuds employs an earhook-style form factor that is low-cost and
compact, and well-suitable for scalable, long-term daily use. The device integrates amplification,
digitization, onboard storage, and wireless transmission into a lightweight PCB (4.2 cm x 2.2 cm, 20
2, $80). During data collection, participants wore earphones with integrated electrodes and carried
the PCB as shown in Figure[2] The around-the-ear electrodes can then capture ExG signals, including
EEG (sites T7-T10, FT7-FT10, TP7-TP10), auricular electrodes for EMG, and lateral electrodes for
EOG, providing cognitive, muscular, and ocular coverage. We detail hardware design in Appendix [A]
and the physiological rationale behind the design and signal quality for each modality in Appendix

'Our data collection was approved by the Institutional Review Board (IRB). We are also currently working
with our legal team to determine the possibility of publicly or conditionally sharing the dataset.
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Figure 2: Overview of DailySense dataset. Using our earphone-based ExG analysis device, Neu-
roBuds, we collect free-living unlabeled data for task-agnostic pre-training and labeled data spanning
five human senses, serving as benchmarks for downstream tasks.

Data Collection Protocol. DailySense contains (i) unlabeled data of daily life and (ii) labeled data
spanning the five human senses. A total of 22 participants (ages 23~62, 16 men, 6 women) wore
NeuroBuds during daily routines without restrictions, performing natural activities such as walking,
eating, talking, and facial movements. This produced 50 hours of free-living ear-ExG recordings.
Furthermore, we curated six benchmark tasks covering the five human senses: (1) gaze tracking,
(2) interest inference while watching videos (sight), (3) interest inference while listening to audio
(hearing), (4) surface texture classification (touch: rough vs. smooth), (5) taste classification (sweet
vs. sour), and (6) smell classification (floral vs. sour). Data were collected in a task-controlled
environment with up to seven participants per task, producing 20 hours of labeled recordings. All
experimental protocols followed prior brain-computer interface studies (Amini et al.| 2022} Iravani
et al.,[2019; |[Namazi & Kulishl 2016} Vo et al.| 2023} Xia et al., 2023)). Further experimental details
are provided in Appendix

Data Processing. Following established protocols (Jiang et al., 2024), we applied minimal pre-
processing steps, including notch filtering (50/60 Hz), resampling to 200 Hz, and normalization. The
signals were segmented into non-overlapping 4-second windows. To improve the robustness of the
model, we augmented the training data with small additive noise. Appendix [D]provides visualizations
of the collected signals.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. We benchmarked PiMT against baselines including a traditional machine learning model
(SVM), ExG-specific neural architectures (DeepConvNet (Schirrmeister et al., 2017), EEGNet (Lawh
ern et al.|[2018)), and EEGConformer (Song et al., [2022)), and general-purpose time-series models
(Time-Series Transformer (TST) (Zerveas et al.| [2021), PatchTST (Nie et al.,[2023)), and Bidirectional-
Mamba (Zhu et al.} 2024)). Among them, we emphasize PatchTST as a strong baseline—an advanced
masked reconstruction model built on a Transformer backbone that independently models each ExG
channel and excels at capturing long-range temporal modeling.

Benchmark Datasets. We evaluated PIMT on DailySense along with four widely used ExG bench-
marks: DREAMER (Katsigiannis & Ramzan, [2018)) and SEED (Zheng & Lu, [2015) for emotion
recognition, Sleep-EDF (Kemp et al., 2000) for sleep stage classification, and BCI Competition IV
2b (Leeb et all 2008) for motor imagery. Dataset details are provided in Appendix [E]

Implementation Details and Metrics. Our implementation consists of two primary stages: (i) pre-
training on free-living data and (ii) task-specific fine-tuning. We first pre-train PiIMT on 50 hours
of free-living data using a masked reconstruction objective, then fine-tune it on each downstream
dataset using an 8:2 train-test split for each participant. For evaluation, we report the mean squared
error (MSE) in angular (°) units for gaze tracking and macro-averaged F1-scores for all classification
tasks. All tasks are repeated three times with different random seeds, and we report the corresponding
standard deviation. Additional training details, resource specifications, and hyperparameter tuning
are provided in Appendix [Fland Appendix
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Table 1: Performance of PIMT and baselines on DailySense. Classification results are in F1-score,
and gaze tracking performance is in angular error. Best results are highlighted in bold.

Classification (1) Regression ({)
Method Video Audio Taste Touch Smell Avg. Gaze
Without pre-training
SVM 0.665 +0.078 0.610+0.126 0.556+0.114 0.554+0107 0.510+0084 0.579 6.60° + 1.27°
EEGNet 0.753 £0137  0.712+0149 0.709 0088 0.643 +0.097 0.669 +0.063 0.697 6.52° + 1.24°
DeepConvNet 0.680 +0.174 0.706 +0.129 0.633 £0.074 0.638 +0.075 0.636+0062 0.659 7.04° £ 1.31°
TST 0.773 0125  0.705 +0.104 0.731 +0068 0.669 +0.116 0.667 +0.096 0.709 6.54° + 1.30°
PatchTST 0.771 £ 0146 0.749 +0113 0.731+0092 0.686+0.119 0.681 +0049 0.724 6.47° + 1.28°
EEGConformer 0.738 £0.127  0.752+0.141 0.688 0062 0.678 +0.102 0.670+0.047 0.705 6.53° + 1.28°
Bidirectional-Mamba  0.820 +0.102  0.858 +0.113  0.733 +0060 0.762+0.101  0.722+0.067 0.779 6.53° £ 1.16°
PiMT (Ours) 0.858 £ 0.084 0.885+0.125 0.790 0077 0.807 +0.113 0.753 0069 0.819 6.11° + 1.20°
With pre-training
PatchTST 0.807 £ 0.146  0.786 +0.146  0.697 £0.099 0.700 +0.131  0.670 +0.082 0.732 6.42° + 1.33°
PiMT (Ours) 0.964 +0.028 0.961 +0.038 0.801 +0.064 0.860+0.118 0.793 +0.069 0.876 6.00°+ 1.13°

