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Abstract

Contrastive learning is widely recognized for
its ability to understand the relationships
between data and map them into a high-
dimensional feature space. In this study, we
apply this technique to semantic role labeling,
constructing a model that effectively captures
the relationships between spans and labels and
determines spans accurately. Our model in-
tegrates the characteristics of both a conven-
tional span-based model, which predicts spans
for labels, and a model that is comparable
to state-of-the-art, which predicts labels for
spans. In our experiments, we apply these
models to NPCMJ-PT, a Japanese corpus that
is annotated with semantic role labels and has
about 52,500 entries. The semantic roles are
defined with 32 types of labels such as Arg0,
Argl and ArgM-LOC, which are similar to
PropBank. The experimental results show that
our model outperforms the conventional span-
based models, achieving a highest F1 score of
81.2.

1 Introduction

Semantic role labeling (SRL) is a form of shal-
low semantic parsing whose goal is to discover the
predicate-argument structure of each predicate in
a given input sentence. Given a sentence, for each
target predicate all the constituents in the sentence
that fill a semantic role of the predicate have to be
recognized. Typical semantic arguments include
core arguments such as Agent, Patient, and Instru-
ment, as well as adjunct arguments like Locative,
Temporal, and Manner.

One prevalent approach is based on BIO tagging
schemes, which (Zhou and Xu, 2015; He et al.,
2017) have used with neural SRL models. Utiliz-
ing features generated by neural networks, they
assign a BIO tag to each word: “B” to words at
the beginning of an argument span, “I” to those
inside a span, and “O” to words outside an argu-
ment span. Although this approach has achieved

high accuracy, it reconstructs argument spans from
the predicted BIO tags rather than directly predict-
ing the spans. In another approach, labeled span
modeling (Koomen et al., 2005), the models first
identify candidate argument spans and then clas-
sify each span into one of the semantic role labels.
Several effective methods have been proposed for
instance, such as structural constraint inference
by using integer linear programming (Punyakanok
et al., 2008) or dynamic programming (Tdckstrém
et al., 2015; Zhou and Xu, 2015). One advantage of
this approach is that it allows us to design and uti-
lize span-level features, which leads to the capture
of rich contextual information and interactions be-
tween different parts of the text. However, identify-
ing the appropriate spans from many candidates re-
mains challenging, and has thus lagged behind the
state-of-the-art performance of BIO-based neural
models. Another approach is based on span-based
scoring for semantic arguments (Ouchi et al., 2018),
which has demonstrated a high performance com-
parable to state-of-the-art models on the CoNLL-
2005 dataset. This approach also employs span-
level features for span identification; however, it
differs in that it predict spans for semantic role la-
bels. Consequently, while it allows for narrowing
down candidate spans more effectively than other
span-based modeling approaches, it necessitates
learning the appropriate spans from a very broad
range of candidates.

In light of this background, we propose a model
that, while utilizing span-level features, can effec-
tively learn both spans for labels and labels for
spans. Specifically, we prepare feature spaces for
both spans and labels and link them appropriately,
enabling the learning of both feature spaces through
contrastive learning. During decoding, we compute
the scores based on the similarity of each feature
space, allowing for the appropriate selection of
spans without relying solely on the prediction prob-
ability of one side.



In our experiments, we focus on the span-based
task of Japanese SRL as NPCMIJ-PT (Takeuchi
et al., 2020) contains span information of argu-
ments with PropBank-style semantic roles. The
sense repository is publicly available on the
web as the Predicate-Argument Structure The-
saurus',which defines the frames of predicates in-
volving verbs, deverbal nouns, and adjectives with
example sentences in Japanese. The experimen-
tal results show that our model outperforms the
aforementioned conventional span-based models,
achieving a highest F1 score of 81.2. Our contri-
butions are the proposal of a new SRL approach
employing contrastive learning, demonstrating that
it outperforms conventional models, and utilizing
a relatively unexplored PropBank-style Japanese
dataset (NPCMJ-PT).

