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SHIFT-RESILIENT DIFFUSIVE IMPUTATION FOR VARI-
ABLE SUBSET FORECASTING

ABSTRACT

It is common for sensor failures to result in missing data, leading to training sets
being complete while test sets have only a small subset of variables. The challenge
lies in utilizing incomplete data for forecasting, which is known as the Variable
Subset Forecasting (VSF). In VSF tasks, significant distribution shift is present.
One type is inter-series shift, which indicates changes in correlations between
different series, and the other type is intra-series shift, which refers to substan-
tial distribution differences within the same series across different time windows.
Existing approaches to solving VSF tasks typically involve imputing the miss-
ing data first and then making predictions using the completed series. However,
these methods do not account for the shift inherent in VSF tasks, resulting in poor
model performance. To address these challenges, we propose a Shift-Resilient
Diffusive Imputation (SRDI) framework against the shift. Specifically, SRDI in-
tegrates divide-conquer strategy with the denoising process, that decomposes the
input into invariant patterns and variant patterns, representing the temporally sta-
ble parts of inter-series correlation and the highly fluctuating parts, respectively.
By extracting spatiotemporal features from each separately and then appropriately
combining them, inter-series shift can be effectively mitigated. Then, we innova-
tively organize SRDI and the forecasting model into a meta-learning paradigm
tailored for VSF scenarios. We address the intra-series shift by treating time win-
dows as tasks during training and employing an adaptation process before testing.
Extensive experiments on four datasets have demonstrated our superior perfor-
mance compared with state-of-the-art methods. Code is available at the reposi-
tory: https://anonymous.4open.science/r/SRDI-944C.

1 INTRODUCTION

In real-world IoT applications, sensor malfunctions and data collection issues often result in missing
data in time series, complicating predictive modeling and impairing forecasting performance. A
particularly difficult situation arises when entire sequences of data are missing. For instance, a model
trained with N variables to predict air quality in one region may need to be deployed in another
region with only S (S ≪ N) available sensors. Additionally, extreme weather conditions can cause
sensor damage, leading to incomplete variable recordings in subsequent times. This scenario, known
as Variable Subset Forecasting (VSF) Chauhan et al. (2022), requires making predictions with
only a subset of the variables used during training, which poses significant challenges for achieving
accurate forecasts.

One of the most intuitive solutions is to impute the missing variables before making predictions.
Numerous imputation methods have been proposed, including recent advancements in diffusion
models Tashiro et al. (2021). However, these approaches consistently face significant challenges in
VSF scenarios, primarily due to distribution shift that is prevalent in these settings. Specifically,
we categorize the distribution shift encountered in VSF into two main types: (i) Inter-Series Shift:
In VSF scenarios, the absence of variables disrupts the ability to accurately capture relationships
between variables. Additionally, the correlations between variables may change unpredictably over
time, i.e., covariate shift, leading to systemic inaccuracies in learning these relationships Schneider
et al. (2020). This variability significantly degrades the model’s performance as it fails to adapt to
shifting inter-variable dynamics. (ii) Intra-Series Shift: Data in time series forecasting tasks is typ-
ically segmented into time windows, each with its own distinct distribution Fan et al. (2023). These
distributions may change abruptly over time, rendering the model trained on past data ineffective
for new, unseen distributions. This intra-series shift poses a substantial challenge to the imputation
model’s generalization ability across varying data distributions. Given these two types of shift, exist-
ing imputation methods prove inadequate for sustaining robust performance in VSF environments.
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Our objective is to develop a robust imputation model that effectively handles both inter-series and
intra-series shift, ensuring satisfying performance for VSF.

To address the above challenges, we propose a shift-resilient diffusive imputation framework for
VSF. Specifically, we outline our solutions against the two types of shift as follows.

To effectively manage inter-series shift in VSF, our approach integrates Divide-Conquer strategy
during the denoising process in the diffusive imputation. This technique involves decomposing the
time series data into two distinct patterns: invariant and variant. The invariant pattern focuses on
capturing the stable, underlying correlations that do not change significantly over time, providing a
robust foundation for the model. In contrast, the variant pattern addresses the dynamic correlations
that are susceptible to shift. The decomposition allows the model to specifically target and adapt
to changes in variable relationships, enhancing its ability to accurately impute missing data amidst
evolving conditions. By processing these patterns separately and then recombining them, our model
effectively isolates and compensates for the variability caused by inter-series shift, thus maintaining
high accuracy in variable recovery.

For intra-series shift, which occurs due to abrupt changes in data distribution within the same series
over different time windows, we employ a meta-learning strategy within our diffusive imputation
framework. This strategy trains the model to rapidly adapt to new distributions by treating impu-
tation over each time window as a distinct task. Meta-learning enables the diffusive imputation
framework to learn from a variety of distribution scenarios, enhancing its flexibility and general-
ization capability. By continuously updating its parameters in response to new data characteristics,
the model is equipped to handle previously unseen distributions effectively. This adaptive capability
is critical for maintaining consistent imputation performance across varying data landscapes, par-
ticularly in VSF environments where the model must reconstruct the missing variables accurately
despite significant shift in data distribution.

In summary, our contributions can be summarized as follows:

• We introduce a novel diffusive imputation method specifically designed for Variable Subset
Forecasting (VSF) tasks, marking the first known application in this context.

• We categorize and provide a comprehensive analysis of two distinct types of shift prevalent
in VSF tasks: inter-series and intra-series shift.

• We develop a divide-conquer denoising model tailored for effectively addressing inter-
series shift, alongside a meta-learning strategy that enhances the model’s adaptability to
intra-series shift.

• We validate our approach through extensive experimentation on four real-world datasets,
demonstrating consistent superiority in effectiveness compared with existing state-of-the-
art methods tailored to VSF tasks.