Table 2: F1-score on four public ExG benchmarks across various tasks.

Baselines DREAMER SEED Sleep-EDF ~ BCI Competition IV 2b
PatchTST 0.889 +0.085 0.756 £0.093  0.810 +0.005 0.657 +0.008
Bidirectional-Mamba  0.875+0000  0.750 +0.107  0.796 =+ 0.002 0.646 + 0.015
PiMT (Ours) 0.910 £ 0074  0.820 0121  0.822 + 0.006 0.693 -+ 0.004

5.2 EVALUATION ON DAILYSENSE

Table [T] shows the F1-scores of PIMT compared with the baselines on DailySense. Overall, the
results demonstrate that ear-ExG combined with PIMT can effectively capture five human senses,
achieving up to 81.9% F1-score and as low as 6.11°gaze error, even without pre-training. Notably,
PiMT outperformed all baselines, achieving a 4% improvement in F1-score and a 0.41°reduction in
gaze error. We attribute this generalizability to PIMT’s ability to interpret task-relevant frequency
bands, a capability essential for handling diverse ExG-based tasks characterized by heterogeneous
frequency-band features. We also observed that the Mamba-based backbone contributed significantly
to performance gains; detailed comparisons against Transformer-based variants are reported in

Appendix [H]

Effect of Pre-training on Free-living Data. A key advantage of NeuroBuds is its ability to facilitate
effortless collection of ExG signals, enabling large-scale pre-training. We evaluated the performance
of PIMT when pre-trained on free-living data and compared it with PatchTST, which is the only
baseline with a tailored pre-training strategy. As shown in Table[l] pre-training improved the average
F1-score of PIMT from 81.9% to 87.6%. Similarly, PatchTST improved from 72.4% to 73.2%,
whereas PIMT demonstrated a substantially larger gain. These results highlight the effectiveness
of both our hardware-enabled free-living data collection and our reconstruction-based pre-training
framework. Further analysis of our reconstruction-based pre-training is provided in Appendix [I|

5.3 EVALUATION ON PUBLIC BENCHMARKS

To validate the generalizability of PIMT beyond the DailySense dataset, we evaluated it on four widely
used public benchmarks covering diverse ExG tasks. We compared against two strongest baselines,
PatchTST (Nie et al., 2023)) and Bidirectional-Mamba (Zhu et al.,[2024). As shown in Table@], PiMT
consistently outperformed all baselines across all datasets. Overall, these results demonstrate that our
training strategy learns general-purpose ExG representations through physiology-informed multiband
tokenization, leading to robust performance across diverse benchmarks. This confirms generalization
beyond the self-collected DailySense dataset to real-world benchmarks, which underscores the
potential of NeuroBuds as a unified framework for generalizable ExG representation learning.
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Figure 3: Comparison of different EXG tokenization strategies: 1-band (0.1~75Hz), 2-band
(0.1~15Hz and 15~75Hz), 4-band (0.1~5Hz, 5~15Hz, 15~35Hz, and 35~75Hz), and our
12-band filter bank (described in Section [3.T)).
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Figure 4: Saliency analysis demonstrating how the model dynamically captures task-relevant fre-
quency bands via multi-band tokenization.

5.4 EFFECT OF MULTI-BAND TOKENIZATION

To understand the impact of multi-band tokenization, we compared the model performance under
different frequency-band tokenization strategies on DailySense. As shown in Figure 3] performance
consistently improves as the number of bands increases. Our 12-band filter bank approach outperforms
the 1-, 2-, and 4-band variants, achieving an average 4.6% F1-score gain on classification tasks and the
lowest gaze-tracking error. These results suggest that fine-grained decomposition allows NeuroBuds
to exploit subtle but physiologically meaningful spectral cues.

Saliency Analysis. To further understand the impact on the downstream task, we conducted a visual
analysis of how different frequency bands contribute to each task. Figure[d]depicts saliency maps that
highlight the contribution of each frequency-band token during inference. Importantly, we observed
clear task-relevant activation patterns: (i) gaze and video tasks, which are closely linked to eye
movements, exhibited strong activation in low-frequency bands (Plochl et all,[2012)), and (ii) touch,
taste, smell, and auditory interest classification emphasized high-frequency components, consistent
with somatosensory beta—low-gamma activity involved in processing external stimuli (Bauer et al.
2006) and peri-auricular EMG spectra reflecting near-ear muscle movements (Goncharova et al.
2003). These findings demonstrate that PIMT enables the model to dynamically focus on task-
relevant frequency components without explicit supervision. We stress that this property is essential
for enabling generalizable ExG-based applications in daily-life scenarios using NeuroBuds.