2 Related Work

The span-based SRL task is usually considered a
sequence labeling problem (Zhou and Xu, 2015;
He et al., 2017; Tan et al., 2017) and often em-
ploys BIO tagging with CRF. Another approach
is labeled span modeling (Koomen et al., 2005).
Notable models in this area include (Téackstrom
et al., 2015; Zhou and Xu, 2015), and models that
also utilize span features (Ouchi et al., 2018) have
demonstrated very high performance. Recently,
there are approaches that predict the start and end
positions and labels of spans using separate classi-
fiers based on word representations (Kurita et al.,
2022).

There is also active research on SRL that uti-
lizes syntactic information. Traditionally, syntactic
structure was considered essential for SRL models
(Gildea and Palmer, 2002; Punyakanok et al., 2008).
However, until recently, models that utilize deep
neural network architectures have surpassed syntax-
aware architectures without explicitly incorporat-
ing syntactic structure. Nevertheless, several stud-
ies (Zhou et al., 2020; Strubell et al., 2018; He et al.,
2017; Marcheggiani and Titov, 2017) argue that
deep neural network models can benefit from inte-
grating syntactic information rather than ignoring it.
Additionally, it has been demonstrated that provid-
ing both syntactic structures and dependency tree
structures (Fei et al., 2021) contributes to perfor-
mance improvement. Given this background, (Mo-
hammadshahi and Henderson, 2023) proposed an

1Predicate—Argument Structure Thesaurus: https://pth.
cl.cs.okayama-u.ac. jp/testp/pth/Vths

effective way to incorporate auxiliary syntactic in-
formation into deep learning architectures for SRL.
Recently, considering tree structures within argu-
ments has been shown to be effective (Zhang et al.,
2022), and utilizing various forms of knowledge,
such as syntactic structures and part-of-speech tags
(Tian et al., 2022), has achieved state-of-the-art
results. While various works have utilized struc-
tural knowledge, one of the significant reasons for
their improvement is the use of high-performance
parsers or the provision of gold-standard syntac-
tic structures. This approach may not necessarily
be applicable to Japanese SRL. Therefore, we pro-
pose a new model that leverages only span features
to improve performance without relying on such
structural information.

3 Models

The key idea of our model is that it effectively
learns the span and label feature spaces by minimiz-
ing the distance between features of similar span-
label pairs and maximizing the distance between
features of dissimilar span-label pairs. In CLIP
(Radford et al., 2021), the feature space is learned
by using contrastive learning with pairs of images
and texts, making significant contributions in that
domain. Inspired by this, we prepare semantic role
labels and labels representing other specific spans,
enabling contrastive learning by linking them with
appropriate spans.

While there are many span-based models, in this
study, we employ the models from (Tulloch and
Takeuchi, 2024). Thus, we refer to the model that
adapts a typical labeled span modeling as the L4S
model and the model based on the idea of (Ouchi
et al., 2018) as the S4L model. We explain the
implementation differences between these and the
proposed model.

The flow from the input to the decoding of each
model is depicted in the left diagram of Figure 1,
with the blue box representing the span encoder
and the red box representing the label encoder.
The span encoder generates span representations
by feeding the input into a language model and
utilizing the obtained hidden states. The label en-
coder generates label representations by feeding
label embeddings into an MLP layer. The L4S and
S4L models feed the span representations obtained
from the span encoder through the MLP layer and
then calculate scores for each span and decode. The
L4S and S4L models learn tasks that “predict labels
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Figure 1: Overviw of the models. The left figure illustrates the flow from input to decoding for each model.
The blue frame represents the span encoder, which generates span representations from the input. The red frame
represents the label encoder, which generates label representations. The right figure depicts the process of inner

product computation in the proposed model.

for spans” and “predict spans for labels,” respec-
tively, and the scores represent “the probability of a
label for a span” and “the probability of a span for a
label.” In contrast, our model calculates scores and
decodes by taking the dot product of the embed-
dings from the encoders, which have been passed
through an L2 normalization layer. This means that
the scores are represented by the cosine similarity
between each span and label. The impact of these
differences on the models is discussed in detail in
Section 4.2. The following section describes each
module that constitutes the model and the training
process.

