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Abstract
Aligning large language models (LLMs) with
human preferences through reinforcement learn-
ing (RLHF) can lead to reward hacking, where
LLMs exploit failures in the reward model (RM)
to achieve seemingly high rewards without meet-
ing the underlying objectives. We identify two
primary challenges when designing RMs to miti-
gate reward hacking: distribution shifts during
the RL process and inconsistencies in human
preferences. As a solution, we propose Weight
Averaged Reward Models (WARM), first fine-
tuning multiple RMs, then averaging them in the
weight space. This strategy follows the observa-
tion that fine-tuned weights remain linearly con-
nected when sharing the same pre-training. By
averaging weights, WARM improves efficiency
compared to the traditional ensembling of pre-
dictions, while improving reliability under distri-
bution shifts and robustness to preference incon-
sistencies. Our experiments on summarization
tasks, using best-of-N and RL methods, shows
that WARM improves the quality and alignment of
LLM predictions; for example, a policy RL fine-
tuned with WARM has a 79.4% win rate against a
policy RL fine-tuned with a single RM.

1. Introduction
Reward modeling. Conversational assistants such as Gem-
ini (Gemini Team, 2023) or GPT-4 (OpenAI, 2023) have
revolutionized the AI community and beyond. These LLMs
are capable of completing novel and intricate tasks, includ-
ing mathematics, coding, and tool use (Bubeck et al., 2023).
These advancements are underpinned by a systematic three
stage training procedure: pre-training by next token pre-
diction (Radford et al., 2018; Devlin et al., 2019), super-
vised fine-tuning (SFT) to learn to follow instructions (Wei
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et al., 2022a), and ultimately, reinforcement learning (RL)
to maximize a reward encapsulating the desired behaviors
(Ouyang et al., 2022). However, defining such rewards
for real-world tasks is non-trivial (McKinney et al., 2023).
In reinforcement learning from human feedback (RLHF,
Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al.,
2020), rewards are reward models (RMs), trained on binary
preference datasets to emulate human judgment. The en-
hancement of LLM capabilities from RL is strongly tied to
the quality of the RMs (Touvron et al., 2023).

Reward hacking. Particularly insidious in RLHF (Gao
et al., 2023; Casper et al., 2023) is the reward hacking
(a.k.a. reward overoptimization, Amodei et al., 2016; Clark
& Amodei, 2016; Askell et al., 2021) arising from reward
misspecification (Pan et al., 2022) between the proxy RM
and actual human preferences. While optimizing the proxy
RM initially provides improvements, in later stages the pol-
icy (i.e., the LLM being trained) actually exploits loopholes
in the proxy RM, as illustrated in Figure 1(b). This re-
ward hacking phenomenon poses numerous issues. First, it
degrades performances, manifesting for example as linguis-
tically flawed (Lewis et al., 2017) or unnecessarily verbose
(Singhal et al., 2023) outputs. Second, it complicates check-
point selection, echoing Goodhart’s Law (Strathern, 1997):
“when a measure becomes a target, it ceases to be a good
measure”. Third, misalignment (Taylor et al., 2016; Ngo
et al., 2022) can escalate into safety risks (Amodei et al.,
2016; Hendrycks & Mazeika, 2022), especially given the
rapid integration of LLMs in critical decision-making. Such
concerns underscore the need to mitigate reward hacking to
ensure beneficial and safe deployment of LLMs.

Challenges. Two primary challenges underlie reward hack-
ing. The first major issue are the distribution shifts encoun-
tered by the RM. Indeed, the generations from the policy
might deviate substantially from those in the offline prefer-
ence dataset, posing an out-of-distribution (OOD) challenge.
Moreover, those distribution shifts are accentuated by the
policy drift during the RL procedure: the policy moves away
from its SFT initialization, continually altering the distri-
bution of predictions the RM needs to interpret reliably.
Second, preferences are inconsistent: the binary labels in
the preference dataset are noisy. Indeed, human labelers
often rely on simpler criteria (length, bullet points, polite-
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(a) WARM procedure with M = 3.
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(b) WARM mitigates reward hacking.

Figure 1: Figure 1(a) illustrates the alignment process with WARM for RLHF (Christiano et al., 2017). From a SFT-ed
LLM, we RL fine-tune to optimize a proxy reward model (RM). The innovation of WARM lies in the design of the proxy
RM, which is the weight average (WA) of M individual RMs, each fine-tuned from a shared pre-trained LLM on the
same preference dataset, but with slight differences such as diverse hyperparameters. This WA approach is efficient, while
enhancing the reliability under distribution shifts and robustness under inconsistent preferences. Figure 1(b) shows the
impact during RL alignment. The control reward (detailed in Section 5) initially increases but eventually deteriorates, a
phenomenon called reward hacking. Yet, when WARM serves as the proxy RM, increasing M (the number of averaged RMs)
significantly improves absolute results while delaying the collapse, as indicated by the control rewards maintaining higher
values for longer during training. Same plot with KL as the x-axis in Figure 4(a) and with label corruption in Figure 17.

ness) over more nuanced indicators. Moreover, errors can be
exacerbated for complex tasks requiring specific expertise
(Bowman et al., 2022), and because of the multi-objective
nature of alignment (Ramé et al., 2023) requiring handling
the heterogeneity of human opinions. Overall, this results
in a low inter-labeler agreement (72.6% for InstructGPT
(Ouyang et al., 2022)), altering the robustness of the RM.

Goal and ensembling baseline. RMs should ideally satisfy
three key properties: guiding RL efficiently, reliably scoring
generations despite the distribution shifts, and providing
robust signals amidst label noise. To address these chal-
lenges, the seminal work on RLHF from Christiano et al.
(2017) and more recent works (Eisenstein et al., 2023; Coste
et al., 2023) leveraged prediction ensembling (ENS, Lak-
shminarayanan et al., 2017), averaging the rewards from
multiple RMs. ENS improves the reward reliability and miti-
gates hacking. Yet, ENS suffers from memory and inference
overheads reducing efficiency; we will also show that ENS
fails to improve robustness to preference inconsistencies.

WARM. In this paper, we propose weight averaged reward
models (WARM), a simple, efficient and scalable strategy
to obtain a reliable and robust RM by combining multiple
RMs, following the model soups (Wortsman et al., 2022a)
strategy first introduced for image classification. Starting
from a shared pre-trained LLM, we launch multiple RM

fine-tunings: in practice, the different runs have different
hyperparameters (as in grid search), and see the preference
data in different orders, thus leading to diverse RMs. A
key contribution is how the different RMs are merged: by
linear interpolation in the weight space. This follows the
findings from the linear mode connectivity (LMC, Frankle
et al., 2020; Neyshabur et al., 2020) and weight averaging
(WA, Izmailov et al., 2018; Matena & Raffel, 2022; Worts-
man et al., 2022a; Ramé et al., 2022b) literature: when
the different fine-tunings share the same pre-training, the
fine-tuned weights can be linearly interpolated despite the
non-linearities in the architecture.

On the benefits of WARM. Firstly, WARM stands out for
its efficiency and practicality. By requiring a single model at
inference time, it provides a scalable approximation to the
traditional, costlier ensembling of predictions, without its
memory and inference burdens. Secondly, WARM improves
reliability, inheriting the well-documented generalization
abilities of WA under distribution shifts (Cha et al., 2021;
Ramé et al., 2022b; 2023). Lastly, WARM improves robust-
ness to label corruption. We show that WA selects the invari-
ant predictive mechanisms (Muandet et al., 2013; Arjovsky
et al., 2019) across different runs, thus naturally diminish-
ing the memorization of corrupted samples, occurring in
each run in different ways. In contrast, ENS memorizes the
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corrupted samples. These multifaceted benefits of WARM
are explored in Section 4. We summarize our contributions
as follows.

