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Abstract
Contrastive learning is widely recognized for001
its ability to understand the relationships002
between data and map them into a high-003
dimensional feature space. In this study, we004
apply this technique to semantic role labeling,005
constructing a model that effectively captures006
the relationships between spans and labels and007
determines spans accurately. Our model in-008
tegrates the characteristics of both a conven-009
tional span-based model, which predicts spans010
for labels, and a model that is comparable011
to state-of-the-art, which predicts labels for012
spans. In our experiments, we apply these013
models to NPCMJ-PT, a Japanese corpus that014
is annotated with semantic role labels and has015
about 52,500 entries. The semantic roles are016
defined with 32 types of labels such as Arg0,017
Arg1 and ArgM-LOC, which are similar to018
PropBank. The experimental results show that019
our model outperforms the conventional span-020
based models, achieving a highest F1 score of021
81.2.022

1 Introduction023

Semantic role labeling (SRL) is a form of shal-024

low semantic parsing whose goal is to discover the025

predicate-argument structure of each predicate in026

a given input sentence. Given a sentence, for each027

target predicate all the constituents in the sentence028

that fill a semantic role of the predicate have to be029

recognized. Typical semantic arguments include030

core arguments such as Agent, Patient, and Instru-031

ment, as well as adjunct arguments like Locative,032

Temporal, and Manner.033

One prevalent approach is based on BIO tagging034

schemes, which (Zhou and Xu, 2015; He et al.,035

2017) have used with neural SRL models. Utiliz-036

ing features generated by neural networks, they037

assign a BIO tag to each word: “B” to words at038

the beginning of an argument span, “I” to those039

inside a span, and “O” to words outside an argu-040

ment span. Although this approach has achieved041

high accuracy, it reconstructs argument spans from 042

the predicted BIO tags rather than directly predict- 043

ing the spans. In another approach, labeled span 044

modeling (Koomen et al., 2005), the models first 045

identify candidate argument spans and then clas- 046

sify each span into one of the semantic role labels. 047

Several effective methods have been proposed for 048

instance, such as structural constraint inference 049

by using integer linear programming (Punyakanok 050

et al., 2008) or dynamic programming (Täckström 051

et al., 2015; Zhou and Xu, 2015). One advantage of 052

this approach is that it allows us to design and uti- 053

lize span-level features, which leads to the capture 054

of rich contextual information and interactions be- 055

tween different parts of the text. However, identify- 056

ing the appropriate spans from many candidates re- 057

mains challenging, and has thus lagged behind the 058

state-of-the-art performance of BIO-based neural 059

models. Another approach is based on span-based 060

scoring for semantic arguments (Ouchi et al., 2018), 061

which has demonstrated a high performance com- 062

parable to state-of-the-art models on the CoNLL- 063

2005 dataset. This approach also employs span- 064

level features for span identification; however, it 065

differs in that it predict spans for semantic role la- 066

bels. Consequently, while it allows for narrowing 067

down candidate spans more effectively than other 068

span-based modeling approaches, it necessitates 069

learning the appropriate spans from a very broad 070

range of candidates. 071

In light of this background, we propose a model 072

that, while utilizing span-level features, can effec- 073

tively learn both spans for labels and labels for 074

spans. Specifically, we prepare feature spaces for 075

both spans and labels and link them appropriately, 076

enabling the learning of both feature spaces through 077

contrastive learning. During decoding, we compute 078

the scores based on the similarity of each feature 079

space, allowing for the appropriate selection of 080

spans without relying solely on the prediction prob- 081

ability of one side. 082
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In our experiments, we focus on the span-based083