3.1 Task Explanation

Consider the following sentence with the set of
correct argument labeled spans.

12 3 4 5 6
T #E X C bD
[ A0 ] [A1]

where the numbers are the position of each to-
ken. In this sentence, for the predicate “,” which
means “be,” “EZEix,” which means “L,” is the AO
argument, and ‘“J#,” which means “cat,” is the Al
argument.

The L4S model is tasked with predicting the
label of a given span. Specifically, it predicts that
the span “E2E(3” is labeled as AO and the span
“§ii” is labeled as A1. Conversely, the S4L. model is

tasked with predicting the span of given semantic
role. Here, it predicts that AQ argument is the span
from 1 to 3 and A1 argument is the span from 5 to
5. Our model is designed to predict both the label
and the span.

3.2 Word Representation

We exploit BERT (Devlin et al., 2019) as inputs
for our model, which has demonstrated its effec-
tiveness for a range of NLP tasks. Unlike English,
Japanese does not use spaces to separate words: in-
stead, sentences are written as continuous strings of
characters. Thus, in the pre-trained BERT module?
utilised in this study, the texts are first tokenized by
MeCab® with the Unidic 2.1.2 dictionary* and then
split into subwords by the WordPiece algorithm.
Given a sentence X = [z, x2,...,x;] Where
x; 1S a character, the sentence is divided into sub-
words W = [wy,ws,...,w,] by the tokenizer.
For example, in Figure 1, the sentence & /i
T® 5" is tokenized into “%, ###, 1%, #i, T,
5. After tokenization, we feed a token sequence
T = [[CLS], t1,. .., tn, [SEP], t,, [SEP]] consisting
of a CLS token, SEP tokens, and the target predi-
cate t,, into the pre-trained BERT to obtain hidden
states H = [hy, ha,..., h,] which are used as
word representations for span representations.

2cl-tohoku/bert-large-japanese-v2, Apache 2.0.

3MeCab, http://taku910.github.io/mecab/

*Unidic 2.1.2, https://clrd.ninjal.ac.jp/unidic/
back_number.html
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3.3 Span Representation

To represent a text span, we utilize the approach in
(Li et al., 2021), which uses the concatenation of
the word representations of the start and end points
of the span. Additionally, we define a one-hot
vector V' to indicate the target predicate position,
as

3 Vnn) ()

where v; j is 1 if the span (4, j) is a predicate, and
0 otherwise. Thus, given the word representations
H = [hy,ha, ..., h,] € R and a span (4, §)
that starts at position ¢ and ends at j, the span
representation will be

V = [vo,0,v1,1,01,2, - -

sij = [hi, hj,vij] (2)

For the representation of a null span (Section
3.5), we use hg, which is a representation of a CLS
token. For all other span representations, we use
hi, ..., hy. Hereafter, span representations .S and
a set of spans S’ are defined as

S =[50,0,51,1,51,2,- -+ 8n.nl 3)

S/:{(O7O)7(171)7 (172)7"'7(n7n)} b) (4)
where n denotes the number of tokens.

3.4 Label Representation

In this section, we provide an explanation of the
labels used in our experiments and define the label
representation utilized in the proposed model.

Each span corresponds to one of the labels
shown below, with no overlaps.

1) Semantic Roles (32 types): Spans that corre-
spond to an argument.

2) P : Spans that correspond to a target predicate.
3) Fa : Spans within spans of arguments.

4) Fp : Spans within the span of a target predi-
cate.

5) O: Spans that are not any of the above and do
not overlap with them.

6) N : Spans that overlap with the other spans.

The N label implies that the span is not sufficient
to be considered as an argument.

We define a set of all labels as L and a set of
semantic role labels as R, as follows:

L={Ao,A1,...,N} 5)
R={A0,Ay,..., AP} (6)
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Figure 2: Contrastive learning for our model. This is
the process of inner product computation between the
label representation (red frame) and the span represen-
tation (blue frame). “CE” refers to cross-entropy, and
the areas indicated by “CE” are normalized along each
axis. After this normalization, the loss value is calcu-
lated using cross-entropy loss.