1. Innovation in reward modeling. We introduce WARM,
the first instance of weight averaging for reward mod-
eling. This novel strategy efficiently mitigates reward
hacking, improves reliability under distribution shifts
and robustness to label corruption.

2. Theoretical and empirical insights into weight averag-
ing. We validate linear mode connectivity for reward
models trained on binary preference datasets. We also
reveal a key difference between weight and predic-
tion averaging; weight averaging only maintains the
invariant predictive mechanisms across runs, thereby
diminishing memorization and enhancing the focus on
generalizable features.

Our experiments on summarization tasks in Section 5 con-
firm that WARM improves performance, either when used as
the reward selector in best-of-N , or as the proxy RM in RL.
WARM mitigates reward hacking, and thus provides better
downstream policies; specifically, it leads to a win rate of
79.4% (according to the preference oracle metric) against a
policy trained with a standard RM.

2. Context and Challenges
2.1. Context

LLMs. We consider an LLM fθ of a fixed non-linear ar-
chitecture parameterized by θ, usually a Transformer with
attention layers (Vaswani et al., 2017). It defines a pol-
icy by mapping prompt inputs x to fθ(x). Following the
foundation model paradigm (Bommasani et al., 2021) and
the success of transfer learning (Oquab et al., 2014), the
weights θ are first pre-trained (Radford et al., 2018) on
the vast amount of web data into θpt, before supervised
fine-tuning (SFT, Wei et al., 2022a) to learn to follow in-
structions into θsft. However, the high cost and limited
scope of instruction data (i.e., prompts and responses) can
create a misalignment (Amodei et al., 2016; Taylor et al.,
2016; Ngo et al., 2022) between the LLM and its intended
application. Reinforcement learning (RL) as a third step in
the training process of LLMs was shown to help alignment
of LLMs with the intended usage (Ouyang et al., 2022).

RMs. A notable aspect of RL is the absence of supervised
samples to be imitated by the policy; instead, the focus
shifts to maximizing the reward of generated samples, that
should measure their quality. The challenge is that the or-
acle reward, perfectly encapsulating the desired behaviors,
is not given by the environment. The key innovation from
RLHF (Christiano et al., 2017) is that this reward is the

output of a reward model (RM), trained in a supervised
way to predict and thus reflect human preferences. Specifi-
cally, an RM is an LLM rϕ parameterized by ϕ, predicting
a single scalar as the reward rϕ(x, y) for a prompt x and
generation y. The weights ϕ are usually initialized from(
θsft, ω

)
, where the final linear layer ω is added on top of

the extracted features from the SFT model θsft. Then ϕ is
trained on a preference dataset Dtrain = {xd, y

+
d , y

−
d }Dd=1

where the generation y+d has been preferred over y−d to con-
tinue xd. Usually human labelers evaluate those generations,
but recent works on RLAIF (Bai et al., 2022b; Lee et al.,
2023) showed that similar performances can be obtained by
prompting an LLM for AI feedback. Following the assump-
tion from Bradley & Terry (1952) about the distribution of
preferences, and by framing the problem as binary classifi-
cation, the maximum likelihood principle motivates learn-
ing ϕ by minimizing the following negative log-likelihood
loss (where σ is the logistic function): LR(rϕ,Dtrain) =
−E(x,y+,y−)∈Dtrain

[log σ(rϕ(x, y
+)− rϕ(x, y

−))].

Alignment. With this RM, the literature suggests applying
any kind of RL algorithm (usually REINFORCE (Williams,
1992) or PPO (Schulman et al., 2017)) to fine-tuned θsft

into θrl. A training-free alternative is best-of-N (BoN)
sampling, which returns the generation that has the highest
reward among N generations from θsft. Both methods aim
to align the policy with human preferences. Yet, the reward
misspecification (Pan et al., 2022) between the proxy RM
and the true human preferences can lead to reward hack-
ing (Amodei et al., 2016; Clark & Amodei, 2016; Askell
et al., 2021; Skalse et al., 2022), where the policy exploits
loopholes in the proxy RM to artificially increase the score
without matching human preferences.

Challenges in reward modeling. Designing RMs reflecting
human preferences is a complex challenge for two main
reasons: distribution shifts and noise in human preferences
(as further detailed in Appendix A.2.1). Then, a good RM
should ideally satisfy the three following properties.

Property 1: efficiency. The RM should incur no
memory or inference overhead. Then the policy can
be optimized efficiently.

Property 2: reliability. The RM should reliably
reward predictions despite distribution shifts. Then
the policy can explore while relying on the RM.

Property 3: robustness. The RM should be robust to
label inconsistencies in binary preferences. Then the
policy can learn from robust signals from the RM.
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2.2. Related work

Previous reward modeling works have explored a few re-
search directions, further detailed in Appendix A.2.2. Dur-
ing RL, the standard strategy is to encourage the policy to
remain close to its SFT initialization with Kullback-Leibler
(KL) regularization (Jaques et al., 2017); KL reduces model
drift (Lazaridou et al., 2020) but can cause underfitting and
adds an extra hyperparameter (the regularization strength
α). Collecting, labelling and then training on new data (re-
flecting the evolving policy) can improve the reliability of
the RM (Touvron et al., 2023). Yet it poses significant ef-
ficiency challenges due to the continuous requirement for
human annotation and computational resources. In contrast,
active learning strategies (Reddy et al., 2020) proactively
enrich the preference dataset by seeking out a diverse set
of generations. Concurrent work (Wang et al., 2024) sug-
gests applying label smoothing and flipping. Most similar
to WARM, prediction ensembling (ENS, Lakshminarayanan
et al., 2017) averages the logits from M RMs. From a bias-
variance perspective (Kohavi et al., 1996), ENS reduces vari-
ance when members are diverse (Ueda & Nakano, 1996),
and thus favors reliability under distribution shifts where
variance is the key issue (Ramé et al., 2022b). From a RL
perspective, ENS mitigates hacking risks (Christiano et al.,
2017; Coste et al., 2023; Eisenstein et al., 2023). Despite its
advantages, ENS faces efficiency challenges; the memory
and inference costs grow linearly with M , making ENS
incompatible with the scaling trend in RMs, where larger ar-
chitectures consistently perform better (Kundu et al., 2023).
Moreover, we will also show in Section 4.2 that ENS fails
to improve robustness to preference inconsistencies.

3. WARM

3.1. Weight averaging of reward models

Facing those challenges in reward modeling and the limi-
tations from existing approaches, we propose Weight Av-
eraged Reward Models (WARM). WARM is a simple and
efficient strategy that combines multiple models without the
memory and inference overheads of prediction ensembling,
enhancing reward reliability (under distribution shifts) and
robustness (amidst noisy preference dataset). WARM is
illustrated in Figure 1(a) and described below.

1. Shared pre-trained initialization. For a given pre-
trained LLM, each RM is initialized from

(
θsft, ω

)
combining SFT weights and a linear probed classifier.

2. Diverse fine-tunings. We launch M RM fine-tunings
with diverse hyperparameters (as in a grid search),
yielding M weights {ϕi}Mi=1.

3. Weight averaging. We average those M weights to-
gether to form ϕWARM = 1

M

∑M
i=1 ϕi.

Then rϕWARM serves as the proxy RM to guide the RL pro-
cedure, as efficiently as an individual RM, but with the
enhanced reliability and robustness provided by the WA
strategy, that leverages the strengths and mitigates the weak-
nesses of the individual RMs.