task of Japanese SRL as NPCMJ-PT (Takeuchi084

et al., 2020) contains span information of argu-085

ments with PropBank-style semantic roles. The086

sense repository is publicly available on the087

web as the Predicate-Argument Structure The-088

saurus1,which defines the frames of predicates in-089

volving verbs, deverbal nouns, and adjectives with090

example sentences in Japanese. The experimen-091

tal results show that our model outperforms the092

aforementioned conventional span-based models,093

achieving a highest F1 score of 81.2. Our contri-094

butions are the proposal of a new SRL approach095

employing contrastive learning, demonstrating that096

it outperforms conventional models, and utilizing097

a relatively unexplored PropBank-style Japanese098

dataset (NPCMJ-PT).099

2 Related Work100

The span-based SRL task is usually considered a101

sequence labeling problem (Zhou and Xu, 2015;102

He et al., 2017; Tan et al., 2017) and often em-103

ploys BIO tagging with CRF. Another approach104

is labeled span modeling (Koomen et al., 2005).105

Notable models in this area include (Täckström106

et al., 2015; Zhou and Xu, 2015), and models that107

also utilize span features (Ouchi et al., 2018) have108

demonstrated very high performance. Recently,109

there are approaches that predict the start and end110

positions and labels of spans using separate classi-111

fiers based on word representations (Kurita et al.,112

2022).113

There is also active research on SRL that uti-114

lizes syntactic information. Traditionally, syntactic115

structure was considered essential for SRL models116

(Gildea and Palmer, 2002; Punyakanok et al., 2008).117

However, until recently, models that utilize deep118

neural network architectures have surpassed syntax-119

aware architectures without explicitly incorporat-120

ing syntactic structure. Nevertheless, several stud-121

ies (Zhou et al., 2020; Strubell et al., 2018; He et al.,122

2017; Marcheggiani and Titov, 2017) argue that123

deep neural network models can benefit from inte-124

grating syntactic information rather than ignoring it.125

Additionally, it has been demonstrated that provid-126

ing both syntactic structures and dependency tree127

structures (Fei et al., 2021) contributes to perfor-128

mance improvement. Given this background, (Mo-129

hammadshahi and Henderson, 2023) proposed an130

1Predicate-Argument Structure Thesaurus: https://pth.
cl.cs.okayama-u.ac.jp/testp/pth/Vths

effective way to incorporate auxiliary syntactic in- 131

formation into deep learning architectures for SRL. 132

Recently, considering tree structures within argu- 133

ments has been shown to be effective (Zhang et al., 134

2022), and utilizing various forms of knowledge, 135

such as syntactic structures and part-of-speech tags 136

(Tian et al., 2022), has achieved state-of-the-art 137

results. While various works have utilized struc- 138

tural knowledge, one of the significant reasons for 139

their improvement is the use of high-performance 140

parsers or the provision of gold-standard syntac- 141

tic structures. This approach may not necessarily 142

be applicable to Japanese SRL. Therefore, we pro- 143

pose a new model that leverages only span features 144

to improve performance without relying on such 145

structural information. 146

3 Models 147

The key idea of our model is that it effectively 148

learns the span and label feature spaces by minimiz- 149

ing the distance between features of similar span- 150

label pairs and maximizing the distance between 151

features of dissimilar span-label pairs. In CLIP 152

(Radford et al., 2021), the feature space is learned 153

by using contrastive learning with pairs of images 154

and texts, making significant contributions in that 155

domain. Inspired by this, we prepare semantic role 156

labels and labels representing other specific spans, 157

enabling contrastive learning by linking them with 158

appropriate spans. 159

While there are many span-based models, in this 160

study, we employ the models from (Tulloch and 161

Takeuchi, 2024). Thus, we refer to the model that 162

adapts a typical labeled span modeling as the L4S 163

model and the model based on the idea of (Ouchi 164

et al., 2018) as the S4L model. We explain the 165

implementation differences between these and the 166

proposed model. 167

The flow from the input to the decoding of each 168

model is depicted in the left diagram of Figure 1, 169

with the blue box representing the span encoder 170

and the red box representing the label encoder. 171

The span encoder generates span representations 172

by feeding the input into a language model and 173

utilizing the obtained hidden states. The label en- 174

coder generates label representations by feeding 175

label embeddings into an MLP layer. The L4S and 176

S4L models feed the span representations obtained 177

from the span encoder through the MLP layer and 178

then calculate scores for each span and decode. The 179

L4S and S4L models learn tasks that “predict labels 180
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Figure 1: Overviw of the models. The left figure illustrates the flow from input to decoding for each model.
The blue frame represents the span encoder, which generates span representations from the input. The red frame
represents the label encoder, which generates label representations. The right figure depicts the process of inner
product computation in the proposed model.