Note that these labels are not necessarily given as
target labels for the model to predict; rather they
may serve merely as symbols to represent spans.
Specifically, in the S4L. model, span indices are
utilized as targets for the purpose of predicting
spans.

Our model is designed to use both span feature
and label feature spaces. Accordingly, we prepare
embeddings for each label and feed them into an
MLP to obtain the label representations, as

M:[onymA17"'7mN}7 (7)

where M € RIEIXT768,

3.5 Training

In this section, we describe the training methods for
each model. The learning process involves updat-
ing the weights and bias values in order to minimize
the loss function described in the following section.
The training details are in Appendix A.2.

3.5.1 Owur Model
The scoring function of our model is defined as the
cosine similarity of a label [ (I € L) and a span
(4,7), as

- my - S
lmull2llsigll2

Score(i, j, 1) (8)



where || - ||2 denotes the /2 norm.

To facilitate smooth learning by scaling the score
values, we introduce a temperature parameter « and
define the logits as follows:

The proposed model utilizes contrastive learning,
which necessitates training based on distributions
normalized across each axis. Our model is de-
signed to predict a null span s  in the absence of
semantic roles. Consequently, the span correspond-
ing to each semantic role label will be uniquely
determined across all spans. Thus, for all possible
spans S’ concerning the label indicated by the red
“CE” in Figure 2, normalization is performed, and
the loss is calculated using the cross-entropy loss,
as

exp(¥i,j,r)
2 (i jryes XP(Yir g.r)

Ligher ==Y _ > tijlogP(i,jr)

reR’ (i,j)es’
(11

P(i, j|r) = ; (10)

where ¢ denotes the one-hot encoded true label
vector over label r and R’ denotes R U { P}.

Similarly, by assigning the N label as the correct
label for the null span, the label corresponding to
each span will be uniquely determined across all
labels L. Thus, for the span indicated by the blue
“CE” in Figure 2, normalization is performed over
the labels L, and the loss is calculated using the
cross-entropy loss, as

. exp(Yi ;1)
P(lli,j) = oS, , (12)
(- ) > ver exp(Yijr)
Lopan=— > > tlogP(lli,j), (13)

(i,5)eS’ leL

where t denotes the one-hot encoded vector over
span (3, 7).

We use the final loss to train the model, which is
the average of Lj4p¢; and Lgpan, as follows:

1
L= §(£label + Espzm) (14)

By using the average of losses, the model can pre-
vent gradients from becoming excessively large,
thereby stabilizing the training process.

3.5.2 L4S Model

The scoring function of the L4S model is defined as
the probability of label [ for span (i, j). It is formu-
lated using the softmax function and the multilayer
perceptron (MLP), as

Score(i, j, 1) = P(l]i, j)

= softmax(MLP(s;;));, (15)

where s; ; denotes the span representation between
7 and j.

We calculate the loss using cross-entropy loss,
as

i, 5) ==Y tilogP(lli,5)

leL

L= 4.5),

i=1 j=i

(16)

where ¢ denotes a one-hot encoded vector over span
(,7) and £(3, j) is the loss at span (i, 7).
3.5.3 S4L Model

The scoring function of the S4L model is defined
as the probability of span (4, j) for span label 7. It
is formulated using the softmax function and the
MLP, as

Score(i, j,r) = P(i, j|r)
exp(MLPr(si,j))

Dy s PP (s17))
a7

where MLP,.(s; ;) denotes the output value for la-
bel r (r € R) after passing the span representation
s; j through the MLP.

This model learns to predict spans for semantic
role labels. Thus, if there is no span corresponding
to semantic roles, following the approach of (Ouchi
et al., 2018), the model predict null span, which is
the span of the predicate. Similar to the proposed
model, this comes from the fact that there is no
semantic role label assigned to the span.