3.2. Linear mode connectivity

Compared to ENS, the main difference lies in how WARM
combines the different RMs: we do so through linear inter-
polation in the weight space. It relies on the linear mode
connectivity (LMC, Frankle et al., 2020; Neyshabur et al.,
2020) property across fine-tuned weights, i.e., the fact that
the accuracy of the interpolated model is at least as good as
the interpolation of the individual accuracies. Precisely, by
defining the pairwise accuracy of an RM rϕ w.r.t. a dataset D
as Acc(rϕ,D) = E(x,y+,y−)∈D

[
1rϕ(x,y+)≥rϕ(x,y−)

]
, the

following Observation 1 underpins the success of WARM.
Observation 1 (LMC). Given two fine-tuned weights ϕ1

and ϕ2 with a shared pre-training and a test dataset Dtest,
then for all λ ∈ [0, 1], Acc

(
r(1−λ)·ϕ1+λ·ϕ2

,Dtest

)
≥

(1− λ)×Acc(rϕ1
,Dtest) + λ×Acc(rϕ2

,Dtest).

We empirically validate this LMC in Figure 2, by evaluating
interpolated RMs on OOD test samples. This follows similar
observations for multi-class classification in the context of
computer vision (Frankle et al., 2020; Neyshabur et al.,
2020), which led to a plethora of weight averaging (WA)
works such as the model soups (Wortsman et al., 2022a;
Ramé et al., 2022b; 2023) variants (detailed in our related
work in Appendix A.1).
Remark 1 (Importance of pre-training and linear prob-
ing). The efficacy of WA can be surprising given the non-
linearities (Vaswani et al., 2017) and permutation symme-
tries (Ainsworth et al., 2022) in deep neural network ar-
chitectures. WA is actually possible only because of the
shared pre-training which constrains the divergence during
fine-tunings (Neyshabur et al., 2020), such as the weights
remain in convex regions of the loss valley (Gueta et al.,
2023). In contrast, the LMC does not hold when training
weights from scratch (Neyshabur et al., 2020), even if the
random initialization is shared. For these reasons and to
facilitate the LMC, we follow Ramé et al. (2022b; 2023) and
use linear probing to initialize the classifier ω; compared to
random initialization, such linear probing prevents feature
distortion (Kumar et al., 2022).

3.3. Sources of diversity

On one hand, WARM requires shared pre-training so that the
fine-tuned weights remain linearly connected. On the other
hand, weights must not be identical: actually, the diversity
across those fine-tuned weights significantly contributes to
the accuracy gains observed in WA (Ramé et al., 2022b).
Overall, an effective WARM requires a delicate trade-off
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between ensuring LMC and diversity across weights.

In practice, we use the following sources of diversity
(Gontijo-Lopes et al., 2022), leading the RM fine-tunings to
diverse yet linearly connected models. First, the different
fine-tunings see the data samples in different orders. Second,
we sample slightly different hyperparameters, notably dif-
ferent learning rates and dropout probabilities, as detailed in
Appendix C.3. Third, we investigate a new source of diver-
sity in initialization named Baklava, illustrated in Figure 7.
Specifically, we initialize the RMs’ featurizers from dif-
ferent checkpoints {θsfti }Mi=1 collected along a given SFT
trajectory. Baklava relaxes the shared initialization con-
straint from model soups (Wortsman et al., 2022a) to simply
sharing the same pre-training: Baklava is an efficient al-
ternative to model ratatouille (Ramé et al., 2023) without
the need of multiple auxiliary tasks. Overall, Baklava in-
creases diversity compared to only initializing from the last
SFT checkpoint, while adhering to the shared pre-training
requisite for LMC, without incurring any overhead.

4. On the Benefits of WARM

We now explore the benefits from WARM. We ground our
analysis on the empirical comparison between WA and ENS
for reward modeling, and a novel general theoretical com-
parison in Section 4.3.

Experimental setup. We use the TL;DR summarization
benchmark (Völske et al., 2017), a standard in reward mod-
eling for LLMs, briefly described below and further detailed
in Appendix C. The goal of the RMs is to score summaries
such as they are ranked properly. In training, we use the
dataset Dtrain from Stiennon et al. (2020) where the candi-
date summaries are generated by GPT-3 (Brown et al., 2020)
variants. To obtain the labels, we follow the RLAIF proce-
dure from Lee et al. (2023), where a PaLM-L (Anil et al.,
2023) is prompted with chain-of-thought (Wei et al., 2022b)
to mimick human preferences. This strategy performs sim-
ilarly to human labelers with similar inter-agreement, and
will be useful in Section 5 as an oracle metric. The RMs are
PaLM-XXS models, pre-trained and SFT-ed on the preferred
summaries from Dtrain, on which we plug a linear probed
(Kumar et al., 2022) classification layer. We train the RMs
for 10k steps on Dtrain, with hyperparameters and proce-
dure detailed in Appendix C.3. We report RMs’ accuracies
on a novel out-of-distribution (OOD) test dataset Dood with
92k pairwise comparisons where summaries are generated
by multiple PaLM-XS policies with high temperature, some
only pre-trained, others after SFT or RLHF.

4.1. Standard analysis: WA for reliability and efficiency

Previous works (Wortsman et al., 2022a; Ramé et al., 2022b)
argued that WA is best understood as an efficient approxi-

mation of ENS, as clarified in Observation 2.

Observation 2 (WA and ENS: standard analy-
sis). Weight averaging and prediction ensembling
perform similarly: i.e., for all λ ∈ [0, 1] and a
test dataset Dtest, Acc

(
r(1−λ)·ϕ1+λ·ϕ2

,Dtest

)
≈

Acc((1− λ)× rϕ1
+ λ× rϕ2

,Dtest).

Theoretically, a simple Taylor expansion can justify this
similarity when ∥ϕ1 − ϕ2∥ ≪ 1. Empirically, this is val-
idated in Figure 2 where the accuracy curves on Dood for
WA and ENS closely match. This similarity justifies that
WA is a variance reduction method; then, because variance
is the dominant issue under distribution shifts (Ramé et al.,
2022b), this explains the significant gains in Figure 2 over
the individual RMs ϕ1 and ϕ2 (validating Observation 1), in
particular when weights are sufficiently diverse. This sug-
gests improved reliability in WARM, with efficiency benefits
over ENS: indeed, WA maintains a single set of weights,
removing the memory and inference overheads from ENS.

4.2. Refined analysis: WA for more robustness

A surprising fact remains poorly unexplained. WA is
slightly superior to ENS under distribution shifts, which one
can see on the plots from Figure 2, and more consistently in
Figure B.1 from model soups (Wortsman et al., 2022a) or in
Figure 1 from DiWA (Ramé et al., 2022b). More generally,
WA is the state-of-the-art strategy for OOD generalization,
consistently outperforming ENS; yet, this was only partially
explained in Lin et al. (2024), urging for new insights about
the difference between WA and ENS.

Corruption setup. To refine our understanding on the
difference between WA and ENS, we propose a new setup
where 25% of the binary labels are swapped in training.
We then report the per-subset accuracies on Figure 3, and
enrich those results in Appendix D.1 where we consistently
observe the same phenomenon. On the corrupted subset
of training data, the accuracy curve for WA is below the
expected accuracies, while it is above on all other subsets.
More precisely, we make the following Observation 3.

Observation 3 (WA and ENS: refined analysis). The accu-
racy gains of WA over ENS grow as data moves away from
the training distribution.

• WA ≪ ENS on train corrupt: WA is worse than ENS
on train samples with swapped labels, reducing memo-
rization and improving robustness to label corruption.

• WA ≤ ENS on train clean: WA is worse than ENS on
train samples with correct labels.