5.5 IMPACT OF PRE-TRAINING DATA SCALE

We examine how the scale of pre-training data influences representation quality and downstream
task performance. To this end, we randomly split the pre-training corpus into 80% training and 20%
held-out test data, and subsampled varying proportions of the training set. Figure[5]shows the test loss
across epochs under varying training data scales. As expected, larger pre-training sets consistently
produced lower losses, indicating that PIMT benefits from additional data and scales effectively.

Figure[6| presents downstream results on DailySense. For classification tasks, average performance
saturates around 30% of the pre-training data, suggesting diminishing returns beyond this point.
In contrast, gaze regression continues to improve up to 50%, highlighting task-dependent benefits
of larger pre-training scales. Overall, these findings suggest that while some tasks quickly reach
saturation, others continue to benefit from larger-scale pre-training. Importantly, the consistent loss
reductions in Figure [ confirm that PiIMT can effectively exploit additional data, underscoring its
promise as a general-purpose ExG representation model.
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5.6 FURTHER ANALYSIS AND ABLATION STUDY

On-device Deployment and Real-time Analysis (Appendix [K). We evaluated the runtime overhead
of PIMT (with transformer as a backbone) on a commercial smartphone (Samsung Galaxy S24),
which serves as a representative companion device for earphones. The model achieved efficient
runtime performance with an average inference latency of 25 ms, memory usage of 266 MB (3.1%),
and CPU utilization of 20.3%.

Leave-One-Subject-Out evaluation. To fur- Classification ( Regression (1)
ther assess cross-participant generalization, we 8
conducted leave-one-subject-out (LOSO) exper-
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Figure 7: LOSO Performance when the target sub-
ject’s data is either included or excluded.

Ablation Study (Appendix[I}, [J). We performed an ablation study to investigate the contribution of
each pre-training component to representation learning. As shown in Table[d] the complete model
achieved the highest overall performance. We observed consistent performance improvements as
additional components were incorporated, indicating the complementary benefits of each module.
Furthermore, Table [5]shows that a patch size of 0.5 seconds yielded the best downstream performance
compared to alternative configurations.

5.7 DISCUSSION

We acknowledge several limitations of our current approach. Like many existing ExG frameworks,
our methods are constrained by the limited number of subjects and challenges in personalized
generalization. While the number of subjects is comparable to prior benchmarks, DailySense provides
over 70 hours of high-resolution (1000 Hz) recordings across both free-living and task-specific
conditions. Our LOSO experiments show promising cross-subject generalization, but performance
drops when training and testing on different users highlight the persistent challenge of personalized
modeling. Nonetheless, by demonstrating the effectiveness of earphone-derived free-living ExG data
for representation learning, NeuroBuds provides a scalable path toward broader population-level data
collection and establishes the foundation for a more generalizable framework in future work.

6 CONCLUSION

We tackle two long-standing barriers in ExG analysis: (i) the lack of diverse, real-world data and
(ii) the reliance on task-specific model designs. To address data diversity, we developed NeuroBuds,
an earphone-based sensing prototype, and curated DailySense, the first dataset with 50 hours of
free-living recordings and 20 hours of task-specific ExG data spanning all five human senses. To
overcome task-specificity, we propose Physiology-informed Multi-band Tokenization (PiMT), which
decomposes ExG signals into structured tokens across 12 canonical sub-bands aligned with distinct
physiological modalities. Combined with reconstruction-based pre-training on free-living data, PiIMT
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learns robust, task-agnostic representations that generalize across tasks. Evaluations on DailySense
and four public benchmarks demonstrate that PIMT consistently outperforms state-of-the-art baselines.
Together, these contributions push ExG research beyond narrow, lab-constrained applications toward
generalizable and real-world physiological sensing. Looking ahead, this work opens new opportunities
in personalized health monitoring, cognitive interfaces, and scalable everyday sensing powered by
ExG platforms.

ETHICS STATEMENT

Our data collection was approved by the Institutional Review Board (IRB), ensuring the safety of
both the participants and the device prototype used in the study. For the other experiments, we used
publicly available datasets, which were used in accordance with their intended purposes. There is no
ethical issue with this paper.

REPRODUCIBILITY STATEMENT

Our Physiology-informed Multi-band Tokenization approach can be reproduced using the filter bank
described in Section [3.1] Comprehensive experimental and implementation details are provided in
Section 5] Appendix [F| and Appendix [G]

USAGE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely for polishing the writing of this paper.
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A NEUROBUDS HARDWARE DESIGN

To enable large-scale, in-the-wild ExG data collection, we built an earphone-based sensing platform
consisting of two main components:

Earphone-Shaped Sensing Array: To adopt a earhook-style form factor, We use a commercial
earphone (Powerbeats PB123) as the backbone, and wrap conductive tape around the frame to form
electrodes. Each side includes five electrodes: the top ones on the left and right act as bias and
reference, while the remaining eight serve as signal channels.

Lightweight Processing Board: We design a custom printed circuit board (PCB) integrating signal
amplification, digitization, wireless transmission, and onboard storage:

* Amplification: An bio-amplifier chip (ADS1299) and the front-end circuit support 8-channel
ExG signal conditioning.

* Digitization and Control: An ESP32 microcontroller handles A/D conversion, peripheral
control, and real-time streaming.