We calculate the loss using cross-entropy loss,
as

E(T) = - Zzti,j IOgP(laJ‘T> )

i=1 j=i

L= 4r),

reER

(18)

where ¢t denotes a one-hot encoded vector over
label r and £(r) is the loss at label r. Note that, by
definition, span (0, 0) is not included.



3.6 Decoding

Decoding refers to the task in which the model se-
lects the most appropriate combinations of label
and span in a sentence. The selection is conducted
based on the scores calculated by a scoring func-
tion.

3.6.1 Scoring Function

To calculate the span scores, we use the scoring
function defined in Section 3.5. Thus, the proposed
model uses Equation 8 to compute the score values,
while the L4S and the S4L models use Equations
15 and 17, respectively.

3.6.2 Inference

A simple argmax inference over the scores (Equa-
tions 8, 15, and 17) selects one label for each span
or one span for each label. While this inference
is computationally efficient, it faces the following
two problematic issues.

1. The argmax inference sometimes selects
spans that overlap with each other.

2. The argmax inference cannot select multiple
spans for one label.

To deal with these challenges, we employ the ap-
proach of (Ouchi et al., 2018), which uses a greedy
search to keep the consistency among spans and
can return multiple spans. Specifically, we greedily
select higher-scoring labeled spans subject to some
constraints, which vary by model.

In (Ouchi et al., 2018), it is noted that core label,
which are obligatory arguments for the predicate
(such as Arg0), are constrained to a single span, and
thus the spans of the labels must only be selected
once during decoding. However, in Japanese SRL,
although the number of such cases is very limited,
there is a possibility that multiple spans correspond
to a single core semantic role. Therefore, while ide-
ally no constraints should be placed on core labels,
in our experiments, we conduct validation with this
constraint in place. For testing, we decode under
both constrained and unconstrained conditions.

The following are constraints common to all
models.

i) Any spans that overlap with the predicate span
cannot be selected.

ii) Any spans that overlap with the selected spans
cannot be selected.

iii) At most one span can be selected for each core
label. (optional)

iv) Spans whose scores are lower than a certain
threshold cannot be selected. (optional)

These constraints ensure the consistency of spans
and the reliability. The value of the threshold for
constraint 3 is set to maximize the F1 score on the
development data. Note that constraint 3 is used in
training and 4 is used only in testing.

L4S model: Spans are selected based on the
following constraints.

1) The label has to be one of the semantic role
labels or an O label.

ii) The score has to be higher than that of the N
label in the same span.

The first constraint is established not only to
extract the target label but also to eliminate spans
that are not arguments. Even if the O label is
selected, it is not considered in the evaluation. The
second constraint is rooted in the fact that the N
label indicates that the span is not an argument;
hence, the selected spans must be higher than N
labels in the scores.

S4L model: Spans are selected based on the
following constraint.

1) The score should be higher than that of the
null span in the same label.

This constraint indicates that the scores lower than
the null span are insufficient to be output as argu-
ments.

Our model: Spans are selected based on the
following constraints.

i) The span has to satisfy the same constraints
as the L4S and S4L models.

ii) The score must not be negative.

The second constraint comes from the fact that if
the score is negative, it indicates that the span is
not similar to the label.

4 Experiments

We use L4S, S4L, and proposed models in our ex-
periments. The L4S model is based on the approach
of labeled span modeling, which predicts spans for
each label, while the S4L. model is a pseudo-model
inspired by (Ouchi et al., 2018). All models are
trained and tested on Japanese semantic role la-
beling data (NPCMIJ-PT). The following sections
describe the details of the data, evaluations metrics,
results, and discussion.