• WA ⪆ ENS on ID val: WA is better or similar to ENS
on samples without distribution shifts.
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(a) 1 RM fine-tuning at 2 differ-
ent training steps.

0.0 0.2 0.4 0.6 0.8 1.0
0.758

0.759

0.760

0.761

0.762

0.763

0.764

0.765

Ac
c.

WA
ENS
Diag

(b) 2 RM fine-tunings with
shared config.
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(c) 2 RM fine-tunings with differ-
ent learning rates.
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(d) 2 RM fine-tunings with differ-
ent inits: Baklava.

Figure 2: Experiments under distribution shifts validating Observations 1 and 2 on TL;DR (Völske et al., 2017). We
report the accuracies on Dood when interpolating between two RM ϕ1 and ϕ2 with the coefficient λ sliding between 0 and 1.
WA stands for weight averaging r(1−λ)·ϕ1+λ·ϕ2

while ENS combines the predictions (1− λ)× rϕ1 + λ× rϕ2 ; Diag is the
interpolated accuracy (1− λ)×Acc(rϕ1) + λ×Acc(rϕ2). We consider sources of increasing diversity between ϕ1 and
ϕ2: in Figure 2(a), they are collected at different number of training steps (8k and 10k) along a single RM fine-tuning; in
Figure 2(b), they are from two independant RM fine-tunings, with the exact same config, but seeing the data in different
orders; in Figure 2(c), they have different learning rates (1e-4 and 4e-5); in Figure 2(d), they are initalized from different
SFT checkpoints collected at different number of SFT steps (8k and 12k), per Baklava.
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(a) Train (corrupt).
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(b) Train (clean).
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(c) Validation (ID).
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(d) Test (OOD).

Figure 3: Corruption experiments validating Observation 3. The two RMs are fine-tuned with the same config but
this time with 25% corruption; we then report accuracies on the different data subsets. WA reduces memorization of the
corrupted labels in Figure 3(a), and still performs slightly worse than ENS on the clean training samples in Figure 3(b); yet,
WA generalizes better than ENS as we move away from the training distribution, in particular on Dood in Figure 3(d).

• WA ≥ ENS on OOD test: WA is far better than ENS on
test samples from new distributions, improving reliabil-
ity under distribution shifts.

Overall, this suggests that weight averaging memorizes less
and generalizes better than ensembling predictions.

4.3. Weight averaging enforces invariance across runs

We now provide theoretical support to this Observation 3,
by suggesting that WA acts as a regularization towards the
predictive mechanisms that are invariant across runs, i.e.,
learned simultaneously in each independent run. Then, in
contrast with ENS, WA improves robustness to corruption
because it underweights the run-specific features (with low
probability of being learned) inducing memorization.

Setup. We consider a simplified binary classification setup
with labels y ∈ {−1, 1}, related to F features {zj}Fj=1 such
as zj ∈ Rd. From inputs x, we train a binary classifier
r(x) = ω⊺f(x). Following Lin et al. (2024), we make three
key assumptions. First, features orthogonality: we assume
that (zj)⊺zj

′
= 0 when j ̸= j′. Second, input as bag of

features: we assume that the input x =
[
xj
]F
j=1

∈ RF×d

can be represented as the concatenation of xj generated
by xj ∼ N

(
y · zj , σ · Id

)
with σ ≪ 1. Finally, the bi-

nary featurizer assumption: we assume that the featurizer
f =

[
f j

]F
j=1

∈ {0, 1}F is a binary selector of the fea-
tures that make the input. For example, if y = 1, F = 3,
x ≈ [z1, z2, z3], and f = [1, 0, 1] learns to extract the first
and third features, then f(x) ≈ z1 + z3. We denote pj
the probability that the featurizer f learns to use the j-th
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feature dimension (associated with zj); this means f j is 1
with probability pj and 0 otherwise. Moreover, for infinite
training samples and under some constraints on σ, Lemma
5 in Lin et al. (2024) proved that the optimal linear fit ω on
the features selected from f is ω =

∑F
j=1 f

j · zj .

Results. We consider M RMs {ri = ω⊺
i fi}Mi=1, and

compare the limit behaviours of their prediction ensem-
bling rENS

M and weight averaging rWA
M when M →

∞. In this limit case, the averaged prediction rENS
M =

1
M

∑M
i=1 ω

⊺
i fi for an input x tends towards the expected

prediction E[r(x)] = E[ω⊺f(x)] = E{fj}F
j=1

[(∑F
j=1 f

j ·
zj
)⊺
(
∑F

j′=1 f
j′ · xj′)

]
≈ y ·

∑F
j=1 pj · |zj |2, using xj′ ≈

y · zj′ thus (zj)⊺xj′ ≈ 0 when j ̸= j′, and (f j)2 = f j .

rENS
M (x) −−−−→

M→∞
E[ω⊺f ](x) ≈

F∑
j=1

pj · (zj)⊺xj . (1)

In contrast, when considering rWA
M =(

1
M

∑M
i=1 ωi

)⊺(
1
M

∑M
i=1 fi

)
with M → ∞, we

have 1
M

∑M
i=1 fi −−−−→

M→∞
E[f ] = [pj ]

F
j=1 and

1
M

∑M
i=1 ωi −−−−→

M→∞
E[ω] =

∑F
j=1 pj · zj , and thus:

rWA
M (x) −−−−→

M→∞
E[ω]⊺E[f ](x) ≈

F∑
j=1

p2
j · (zj)⊺xj . (2)

Interpretation. For ENS, the coefficient for a given feature
is pj , the same as the probability of this information being
used by any individual network. In contrast, WA involves
the square of the probability p2

j . Intuitively, WA applies an
AND-mask on the information, that need to be found both
in the feature space and the classification weights. Thus
WA reduces the reliance on features with low probability,
related to minor specific information (such as noise or con-
text) which can be used to fit the corrupted training samples;
this would reduce memorization, and thus explains the ro-
bustness of WA under label corruption. Reciprocally, WA
tends to prioritize the most probable features, favoring the
mechanisms that are consistently learned, in other words the
mechanisms invariant across runs. Overall, WA acts as a
regularization, improving robustness under label corruption
by tackling run-specific mechanisms favoring memorization,
and improving reliability under distribution shifts by pre-
serving run-invariant mechanisms favoring generalization.
We further analyze those insights in Appendix B.

In conclusion, WARM has several benefits. First, WARM
uses a single RM during RL, thus improves efficiency. Sec-
ond, WARM reduces variance, thus improves reliability un-
der distribution shifts. Lastly, WARM enforces invariance
across runs, thus improves robustness to noisy preferences
by reducing memorization of corrupted labels. Yet, WARM
has nonetheless a few limitations, detailed in Section 6.

5. Experiments
Setup. To empirically validate WARM’s benefits described
in previous section, we follow Lee et al. (2023) and train
PaLM-XXS RMs on the TL;DR summarization benchmark
(Völske et al., 2017) where preference labels are generated
by a PaLM-L model prompted with chain-of-thought (Wei
et al., 2022b). This AI labeling approach, increasingly com-
mon in recent research (Dubois et al., 2023; Eisenstein et al.,
2023; Singhal et al., 2023) as an efficient alternative to hu-
man assessments, provides an automatic pairwise oracle
preference metric to evaluate reward hacking (in a simi-
lar fashion to the distillation setup from (Gao et al., 2023),
discussed in Appendix D.4). In addition, we leverage a
PaLM-XS RM for pointwise control reward reaching 80.1%
accuracy on the OOD dataset Dood. As verified in our exper-
iments, this control RM also detects hacking, as it benefits
from a larger architecture and a disjoint pretraining com-
pared to the PaLM-XXS RMs of interest. We consider two
setups, without (clean setup) and with (corrupt setup) 25%
label corruption in the preference datasets, and denote in
each setup the weights {ϕi}Mi=1 sorted in decreasing accu-
racy on Dood. Below we explore the main scenario, where
WARM guides the RL procedure. We refer the readers to our
best-of-N experiments in Appendix D.2.