for spans” and “predict spans for labels,” respec-181

tively, and the scores represent “the probability of a182

label for a span” and “the probability of a span for a183

label.” In contrast, our model calculates scores and184

decodes by taking the dot product of the embed-185

dings from the encoders, which have been passed186

through an L2 normalization layer. This means that187

the scores are represented by the cosine similarity188

between each span and label. The impact of these189

differences on the models is discussed in detail in190

Section 4.2. The following section describes each191

module that constitutes the model and the training192

process.193

3.1 Task Explanation194

Consider the following sentence with the set of195

correct argument labeled spans.196

1 2 3 4 5 6

吾 輩 は 猫 で ある

[ A0 ] [A1]
197

where the numbers are the position of each to-198

ken. In this sentence, for the predicate “で,” which199

means “be,” “吾輩は,” which means “I,” is the A0200

argument, and “猫,” which means “cat,” is the A1201

argument.202

The L4S model is tasked with predicting the203

label of a given span. Specifically, it predicts that204

the span “吾輩は” is labeled as A0 and the span205

“猫” is labeled as A1. Conversely, the S4L model is206

tasked with predicting the span of given semantic 207

role. Here, it predicts that A0 argument is the span 208

from 1 to 3 and A1 argument is the span from 5 to 209

5. Our model is designed to predict both the label 210

and the span. 211

3.2 Word Representation 212

We exploit BERT (Devlin et al., 2019) as inputs 213

for our model, which has demonstrated its effec- 214

tiveness for a range of NLP tasks. Unlike English, 215

Japanese does not use spaces to separate words: in- 216

stead, sentences are written as continuous strings of 217

characters. Thus, in the pre-trained BERT module2 218

utilised in this study, the texts are first tokenized by 219

MeCab3 with the Unidic 2.1.2 dictionary4 and then 220

split into subwords by the WordPiece algorithm. 221

Given a sentence X = [x1, x2, . . . , xk] where 222

xi is a character, the sentence is divided into sub- 223

words W = [w1, w2, . . . , wn] by the tokenizer. 224

For example, in Figure 1, the sentence 吾輩は猫 225

である” is tokenized into “吾, ##輩, は, 猫, で, あ 226

る.” After tokenization, we feed a token sequence 227

T = [[CLS], t1, . . . , tn, [SEP], tp, [SEP]] consisting 228

of a CLS token, SEP tokens, and the target predi- 229

cate tp, into the pre-trained BERT to obtain hidden 230

states H = [h1,h2, . . . ,hn] which are used as 231

word representations for span representations. 232

2cl-tohoku/bert-large-japanese-v2, Apache 2.0.
3MeCab, http://taku910.github.io/mecab/
4Unidic 2.1.2, https://clrd.ninjal.ac.jp/unidic/

back_number.html
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3.3 Span Representation233

To represent a text span, we utilize the approach in234

(Li et al., 2021), which uses the concatenation of235

the word representations of the start and end points236

of the span. Additionally, we define a one-hot237

vector V to indicate the target predicate position,238

as239

V = [v0,0, v1,1, v1,2, . . . , vn,n] , (1)240

where vi,j is 1 if the span (i, j) is a predicate, and241

0 otherwise. Thus, given the word representations242

H = [h1,h2, . . . ,hn] ∈ Rn×768 and a span (i, j)243

that starts at position i and ends at j, the span244

representation will be245

si,j = [hi,hj , vi,j ] , (2)246

For the representation of a null span (Section247

3.5), we use h0, which is a representation of a CLS248

token. For all other span representations, we use249

h1, . . . ,hn. Hereafter, span representations S and250

a set of spans S′ are defined as251

S = [s0,0, s1,1, s1,2, . . . , sn,n] , (3)252

S′ = {(0, 0), (1, 1), (1, 2), . . . , (n, n)} , (4)253

where n denotes the number of tokens.254

3.4 Label Representation255

In this section, we provide an explanation of the256

labels used in our experiments and define the label257

representation utilized in the proposed model.258

Each span corresponds to one of the labels259

shown below, with no overlaps.260

1) Semantic Roles (32 types): Spans that corre-261

spond to an argument.262

2) P : Spans that correspond to a target predicate.263

3) FA : Spans within spans of arguments.264

4) FP : Spans within the span of a target predi-265

cate.266

5) O : Spans that are not any of the above and do267

not overlap with them.268

6) N : Spans that overlap with the other spans.269

The N label implies that the span is not sufficient270

to be considered as an argument.271

We define a set of all labels as L and a set of272

semantic role labels as R, as follows:273

L = {A0, A1, . . . , N} (5)274

R = {A0, A1, . . . , ATMP } (6)275

Figure 2: Contrastive learning for our model. This is
the process of inner product computation between the
label representation (red frame) and the span represen-
tation (blue frame). “CE” refers to cross-entropy, and
the areas indicated by “CE” are normalized along each
axis. After this normalization, the loss value is calcu-
lated using cross-entropy loss.