* Wireless Streaming: Microcontroller’s built-in Wi-Fi/BLE enables direct transmission to
phones or PCs for data collection or real-time on-device inference.

* Storage: A microSD slot supports continuous onboard logging.

To minimize size and weight without compromising signal integrity, we adopted highly integrated
chips (ADS1299, ESP32), and designed a compact 6-layer PCB with dense layout of components on
both sides to further reduce footprint. The resulting design measures just 4.2cm x 2.2cm and weighs
only 20g, which is significantly smaller than existing COTS systems like OpenBCI (6.1cm x 6.1cm,
80g) or OpenEarable (5.7cm x 3cm, only support 2 ExG channel).

During use, the board is enclosed in a 3D-printed case and connected to the sensing array via Dupont
wires. Users can wear the platform unobtrusively during daily activities, with the board placed in a
pocket or wore on the body, enabling free-living data collection.

B QuALIiTY OF EEG, EOG, AND EMG SIGNAL

Our electrode placement around the ear was carefully designed to capture EEG, EOG, and EMG
signals while maintaining a compact and unobtrusive form factor. Below, we outline the physiological
rationale and supporting evidence for each modality.

EEG: The electrodes align with standard around-the-ear EEG channels, i.e., T7-T10, FT7-FT10,
and TP7-TP10 in the 10-10 EEG system (Seeck et al.l 2017). The strong classification performance
on cognitive tasks demonstrates that our recordings contain reliable EEG activity.

EMG: Electrodes positioned on auricular muscles capture EMG signals linked to facial expressions.
We further validated this by recording deliberate facial movements (e.g., blinking, biting), which
produced distinct EMG-specific patterns.

EOG: Electrodes placed on both sides of the head enable strong horizontal EOG capture, with
partial vertical EOG sensitivity due to vertical displacement. Eye movement patterns (0.1-5 Hz) are
clearly observed in Appendix [D] and our gaze tracking accuracy (within 6.15 degrees as shown in
Appendix [[) further supports the presence of robust EOG signals.

This electrode configuration enables simultaneous acquisition of EEG, EMG, and EOG signals,
providing a rich multimodal ExG dataset while preserving wearability for daily use.

C DAILYSENSE DATA COLLECTION PROTOCOL

In this section, we describe the detailed protocol of our six task-specific sensory experiments. The
experimental tasks included:
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Gaze Tracking: Participants were seated 60 cm from a 13.5-inch laptop (model: Surface
Book 2, display size: 3000 x 2000 pixels, vertical refresh rate: 59 Hz). This task evaluated
whether EXG signals could accurately track gaze positions. The error was quantified as the
angular difference between the ExG-based gaze estimation and the ground truth obtained
from a Tobii eye tracker (tobl 2016) (model: Tobii 4C Eye Tracker).

Auditory and Video Interest Inference: Inspired by SEED and DREAMER
datasets (Zheng & Lu, 2015} Katsigiannis & Ramzan| 2018)), this experiment explored
the correlation between ExG signals and engagement with visual/auditory stimuli. Partici-
pants were asked to watch or listen to video clips. After each session, they rated their interest
level. Each participant watched/listened to six stimulus clips, each lasting six minutes.
The goal is to classify the participant’s emotional state every four seconds based on ExG
responses.

Surface Texture Classification (Touch Perception): Participants interacted with different
textured surfaces to analyze ExG responses to tactile stimuli (Amini et al., [2022). Each
participant rubbed either a rough or smooth surface for 60 continuous seconds, repeating this
process 10 times for each texture. The goal is to classify the participant’s touch perception
every four seconds.

Taste Classification: This experiment assessed ExG responses to different taste profiles
(sweet vs. sour). Participants sipped a liquid and held it in their mouth for 20 seconds (Vo
et al.l 2023} Xia et al., 2023)). To prevent cross-contamination, a 30-second rest period was
enforced between different taste samples, allowing participants to rinse their mouths before
proceeding to the next task. The task aims to classify the participant’s taste perception every
four seconds.

Smell Classification: This task examined ExG signal responses to olfactory stimuli (Iravani
et al.,2019; Namazi & Kulish, |2016). Participants inhaled pleasant and unpleasant odors,
and the model was evaluated on its ability to distinguish between different scent categories.

Table [3] provides a comprehensive summary of the classification labels, stimulus materials, trial
durations, number of sessions, and trial structures per participant for each task.

Table 3: Experimental Task Details

Task Labels Materials Trial duration time  Total sessions ~ Total time Rest time
Taste Sweet Chocolate milk 20 seconds 15 300 seconds 30 seconds
Sour Vinegar 20 seconds 15 300 seconds 30 seconds
Touch  Rough Scent paper 1 minute 10 10 minutes 20 seconds
Smooth Silk 1 minute 10 10 minutes 20 seconds
Smell Lavender Lavender scent bag 20 seconds 15 300 seconds 30 seconds
Sour Vinegar 20 seconds 15 300 seconds 30 seconds
Video  Interesting Comedy Clips 5 minutes 6 30 minutes 30 seconds
Not-interesting ~ Lectures/Documentary 5 minutes 6 30 minutes 30 seconds
Audio  Interesting Comedy podcast 5 minutes 6 30 minutes 30 seconds
Not-interesting ~ Lectures 5 minutes 6 30 minutes 30 seconds