RL fine-tuning of policies. Following Lee et al. (2023), we
use a modified version of REINFORCE (Williams, 1992)
with a baseline value score for variance reduction. Both
policy and value LLMs are PaLM-XS, initialized from the
same SFT model. We then generate samples with the policy,
compute the reward with the RMs and update the weights
to optimize this reward. More details are available in Ap-
pendix C.4. To reduce forgetting and encourage the policy
to remain close to its SFT initialization, we incorporate a
KL regularization (Jaques et al., 2017; Geist et al., 2019)
controlled by a coefficient α, ablated in Figure 4(c), yet oth-
erwise set to 0.003 in the clean setup and 0.01 in the corrupt
setup. This KL serves as the x-axis in our plots to estimate
model drift, as done in the literature; same curves with the
number of training steps as the x-axis in Figures 1(b) and 17.

Control reward. In Figure 4, we observe reward hacking;
as the policy moves away from its SFT initialization, the
in terms of pointwise control reward collapses. Critically,
WARM improves performances: in particular, increasing
M pushes the Pareto front of solutions to the top left in
Figures 4(a) and 4(b). In comparison, policies trained with
ENS (with M = 2 for computational reasons) are still sus-
ceptible to early reward hacking, while reaching absolute
control rewards significantly worse than with WARM (even
with M = 2). In Figure 4(c), we confirm that the α hyperpa-
rameter plays a crucial role; low values of α such as 0.001
correspond to high KL, while high values of α such as 0.01
entail low KL but a risk of underfitting. From a practical
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Figure 4: Control reward for RL experiments: clean preference dataset in Figures 4(a) and 4(c) and 25% corruptions
in Figure 4(b). The blue lines show the RL fine-tuning of policies when averaging M weights; the darker, the higher the
M . WARM performs higher than when using individual RMs (in yellows) or when ensembling their predictions (in red).
Figure 4(c) compares policies RL fine-tuned with WARM M = 6 or ϕ1, for different α controlling the KL strength.
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Figure 5: Oracle preference metric for RL experiments: clean preference dataset. We plot the win rates along RL
fine-tuning against three reference policies: the SFT policy, the policy RL fine-tuned with WARM M = 6 after 3500 steps,
and the policy RL fine-tuned with ϕ1 after 3000 steps. More results are provided in Appendix D.3.

perspective, this highlights that the optimal value of α for
WARM is lower than for a single RM; this is because WARM
can mitigate reward hacking, and thus the optimal policies
are obtained for larger values of KL.

Oracle preference. In Figure 5, we compare the different
policies according to our pairwise AI labeler. In Figure 5(a),
the reference policy is the SFT initialization; all the RL
fine-tuned policies outperform this baseline, with WARM
M = 6 reaching a win rate of 99.8% after 3500 steps (the
highest win rate among all policies). We use this policy as
the reference in Figure 5(b); no other policy could beat it.
Interestingly, we observe that using M = 10 rewards can
delay reward hacking but does not improve the peak perfor-

mance; we speculate this is related to our weight selection
procedure, as the weights {ϕi}10i=7 have lower individual ac-
curacy on Dood than {ϕi}6i=1 (details in Figure 6). Finally,
in Figure 5(c), the reference policy is obtained after 3000
steps of RL fine-tuning with ϕ1 (the best individual RM
on Dood). There is a large region of steps in which WARM
policies (even for M = 2) perform better; the previous
reference from Figure 5(b) has a 79.4% win rate against it.

6. Discussion
Benefits. This paper has detailed several of its benefits,
and below, we detail more exploratory advantages. WARM
follows the updatable machine learning paradigm (Raffel,
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2023), eliminating the need for inter-server communica-
tion, thus enabling embarrassingly simple parallelization
(Li et al., 2022) of RMs. This facilitates its use in federated
learning scenario (McMahan et al., 2017) where the data
should remain private; moreover, WA would add a layer
of privacy and bias mitigation by reducing the memoriza-
tion of private preference (Zaman et al., 2023). Then, a
straightforward extension of WARM would combine RMs
trained on different datasets, for example, coming from
different (clusters of) labelers. This diversity could help
WARM performances, but also from a multi objective per-
spective (Wu et al., 2023); by non-uniform interpolation of
RMs, we could learn a set of personalized policies (Ramé
et al., 2023). Furthermore, as WA has been shown to limit
catastrophic forgetting (Stojanovski et al., 2022; Eeckt et al.,
2022), WARM could seamlessly support iterative and evolv-
ing preferences. Finally, a promising research direction is
extending WARM to DPO strategies (Rafailov et al., 2023),
where averaging the RMs casts back to averaging the DPO
policies (Labonne, 2024).

Limitations. WARM faces some limitations, notably two
when compared to prediction ensembling methods; first, pre-
diction ensembling can benefit from the diversity brought
by combining RMs from various architectures and pre-
trainings; second, prediction ensembling can incorporate
prediction disagreement into the reward to provide uncer-
tainty estimation and limit model drift. However, it’s been
noted in Eisenstein et al. (2023) that simple averaging of
logits often performs comparably to more complex predic-
tion aggregation functions that include uncertainty elements.
Another limitation is that, while WARM effectively reduces
certain types of memorization, it does not completely eradi-
cate all forms of spurious correlations or biases inherent in
the preference data. For instance, if each individual RM pre-
dominantly relies on summary length as a criterion, WARM
is likely to replicate this tendency. Therefore, alternative
methods (from the OOD generalization literature?) might
be required, for example those based on invariance regular-
ization (Arjovsky et al., 2019; Ramé et al., 2022a) or last
layer retraining (Kirichenko et al., 2023).

7. Conclusion
We introduce WARM to address two challenges in reward
modeling: reliability under distribution shifts and robust-
ness under label corruption. By averaging the weights of
multiple RMs, WARM appears as an efficient solution to
mitigate reward hacking in RLHF. Our empirical results on
summarization demonstrate its effectiveness. We hope that
WARM will inspire the alignment community to investigate
deeper into model merging and the generalization literature.

Impact Statement
WARM is a flexible and pragmatic method to improve the
alignment of AI with human values and societal norms,
with several benefits detailed along this work, but also a
few limitations further described in Section 6. In particular,
one key limitation is that WARM only enhances the reward
modeling stage without tackling the other challenges
in RLHF (Casper et al., 2023). Thus, to mitigate the
safety risks (Amodei et al., 2016; Hendrycks & Mazeika,
2022; Hendrycks, 2023) from misalignment (Taylor
et al., 2016; Ngo et al., 2022), WARM must be consid-
ered within the larger context of responsible and safe AI.
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val: Unified model for image, video, audio and language.
TMLR, 2023. (p. 16)

13



WARM: On the Benefits of Weight Averaged Reward Models

Simon, H. A. Bounded rationality. Utility and probability,
1990. (p. 17)

Singhal, P., Goyal, T., Xu, J., and Durrett, G. A long way
to go: Investigating length correlations in rlhf. arXiv
preprint, 2023. (pp. 1 and 7)

Skalse, J. M. V., Howe, N. H. R., Krasheninnikov, D., and
Krueger, D. Defining and characterizing reward gaming.
In NeurIPS, 2022. (p. 3)
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Supplementary material

This supplementary material is organized as follows:

• Appendix A enriches our related work section.

• Section 6 further discusses the theoretical insights from this work, along with WARM’s benefits and limitations.