2 RELATED WORK

2.1 TIME SERIES IMPUTATION TECHNOLOGIES

Time series imputation fills missing time points in a series and can be categorized into simple and
machine learning-based methods Luo et al. (2018). Early approaches, like mean, median, or mode
imputation Donders et al. (2006); Acuna & Rodriguez (2004); Kantardzic (2011), were later sur-
passed by machine learning-based methods, such as K-Nearest Neighbors MATLAB & Release
(2019) and neural models like LSTM and CNN Ahn et al. (2022). For Variable Subset Forecasting
(VSF), Forecast Distance Weighting (FDW) Chauhan et al. (2022) has shown promise. However,
current methods struggle with time series shifts, which degrade performance. Our model addresses
this issue, excelling in VSF under challenging conditions.

2.2 TIME SERIES DIFFUSION MODEL

Diffusion models are powerful generative tools with remarkable performance across domains. In
time series, DCRNN Li et al. (2017) introduced diffusion convolution with recurrent networks to
model spatial dependencies for traffic flow prediction. A recent review Lin et al. (2023) summarized

2
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Figure 1: Framework Overview.

their strengths and applications in forecasting. Diffusion models have also proven to be highly
effective in time series imputation, CSDI Tashiro et al. (2021) became the first study to apply the
diffusion model to time series imputation, achieving significant results. PRISTI Liu et al. (2023)
improved upon CSDI, enhancing the effectiveness of imputation. However, their application to the
VSF task remains underexplored.

3 PROBLEM FORMULATION

Let ΓN denote a N-variate space, xN
t = {x(1)

t , · · · , x(i)
t , · · · , x(N)

t } represent the observations of
a N -variate time series at the time step t, where x

(i)
t ∈ ΓN . Then, the L-length lookback window

can be denoted as XN = {xN
t−L−1, · · · ,xN

t }, and the subsequent H-length horizon window is
YN = {xN

t+1, · · · ,xN
t+H}.

A small variable subset ΓS (ΓS ⊂ ΓN and |ΓS | ≪ |ΓN |) is randomly sampled from ΓN . The
corresponding lookback window and horizon window observations can be denoted as XS and YS ,
respectively. VSF refers to adapting a forecasting model FΘ (parameterized by Θ) trained on the
complete observations (XN , YN ) to a variable subset (XS , YS). During the process, an imputation
model is required to recover the missing variables to comply with N -variable input forecasting
model FΘ. The objective is to optimize the forecasting performance on the subset (XS , YS).
Let FΦ denote the imputation model parameterized by Φ, Variable Subset Forecasting task can be
represented as

min
Φ
|YS −∆S [FΘ(FΦ(X

S))]|, (1)

where ∆S [·] is an indexing function to select the results corresponding to the variable subset ΓS .

4 SHIFT-RESILIENT DIFFUSIVE IMPUTATION

In this section, we present our diffusive imputation framework, which is shown in Figure 1. The dif-
fusive imputation model leverages noise to impute the missing variables. The presence of inter- and
intra-variable shift significantly sharpens the imputation performance. Specifically, to address the
impact of the inter-variable shift on model performance, we decompose the time series into invari-
ant and variant patterns as detailed in Section 4.2.1. In Section 4.2.2, we designed a technique for
preserving spatiotemporal relations. The extracted invariant and variant patterns are then reasonably
combined, which will be introduced in Section 4.2.3, to generate the final output of the diffusive
imputation model. Additionally, to mitigate the intra-variable shift, we propose a meta-learning
framework, further elaborated in Section 5.

4.1 AN OVERVIEW OF CONDITIONAL DIFFUSIVE IMPUTATION WITH VARIABLE SUBSETS

Inspired by CSDI Tashiro et al. (2021), we formulate variable subset imputation as a conditional
diffusion process, where variable subset XS is considered as the condition to generate the target

3
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missing variables XN/S . To make it consistent in this paper, we set the complete observations XN ,
variable subset XS , and the missing variables XN/S as the same size, where XS is derived by
masking the missing variables in XN , and XN/S is derived by masking the observed variable subset
in XN , respectively. Thus, XN = XS +XN/S .

Specifically, the conditional diffusive imputation consists of two phases: the noise-adding phase
and the denoising phase. In the noise-adding phase, Gaussian noise is kept added over the missing
variables XN/S iteratively to convert the XN/S into Gaussian noise:

q(X
N/S
1:R |X

N/S) :=

R∏
r=1

q(XN/S
r |XN/S

r−1 ),

q(XN/S
r |XN/S

r−1 ) :=N (
√
1− βrX

N/S
r−1 , βrI),

(2)

where R denotes the total rounds of the noise-adding, q represents the data distribution, I represents
identity matrix, and N represents Gaussian distribution. XN/S

r =
√
α̃rX

N/S +
√
1− α̃rϵ, where

αr = 1− βr, α̃r =
∏R

r=1 αr, ϵ is the sampled standard Gaussian noise and βr represents the noise
level.

The denoising phase represents a reverse process of adding noise. Given an input XN/S
R that is filled

with Gaussian noise, after R denoising steps, the output will be the original, noise-free data XN/S .
The denoising phase can be represented as follows:

pΦ(X
N/S
0:R−1|X

N/S
R ,XS) :=

R∏
r=1

pΦ(X
N/S
r−1 |XN/S

r ,XS),

pΦ(X
N/S
r−1 |XN/S

r ,XS) :=N (X
N/S
r−1 ;µΦ(X

N/S
r ,XS , r), σ2

rI),

(3)

where µΦ(X
N/S
r ,XS , r) = 1√

α̃r

(Xr − βr√
1−α̃r

ϵΦ(X
N/S
r ,XS , r)), σ2

r = 1−α̃r−1

1−α̃r
βr, ϵΦ represents

a trainable denoising function parameterized by Φ, and X
N/S
0 = XN/S denotes the recovered clean

missing variables from noise. Then, the learning objective is to optimize the following loss function:

Ldiff = EXN/S∼q(XN/S),ϵ∼N(0,I)∥ϵ− ϵΦ(X
N/S
r ,XS , r)∥2. (4)