D VISUALIZATION OF EXG SIGNALS

We visualized the raw ExG signals measured using NeuroBuds and illustrated how they are trans-
formed into multi-band tokens through bandpass filtering across different frequency ranges. Figure §]
shows the decomposition of the raw signal into twelve frequency bands, each of which is subsequently
tokenized as part of our multi-band sequence. For gaze tracking, low-frequency bands (e.g., EOG-
overall and ECG-HF bands) exhibit clearer temporal patterns that align with EOG signals (Merino
et al., 2010). In contrast, for tasks such as touch, low-frequency activity is less prominent, while
informative features emerge in higher-frequency bands (Manfredi et al., [2014} |Kramer et al., 2020).
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In addition to evaluating ExG quality implicitly through downstream task performance, we also
conducted a direct quantitative comparison between our earphone-based NeuroBuds prototype and a
research-grade OpenBCI device. Specifically, we ran an eye-movement tracking experiment with
two participants (approximately one hour of synchronized data) and computed Pearson correlations
between NeuroBuds and OpenBCI channels. The average cross-system correlation reached 0.71
(statistically significant, p < 0.001), demonstrating that NeuroBuds capture ExG/EOG activity
with high consistency relative to a laboratory-grade system. Beyond quantitative metrics, we also
performed visualization analysis to assess overall signal similarity. Visual comparison of synchronized
raw ExG signals shows that NeuroBuds and OpenBCI exhibit closely aligned temporal patterns, with
similar waveform shapes, amplitudes, and drift trends throughout the recording as shown in Figure 9]
These qualitative observations, together with the correlation analysis, further confirm that NeuroBuds
produces ExG signals that closely match those from research-grade devices.

Raw ExG signal EEG-delta (0.5-4 Hz) EEG-gamma (30- Hz) EMG-HF (95- Hz)
W el et i
EEG-theta (4-8 Hz) EOG-overall (0.1-20 Hz) ECG-LF (0.03-0.12 Hz)
e L R U LV R
EEG-alpha (8-12 Hz) EMG-LF (15-45 Hz) ECG-HF (0.12-0.488 Hz)
B et [
EEG-beta (12-30 Hz) EMG-MF (45-95 Hz) QRS complex (8-50 Hz)

sanann o I o

Figure 8: Raw ExG signals from DailySense dataset and their decomposition into twelve physiology-
informed frequency bands for Multi-band Tokenization.
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Figure 9: Visualization of synchronized ExG signals collected from NeuroBuds and a research-grade
OpenBClI device with the Pearson correlation of 0.7586, demonstrating strong cross-system signal
similarity.
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E BENCHMARK DATASETS

We used four public benchmark datasets to further validate effectiveness of PIMT. For all datasets,
we performed a random 80/20 split, assigning 80% of the data to training and the remaining 20% to
testing. We followed established protocols Jiang et al.| (2024) to preprocess the ExG signals.

DREAMER (Katsigiannis & Ramzan, [2018)) is an EEG-based emotion recognition dataset collected
from 23 participants while they watched 18 film clips designed to elicit different affective states. The
dataset provides signals from electroencephalogram (14 channels at 128 Hz) and electrocardiogram (2
channels at 256 Hz). Each trial is annotated with self-reported valence, arousal, and dominance scores
on a 5-point scale. We used the EEG recordings for classification of emotional states, formulating
the task as binary classification based on dominance levels, where trials with dominance > 3 were
labeled as high and those with dominance < 3 as low.

SEED (Zheng & Lu,2015) is a emotion recognition dataset with EEG recordings from 15 subjects.
Participants watched 15 film clips (five positive, five neutral, and five negative) across three sessions.
EEG was recorded from 62 channels using the ESI NeuroScan system at 1000 Hz. We used the
downsampled signal at 200 Hz. The dataset provides trial-level emotion labels (positive, neutral,
negative).

Sleep-EDF (Kemp et al., |2000) is a dataset used for sleep stage classification. It contains 197
whole-night polysomnographic recordings from both healthy subjects and patients with mild sleep
difficulties. The EEG signals were recorded from two channels (Fpz—Cz and Pz—Oz) at 100 Hz, and
the EOG signals were also sampled at 100 Hz. We used five-class scoring (W, N1, N2, N3, REM) for
classification only using EEG signals.

BCI Competition I'V 2b (Leeb et al.|[2008) is a motor imagery dataset consisting of EEG recordings
from 9 subjects across 5 sessions. Subjects were asked to perform left-hand and right-hand motor
imagery tasks. Each session included multiple runs of motor imagery trials, with EEG recorded from
three bipolar channels (C3, Cz, C4) at 250 Hz. The dataset defines two classes corresponding to
left-hand and right-hand motor imagery.

F IMPLEMENTATION DETAILS

For the Bidirectional-Mamba model, we used 8 layers with a hidden state size of 16 and an em-
bedding dimension of 64. The decoder consisted of two fully connected layers, each with a hidden
dimension of 64. For the baseline implementations, we tuned SVM using a grid search over
C € {0.1,1,10,100}, v € {0.01,0.001,0.0001}, and kernel types (rbf, linear, poly). For the
other baselines, we followed their official implementations and performed grid searches to tune key
hyperparameters, such as learning rate and batch size.

For the train/test split, we first segmented long sequences into 4-second windows and randomly
shuffled them. We then applied a standard 80/20 division to construct the training and test sets.