• Appendix C clarifies some experimental details.

• Appendix D enriches our experiments.

A. Related Work
This paper leverages the insights from the OOD generalization literature, in particular from linear mode connectivity (see
Appendix A.1), and applies them to the design of efficient, reliable and robust reward models (see Appendix A.2.2).

A.1. Out-of-distribution generalization, linear mode connectivity and memorization

LMC in fine-tuning. Fine-tuning foundation models (Bommasani et al., 2021) into specialized models that generalize well
to new distributions is critical for many real-world applications (Hendrycks & Dietterich, 2019; Zech et al., 2018; DeGrave
et al., 2021). Recently, different variants of weight averaging (WA) were able to improve performance, such as moving
average (Izmailov et al., 2018; Cha et al., 2021; Arpit et al., 2021), WiSE fine-tuning (Wortsman et al., 2022b), model
soups (Wortsman et al., 2022a), DiWA (Ramé et al., 2022b) and model ratatouille (Ramé et al., 2023). These works rely
on the LMC (Frankle et al., 2020; Neyshabur et al., 2020) across fine-tuned weights, which was extended to fine-tunings
on different tasks (Ilharco et al., 2022; Don-Yehiya et al., 2023; Ramé et al., 2023), modalities (Shukor et al., 2023) or
with different losses (Ramé et al., 2022b; Croce et al., 2023), although (Juneja et al., 2023) highlighted some limitations.
WA was also used recently in RL setups (Nikishin et al., 2018; Gaya et al., 2022; Lawson & Qureshi, 2023; Ramé et al.,
2023; Noukhovitch et al., 2023), in particular in RLHF in (Ramé et al., 2023; Noukhovitch et al., 2023) but only to combine
policies and not rewards.

Insights into WA. Specifically, WA comes with several benefits. First, WA flattens the loss landscape (Cha et al., 2021).
Second, WA approximates prediction ensembling, thus reduces variance of the estimator (Wortsman et al., 2022a; Ramé
et al., 2022b) and tackles model misspecification (D’Amour et al., 2020). Third, WA combines models’ abilities (Ilharco
et al., 2023; Daheim et al., 2023), which can be useful for multi-task (Ilharco et al., 2022), multi-objective (Ramé et al.,
2023) or in continual learning (Stojanovski et al., 2022) setups. Lastly, it has recently been shown that WA can provide
some benefits under spurious correlations (Lin et al., 2024; Zaman et al., 2023), with a phenomenon called FalseFalseTrue
in Lin et al. (2024). These works (Lin et al., 2024; Zaman et al., 2023) share similarities with our memorization experiments
from Section 4.2, but we are the first to analyze WA regularization properties under label corruption, and their consequences
on generalization. In contrast, in Zaman et al. (2023) the networks are trained on different datasets while Lin et al. (2024)
consider spurious correlations. Overall, our theoretical insights clarify and simplify those from Lin et al. (2024).

Memorization. Traditional approaches (Song et al., 2022) tackling memorization of corrupted labels (Zhang et al., 2017)
usually require explicit regularization (Tanno et al., 2019), specific data augmentation (Jain et al., 2023), loss adjustment
(Ghosh et al., 2017) or sample selection (Xia et al., 2022). Some other strategies are based on ensembling: they filter out
potentially corrupted samples with self-labeling filtering (Jiang et al., 2018; Han et al., 2018) or bagging diversity procedures
(Sabzevari, 2019). As far as we know, with WA we propose the first strategy combining multiple models trained on the same
dataset that manages to tackle corruption.

A.2. Reward modeling

One of the central challenge in aligning LLMs is the absence of explicit rewards from the environment, a.k.a. the outer
alignment challenge (Ngo et al., 2022). While Inverse Reinforcement Learning (Ng et al., 2000) attempts to derive the RM
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from expert demonstrations, most recent efforts (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020; Wu
et al., 2021; Ouyang et al., 2022) primarily focus on learning from human preferences. Despite its importance to enhance
LLM performances post-RL and for safe deployment in real-world applications, how to best design RMs has arguably
receive less attention than it warrants. First in Appendix A.2.1 we clarify the challenges in designing those RMs, and then in
Appendix A.2.2 we discuss the existing approaches.

A.2.1. CHALLENGES IN REWARD MODELING

Distribution shifts. The primary challenge is the distribution shifts resulting from the offline nature of preference data.
Indeed, the generations in the preference dataset and those from the policy θsft do not necessarily follow the same
distributions, and the shifts can become even more pronounced due to model drift during RL. The OOD generalization
literature has extensively analyzed the repercussions of these shifts. Firstly, they often lead to a reduction in performance
(Gulrajani & Lopez-Paz, 2021; Koh et al., 2021). RMs (of limited capacity) trained on narrow data distributions may rely
on spurious correlations (Arjovsky et al., 2019) or a limited number of features (Pezeshki et al., 2020), thus failing when
encountering OOD examples (Laakom et al., 2021; Nayman et al., 2022). Secondly, they complicate the selection of RMs,
as ID validation metrics may poorly correlate with real-world OOD performances (D’Amour et al., 2020; Teney et al., 2023)
and the ability to guide the RL (Eisenstein et al., 2023). Lastly, RMs can become poorly calibrated (Guo et al., 2017) in
OOD scenarios (Ovadia et al., 2019; Wald et al., 2021), and predict more extreme values as rewards. Such miscalibration
exacerbates the problem in a negative feedback loop, further intensifying model drift and distribution shifts. In conclusion,
limited data coverage during reward modeling reduces the reliability of the RM and facilitates reward hacking (Zhuang &
Hadfield-Menell, 2020) in regions where the RM is badly specified.

Inconsistent preferences. The second major challenge is the label noise in preference datasets. Human labelers, often
grappling with fatigue, misunderstandings (Simon, 1990; Shah et al., 2019) and imperfect incentives (Kaufmann et al.,
2023), might default to simpler criteria such as length, bullet points, or politeness rather than more causal indicators. This
tendency is exacerbated for complex tasks (Bowman et al., 2022) or when considering multiple objectives, ranging from
harmlessness (Ganguli et al., 2022) to engagement (Irvine et al., 2023) and representing the heterogeneity of human opinions.
Consequently, these factors lead to low inter-rater agreement, where human data appears as an imperfect representation
of the underlying ground truth (Condorcet, 1785; Pitis, 2023). To mitigate these issues, there has been a shift towards
AI-generated preferences (Bai et al., 2022b; Lee et al., 2023), which, while reducing human labor costs, introduces its own
set of noise and failure cases, such as sensitivity to prompting strategies (Sclar et al., 2023; Mizrahi et al., 2023). These
layers of noise and inconsistency challenge the robustness of the RM, and its ability to provide stable signals.

A.2.2. REWARD MODELING APPROACHES

Some works (Knox et al., 2023) seek to refine the reward modeling loss function. Other approaches are more data oriented:
for example, LLaMA-2 (Touvron et al., 2023) involves continual learning of the RM to adjust to new generation distributions;
Reddy et al. (2020); Barnett et al. (2023) follow an active learning paradigm (Gooding & Mansoor, 2023). Augmenting
rewards with tools (Li et al., 2023) or additional information (Sun et al., 2023) represents an even more recent and very
promising trend. Limited efforts have been made at the intersection of label corruption and reward modeling; Cheng et al.
(2024) tried to filter the preference dataset for small academic locomotion tasks, while Wang et al. (2024) suggests applying
label smoothing and flipping. Actually, reward ensembling is the most discussed method to mitigate reward hacking (Coste
et al., 2023; Eisenstein et al., 2023); we show that WARM can beat ENS while removing its overheads. Finally, following
DPO (Rafailov et al., 2023), a recent trend merges reward modeling with policy learning; though, the policies still tend to
hack the preference data (Azar et al., 2023), and thus require only a few training steps and very small learning rates. The
WA of DPO policies, theoretically equivalent to the WA of RMs, is a promising research direction with already significant
empirical results on public benchmarks, as demonstrated in Labonne (2024).