4.1 Experimental Setup

NPCMJ-PT is a tagged corpus that assigns
PropBank-style semantic roles to Japanese sen-
tences based on the conceptual frame of the
Predicate-Argument Structure Thesaurus. The de-
tails are in Appendix A.1. The training and test
data extracted from the NPCMIJ-PT is in a format
in which each predicate is assigned a related se-
mantic role. Since one sentence contains several
predicates, annotation data of a predicate and its se-
mantic role labels are separately recorded for each
annotated predicate, even for the same sentence.
NPCMIJ-PT consists of 52,528 entries, and the
data is divided into training, development, and test
sets in an 8:1:1 ratio, with the respective numbers
of entries being 42,022, 5,253, and 5,253. With
regard to the training data for the S4L. model and
our model, due to the limitation that the models can
only be trained in cases where one semantic role la-
bel corresponds to one span ,the training examples
containing instances where one semantic role label
corresponds to multiple spans are duplicated and
separated to ensure that one label corresponds to
one span. As a result, the number of training entries
for the S4L is 43,310, while the development and
test data remain the same as previously described.
To shorten the learning time, we reduce the num-
ber of paddings by sorting the data in ascending
order by the length of a sentence. We also limit the
maximum span width to 30 tokens, while the length
of the sentence is still the same. In the experiments,
training is terminated when the F1 score in decod-
ing on the development dataset does not improve
consecutively for five times and are based on a sin-
gle run of the training process. In our evaluation,
we count the cases where the span and semantic
role label match as correct. The evaluation metrics
used in this study are precision, recall, and F1.

4.2 Experimental Results and Discussion

As shown in Table 1, our model outperforms all
other models in every category, exhibiting the high-
est F1 scores. This superior performance can be
attributed to two main factors: “two types of learn-
ing” and “the nature of the the score.”

First, we explain the two types of learning, which
refers here to the two types of learning in con-
trastive learning: “learning to predict spans for
labels” and “learning to predict labels for spans.”
This enables our model to evaluate spans by con-
sidering both the accuracy of labels in spans (L4S

Model | Precision Recall F1

L4S 79.6 77.4 78.5
L4S* 79.4 77.7 78.5
L4S+ 82.2 76.2 79.1
S4L 82.5 77.9 80.1
S4L* 75.8 79.3 71.5
S4LF 83.3 77.6 80.3
Ours 83.0 79.4 81.2
Ours* 80.5 80.5 80.5
Ours¥ 83.1 79.4 81.2

Table 1: Experimental results on NPCMJ-PT dataset.
“*” indicates versions without a constraint on the num-
ber of span selections for core labels. “{” indicates ver-
sions without a constraint on the lower bound of the
score value.

model) and the accuracy of spans in labels (S4L
model). Particularly, in decoding (Section 3.6), the
constraints of both models are used to narrow down
the spans.

Next, we explain the nature of the score. The
score here is represented by the cosine similarity
between span representation and label representa-
tion, as shown in Equation 8. This allows for the
independent calculation of span scores for each
label, enabling fair comparison of multiple spans
within the same label. When comparing the ba-
sic model and the model with “*”, removing the
constraints results in a higher number of incorrect
span predictions, thereby reducing the accuracy.
This is because, in most of the data, one span is
assigned to one semantic role. However, due to
the two factors mentioned above, the performance
degradation between S4L and S4L* is 2.6, whereas
the degradation between Ours and Ours* is only
0.7.

Another advantage of the nature of the score is
its ability to appropriately set thresholds for a simi-
larity constraints during decoding. Specifically, in
OursT, although it does not significantly contribute
to performance improvement, it raises precision
without compromising recall. The score values of
the L4S and S4L models indicate probabilities for
specific labels or spans but do not show relative
values between labels or spans. Thus, even with a
low score, there exist cases where the correct pre-
diction is made, forcing the L4S{ and S4L{ models
to set thresholds that sacrifice recall to increase the
F1 score.



4.3 Error Analysis of SRL

To analyze the types of errors made by the model
in the semantic role labeling task, we reference the
analytical method of (He et al., 2017). This method
involves manually correcting the model’s output
step by step for each type of error, recalculating
the F1 score after each correction, and measuring
the degree of improvement. Since corrections are
made incrementally, the graph will show an upward
trend, with steeper slopes indicating more frequent
errors. Below, we outline the correction methods
for each type of error:

1) Fix Labels : Correct the span label if its bound-
ary matches gold.

2) Move Arg : Move a unique core argument to
its correct position.