G HYPER-PARAMETER TUNING

Our implementation consists of two primary stages: representation learning and task-specific fine-
tuning. During the representation learning stage, we pre-trained the model using mask and recon-
struction objectives to learn robust representations transferable across various downstream tasks. The
representation model is trained on the entire 40 hours of free-living data, after which it is fine-tuned
on each specific task before final evaluation on the corresponding test set.

The weighting coefficients (\) for the pretraining objectives were selected heuristically based on
empirical observations. We initialized all A values to 1 and monitored the convergence dynamics of
individual loss terms. We found that the autoencoding loss (£ ) and masked reconstruction loss
(LMr) converged more slowly than others; their weights were therefore increased to 2 to encourage
balanced training. While we did not conduct a full hyperparameter sweep, this adjustment yielded
more stable convergence without introducing instability.

To further optimize performance, we performed a grid search over key hyperparameters. Throughout
the experiment, we used AdamW optimizer with 0.01 weight decay. During the pre-training stage,
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the batch size was fixed at 256, and the learning rate was scheduled from 0.01 to 0.001 using a cosine
decay scheduler. For the backbone architecture, we adopted a bi-directionanl mamba model with 16
layers and a hidden dimension of 16. The masking ratio for the pretraining was fixed at 50%. During
the fine-tuning stage, the batch size was fixed for all tasks, 10 for Gaze and 8 for the remaining
tasks. The learning rate followed a cosine decay schedule from 0.001 to 0.00001. All experiments
were repeated 3 times and the results are reported as the mean and standard deviation. All models
were implemented using PyTorch, and the experimental evaluations were conducted on NVIDIA
A100-SXM-80GB GPUs.

H BACKBONE COMPARISON: MAMBA VS. TRANSFORMER

We adopt Bidirectional-Mamba (Zhu et al.,|2024) as our backbone architecture, which has demon-
strated state-of-the-art performance across various time-series tasks (Zerveas et al.| 2021; |Song
et al.| [2022). To evaluate its effectiveness on ExG signals, we compare it against Transformer-based
architecture, PatchTST (Nie et al., 2023), which showed strong performance in our main evaluation
(Section[5.2)). For a fair comparison, we applied our Multi-band Tokenization to both Mamba- and
Transformer-based models, with and without pre-training on the free-living dataset.

As shown in Figure[T0] the Mamba-based model consistently outperformed the Transformer-based
model under all settings, achieving a 6.4% improvement without pre-training and an 8.5% gain
with pre-training. These results confirm that Mamba is a strong architectural choice for ExG signal
modeling.

Without pre-training With pre—training
Classification (1) Regression () Classification ( Regression (1)
1.0 8 1.0 8
0.9 =y 0.9 =~
= =
Los g Sos g
& e & e
T 0.7 z T 0.7 z
2 2
5 5
0.6 Transformer < 0.6 Transformer <
[ Mamba -_— Mamba
0.5 - 4 0.5 4
Video Audio Taste Touch Smell Avg. Gaze Video Audio Taste Touch Smell Avg. Gaze

Figure 10: Comparison of Mamba and Transformer backbones.

I EFFECT OF PRE-TRAINING COMPONENTS

Our pre-training framework on free-living data comprises six reconstruction-based tasks designed
for unlabeled ExG signals: Autoencoding (AE), Masked Reconstruction (MR), (frequency) Ampli-
tude Reconstruction (A), (frequency) Phase Reconstruction (P), Masked Amplitude Reconstruction
(MA), and Masked Phase Reconstruction (MP). We assessed the contribution of each component by
performing ablation experiments

Table [] depicts the results. Although most ablation settings still achieve relatively strong perfor-
mance, highlighting the overall effectiveness of pre-training, all are consistently lower than the full
combination (0.876), confirming the benefit of jointly using all reconstruction tasks. The perfor-
mance drops in individual ablations are modest, as complementary tasks help maintain efficacy.
However, we observed task-specific sensitivities: for instance, MR, A, MA, and MP are particularly
important for gaze tracking, where excluding them led to a notable increase in error. Meanwhile,
AE, MR, and phase-related reconstructions strongly influence taste classification, where their re-
moval caused meaningful performance degradation. These findings suggest that temporal- versus
frequency-focused reconstruction tasks contribute differently depending on the task, reflecting the
distinct feature requirements of each modality.
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Table 4: Pre-Training ablation. Classification results are in F1-score, and gaze tracking performance
is in angular error.

Classification (1) Regression ({)

Method Video Audio Taste Touch Smell Avg. Gaze

PiMT (Ours)  0.964 +0.028  0.961 +0038  0.801 +0064  0.860+0.118  0.793 +0060  0.876 6.00° + 1.13°
w/o AE 0.970+0026 0959 +0042 0.806+0066 0.852+0125 0.778 +0085  0.873 6.00° + 1.09°
w/o MR 0.962+0030 0.956+0043 0.798 +0058 0.859+0.122 0.783+00s2  0.872 6.10° + 1.09°
w/o A 0.967 0028  0.955+0037 0.816+0063 0.850+0119 0.768 +0079  0.871 6.19° + 1.23°
w/o MA 0.965+0032  0.960+0040 0.818 +0062 0.849+0124 0.774+0089  0.873 6.12° + 1.20°
w/o P 0979 £0020 0961 +0041  0.803+0061 0.856+0127 0.764+0086  0.873 5.98° £ 1.15°
w/o MP 097140030  0.960+0040 0.798 +0062  0.857+0120 0.777+0082  0.873 6.15° + 1.26°

Table 5: Ablation study on the impact of patch size. We report classification F1 scores (1) and gaze
regression error in degrees (J). Our method (0.5 sec patch size) achieves the best overall balance
across tasks.