Note that these labels are not necessarily given as 276

target labels for the model to predict; rather they 277

may serve merely as symbols to represent spans. 278

Specifically, in the S4L model, span indices are 279

utilized as targets for the purpose of predicting 280

spans. 281

Our model is designed to use both span feature 282

and label feature spaces. Accordingly, we prepare 283

embeddings for each label and feed them into an 284

MLP to obtain the label representations, as 285

M = [mA0 ,mA1 , . . . ,mN ] , (7) 286

where M ∈ R|L|×768. 287

3.5 Training 288

In this section, we describe the training methods for 289

each model. The learning process involves updat- 290

ing the weights and bias values in order to minimize 291

the loss function described in the following section. 292

The training details are in Appendix A.2. 293

3.5.1 Our Model 294

The scoring function of our model is defined as the 295

cosine similarity of a label l (l ∈ L) and a span 296

(i, j), as 297

Score(i, j, l) =
ml · si,j

‖ml‖2‖si,j‖2
, (8) 298
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where ‖ · ‖2 denotes the l2 norm.299

To facilitate smooth learning by scaling the score300

values, we introduce a temperature parameter α and301

define the logits as follows:302

yi,j,l = Score(i, j, l) ∗ α (9)303

The proposed model utilizes contrastive learning,304

which necessitates training based on distributions305

normalized across each axis. Our model is de-306

signed to predict a null span s0,0 in the absence of307

semantic roles. Consequently, the span correspond-308

ing to each semantic role label will be uniquely309

determined across all spans. Thus, for all possible310

spans S′ concerning the label indicated by the red311

“CE” in Figure 2, normalization is performed, and312

the loss is calculated using the cross-entropy loss,313

as314

P(i, j|r) = exp(yi,j,r)∑
(i′,j′)∈S′ exp(yi′,j′,r)

, (10)315

Llabel = −
∑
r∈R′

∑
(i,j)∈S′

ti,j log P(i, j|r) ,

(11)

316

where t denotes the one-hot encoded true label317

vector over label r and R′ denotes R ∪ {P}.318

Similarly, by assigning the N label as the correct319

label for the null span, the label corresponding to320

each span will be uniquely determined across all321

labels L. Thus, for the span indicated by the blue322

“CE” in Figure 2, normalization is performed over323

the labels L, and the loss is calculated using the324

cross-entropy loss, as325

P(l|i, j) =
exp(yi,j,l)∑

l′∈L exp(yi,j,l′)
, (12)326

Lspan = −
∑

(i,j)∈S′

∑
l∈L

tl log P(l|i, j) , (13)327

where t denotes the one-hot encoded vector over328

span (i, j).329

We use the final loss to train the model, which is330

the average of Llabel and Lspan, as follows:331

L =
1

2
(Llabel + Lspan) (14)332

By using the average of losses, the model can pre-333

vent gradients from becoming excessively large,334

thereby stabilizing the training process.335

3.5.2 L4S Model 336

The scoring function of the L4S model is defined as 337

the probability of label l for span (i, j). It is formu- 338

lated using the softmax function and the multilayer 339

perceptron (MLP), as 340

Score(i, j, l) = P(l|i, j) 341

= softmax(MLP(si,j))l , (15) 342

where si,j denotes the span representation between 343

i and j. 344

We calculate the loss using cross-entropy loss, 345

as 346

`(i, j) = −
∑
l∈L

tl log P(l|i, j) , 347

L =
n∑

i=1

n∑
j=i

`(i, j) , (16) 348

where t denotes a one-hot encoded vector over span 349

(i, j) and `(i, j) is the loss at span (i, j). 350

3.5.3 S4L Model 351

The scoring function of the S4L model is defined 352

as the probability of span (i, j) for span label r. It 353

is formulated using the softmax function and the 354

MLP, as 355

Score(i, j, r) = P(i, j|r) 356

=
exp(MLPr(si,j))∑

si′,j′∈S
exp(MLPr(si′,j′))

,

(17)