3) Merge Spans : Combine two predicted spans
into a gold span if they are separated by at
most one word.

4) Split Spans : Split a predicted span into two
gold spans that are separated by at most one
word.

5) Fix Boundary : Correct the boundary of a span
if its label matches an overlapping gold span.

6) Drop Arg : Drop a predicted argument that
does not overlap with any gold span.

7) Add Arg : Add a gold argument that does not
overlap with any predicted span.

Based on our analysis(Figure 3), three significant
areas of improvement are identified: “Fix Labels,”
“Fix Boundary,” and “Add Arg.” All models show
most significant performance improvements with
“Fix Labels,” but it is evident that the improvement
in the L4S model is more pronounced than that
in the S4L. model, with our model showing an in-
termediate level of improvement between the two.
Additionally, the improvement of “Fix Boundary”
is highest in the S4L model, while the L4S and our
model show similar levels of improvement. Simi-
larly, for “Add Arg,” the improvement is highest in
the S4L model, followed by our model, and then
the L4S model.

These results indicate that the L4S model ex-
cels in span boundary identification because of its
learning labels for spans but struggles with labeling
when considering the entire span. This is reflected
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Figure 3: Error analysis of each model. The blue,

red, and gray lines correspond to the L4S, S4L, and
our models, respectively. The figure depicts how each
model progressively improves its F1 score through var-
ious types of error corrections.

in the poor precision of the L4S model as discussed
in Sec 4.2. On the other hand, the S4L model,
which learns spans for labels, demonstrates profi-
ciency in identifying labels and avoiding unneces-
sary spans, although it is relatively less effective in
span boundary identification compared to the other
models. Our model, however, shows intermediate
or the lowest improvement values across the three
areas, suggesting that it successfully integrates the
strengths of both models.

5 Conclusions

In this work, we proposed a novel model for the
SRL task utilizing contrastive learning. Our ap-
proach involves learning to align the feature spaces
of spans and labels, enabling accurate modeling of
their relationship without relying on the probabil-
ity distribution of one space. Experimental results
show that our model outperforms traditional span-
based models, achieving a maximum F1 score of
81.2 on NPCMJ-PT dataset.

Limitations

First, it is important to note that our experiments
have not been conducted on English datasets, and
hence, we cannot guarantee success in other lan-
guages. However, for languages like English,
where each core argument typically corresponds
to a single span, this modeling approach would
appear to be appropriate and is likely to facili-
tate effective learning. Conversely, for languages
such as Japanese, where a single argument can be
distributed across multiple spans, there remains



room for improvement. One potential enhance-
ment could be the utilization of learning techniques
capable of multi-label classification, such as binary
cross-entropy (BCE), rather than converting the
task to a single-class classification through data
augmentation. The advantages of this approach
include the ability to leverage the correct semantic
role structure of the entire sentence and the poten-
tial to learn across all spans. However, this would
also increase the complexity of the task, raising the
possibility of ineffective learning, which necessi-
tates thorough investigation.

Ethical Considerations

For the dataset we use, we have verified that the
data does not contain any personal information. Ac-
cording to the data providers, annotation work was
requested at 1,200 yen per hour, which is appro-
priate pay. Annotators were informed in advance
about how the data would be used.
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Category Count
Sentences 33,510
Predicates 52,528
Conceptual Frame Types | 1,012
Arguments 90,140
Semantic Role Types 31
Thematic Role Types 127

Table 2: Dataset statistics.

Semantic Role | Count
Argl 40,197
Arg0 17,014
Arg2 16,259
ArgM-ADV 4,241
ArgM-TMP 2,347
ArgM-LOC 1,664
ArgM-MNR 1,262
Arg3 1,057
ArgM-PRX 926
ArgM-NEG 792

Table 3: Top 10 Semantic Role Labels by count.