B. Additional Remarks on the Theoretical Insights
We discuss in more details the results from Section 4.3.

Invariance. We argue that weight averaging only keeps the invariant predictive mechanisms across runs. This is in analogy
with the invariance literature (Muandet et al., 2013), popular for domain generalization (Arjovsky et al., 2019; Ramé
et al., 2022a) under spurious correlations, where the key idea is that the predictive mechanisms which are invariant across
domains are the causal ones that are stable under distribution shifts. This theoretically connects two key paradigms for OOD
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generalization, ensembling and invariance, and shows that weight averaging actually benefits from both.

Extension to a deeper structure with L layers. We obtain a square in p2
j in Equation (2) due to our simplified two-layer

architecture. Yet, using a deeper structure with L layers, and applying similar assumptions at each layer, we would obtain
pL
j . The analysis of these insights under relaxed assumptions is a promising direction for future works.

From reward robustness to learnability. When applied to the design of RMs in WARM, we now argue that WA facilitates
WARM’s stability (Wang et al., 2024) by mitigating the reliance on some non-robust features. Indeed, WA makes the WARM
reward more robust to small (potentially adversarial (Szegedy et al., 2013)) perturbations (Yang et al., 2020), i.e., smoother
(Rosca et al., 2020) in the input space. This relates to the Lipschitzness property of the reward (Hein & Andriushchenko,
2017; Sokolić et al., 2017; Cohen et al., 2019), where the difference in predicted rewards is bounded by the distance in
input space. Fortunately, such smoothness is useful in RL (Hafner & Riedmiller, 2011), in particular for the stability of the
policy gradient (Pirotta et al., 2015) because “sharp changes in reward value are hard to represent and internalize” (Blondé
et al., 2022). This is studied in Lipschitzness is all you need (Blondé et al., 2022) where the authors argue that “the local
Lipschitzness of the reward is a sine qua non condition for good performance”. In summary, robustness improves stability
and hinders the cascade of errors occurring when minor input variations can cause large reward differences.

C. Implementation Details
C.1. Dataset details

For summarization, we use the Reddit TL;DR dataset (Stiennon et al., 2020), containing posts from Reddit that have
been filtered to ensure high quality. The training summaries from Stiennon et al. (2020) are generated by OpenAI GPT-3
(Brown et al., 2020) variants. The dataset contains 123k posts, and ∼5% is held out as the ID validation set. To generate
the candidate responses in Dood with 92k pairwise comparisons, we considered multiple PaLM-XS policies with high
temperature, some are pre-trained only, others SFT-ed and others RLHF-ed; the goal was to get a diverse set of summaries.

C.2. AI labeling details

While the ideal approach for evaluating our models would involve human preferences, we resort to the cheaper AI labeling
procedure from RLAIF (Lee et al., 2023). We query an instruct fine-tuned PaLM-L (Anil et al., 2023) LLM through Cloud’s
Vertex AI, prompted to generate preference mimicking human preferences. Specifically, we follow the “Detailed + CoT
0-shot” prompting strategy from RLAIF (Lee et al., 2023), the best one according to their results, involving zero-shot
prompting with chain-of-thought (Wei et al., 2022b), a maximum decoding length of 512 tokens and temperature T = 0.0
(i.e., greedy decoding). To avoid position bias, we run the AI labeler in the two possible orderings. This strategy was shown
to perform similarly to human labellers, with similar inter-agreement. For the corruption experiments, we swap the labels
for 25% of the training samples.

C.3. Reward modeling details

C.3.1. GENERAL DETAILS

The RMs are PaLM-XXS models (Anil et al., 2023). They are first pre-trained, and then supervised fine-tuned on the Reddit
TL;DR dataset for 12k steps with a batch size of 128 and the Adafactor (Shazeer & Stern, 2018) optimizer with a learning
rate of 10−5. Following the Baklava recipe, we actually launch the reward modeling from different checkpoints along this
SFT fine-tuning, at steps {8k, 10k, 12k}; taking a too-early checkpoint would drastically reduce RM accuracy, as observed
in (Razin et al., 2023). To convert this LLM into a classifier, we plug a linear probed classification layer (the same for all
RMs); said differently, even though the featurizers are actually from different SFT checkpoints, they share the same linear
probed classification linear layer. As explained in Kumar et al. (2022), it prevents features from moving too much away
from their initializations, which facilitates the LMC required for WA.

We train all RMs for 10k steps, a batch size of 128, the Adafactor (Shazeer & Stern, 2018) optimizer, a learning rate sampled
in {1e-5,4e-5,1e-4}, and a dropout probability in {0.05, 0.1}. This follows the practical recommandations from (Ramé et al.,
2022b) to leverage hyperparameters in a mild range to preserve the LMC. Training for a longer number of steps could help,
as it did not alter the LMC in previous works (Ramé et al., 2023).

In practice, for the main experiments with clean labels, we launch 10 reward modelings; when ranked in decreasing accuracy
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on Dood, we denote them {ϕi}10i=1. Therefore, the RMs named ϕ1 and ϕ2 in the different plots are the two best according
to their individual performances under distribution shifts. Then, WARM M = 2 is actually the RM defined per ϕ1+ϕ2

2 ,
while ENS M = 2 averages their predictions. More generally, WARM with M weights is the WA of the M best weights
{ϕi}Mi=1. The main motivation of this weight selection procedure is to remove potentially bad RMs, as validated in Figure 6,
in which we consider different permutations across those 10 RMs. As a side note, we speculate that a greedy procedure as in
Wortsman et al. (2022a) could further improve performances.
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Random permutation v1
Random permutation v2
From worst to best

Figure 6: Analysis of the weight selection procedure. We plot the accuracy resulting from averaging M weights (out of
10), where these weights are chosen based on various selection procedures. This effectively validates that choosing models
from best to worst serves as a reliable heuristic.

C.3.2. BAKLAVA STRATEGY DETAILS

Figure 7 illustrates the Baklava strategy. The different initializations have different level of specialization on the SFT task,
which subsequently increases the diversity across fine-tuned RMs.

SFT

Reward
modelings

Weight
averaging

θpt θsft1 θsft2 θsftM

ϕ1 ϕ2 ϕM

ϕWARM = 1
M

∑M
i=1 ϕi

Figure 7: Baklava diversity procedure. From a pre-trained LLM θpt, we consider different checkpoints {θsfti }Mi=1 along
a single SFT run (dashed arrow ) collected at different number of SFT training steps. Those checkpoints serve as
initializations for M RM fine-tunings on the preference dataset (thick solid arrows ) to learn the {ϕi}Mi=1. Finally, those
RMs are weight averaged (dotted arrows ) into the final model ϕWARM. Following the culinary analogy from model soups
(Wortsman et al., 2022a) and model ratatouille (Ramé et al., 2023), we named this method Baklava because of its diamond
geometric shape.

