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ABSTRACT

Momentum-based gradients are critical for optimizing advanced machine learn-
ing models, as they not only accelerate convergence but also help gradient-based
optimizers overcome stationary points. While most state-of-the-art momentum
techniques rely on lower-power gradients, such as the squared first-order gradi-
ent, there has been limited exploration into the potential of higher-power gradi-
ents—those raised to powers greater than two, such as the third-power first-order
gradient. In this work, we introduce the concept of high-order momentum, where
momentum is constructed using higher-power gradients, with a specific focus on
the third-power first-order gradient as a representative example. Our research of-
fers both theoretical and empirical evidence of the benefits of this novel approach.
From a theoretical standpoint, we demonstrate that incorporating third-power gra-
dients into momentum can improve the convergence bounds of gradient-based op-
timizers for both convex and smooth nonconvex problems. To validate these find-
ings, we conducted extensive empirical experiments across convex, smooth non-
convex, and nonsmooth nonconvex optimization tasks. The results consistently
showcase that high-order momentum outperforms traditional momentum-based
optimizers, providing superior performance and more efficient optimization.

1 INTRODUCTION

Optimization problems in machine learning are commonly tackled using gradient-based optimizers,
which rely on either full gradients—computed from the entire dataset—or stochastic gradients, de-
rived from mini-batches. While full gradients guarantee eventual convergence, stochastic gradients
offer enhanced computational efficiency (Hazan et al., 2007; Nemirovski et al., 2009; Rakhlin et al.,
2011). Over the past decade, research has shown that combining full gradients, stochastic gradients,
noisy stimuli, batch strategies, sampling, and momentum techniques in gradient-based optimizers
can lead to favorable convergence, expected accuracy, and improved robustness (Shalev-Shwartz &
Zhang, 2013; Zhang et al., 2012; Johnson & Zhang, 2013; Defazio et al., 2014; Arjevani & Shamir,
2015; Lin et al., 2015; Allen-Zhu, 2017; Haji & Abdulazeez, 2021).

Momentum, one of the most influential techniques, is widely used in gradient-based optimizers to
further improve performance (Liu et al., 2020; Loizou & Richtárik, 2020; Haji & Abdulazeez, 2021).
Intuitively, momentum addresses the issue of slow convergence in later stages of optimization, such
as near (δ, ϵ)-Goldstein stationary points (Clarke, 1974; 1975; 1981; 1990; Jordan et al., 2023),
where gradients oscillate within a narrow range. Momentum helps by driving gradients away from
these oscillations and toward the global optimum, making it especially effective for nonsmooth
nonconvex objectives, such as those found in Deep Neural Networks (DNNs) (Mai & Johansson,
2020; Wang et al., 2021; Wang & Wen, 2022; Jordan et al., 2023).

Due to these advantages, leading optimizers like Adam, STORM, and STORM+ (Kingma & Ba,
2014; Cutkosky & Orabona, 2019; Levy et al., 2021) incorporate momentum to achieve higher accu-
racy and reduce the likelihood of getting trapped in stationary points. For instance, Adam uses two
momentum terms—first-order and squared first-order gradients—to optimize objective functions,
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often outperforming alternatives like AdaGrad and SGD (Kingma & Ba, 2014; Lydia & Francis,
2019; Chandra et al., 2022; Beznosikov et al., 2023). STORM, which uses a stochastic recursive
momentum term based on squared gradients, has been shown to achieve better accuracy than Adam
when optimizing ResNet (Cutkosky & Orabona, 2019), and the more recent STORM+ enhances
this approach with adaptive learning rates, eliminating the need for parameter tuning (Levy et al.,
2021).

While first-order and squared gradients dominate current momentum-based approaches, exploring
higher-order momentum holds great potential. For instance, incorporating third-power gradients
could further enhance the convergence bound of gradient-based optimizers. In this work, we in-
troduce the High-Order Momentum Estimator (HOME) optimizer, a framework designed to ex-
plore and advance high-order momentum techniques. Our focus is on HOME-3, which leverages
third-power gradients to enhance momentum, such as (f ′)3. First, we present a theoretical analysis
showing that HOME-3 significantly improves convergence bounds for both convex and smooth non-
convex optimization problems. We then extend our numerical experiments to nonsmooth nonconvex
problems, where HOME-3 consistently outperforms other momentum-based optimizers. Finally, we
use statistical techniques to quantify the performance of HOME-3, validating both the effectiveness
and robustness of third-power gradients in momentum.

Contributions: In this work, the potential contributions of HOME are categorized as follows:

Third-Order Momentum Enhances Convergence Bound for Convex Problems (Theorem 4.1): Based
on the assumptions and properties of convex objective functions (see Assumption 2.1), the proposed
HOME-3 optimizer, incorporating a third-power gradient, enhances the convergence bound to O(1/
T 5/6). Detailed proof of Theorem 4.1 can be found in Appendix A of the Supplementary Material.