As suggested by PriSTI Liu et al. (2023), the denoising function ϵΦ is inherently a noise predic-
tion function. Therefore, the conditional diffusive model learns the variable imputation capability
by predicting the added noise, and thus recover the missing variables XN/S . Specifically, during
the imputation process, the input is a time series with missing variables, i.e., variable subset XS ,
where the missing parts are represented as empty (naturally masked due to unavailability). We di-
rectly fill the missing variables with Gaussian noises to convert the missing variables into Gaussian
noises, thus obtaining X

N/S
1 , i.e., XN/S

R where R = 1. Then, we take (X
N/S
1 ,XS) as input to the

well-trained denoising function, ϵΦ, to derive the conditional probability pΦ(X
N/S
0 |XN/S

1 ,XS), i.e.,
pΦ(X

N/S |XN/S
1 ,XS) according to Equation 3. Finally, the imputed data XN/S can be derived by

sampling from pΦ(X
N/S |XN/S

1 ,XS), i.e., XN/S ∼ pΦ(X
N/S |XN/S

1 ,XS).

It is evident that the success of the diffusion model in imputation depends on the rational design
of the denoise function Tashiro et al. (2021); Liu et al. (2023). Therefore, we design the denoising
function in a divide-conquer manner to facilitate the diffusive imputation model with the capability
of addressing the inter-series shift. Specifically, we decompose the complicated and nested parts into
the invariant pattern (parts with relatively stable inter-variable correlations) and the variant pattern
(parts with inter-variable correlation changes). By learning spatiotemporal characteristics separately
for these components and then integrating them, we can effectively mitigate the interference of inter-
series shift, thereby enhancing the performance of the variable imputation. We introduce the detailed
design of the divide-conquer denoising function in the following section.

4
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4.2 DIVIDE-CONQUER DENOISING

4.2.1 DISENTANGLING INVARIANT-VARIANT PATTERNS

We introduce “Invariant-variant Dispatcher” for distangling invariant and variant patterns. The dis-
patecher is composed of M blocks Oreshkin et al. (2019), and blocks are stacked and collaboratively
contribute to distangling invariant and variant patterns. For a general description, we take the m-th
block for illustration. Formally, let hVar

m−1 denote the learned variant patterns from the (m − 1)-th
block. The m-th block takes the variant patterns hVar

m−1 as input, and further refines it into more
specific invariant patterns hInv

m and variant patterns hVar
m . Thus, the m-th block can be represented as

hInv
m = MLPm(hVar

m−1),

hVar
m = hVar

m−1 − hInv
m .

(5)

where MLPm denotes the multi-layer percetron at the m-th block, and hVar
m−1 and hVar

m are in the
same size. We set the input of the first block as the noisy missing variables XN/S

R .

To ensure MLPm indeed learns the invariant patterns, we constrain the correlation disparity between
the consecutive time steps to be as small as possible. Let Ct and Ct+1 denote the the correlation
matrix of hInv

m at the time step t and t + 1, respectively. Then, we implement the constraint by
minimizing the following loss function

Ldisp
m =

T−1∑
t=1

||Ct+1 −Ct||22. (6)

Due to the page limitation, we introduce the calculation of the correlation matrix Ct in A.5.

Then, we accumulate the invariant patterns from all M blocks as the final invariant patterns hInv,
and take the derived variant patterns from the last block as the final variant patterns hVar:

hInv =

M∑
m=1

hInv
m ,

hVar = hVar
M .

(7)

Additionally, for the entire dispatcher, we accumulate all the correlation disparity loss functions to
serve as regularization, ensuring invariant pattern learning:

Ldisp =

M∑
m=1

Ldisp
m . (8)

Through the continual refinement and collaboration by the M -block dispatcher, the generated in-
variant patterns and variant patterns can be effectively disentangled.

4.2.2 PRESERVING SPATIOTEMPORAL CHARATERISTICS

After disentangling invariant and variant patterns, we proceed to capture the spatiotemporal charac-
teristics of each branch. Specifically, we develop the Temporal-Spatial Representation (TSR) Mod-
ule, which consists of the Temporal Dynamic Unit and the Spatial Dependency Unit. The invariant
and variant patterns exploit the same TSR module architecture but learn the parameters separately.
To avoid redundancy, we represent the disentangled pattern as h and omit the subscripts “Inv” and
“Var” in the following description.

Temporal Dynamic Unit. We exploit self-attention mechanisms to encode the temporal dynamics
of each time step. Therefore, we can obtain the temporally-learned representation Zτ , which will
serve as the input for the Spatial Dependency Unit.

Zτ = SoftMax(
Wq

τ (h)W
k
τ (h)√

dτ
)Wv

τ (h), (9)

5
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where dτ denotes the hidden dimension; Wq
τ , Wk

τ , and Wv
τ represent the learnable weight matrix

corresponding to the query, key, and value, respectively.

Spatial Dependency Unit. We formulate the dependencies between variables from a graph per-
spective, where each node denotes one variable, the edge demonstrates the dependencies between
variables, and the learned temporal representations Zτ are the initial node features. For a unified
representation in the spatial scope, we first calibrate node representations through a global-local at-
tention mechanism. Specifically, we perform a graph pooling operation on Zτ ∈ RT×N to obtain
Z̃τ ∈ RT×1, which represents a global representation encapsulating information from all variables:

Z̃τ = Pooling(Zτ ). (10)

Then, we calculate the attention scores between the global representation Z̃τ and each node in Zτ .
We leverage these global-local attention scores to calibrate the representation as

Zδ = SoftMax(
Wq

δ(Z̃τ )W
k
δ (Zτ )√

dδ
)Wv

δ (Zτ ), (11)

where dδ denotes the hidden dimension; Wq
δ , Wk

δ , and Wv
δ represent the learnable weight matrix

corresponding to the query, key, and value, respectively.