Classification (1) Regression ({)
Patchsize Video Audio Taste Touch Smell Avg. Gaze
0.25 sec 0.977 £0.020 0.967 +003 0.776 +0.065 0.849 +0.124 0.741 £0098 0.862 6.23° + 1.26°
0.5sec (Ours)  0.964 +0.028 0.961 +0.033 0.801 +0.064 0.860+0.118 0.793 +0.069 0.876 6.00° + 1.13°
1.0 sec 0.962 +0.034 0.945+0054 0.821+0063 0.836+0.130 0.784 +0088 0.870 6.10° + 1.09°
2.0 sec 0.947 0039  0.932+0074 0.776 +0.101 0.823+0.126 0.769 +0.105 0.850 6.24° + 1.05°

J IMPACT OF PATCH SI1ZE

We discuss the impact of different patch sizes. Specifically, we selected the patch size empirically
based on performance trends across tasks. A sensitivity study illustrating the effect of different patch
sizes is presented in Table[5] A smaller patch size provides less contextual information for each
classification window, which may limit performance. However, it benefits gaze regression, as the
participant’s gaze is more likely to remain fixed within a shorter temporal window. In contrast, larger
patch sizes offer more temporal context for classification tasks but increase the likelihood of gaze
shifts or overlapping signals from multiple classes, potentially degrading both classification and gaze
estimation performance. We observed that a patch size of 0.5 seconds provides the best trade-off,
yielding strong performance across both classification and regression tasks.

K EFFICIENCY ANALYSIS

Table 6: Runtime performance of PIMT on smartphone (Samsung Galaxy S24).

Metric Value
Inference Latency 25 ms
Memory Usage 266 MB (3.6%)
CPU Usage 20.3%
Model Size (ONNX) 2.0 MB

We evaluated the runtime overhead of our method on a commercial smartphone (Samsung Galaxy
S24), which serves as a practical companion device for earphone-based systems. Since NeuroBuds
supports real-time data streaming via BLE, we consider a deployment scenario where inference is
offloaded to the smartphone.

Because the Mamba architecture is not yet supported on Android and lacks corresponding hardware
acceleration, we substituted Mamba with a Transformer of equivalent architecture and parameter
size (e.g., number of layers, dpoge1). Prior work has shown that Transformers generally incur higher
inference costs under comparable hardware acceleration (Gu & Dao, 2024)). To preserve the core

19



Under review as a conference paper at ICLR 2026

Table 7: Performance of PiIMT compared to PatchTST on the DailySense dataset under three data
split settings: within-session, cross-session, and cross-subject.

Classification (1) Regression ({.)

Method Video Audio Taste Touch Smell Avg. Gaze

Within-session

PatchTST 0.807 0146  0.786+0.146  0.697 0099  0.700+£0.131  0.670+00s82  0.732 6.42° £ 1.33°
PiMT (Ours)  0.964 0028  0.961 £0038  0.801 £0064  0.860+0.118 0.793 0069  0.876 6.00°+ 1.13°
Cross-subject

PatchTST 0.654 0047  0.595+0064  0.561 +0047  0.553+0064 0.539+0052  0.580 7.07° + 1.25°
PiMT (Ours)  0.612+0088  0.578 0082  0.593+0038  0.577+0092 0.571+0035 0.586 7.78° +0.95°
Cross-session

PatchTST 0.658 £0202  0.656+0.157  0.695+0101  0.639+0097 0.611+0068  0.652 7.56° + 1.33°
PiMT (Ours)  0.697 0249  0.698 +0.188  0.704 +0.106  0.763+0.156  0.639 +0.146  0.700 6.98° + 1.51°

algorithmic behavior of PIMT, we retained both the multi-band tokenization and the 3D positional
embeddings.

The resulting models were exported to ONNX and evaluated using 4-second input sliding windows
(200 Hz sampling, with the same preprocessing as in the main experiments). The measured runtime
performance is summarized in Table[§]

Overall, the results indicate that inference can be executed in real time at up to 40 Hz with minimal
resource consumption. Preprocessing operations such as filtering and windowing can be performed
directly on the NeuroBuds board. In addition, given that Mamba has been reported to offer 5x
higher throughput than Transformers, we anticipate supporting on-device inference with even lower
overhead.

L GENERALIZATION TO UNSEEN SESSIONS AND USERS

We also tested generalization to unseen conditions during testing in cross-subject and cross-session
scenarios. Cross-subject involves training and testing on different users, while cross-session assumes
the model is tested on a different session from the same user, introducing a temporal shift. These
domain shifts are open challenges for ExG-based tasks, with prior work (Fan et al., 2024)) reporting
over a 30% drop in accuracy. As shown in Table[7] our method also experienced a performance drop
under the cross-subject setting (58.6%). In the cross-session setting, NeuroBuds showed stronger
robustness, achieving 70.0% compared to PatchTST’s 65.2%. Generalization to unseen conditions
remains a open challenge and is a focus of our future research. Nevertheless, we believe that large-
scale data collection enabled by the daily usability of NeuroBuds can play a key role in improving
robustness in real-world applications.