357

where MLPr(si,j) denotes the output value for la- 358

bel r (r ∈ R) after passing the span representation 359

si,j through the MLP. 360

This model learns to predict spans for semantic 361

role labels. Thus, if there is no span corresponding 362

to semantic roles, following the approach of (Ouchi 363

et al., 2018), the model predict null span, which is 364

the span of the predicate. Similar to the proposed 365

model, this comes from the fact that there is no 366

semantic role label assigned to the span. 367

We calculate the loss using cross-entropy loss, 368

as 369

`(r) = −
n∑

i=1

n∑
j=i

ti,j log P(i, j|r) , 370

L =
∑
r∈R

`(r) , (18) 371

where t denotes a one-hot encoded vector over 372

label r and `(r) is the loss at label r. Note that, by 373

definition, span (0, 0) is not included. 374

5



3.6 Decoding375

Decoding refers to the task in which the model se-376

lects the most appropriate combinations of label377

and span in a sentence. The selection is conducted378

based on the scores calculated by a scoring func-379

tion.380

3.6.1 Scoring Function381

To calculate the span scores, we use the scoring382

function defined in Section 3.5. Thus, the proposed383

model uses Equation 8 to compute the score values,384

while the L4S and the S4L models use Equations385

15 and 17, respectively.386

3.6.2 Inference387

A simple argmax inference over the scores (Equa-388

tions 8, 15, and 17) selects one label for each span389

or one span for each label. While this inference390

is computationally efficient, it faces the following391

two problematic issues.392

1. The argmax inference sometimes selects393

spans that overlap with each other.394

2. The argmax inference cannot select multiple395

spans for one label.396

To deal with these challenges, we employ the ap-397

proach of (Ouchi et al., 2018), which uses a greedy398

search to keep the consistency among spans and399

can return multiple spans. Specifically, we greedily400

select higher-scoring labeled spans subject to some401

constraints, which vary by model.402

In (Ouchi et al., 2018), it is noted that core label,403

which are obligatory arguments for the predicate404

(such as Arg0), are constrained to a single span, and405

thus the spans of the labels must only be selected406

once during decoding. However, in Japanese SRL,407

although the number of such cases is very limited,408

there is a possibility that multiple spans correspond409

to a single core semantic role. Therefore, while ide-410

ally no constraints should be placed on core labels,411

in our experiments, we conduct validation with this412

constraint in place. For testing, we decode under413

both constrained and unconstrained conditions.414

The following are constraints common to all415

models.416

i) Any spans that overlap with the predicate span417

cannot be selected.418

ii) Any spans that overlap with the selected spans419

cannot be selected.420

iii) At most one span can be selected for each core421

label. (optional)422

iv) Spans whose scores are lower than a certain 423

threshold cannot be selected. (optional) 424

These constraints ensure the consistency of spans 425

and the reliability. The value of the threshold for 426

constraint 3 is set to maximize the F1 score on the 427

development data. Note that constraint 3 is used in 428

training and 4 is used only in testing. 429

430

L4S model: Spans are selected based on the 431

following constraints. 432

i) The label has to be one of the semantic role 433

labels or an O label. 434

ii) The score has to be higher than that of the N 435

label in the same span. 436

The first constraint is established not only to 437

extract the target label but also to eliminate spans 438

that are not arguments. Even if the O label is 439

selected, it is not considered in the evaluation. The 440

second constraint is rooted in the fact that the N 441

label indicates that the span is not an argument; 442

hence, the selected spans must be higher than N 443

labels in the scores. 444

445

S4L model: Spans are selected based on the 446

following constraint. 447

i) The score should be higher than that of the 448

null span in the same label. 449

This constraint indicates that the scores lower than 450

the null span are insufficient to be output as argu- 451

ments. 452

Our model: Spans are selected based on the 453

following constraints. 454

i) The span has to satisfy the same constraints 455

as the L4S and S4L models. 456

ii) The score must not be negative. 457

The second constraint comes from the fact that if 458

the score is negative, it indicates that the span is 459

not similar to the label. 460

4 Experiments 461

We use L4S, S4L, and proposed models in our ex- 462

periments. The L4S model is based on the approach 463

of labeled span modeling, which predicts spans for 464

each label, while the S4L model is a pseudo-model 465

inspired by (Ouchi et al., 2018). All models are 466

trained and tested on Japanese semantic role la- 467