Moreover, we employ an adaptive Graph Convolutional Network (GCN) BAI et al. (2020) to learn
spatial dependencies. We first initialize a learnable embedding E ∈ RN×dn , with dn hidden dimen-
sion, to reconstruct an adaptive adjacency matrix A

A = SoftMax(ReLU(EET )). (12)

The spatiotemporal representations Z can be calculated with the massage passing mechanism Zhao
et al. (2020a):

Z = AZδW, (13)
where W denotes the learnable weight matrix. We follow the same pipeline to generate the invariant
pattern representations ZInv and the variant pattern representations ZVar, respectively.

4.2.3 FUSING NOISE PREDICTION

After separately learning the representations of invariant and variant patterns, we concatenate ZInv

and ZVar for the final noise prediction

ϵ̂ = MLP(ZInv || ZVar), (14)

where ϵ̂ denotes the predicted noise that can also be represented as

ϵ̂ = ϵΦ(X
N/S
r ,XS , r). (15)

We substitute Equation 14 and Equation 15 to Equation 4 for calculating the diffusion loss Ldiff.

Therefore, considering the invariant-variant disentanglement, the Divide-Conquer Denoising (DCD)
loss can be represented as

LDCD = Ldiff +ϖ · Ldisp, (16)
where ϖ is a hyperparameter to control the contribution of Ldisp.

5 META LEARNING STRATEGY AGAINST INTRA-SERIES SHIFT

In this section, we introduce a meta-learning strategy to eliminate the intra-series shift. We divide
the time series into multiple windows, treating each window as a separate task. By the inner-
outer loop of training the model parameters across these different tasks, we aim to ensure that
the trained model can effectively adapt to tasks across different time windows, thereby address-
ing intra-series shift. Specifically, the proposed meta-learning strategy mainly includes two stages:
Stage 1, the meta-training stage: we optimize the initial parameters through the learning of multi-
ple diffusion models followed by a forecasting backbone, enabling rapid adaptation to the inference
phase. Stage 2, the adaptation stage: we use the variable subset in the inference phase to quickly
adjust the initial meta-model parameters, enabling it to adapt to and address the variable subset
forecasting task. Next, we introduce the two stages in detail.

6
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Algorithm 1 Meta-Training Stage
Require: p(k): distribution over windows(tasks)
Require: η, γ :learning rate

1: randomly initialize Θ,Φ
2: while not done do
3: Sample batch of tasks k ∼ p(k)
4: for all k do
5: Evaluate∇ΦLDCD

k with respect to K examples
6: Compute adapted parameters of diffusion model with gradient descent and update: Φk ←

Φ− η · ∇ΦLDCD
k

7: Do inference and compute the forecasting loss Lfcst
k

8: end for
9: Jointly update the diffusion model and forecasting model Φ ← Φ − γ · ∇Φ

∑
k∈K(LDCD

k +

Lfcst
k ) ;

Θ← Θ− γ · ∇Θ

∑
k∈K Lfcst

k
10: end while

5.1 META-TRAINING STAGE

The meta-training stage is divided into two parts: the inner loop and the outer loop, which are re-
sponsible for rapid adaptation and global optimization of the model, respectively. The full algorithm
is outlined in Algorithm 1.

Inner Loop We take imputation and forecasting for each L-length time window as a task. Specif-
ically, for the k-th task, the corresponding parameters set and the denoising loss can be denoted as
Φk and LDCD

k respectively. Then, the parameter update is represented as

Φk ← Φ− η · ∇ΦLDCD
k , (17)

where η is the learning rate. We iterate all the tasks to update the diffusive imputation model and
forecasting model for each respective task.

Outer Loop For each task, we leverage the updated diffusive imputation model to generate the
missing data, and apply the imputed data to train a forecasting model. Note that all the imputation
tasks share the same forecasting model. Let Lfcst

k denote the forecasting loss on the k-th imputed
data. Then, we update the meta-model for the diffusive imputation and forecasting model simulta-
neously as

Φ← Φ− γ · ∇Φ

∑
k∈K

(LDCD
k + Lfcst

k ), (18)

Θ← Θ− γ · ∇Θ

∑
k∈K

Lfcst
k , (19)

where γ is a learning rate.

5.2 META ADAPTION STAGE

5.2.1 FINE-TUNING

Given a new variable subset, we aim to apply the trained imputation model and forecasting model for
the inference. Considering the new variable subset as a new task, we will first conduct fine-tuning
for the trained diffusive imputation model following the convention of the meta learning paradigm.
In other words, the imputation model requires several iterations of training on the new subset. Un-
fortunately, due to the existence of missing variables, where the ground truth is unavailable, it is
impractical to re-conduct the original training pipeline. To address the issue, we temporally ignore
the missing variables, but randomly select pseudo-missing variables from the available subset. We
will take the newly selected pseudo-missing variables as the imputation target (with ground truth),
and re-launch the inner-loop training pipeline indicated in Equation 17. During the process, the
forecasting model is fixed and no longer updated.

7
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5.2.2 INFERENCE

After fine-tuning, we shift the focus to the real missing variables as the target and the original
available subset as the condition. We then apply the fine-tuned diffusive imputation model to impute
the missing variables. This process is described by Equation 3, where the denoise function is known,
allowing us to easily obtain the final imputed data. Next, the imputed data is fed into the forecasting
model to generate the final predicted values.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We conducted experiments on four datasets: 1) METR-LA; 2) SOLAR; 3) TRAFFIC; 4)
ECG5000. For more details on the datasets, please refer to A.4.

Time Series Forecasting Model Backbone Setting. Our imputation model can be applied to mul-
tiple forecasting models. In our experiments, we integrated it with four commonly used forecasting
models: MTGNN Wu et al. (2020), ASTGCN Guo et al. (2019), MSTGCN Jia et al. (2021) , and
T-GCN Zhao et al. (2020b). For a detailed description of the backbones, please refer to A.2. In the
context of VSF, the data is fully available during training, whereas only a limited subset is accessible
during testing. To enhance the accuracy of forecasting results, we initially perform data imputation
before feeding the data into the trained forecasting model to generate predictions. To validate the
effectiveness of our model, we consider the following two scenarios: 1) Partial: In this scenario,
we utilize only the N − S variables for prediction without performing any imputation of missing
values. The resulting prediction outcomes thus represent the inherent performance of the forecasting
model in VSF problems. 2) Oracle: This is a comparative experiment that represents an idealized
scenario, seldom observed in practice, where all N variables are fully known. In this case, we use
all available variables for forecasting and compute the resulting prediction error.