M STATISTICAL SIGNIFICANCE

To assess whether our method provides statistically significant improvements over the baselines, we
conduct paired Wilcoxon signed-rank tests on DailySense. Each task contains 6-9 participants, and
for every participant we train each model with three random seeds. For a given seed, all models
share the exact same train—test split; because the split strongly influences performance, constructing
pairs at the seed level ensures a fair and properly controlled comparison. For each model pair,
we therefore form paired samples based on participant—seed combinations (e.g., 7 participants X
3 seeds = 21 paired samples), and the Wilcoxon test is applied to this aggregated set of paired
differences. For the classification tasks, we test whether the performance differences are consistently
positive (higher F1 is better), and for gaze estimation we test whether the differences are consistently
negative (lower angular error is better). For the “Avg.” column, we pool paired differences across all
five classification tasks before applying the test. As shown in Table[8] PIMT achieves statistically
significant improvements over nearly all baselines and modalities, often with extremely small p-values,
demonstrating that the gains are consistent across participants and robust to seed-level variation.
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Table 8: Paired Wilcoxon p-values when comparing PiMT to each baseline on DailySense. Lower
values indicate stronger evidence that PIMT outperforms the baseline.

Classification (1) Regression ({.)

Method Video Audio Taste Touch Smell Avg. Gaze
Without pre-training
SVM 4.77e-07 4.77e-07 7.63e-06 7.45e-09 4.77e-07 9.61e-20 4.44e-05

1.64e-04 1.21e-04 1.23e-02 1.49e-08 1.59e-03 8.25e-15 1.01e-03

9.82e-05 4.77e-07 1.64e-04 1.42e-07 4.77e-06 4.48e-18 1.03e-07
])eepCOHVI\Iet sk sk skt sk ok Hkk ok
TST 1.17e-04 1.19e-05 1.92e-02 4.10e-07 6.53e-05 1.22e-15 8.04e-04

4.32e-04 1.09e-04 3.00e-02 1.49e-08 1.65e-03 2.65e-14 2.14e-03
PatchTST EET] ETT * sk ok EE] s’k

9.82e-05 5.25e-05 5.23e-04 1.42e-07 1.24e-03 3.28e-16 1.38e-03
Bidirectional-Mamba 6.14:*6—03 1.8-?;8—02 1.56*6—02 1. 13:-03 2.30:-02 1 .0*1*:—07 1. 1*5*2—07
PiMT (Ours) - - - - - - -
With pre-training

1.17e-04 9.54e-07 1.26e-04 7.45e-08 9.54e-07 1.91e-18 3.29e-03
PiMT (Ours) - - - - - - -

*p < 0.05, ** p < 0.01, #** p < 0.001. Entries marked “~” correspond to self-comparisons.

Table 9: Performance on DailySense using different pretraining sources, showing our 50-hr free-living
dataset outperforms larger controlled datasets.

Classification (1) Regression ({)
Pretraining Dataset Video Audio Taste Touch Smell Avg. Gaze
No PT 0.858 +0.084 0.885+0.125 0.790+0077 0.807+0.113 0.753 +0069 0.819 6.11° £ 1.20°
TUAR (98.6 hrs) 0.964 £0.035 0.950+0049 0.791 £0065 0.824 +0.124 0.736+0.092 0.853 5.95°+117°

TUAR + TUSZ (498.6 hrs) 0.964 0024 0.950 +0044 0.803+0076 0.833+0.109 0.741+0094 0.858 6.03° + 1.14°
DailySense (Ours, 50 hrs)  0.964 + 0028 0.961 +0.038 0.801 +0.064 0.860 +0.118 0.793 +0.069 0.876 6.00°+ 1.13°

N PRETRAINING USING PUBLIC CONTROLLED EXG DATASETS

We further examine how our 50-hour free-living DailySense dataset compares to pretraining on
larger publicly available ExG corpora collected in controlled settings. Specifically, we evaluate

models pretrained on TUAR (Hamid et al.,[2020) and TUSZ (Shah et all 2018)), two widely used

pretraining datasets in recent EEG foundation models (Jiang et al., 2024} [Cui et al., 2024} [Fang et al.,
2025). TUAR, a curated subset of TUEG, contains annotations for five artifact types—including

eye movements, chewing, and muscle activity—making it relevant to our downstream tasks such
as gaze tracking. TUSZ provides extensive seizure annotations and is among the largest publicly
available EEG corpora. Because these datasets use electrode montages that differ from ours, we
select electrodes with the closest spatial correspondence—F7, F8, T3, T4, TS5, T6, O1, and O2 in
the 10-20 system—for pretraining. We consider two pretraining configurations: (1) TUAR alone
(98.6 hours) and (2) TUAR combined with a subset of TUSZ for a total of 498.6 hours, representing
moderate- and large-scale controlled EEG datasets, respectively. As shown in Table[9] pretraining on
DailySense achieves the strongest average transfer performance across all five classification tasks and
yields competitive gaze estimation accuracy, despite its substantially smaller size. This highlights
the power of learning more generalizable and robust representations from free-living data, which
better capture the natural variability present in real-world human behavior than controlled laboratory
recordings. Considering the relative ease and scalability of free-living data collection, we expect
that DailySense can be expanded far more rapidly than controlled laboratory datasets, which would
further amplify these performance advantages.
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