beling data (NPCMJ-PT). The following sections 468

describe the details of the data, evaluations metrics, 469

results, and discussion. 470

6



4.1 Experimental Setup471

NPCMJ-PT is a tagged corpus that assigns472

PropBank-style semantic roles to Japanese sen-473

tences based on the conceptual frame of the474

Predicate-Argument Structure Thesaurus. The de-475

tails are in Appendix A.1. The training and test476

data extracted from the NPCMJ-PT is in a format477

in which each predicate is assigned a related se-478

mantic role. Since one sentence contains several479

predicates, annotation data of a predicate and its se-480

mantic role labels are separately recorded for each481

annotated predicate, even for the same sentence.482

NPCMJ-PT consists of 52,528 entries, and the483

data is divided into training, development, and test484

sets in an 8:1:1 ratio, with the respective numbers485

of entries being 42,022, 5,253, and 5,253. With486

regard to the training data for the S4L model and487

our model, due to the limitation that the models can488

only be trained in cases where one semantic role la-489

bel corresponds to one span ,the training examples490

containing instances where one semantic role label491

corresponds to multiple spans are duplicated and492

separated to ensure that one label corresponds to493

one span. As a result, the number of training entries494

for the S4L is 43,310, while the development and495

test data remain the same as previously described.496

To shorten the learning time, we reduce the num-497

ber of paddings by sorting the data in ascending498

order by the length of a sentence. We also limit the499

maximum span width to 30 tokens, while the length500

of the sentence is still the same. In the experiments,501

training is terminated when the F1 score in decod-502

ing on the development dataset does not improve503

consecutively for five times and are based on a sin-504

gle run of the training process. In our evaluation,505

we count the cases where the span and semantic506

role label match as correct. The evaluation metrics507

used in this study are precision, recall, and F1.508

4.2 Experimental Results and Discussion509

As shown in Table 1, our model outperforms all510

other models in every category, exhibiting the high-511

est F1 scores. This superior performance can be512

attributed to two main factors: “two types of learn-513

ing” and “the nature of the the score.”514

First, we explain the two types of learning, which515

refers here to the two types of learning in con-516

trastive learning: “learning to predict spans for517

labels” and “learning to predict labels for spans.”518

This enables our model to evaluate spans by con-519

sidering both the accuracy of labels in spans (L4S520

Model Precision Recall F1
L4S 79.6 77.4 78.5
L4S* 79.4 77.7 78.5
L4S† 82.2 76.2 79.1
S4L 82.5 77.9 80.1
S4L* 75.8 79.3 77.5
S4L† 83.3 77.6 80.3
Ours 83.0 79.4 81.2
Ours* 80.5 80.5 80.5
Ours† 83.1 79.4 81.2

Table 1: Experimental results on NPCMJ-PT dataset.
“*” indicates versions without a constraint on the num-
ber of span selections for core labels. “†” indicates ver-
sions without a constraint on the lower bound of the
score value.

model) and the accuracy of spans in labels (S4L 521

model). Particularly, in decoding (Section 3.6), the 522

constraints of both models are used to narrow down 523

the spans. 524

Next, we explain the nature of the score. The 525

score here is represented by the cosine similarity 526

between span representation and label representa- 527

tion, as shown in Equation 8. This allows for the 528

independent calculation of span scores for each 529

label, enabling fair comparison of multiple spans 530

within the same label. When comparing the ba- 531

sic model and the model with “*”, removing the 532

constraints results in a higher number of incorrect 533

span predictions, thereby reducing the accuracy. 534

This is because, in most of the data, one span is 535

assigned to one semantic role. However, due to 536

the two factors mentioned above, the performance 537

degradation between S4L and S4L* is 2.6, whereas 538

the degradation between Ours and Ours* is only 539

0.7. 540

Another advantage of the nature of the score is 541

its ability to appropriately set thresholds for a simi- 542

larity constraints during decoding. Specifically, in 543

Ours†, although it does not significantly contribute 544

to performance improvement, it raises precision 545

without compromising recall. The score values of 546

the L4S and S4L models indicate probabilities for 547

specific labels or spans but do not show relative 548

values between labels or spans. Thus, even with a 549

low score, there exist cases where the correct pre- 550

diction is made, forcing the L4S† and S4L† models 551

to set thresholds that sacrifice recall to increase the 552

F1 score. 553
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4.3 Error Analysis of SRL554