Evaluation Metrics. We assess the performance using two commonly employed metrics in multi-
variate time series forecasting: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
To demonstrate the improvement of our model in the partial setting, we calculated the improvement
ratio: Improved. For detailed information of the metrics, please refer to A.1.

Implementation. We employed the PyTorch framework to implement our model and baselines, and
the models were evaluated on a Linux server with a single GPU. We utilized MAE (Mean Absolute
Errors) as the loss function During the testing phase, we only had knowledge of a subset S. In the
main experiment, we selected 15% of the variables to form subset S. During the training phase, to
demonstrate the reliability of our model, we randomly constructed the subset 100 times to cover as
much of the dataset as possible, and trained for 100 epochs. We computed the mean and standard
deviation of the models, based on the results. The forecasting horizon length, denoted as H , was
set to 12, and the lookback window length, denoted as L, was also set to 12. In terms of dataset
segmentation, 70% of the samples were allocated for training, 10% for validation, and 20% for
testing. For further details on hyperparameter settings, please refer to A.6.

6.2 OVERALL PERFORMANCE

Comparison with Partial & Oracle Settings. Table 1 presents the experimental results of our
model using four different backbones across four datasets. The results show that, in the partial set-
ting, compared to the results without imputation, our model achieved average MAE improvements
of 20.62%, 12.38%, 32.75%, and 18.87% on the METR-LA, TRAFFIC, SOLAR, and ECG5000
datasets, respectively, demonstrating the effectiveness of SRDI. Moreover, in most datasets, our
model even outperforms the oracle, which can be attributed to our successful handling of the inter-
ference caused by distribution shift.

Comparison with Imputation Methods. To validate the reliability of the proposed Shift-Resilient
Diffusive Imputation method, we conducted a comparative analysis with several state-of-the-art im-
putation models known for their excellent performance: MICE Van Buuren & Groothuis-Oudshoorn
(2011), IIM Zhang et al. (2019), TRMF Yu et al. (2016), CSDI Tashiro et al. (2021), FDW Chauhan
et al. (2022), SSGAN Miao et al. (2021), TRF Hu et al. (2024), PRISTI Liu et al. (2023), GINAR Yu
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Table 1: Comparison with Partial and Oracle settings regarding different forecasting backbones.

Models
METR-LA TRAFFIC SOLAR ECG5000

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MTGNN

Partial 4.54(0.37) 8.90(0.68) 18.57(2.31) 38.46(3.94) 4.26(0.53) 6.04(0.81) 3.88(0.61) 6.54(1.10)
Oracle 3.49(0.25) 7.21(0.50) 11.45(0.57) 27.48(2.14) 2.94(0.27) 4.66(0.57) 3.43(0.54) 5.94(1.08)

SRDI(ours) 3.43(0.34) 6.33(0.42) 11.55(1.17) 27.66(1.71) 2.65(0.46) 4.07(0.63) 3.28(0.51) 5.60(0.97)

Improved +24.45% +28.88% +37.80% +28.08% +37.79% +32.62% +15.46% +14.37%

ASTGCN

Partial 5.57(0.72) 10.61(1.36) 22.44(1.58) 43.07(2.46) 6.14(1.29) 8.95(2.35) 3.60(0.60) 6.05(1.13)
Oracle 5.04(0.39) 9.59(0.62) 19.17(0.91) 40.21(2.02) 4.54(0.47) 6.48(0.85) 3.47(0.50) 5.83(0.99)

SRDI(ours) 4.45(0.43) 8.52(0.48) 21.93(1.13) 39.94(1.68) 4.56(0.63) 6.74(0.94) 2.96(0.46) 5.00(0.91)

Improved +20.11% +19.70% +2.27% +7.27% +25.73% +24.69% +17.78% +17.36%

MSTGCN

Partial 4.78(0.43) 9.35(0.75) 18.96(1.21) 40.13(2.67) 4.75(0.73) 7.02(1.42) 4.43(0.87) 7.61(1.86)
Oracle 4.49(0.31) 8.93(0.50) 17.41(0.74) 37.84(1.88) 3.64(0.41) 5.60(0.82) 3.39(0.52) 5.82(1.06)

SRDI(ours) 4.22(0.45) 7.57(0.68) 17.29(1.10) 34.26(2.64) 3.67(0.55) 4.86(0.63) 3.25(0.26) 5.72(0.43)

Improved +11.72% +19.04% +8.81% +14.63% +22.74% +30.77% +26.64% +24.84%

T-GCN

Partial 9.92(0.75) 15.66(0.94) 43.43(1.89) 68.72(2.90) 8.76(0.87) 12.15(1.63) 6.22(1.37) 9.91(2.27)
Oracle 8.57(0.92) 14.78(1.27) 30.09(1.32) 53.58(2.62) 4.56(0.78) 7.32(1.64) 6.16(1.29) 9.84(2.20)

SRDI(ours) 7.32(0.86) 11.42(1.01) 43.16(1.21) 64.44(1.67) 4.84(0.67) 8.13(1.10) 5.25(0.70) 8.31(1.07)

Improved +26.21% +27.08% +0.62% +6.23% +44.75% +33.09% +15.59% +16.15%
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Figure 2: Performance comparison of impu-
tation models on ECG5000.
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Figure 3: Performance comparison of impu-
tation models on METR-LA.

et al. (2024) , Gaussian Copula Zhao & Udell (2020) and SAITS Du et al. (2023). More informa-
tion regarding the baselines can be found in A.3. Due to space limitations, we only present the
experimental results on the ECG5000 and METR-LA datasets using MTGNN as the backbone here.
Additional experimental results can be found in B.1. As shown in Figure 2, 3, our model achieves the
best performances. These results highlight the limitations of current imputation methods in address-
ing the complete-missing variable problem for the VSF task. In contrast, SRDI effectively addresses
the distribution shift issue in scenarios with missing variables, resulting in superior performance.