C.3.3. NEGATIVE RESULT: DIVERSITY THROUGH MOVING AVERAGE

Following stochastic weight average (Izmailov et al., 2018) or moving average (Arpit et al., 2021), we also tried to average
checkpoints collected along a single RM fine-tuning. Though interesting because less costly for training, the lower results
in Figure 2(a) suggest that the accuracy-diversity trade-off was not favorable: incorporating early checkpoints would
compromise individual accuracies, and considering only later checkpoints would not bring the necessary diversity. As a
result, we opted to use in WARM only the last checkpoint from each RM fine-tuning.
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C.4. Reinforcement learning details

Both policy and value models are PaLM-XS (Anil et al., 2023), initialized from the same SFT model. We then generate
samples from the policy with temperature T = 0.9, batch size of 128, the Adafactor (Shazeer & Stern, 2018) optimizer, a
learning rate of 10−5 and a policy warmup of 2k steps. We set α = 0.003 for the KL regularization in the main experiment
without label corruption, and α = 0.01 with label corruption. Following Lee et al. (2023), we used a modified version
of REINFORCE (Williams, 1992) with a baseline value function for variance reduction: this algorithm is simpler than
PPO (Schulman et al., 2017) yet still effective for LLMs.

D. Additional Experiments
D.1. Refined analysis: weight averaging for more robust ensembling
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Figure 8: Histograms of the differences in accuracy between WA and ENS on different data subsets.
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Figure 9: Train (corrupt). More results enriching Figure 3(a) with different pairs of RMs.
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Figure 10: Train (clean). More results enriching Figure 3(b) with different pairs of RMs.
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Figure 11: Validation (ID). More results enriching Figure 3(c) with different pairs of RMs.
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Figure 12: Test (OOD). More results enriching Figure 3(d) with different pairs of RMs.
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D.2. BoN experiments

D.2.1. MAIN BON EXPERIMENTS

Setup. Figures 13 and 14 report the performances of WARM for best-of-N (BoN). Given a dataset of D text prompts, for
each prompt we generate N summaries from a SFT policy, and then returns the summary with the highest reward according
to different RMs. We actually consider two SFT policies; one based on PaLM architecture (Anil et al., 2023) (N = 8,
D = 15000), the other on T5 architecture (Raffel et al., 2020) (N = 1000, D = 1000). For the x-axis, we plot the KL
between the BoN policy and the SFT policy, which can be approximated by log(N)− N−1

N (Hilton, 2023; Beirami et al.,
2024). We consider two setups, without and with 25% label corruption.

Control reward. Figure 13 shows that, in terms of pointwise control reward, WARM performs consistently better than ENS
(only with M = 2 for computational reasons) and the two best individual RMs ϕ1 and ϕ2; moreover, the gains get bigger for
M = 6. As a side note, we also observe that the individual RM ϕ2 performs better in BoN in Figure 13(c) than ϕ1 though ϕ1

was better than ϕ2 on Dood, highlighting that selecting the appropriate individual RM is not trivial (Eisenstein et al., 2023).

Oracle preference. In Figure 14, we leverage the pairwise oracle preference (Lee et al., 2023) metric to validate better
performance with WARM. We observe in Figures 14(a) and 14(b) that summaries selected with WARM have a win rate of up
to 92.5% against the random selection of a summary (from SFT). We also see in Figures 14(c) and 14(d) that reciprocally,
all selection strategies have a win rate lower than 50% against the summaries selected by WARM M = 6.
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(c) T5 (clean).

0 1 2 3 4 5 6
KL : log(N) N 1

N

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
nt

ro
l r

ew
ar

d 
ga

in

WARM M = 6
WARM M = 2
ENS M = 2
Ind 2
Ind 1

(d) T5 (corrupt).

Figure 13: Control reward for BoN experiments: clean preference dataset in Figures 13(a) and 13(c) and 25% corruptions
in Figures 13(b) and 13(d). We consider two SFT policies to generate candidate summaries: one based on PaLM (Anil et al.,
2023), the other on T5 (Raffel et al., 2020). The x-axis is the KL between the BoN and SFT policy; the y-axis is the control
reward gains w.r.t. an RM ϕ1 (the best individual RM on Dood). The blue lines represent WARM with M weights: WARM
outperforms the individual RMs (in yellows) or the ensembling of their predictions (ENS in red).
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(c) WARM (clean).
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Figure 14: Oracle preference metric for BoN experiments on T5 generations: clean preference dataset in Figures 14(a)
and 14(c) and 25% corruptions in Figures 14(b) and 14(d). We plot the win rates for different values of N vs. two reference
strategies: SFT (i.e., random selection or equivalently BoN with N = 1), or selecting the best summary according to WARM
M = 6. All strategies beat the SFT reference (they are all above 50% win rate), but that none beats WARM M = 6.
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D.2.2. ADDITIONAL BON EXPERIMENTS
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(a) Baklava with PaLM.
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Figure 15: Control reward for BoN experiments (clean setup) with Baklava when the two fine-tunings ϕ1 and ϕ3 have
different featurizer initializations, collected respectively at steps 12k and 8k from a shared SFT.
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(b) T5 vs. WARM with N = 1000.

Figure 16: Oracle preference metric for BoN experiments (clean setup). Figure 16(a) confirms Figure 14(c) but on
generations from PaLM SFT. Figure 16(b) shows win rates for BoN on T5 generations for WARM with M = 6 and always
N = 1000 for BoN vs. other RMs with 1 ≤ N ≤ 1000. We validate that BoN limits reward hacking compared to RL, as
performances get better when increasing N .
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D.3. RL experiments

D.3.1. EXPERIMENTS WITH CORRUPTED PREFERENCE DATASET
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Figure 17: RL experiments. Same as Figure 1(b) but with 25% corruption in the preference dataset.

D.3.2. EXPERIMENTS WITH CLEAN PREFERENCE DATASET
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(a) WARM M = 6.
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Figure 18: Oracle preference metric for RL experiments at fixed number of training steps (clean setup). Figure 18(a) plots
the win rate of the policy with WARM M = 6 vs. the other policies, all at the same number of training steps. Figure 18(b)
shows the win rate of WARM M = 6 against the policy trained with a single RM ϕ1 (the best according to OOD accuracy)
along training for different values of α controlling the KL regularization strength.
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(a) Control reward vs. training steps.
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(b) Control reward vs. KL.

Figure 19: Control reward for RL experiments with α = 0.01 (clean setup).
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(a) Control reward vs. training steps.
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Figure 20: Control reward for RL experiments with α = 0.001 (clean setup).
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D.4. Distillation experiments

In Figure 21 we reproduce the distillation setup from Gao et al. (2023), where the control PaLM-XS RM generates the labels
to train PaLM-XXS RMs. As a side note, we observed that distillation changes the diversity across fine-tuned RMs, thus
potentially altering the significance of the distillation setup, motivating us in exploring the more realistic RLAIF setup.
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Figure 21: BoN experiment in the distillation setup from Gao et al. (2023). The labels in the preference dataset are
given by the control RM, the same RM which gives the y-axis. The candidate summaries are generated by a SFT with the
T5 architecture (Raffel et al., 2020). The blue lines represent WARM with M weights: WARM performs higher than the
individual RMs (in yellows) or when ensembling their predictions (ENS in red).

D.5. Experiments on Anthropic HH datasets

(a) Harmlessness dataset. (b) Helpfulness dataset.

Figure 22: Anthropic HH datasets (Bai et al., 2022a). We consider ϕ1 and ϕ2 trained on the concatenation of the
harmlessness and the helpfulness training datasets, combine them either by weight interpolation (WA) or by prediction
ensembling (ENS), and report their performances. We observe that the linear mode connectivity Observation 1 holds
as the curves are above the diagonal (Diag), both when the evaluation occurs on the harmlessness validation dataset
or on the helpfulness validation dataset. We notably uncover an interesting phenomenon: when interpolating between
two RMs fine-tuned respectively on harmlessness only, and the other on helpfulness only, we can obtain a WARM that
encapsulates both criteria (in a multitask fashion) by weight averaging. This opens a promising direction for future research
on multi-objective alignment.
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