To analyze the types of errors made by the model555

in the semantic role labeling task, we reference the556

analytical method of (He et al., 2017). This method557

involves manually correcting the model’s output558

step by step for each type of error, recalculating559

the F1 score after each correction, and measuring560

the degree of improvement. Since corrections are561

made incrementally, the graph will show an upward562

trend, with steeper slopes indicating more frequent563

errors. Below, we outline the correction methods564

for each type of error:565

1) Fix Labels : Correct the span label if its bound-566

ary matches gold.567

2) Move Arg : Move a unique core argument to568

its correct position.569

3) Merge Spans : Combine two predicted spans570

into a gold span if they are separated by at571

most one word.572

4) Split Spans : Split a predicted span into two573

gold spans that are separated by at most one574

word.575

5) Fix Boundary : Correct the boundary of a span576

if its label matches an overlapping gold span.577

6) Drop Arg : Drop a predicted argument that578

does not overlap with any gold span.579

7) Add Arg : Add a gold argument that does not580

overlap with any predicted span.581

Based on our analysis(Figure 3), three significant582

areas of improvement are identified: “Fix Labels,”583

“Fix Boundary,” and “Add Arg.” All models show584

most significant performance improvements with585

“Fix Labels,” but it is evident that the improvement586

in the L4S model is more pronounced than that587

in the S4L model, with our model showing an in-588

termediate level of improvement between the two.589

Additionally, the improvement of “Fix Boundary”590

is highest in the S4L model, while the L4S and our591

model show similar levels of improvement. Simi-592

larly, for “Add Arg,” the improvement is highest in593

the S4L model, followed by our model, and then594

the L4S model.595

These results indicate that the L4S model ex-596

cels in span boundary identification because of its597

learning labels for spans but struggles with labeling598

when considering the entire span. This is reflected599

Figure 3: Error analysis of each model. The blue,
red, and gray lines correspond to the L4S, S4L, and
our models, respectively. The figure depicts how each
model progressively improves its F1 score through var-
ious types of error corrections.

in the poor precision of the L4S model as discussed 600

in Sec 4.2. On the other hand, the S4L model, 601

which learns spans for labels, demonstrates profi- 602

ciency in identifying labels and avoiding unneces- 603

sary spans, although it is relatively less effective in 604

span boundary identification compared to the other 605

models. Our model, however, shows intermediate 606

or the lowest improvement values across the three 607

areas, suggesting that it successfully integrates the 608

strengths of both models. 609

5 Conclusions 610

In this work, we proposed a novel model for the 611

SRL task utilizing contrastive learning. Our ap- 612

proach involves learning to align the feature spaces 613

of spans and labels, enabling accurate modeling of 614

their relationship without relying on the probabil- 615

ity distribution of one space. Experimental results 616

show that our model outperforms traditional span- 617

based models, achieving a maximum F1 score of 618

81.2 on NPCMJ-PT dataset. 619

Limitations 620

First, it is important to note that our experiments 621

have not been conducted on English datasets, and 622

hence, we cannot guarantee success in other lan- 623

guages. However, for languages like English, 624

where each core argument typically corresponds 625

to a single span, this modeling approach would 626

appear to be appropriate and is likely to facili- 627

tate effective learning. Conversely, for languages 628

such as Japanese, where a single argument can be 629

distributed across multiple spans, there remains 630

8



room for improvement. One potential enhance-631

ment could be the utilization of learning techniques632

capable of multi-label classification, such as binary633

cross-entropy (BCE), rather than converting the634

task to a single-class classification through data635

augmentation. The advantages of this approach636

include the ability to leverage the correct semantic637

role structure of the entire sentence and the poten-638

tial to learn across all spans. However, this would639

also increase the complexity of the task, raising the640

possibility of ineffective learning, which necessi-641

tates thorough investigation.642

Ethical Considerations643

For the dataset we use, we have verified that the644

data does not contain any personal information. Ac-645

cording to the data providers, annotation work was646

requested at 1,200 yen per hour, which is appro-647

priate pay. Annotators were informed in advance648

about how the data would be used.649
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Category Count
Sentences 33,510
Predicates 52,528
Conceptual Frame Types 1,012
Arguments 90,140
Semantic Role Types 31
Thematic Role Types 127

Table 2: Dataset statistics.

Semantic Role Count
Arg1 40,197
Arg0 17,014
Arg2 16,259
ArgM-ADV 4,241
ArgM-TMP 2,347
ArgM-LOC 1,664
ArgM-MNR 1,262
Arg3 1,057
ArgM-PRX 926
ArgM-NEG 792

Table 3: Top 10 Semantic Role Labels by count.