6.3 ABLATION STUDY

To validate the positive impact of each module in our model, we conducted ablation experiments.
Due to space constraints, we present only the results for the ECG5000 dataset here.

Spatial and Temporal Characteristics Preservation. To validate the effectiveness of our inno-
vations in the extraction of spatiotemporal features, we designed the following experiments: 1)
SRDI-TS: This configuration removes the Temporal Relation Extraction Module and the Global-
Local Attention Adaptive GCN, replacing them with a linear layer. 2) SRDI-T: This setup removes
the Temporal Relation Extraction Module, focusing solely on learning spatial features. 3) SRDI-S:
In this version, the Global-Local Attention Adaptive GCN is removed, concentrating only on learn-
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Figure 4: Performance comparison between
SRDI and its various model variants on the
ECG5000 dataset.
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Figure 5: Comparison of inter-series correla-
tion fluctuations between invariant and vari-
ant patterns on the ECG5000 dataset.

ing temporal features. The experimental results presented in Figure 4 indicate that SRDI-T, SRDI-S,
and SRDI-ST all perform worse than SRDI, leading to the conclusion that extracting spatio-temporal
features from time series is critical for missing variable imputation.

The rationale and utilization of invariant and variant patterns. To validate the effectiveness of
our innovation in decomposing time series into invariant and variant patterns, we designed the fol-
lowing ablation experiments: 1) SRDI-IV: This configuration eliminates the Series Invariant-Variant
Dispatcher component, directly feeding the input into the Temporal Relation Extraction Module. 2)
SRDI-V: This configuration excludes the influence of the variant pattern, utilizing only the invariant
pattern for the denoising process. Figure 4 shows that SRDI-IV underperforms compared to SRDI,
confirming the effectiveness of decomposing time series into invariant and variant patterns for sepa-
rate imputation, as they follow distinct dynamics. Additionally, SRDI-V performs worse than SRDI,
indicating that the variant pattern carries important information that cannot be ignored.

Meta-learning Strategy Against Intra-series Shift. To demonstrate the effectiveness of our inno-
vation in addressing intra-series shift using the meta-learning framework, we designed the following
ablation experiment: SRDI-M: We removed the inner and outer loop training structure of meta-
learning, reorganized them into a pipeline process, and eliminated adaptation during the testing
phase. Figure 4 indicates that SRDI-M underperforms compared to SRDI, highlighting the effec-
tiveness of our meta-learning framework in addressing intra-series shift and enhancing accuracy.

6.4 DEMONSTRATION OF THE DISPATCHER’S EFFECTIVENESS

To verify the effectiveness of the Series Invariant-Variant Dispatcher in distinguishing invariant from
variant patterns, we conducted a visualization experiment. We computed adjacency matrices for
both patterns at each time point, and for all but the first, calculated the difference between the
current and previous matrices to capture inter-series correlation changes. To reduce randomness,
we selected 10 samples, averaged the results, and plotted the differences as line graphs (Figure
5). The variant pattern showed more significant fluctuations, confirming the dispatcher’s ability
to distinguish between patterns. Visualization was limited to the ECG5000 dataset due to space
constraints. Further results are available in B.2.

7 CONCLUSION

In this paper, we propose a Shift-Resilient Diffusive Imputation (SRDI) model for improving VSF
performance by resolving distribution shift. Specifically, we classify the shift in VSF into two types:
inter-series shift and intra-series shift. SRDI, a novel diffusion model-based approach to address
the VSF problem, employs a divide-and-conquer strategy to tackle inter-series shift and enhances
the meta-learning framework to address intra-series shift. Extensive experiments on four real-world
datasets demonstrated that SRDI outperforms state-of-the-art methods, highlighting its effectiveness
in addressing the distribution shift challenge in VSF tasks.
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A EXPERIMENTAL DETAILS

A.1 METRIC DETAILS

This paper employs the metrics of two commonly used evaluation models: MAE (Mean Absolute
Error) and RMSE (Root Mean Square Error). Their formulas are as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

where yi represents the true values, ŷi represents the predicted values, n is the number of data points.

Our model is evaluated in a partial setting. Therefore, we provide the improvement ratio of accuracy
under the partial setting, as defined by the following formula:

Improved =
ERpartial − ERSRDI

ERpartial
× 100%

where ER denotes the error (MAE, RMSE).

A.2 BACKBONES DETAILS

The basic introduction and implement details of the backbone models we use are shown as follows:

• MTGNN leverages a graph learning module to capture the uni-directed relationships among
temporal variables and models the spatial and temporal dependencies using an innovative
mix-hop propagation layer and a dilated inception layer. By integrating graph learning,
graph convolution, and temporal convolution modules, the model excels in multivariate
time-series forecasting by effectively capturing the correlations between time series data.
In our experiments, we set the hyperparameters to match those used in the original paper.

• ASTGCN consists of three components that leverage spatial-temporal attention and convo-
lution to model the three dynamic temporal characteristics of traffic flow. These features
are then weighted and fused to produce the final prediction results. For the hyperparameter
configuration, we used the same settings provided in the original paper.

• MSTGCN is a deep learning framework designed for modeling spatiotemporal data, lever-
aging multi-scale graph convolutional and temporal convolutional operations to effectively
capture complex dependencies across different time scales, demonstrating superior perfor-
mance in tasks such as traffic flow prediction and multi-object tracking.In our experiments,
we utilized the same parameters as those specified in the original paper.

• T-GCN integrates graph convolutional networks (GCN) with gated recurrent units (GRU)
to learn intricate topological structures and temporal data, enabling the capture of spatial-
temporal dependencies. In our experiments, we utilized the same parameters as those spec-
ified in the original paper.