A Appendix

A.1 NPCMJ-PT Dataset

NPCMIJ-PT is a tagged corpus we use for the
dataset in our experiments. First, we will de-
scribe NPCMJ (NINJAL Parsed Corpus of Mod-
ern Japanese), which is a treebank. NPCMJ pro-
vides syntactic and semantic parsing information
for written and spoken Japanese texts and is pub-
licly available on the web®. NPCMIJ-PT is derived
from NPCMIJ by automatically extracting predi-
cates and their arguments, followed by manual an-
notation of semantic roles and predicate conceptual
frames based on the Predicate-Argument Structure
Thesaurus (Takeuchi et al., 2020). The annotators
are native Japanese speakers who graduated from a
university with a humanities or liberal arts program
in Okayama Prefecture, Japan. This is also publicly
available on the web®. Figure 4 shows a part of the
NPCMIJ-PT data. The data is converted to a for-
mat similar to CoNLL2012 (Pradhan et al., 2012).
Each column, tab-separated, represents different
information, and each row represents information
for one character. Columns 1 through 6 correspond
to sentence ID, character index, character, part of

SNPCMJ: https://npemj.ninjal.ac. jp/index. html
6Predicate—Argument Structure Thesaurus: https://pth.
cl.cs.okayama-u.ac. jp/testp/pth/Vths, MIT License.
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Thematic Role Label Count
Patient (ff 5%) 33,251
Agent (BIfEE) 11,702
Experiencer (F85R) 5,247
Adverbial (g7 AHY%) 4,239
Complement (ffigEAHY (1X) ) | 4,191
Goal (& i) 3,158
Location (35Ff) 2,588
Time (FRFfH]) 2,348
Patient (Action) ({5 (EfE) ) | 1,894
Patient (Person) (&Rf & (N) ) 1,874

Table 4: Top 10 Thematic Role Labels by count.

speech, syntactic structure, and predicate FramelD,
respectively. From the 7th column onwards, seman-
tic roles corresponding to the FramelD in the 6th
column are noted. The correspondence between
left and right brackets clarifies the range of each
piece of information, allowing the embedding of
syntactic structures in tree form through nested
structures.

Table 2 shows the number of sentences, pred-
icates, conceptual frames, and semantic roles in
NPCMI-PT dataset used in the experiments. Since
we predict the semantic roles of their arguments for
the target predicates in the sentences, the number
of predicates in the table represents the number of
instances used in the experiments. There are 1096
types of conceptual frames defined in the Predicate-
Argument Structure Thesaurus, and about 92% of
them (1012 types) appear in NPCMJ-PT dataset. In
the dataset, semantic roles are annotated in two in-
dependent formats: PropBank-style roles (such as
Arg0 and Argl) and thematic roles (such as agent
and patient). We use PropBank format semantic
roles only in the experiments. In the PropBank for-
mat, Arg0 through Arg5 are core roles, while labels
beginning with ArgM are adjunct roles. According
to the annotation guidelines for English PropBank,
core arguments are defined within a single span.
However, in NPCMIJ-PT, it is possible for a sin-
gle core argument to be distributed across multiple
spans.

Table 3 enumerates the ten most frequent
PropBank-style semantic role labels. Argl is the
most frequently occurring role, generally denoting
the patient or theme of the predicate. The role of
ArgM-ADYV, often attributed to adverbial elements,
is the most common among adjunct roles. Addi-
tionally, Table 4 presents the ten most frequently


https://npcmj.ninjal.ac.jp/index.html
https://pth.cl.cs.okayama-u.ac.jp/testp/pth/Vths
https://pth.cl.cs.okayama-u.ac.jp/testp/pth/Vths
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Figure 4: Data form of NPCMJ-PT.

appearing thematic role labels. “Patient” ranks as
the most frequent, followed closely by “Agent.”
These roles are assigned to elements that represent
the patient of the action or the entity (whether a
person or an object) executing the action.

A.2 Training Details

In the experiments, we utilize AdamW (Loshchilov
and Hutter, 2017) as the optimization method to
minimize error during training. Regarding the
learning rates, the final four layers of the BERT
encoder module are set to Se-5, while the label en-
coder and the MLP layers for classification are set
to le-4. The MLP we utilize is a two-layer neural
network. The model is trained on our machine with
A6000 GPU cards.
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