A Appendix799

A.1 NPCMJ-PT Dataset800

NPCMJ-PT is a tagged corpus we use for the801

dataset in our experiments. First, we will de-802

scribe NPCMJ (NINJAL Parsed Corpus of Mod-803

ern Japanese), which is a treebank. NPCMJ pro-804

vides syntactic and semantic parsing information805

for written and spoken Japanese texts and is pub-806

licly available on the web5. NPCMJ-PT is derived807

from NPCMJ by automatically extracting predi-808

cates and their arguments, followed by manual an-809

notation of semantic roles and predicate conceptual810

frames based on the Predicate-Argument Structure811

Thesaurus (Takeuchi et al., 2020). The annotators812

are native Japanese speakers who graduated from a813

university with a humanities or liberal arts program814

in Okayama Prefecture, Japan. This is also publicly815

available on the web6. Figure 4 shows a part of the816

NPCMJ-PT data. The data is converted to a for-817

mat similar to CoNLL2012 (Pradhan et al., 2012).818

Each column, tab-separated, represents different819

information, and each row represents information820

for one character. Columns 1 through 6 correspond821

to sentence ID, character index, character, part of822

5NPCMJ: https://npcmj.ninjal.ac.jp/index.html
6Predicate-Argument Structure Thesaurus: https://pth.

cl.cs.okayama-u.ac.jp/testp/pth/Vths, MIT License.

Thematic Role Label Count
Patient (対象) 33,251
Agent (動作主) 11,702
Experiencer (経験者) 5,247
Adverbial (副詞相当) 4,239
Complement (補語相当（は）) 4,191
Goal (着点) 3,158
Location (場所) 2,588
Time (時間) 2,348
Patient (Action) (対象（動作）) 1,894
Patient (Person) (対象（人）) 1,874

Table 4: Top 10 Thematic Role Labels by count.

speech, syntactic structure, and predicate FrameID, 823

respectively. From the 7th column onwards, seman- 824

tic roles corresponding to the FrameID in the 6th 825

column are noted. The correspondence between 826

left and right brackets clarifies the range of each 827

piece of information, allowing the embedding of 828

syntactic structures in tree form through nested 829

structures. 830

Table 2 shows the number of sentences, pred- 831

icates, conceptual frames, and semantic roles in 832

NPCMJ-PT dataset used in the experiments. Since 833

we predict the semantic roles of their arguments for 834

the target predicates in the sentences, the number 835

of predicates in the table represents the number of 836

instances used in the experiments. There are 1096 837

types of conceptual frames defined in the Predicate- 838

Argument Structure Thesaurus, and about 92% of 839

them (1012 types) appear in NPCMJ-PT dataset. In 840

the dataset, semantic roles are annotated in two in- 841

dependent formats: PropBank-style roles (such as 842

Arg0 and Arg1) and thematic roles (such as agent 843

and patient). We use PropBank format semantic 844

roles only in the experiments. In the PropBank for- 845

mat, Arg0 through Arg5 are core roles, while labels 846

beginning with ArgM are adjunct roles. According 847

to the annotation guidelines for English PropBank, 848

core arguments are defined within a single span. 849

However, in NPCMJ-PT, it is possible for a sin- 850

gle core argument to be distributed across multiple 851

spans. 852

Table 3 enumerates the ten most frequent 853

PropBank-style semantic role labels. Arg1 is the 854

most frequently occurring role, generally denoting 855

the patient or theme of the predicate. The role of 856

ArgM-ADV, often attributed to adverbial elements, 857

is the most common among adjunct roles. Addi- 858

tionally, Table 4 presents the ten most frequently 859
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Figure 4: Data form of NPCMJ-PT.

appearing thematic role labels. “Patient” ranks as860

the most frequent, followed closely by “Agent.”861

These roles are assigned to elements that represent862

the patient of the action or the entity (whether a863

person or an object) executing the action.864

A.2 Training Details865

In the experiments, we utilize AdamW (Loshchilov866

and Hutter, 2017) as the optimization method to867

minimize error during training. Regarding the868

learning rates, the final four layers of the BERT869

encoder module are set to 5e-5, while the label en-870

coder and the MLP layers for classification are set871

to 1e-4. The MLP we utilize is a two-layer neural872

network. The model is trained on our machine with873

A6000 GPU cards.874
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