A.3 BASELINE MODELS DETAILS

In this paper, we compare the proposed model with eight existing state-of-the-art imputation models.
Below is a detailed introduction to these eight models:

• MICE imputes missing data by using a variable-by-variable approach through conditional
densities. It iterates over these conditional densities, making it flexible for complex, multi-
variate datasets. The key advantage of MICE is that it doesn’t require a suitable multivariate
distribution like joint modeling (JM) and is effective when no single multivariate distribu-
tion can describe the data. Additionally, MICE’s iterative approach, requiring relatively
few iterations, allows for efficient and practical imputation.
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• IIM addresses the challenges of missing numerical values by leveraging individual regres-
sion models tailored for each complete tuple and its neighbors. This approach tackles the
sparsity problem by utilizing regression results from complete neighbors instead of their di-
rect values, thus improving imputation accuracy. Additionally, IIM adaptively determines
the number of neighbors for learning individual models to mitigate overfitting or underfit-
ting, leading to more effective imputation outcomes compared to traditional methods.

• TRMF employs a novel autoregressive temporal regularizer to capture the structure of tem-
poral dependencies among latent temporal embeddings in high-dimensional time series
data. This method enhances the ability to forecast future values while effectively man-
aging missing data. Its scalable design allows TRMF to handle large datasets efficiently,
outperforming traditional time series methods that struggle with high dimensionality and
noise.

• CSDI utilizes score-based diffusion models conditioned on observed data to handle time
series imputation. The model is explicitly designed for imputation and leverages correla-
tions between observed values to generate missing data from noise. Its advantages include
handling both probabilistic and deterministic imputation tasks while improving accuracy
compared to traditional methods, and it can also be applied to time series interpolation and
forecasting.

• FDW is a method designed for handling missing variables in multivariate time series fore-
casting (MTSF). It works by retrieving nearest neighbors based on the available subset of
variables and using them to fill in the missing values. The technique introduces a novel
ensemble weighting method to handle the bias introduced by the partial dimensions during
neighbor retrieval. The key advantage of FDW is that it can significantly recover forecast
performance without retraining the underlying models, making it versatile and efficient in
scenarios with long-term data loss or domain shifts.

• SSGAN is a method for imputing missing values in multivariate time series. It uses three
components: a generator to estimate missing values, a discriminator to differentiate be-
tween observed and imputed data, and a classifier to predict labels and guide the generator.
The method also incorporates a temporal reminder matrix to help the discriminator distin-
guish between real and imputed values. The key advantage of SSGAN is that it leverages
both observed components and available labels, improving the imputation quality and en-
suring accurate data distribution.

• TRF is a flow-based generative framework designed to impute missing variables in multi-
variate time series. TRF reconstructs missing variables by estimating the unknown condi-
tional density of unavailable variables based on the available subset, using an invertible flow
structure. This ensures accurate reconstruction by mapping the missing data to a Gaussian
distribution and back. TRF’s key advantage lies in its meta-learning framework, which
allows it to generalize to different missing variable subsets without retraining, making it
adaptable and efficient for dynamic real-world scenarios.

• SAITS imputes missing values by leveraging two diagonally-masked self-attention (DMSA)
blocks, which capture both temporal dependencies and feature correlations between time
steps. Its joint-optimization approach improves the imputation process by dynamically
assigning weights to learned representations. The main advantage of SAITS is its ability to
avoid the limitations of recurrent models, offering faster imputation with higher accuracy,
and its non-autoregressive nature reduces the risk of compounding errors.

• PRISTI is a conditional diffusion framework for spatiotemporal imputation that enhances
prior modeling by constructing and utilizing global spatiotemporal correlations and geo-
graphic relationships. It includes a conditional feature extraction module to capture effec-
tive spatiotemporal dependencies and a noise estimation module to transform random noise
into realistic imputation values while mitigating the impact of added noise.

• GINAR is an end-to-end framework designed for multivariate time series forecasting
(MTSF) with variable missing data. It leverages simple recursive units (SRU) enhanced
with two key components: Interpolation Attention (IA) and Adaptive Graph Convolution
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(AGCN). IA restores missing variables by generating plausible representations through at-
tention mechanisms, addressing incorrect temporal dependencies. AGCN reconstructs spa-
tial correlations between all variables, utilizing restored data to generate a reliable graph
structure and improve spatial dependency modeling.

• Gaussian Copula model addresses the challenge of imputing missing values in mixed data
(real, Boolean, and ordinal) by modeling the data as latent variables transformed through
arbitrary marginals. Each variable—whether continuous or ordinal—is associated with a
latent normal distribution, with ordinal levels represented as intervals. The model employs
an efficient Expectation-Maximization (EM) algorithm to estimate copula parameters di-
rectly from incomplete data. This semiparametric approach ensures imputed values adhere
to the statistical structure of the data, avoids the need for hyperparameter tuning.

A.4 DATASETS DETAILS

• METR-LA
This dataset comprises the average traffic speed data collected from 207 loop detectors
installed along the highways in Los Angeles, covering the period from March 2012 to June
2012. The data is recorded at 5-minute intervals.

• SOLAR:
This dataset includes solar power generation data from 137 solar plants situated in the
state of Alabama, collected throughout the year 2007. The data is recorded at 10-minute
intervals.

• TRAFFIC:
This dataset contains road occupancy rates recorded by 862 sensors distributed throughout
the San Francisco Bay area during 2015 and 2016. The data is recorded at 1-hour intervals.
In accordance with Chauhan et al. (2022), an upscaling factor of 1e3 (multiplying the
variable values by 1e3) has been applied.

• ECG5000:
This dataset, obtained from the UCR Time-Series Classification Archive, consists of 140
electrocardiograms (ECGs), each with a length of 5000 data points, spanning a total dura-
tion of 20 hours. It is used for forecasting purposes, as illustrated in Cao et al. (2021).

A.5 THE METHOD FOR COMPUTING THE ADJACENCY MATRIX

To express the relationships between variables, we computed a adjacency matrix between the vari-
ables. The commonly used cosine similarity was selected as the metric for measuring the correlation.
The formula is as follows:

Cosine Similarity(X1,X2) =
X1 ·X2

∥X1∥∥X2∥

where X1 and X2 are the time series of two variables. For N variables, we calculated the correlation
for each pair, and the resulting relationship matrix C ∈ RN×N .

A.6 HYPERPARAMETER SETTINGS

We used identical hyperparameter settings for the ECG5000, SOLAR, and METR-LA datasets.
However, due to the significantly higher number of variables in the TRAFFIC dataset, we specifi-
cally adjusted the embedding dimension of the diffusion model for this dataset.
• epochs: 100
• batch size: 64
• lr: 1.0e-3
• block number: 3
• itr per epoch: 1.0e+8
• dropout: 0.1
• layers: 1
• channels: 64
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• nheads: 8
• beta start: 0.001
• beta end: 0.5
• num steps: 1
• schedule: ”quad”
• is linear: False
• timeemb: 128
• featureemb: 16
• target strategy: ”random”
• diffusion embedding dim: 128(ECG5000, SOLAR, and METR-LA); 32(TRAFFIC)

B SUPPLEMENTARY EXPERIMENTS
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Figure 6: Performance comparison of impu-
tation models on TRAFFIC.
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Figure 7: Performance comparison of impu-
tation models on SOLAR.
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Figure 8: Comparison of
inter-series correlation fluc-
tuations between invariant
and variant patterns on the
METR-LA dataset.
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Figure 9: Comparison of
inter-series correlation fluctu-
ations between invariant and
variant patterns on the SO-
LAR dataset.
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Figure 10: Comparison of
inter-series correlation fluctu-
ations between invariant and
variant patterns on the TRAF-
FIC dataset.

B.1 SUPPLEMENTARY COMPARISON WITH IMPUTATION METHODS

We have supplemented the experimental results comparing SRDI with baseline models on the
TRAFFIC and SOLAR datasets. As shown in figure 6, 7, our model outperforms the state-of-the-art
(SOTA). The experimental results across multiple datasets indicate that the effectiveness of SRDI is
robust.
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B.2 SUPPLEMENTARY EXPERIMENTS FOR DEMONSTRATION OF THE DISPATCHER’S
EFFECTIVENESS.

To validate that the designed Series Invariant-Variant Dispatcher effectively distinguishes between
invariant and variant patterns, we conducted visualization experiments on additional datasets. The
results are shown in Figure 8, 9, 10. From these results, it is evident that the Series Invariant-Variant
Dispatcher successfully differentiates between invariant and variant patterns across all datasets.

B.3 HYPERPARAMETER ANALYSIS EXPERIMENT

weight 0 0.0001 0.0005 0.001 0.01 0.1 0.3

MAE 3.23(0.73) 3.28(0.51) 3.01(0.73) 3.12(0.62) 3.59(0.64) 3.28(0.56) 3.61(0.71)
RMSE 5.56(1.04) 5.60(0.97) 4.87(1.12) 5.01(1.03) 5.86(1.06) 5.76(1.13) 5.94(1.17)

Table 2: Model performance under different weights of dispatcher loss.

ϖ is a hyperparameter controlling the weight of the correlation disparity loss in the overall loss
function. A small ϖ may fail to distinguish invariant and variant patterns, while a large ϖ could
hinder diffusion model training. Additional experiments on ϖ using the ECG5000 dataset with
MTGNN as the backbone are shown in the table2. From the results in the table, it can be observed
that the model performs best when ϖ is set to 0.0005. As ϖ decreases or increases from this value,
the model’s performance shows a declining trend.

Model Name Temporal
Relation
Extraction
Module

Global-
Local
Attention
Adaptive
GCN

Series
Invariant-
Variant
Dispatcher

Variant
Pattern

Meta-
learning
Strategy

RMSE MAE

SRDI ✓ ✓ ✓ ✓ ✓ 3.28(0.51) 5.60(0.97)
SRDI-TS ✗ ✗ ✓ ✓ ✓ 3.60(0.55) 5.87(1.01)
SRDI-T ✗ ✓ ✓ ✓ ✓ 3.55(0.18) 5.77(0.53)
SRDI-S ✓ ✗ ✓ ✓ ✓ 3.37(0.47) 5.64(0.83)
SRDI-IV ✓ ✓ ✗ ✓ ✓ 3.64(0.34) 6.19(0.67)
SRDI-V ✓ ✓ ✓ ✗ ✓ 3.67(0.58) 5.75(1.04)
SRDI-M ✓ ✓ ✓ ✓ ✗ 3.52(0.43) 6.11(0.97)

Table 3: Performance of models under different ablation settings.

C TIME COMPLEXITY ANALYSIS

In the framework of meta-learning, we consider K tasks, with each task involving one execution
of the diffusion model and the forecasting model. The forecasting model serves as our backbone
and is freely selectable. Therefore, when analyzing algorithmic complexity, we focus solely on our
proposed model and exclude the forecasting model from consideration.

• For the diffusion model, the time complexity of the forward process is O(R) , where R
represents the number of diffusion steps. The backward process primarily depends on the
design of our denoising model.

• Disentangling invariant-variant patterns requires computing a relationship matrix for each
time step, resulting in a complexity of O(T ∗ N ∗ N) , where T is the length of a time
window, and N is the number of variables.

• The temporal dynamic unit employs self-attention, with a time complexity of O(N ∗T ∗T ).
• The spatial dependency unit uses global-local attention, with a complexity of O(N ∗ T ),

and an adaptive GCN, with a complexity of O(T ∗N ∗N).
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In summary, the overall time complexity of our model is O(max(K∗R∗N∗T ∗T,K∗R∗N∗N∗T ))
.

D ABLATION STUDY DETAILS

Table 3 provides a detailed description of the models used in the ablation experiments.. Removing
any module results in SRDI losing certain critical capabilities, leading to a degradation in perfor-
mance.
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