Third-Order Momentum Advances Convergence Bound for Smooth Nonconvex Problems (Theorem
4.2): According to the assumptions and properties of smooth nonconvex functions (see Assumption
2.2), the HOME-3 optimizer advances the convergence bound to approximately O(1/T 5/6). The
proof for Theorem 4.2 is provided in Appendix A of the Supplementary Material.

High-Order Momentum Enhances Convergence for Nonsmooth Nonconvex Problems (Theorem
4.4): We empirically investigate the performance of high-order momentum optimizers on nonsmooth
nonconvex problems, as illustrated in Figure 3 . To further validate the performance of HOME-3,
we employ a deep neural network, since the objective function of a multi-layer deep neural network
is typically nonsmooth and nonconvex (Jordan et al., 2023). The results, shown in Figures 3 and 4,
indicate that HOME-3 outperforms other peer momentum-based optimizers. Additionally, we ex-
plore the advantages of coordinate randomization in Lemma 4.3 and Theorem 4.4, demonstrating
that it preserves the convergence bound of the original gradient-based optimizer.

Related Work: In the field of convex and smooth nonconvex optimization, Kingma’s work on
Adam (Kingma & Ba, 2014) demonstrated that momentum, built on the first-order and squared gra-
dients, can achieve a convergence bound of O(1/T 1/2) for convex problems. Similarly, STORM,
which uses a recursive stochastic momentum, obtains a convergence bound of O(1/T 1/3) for
smooth nonconvex problems (Cutkosky & Orabona, 2019). More recently, STORM+ achieved
a bound of O(1/T 1/2 + σ1/3/T 1/3) (Levy et al., 2021). Notably, in both convex and smooth non-
convex scenarios, HOME-3 achieves a superior convergence bound of O(1/T 5/6).

2 PRELIMINARIES: DEFINITIONS AND ASSUMPTIONS

In this work, we consider the following minimization problem:

min
X⊆RD

f(X) (1)

In equation 1, X ∈ RD represents a vector denotes the independent variables of an objective func-
tion f(·) : RD → R, D < ∞. The objective function f(·) can be convex, smooth nonconvex,
or nonsmooth nonconvex real functions. In this work, the theoretical analyses of the convergence
bound concentrate on convex and smooth nonconvex problems. Due to the advantages of coordinate
randomization on nonsmooth nonconvex problems that have been discussed recently, we empirically
investigate the performance of momentum incorporating coordinate randomization and third-power
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gradient on nonsmooth nonconvex optimization (Zhang & Bao, 2022). Furthermore, we have essen-
tial definitions and assumptions throughout this work as follows:

Definition 2.1 (High-Order Momentum) Given a momentum M denoted on x ∈ RD, M relies on
variables {∇f(x), (∇f(x))2, · · · , (∇f(x))n}, n < ∞, we call M a nth-order momentum. And n
is the maximum power of the gradient employed to build the momentum.

Definition 2.2 (Smooth Property) Given an objective function f denoted as f : RD → R, for any
k ∈ N, if

∥∥∇kf(x)−∇kf(y)
∥∥ ≤ L ∥x− y∥ holds, we call f a smooth function. And ∥·∥ represents

an Euclidean norm. We can denote g = ∇f(x) and gt = ∇f(xt). gt represents a gradient within t
iterations.

Definition 2.3 (Gradient-based Optimization Operator) Given an operator as G : R → RD, G de-
notes a gradient-based optimization operator. For example, suppose t(∀t ∈ N) as current iteration,
we have G · f(xt) = xt−α ·∇f(xt), the operator G denotes a first-order gradient-based optimizer.

Definition 2.4 (Coordinate Randomization) Given an operator R denoted as R : RD → RD, we
haveR[x1, x2, · · · , xD]→ [x̂1, x̂2, · · · , x̂D]. The operatorR is a coordinate randomization.

Definition 2.5 (Iterative Format of Gradient and Permutation Randomization Operators) Given
gradient and permutation randomization operators G and R, suppose the current iteration as t,
Gtf(x) andRtx represent an iterative format of gradient and permutation randomization operator
within t iterations. For example, G2f(x) = G · G · f(x) andR2x = R · R · x.

Definition 2.6 (Initialization and Stationary Point) We denote x0 as an initialized variable for a
gradient-based optimizer to begin iteration. Meanwhile, a stationary point is represented by xT ,
and T indicates the maximum iteration.

Definition 2.7 (Iterative Output of Gradient and Coordinate Randomization Operators) Given
gradient and permutation randomization operators G and R, suppose the current iteration as
t, Gtf(x) and Rtx represent gradient and permutation randomization operator within t itera-
tions. The iterative output of gradient and permutation randomization operators are denoted as
xt = G · f(xt−1) = Gt · f(x0) and x̂t = R · G · f(xt−1) = Rt · Gt · f(x0).

Moreover, four vital assumptions are provided below to benefit theoretical analyses of HOME-3
optimizer on convex, smooth nonconvex, and nonsmooth nonconvex optimization.

Assumption 2.1 (Convex Assumption) f(y) ≥ f(x) + (∇f(x))T (y − x), x, y ∈ RD

Assumption 2.2 (Smooth Nonconvex Assumption) f(y) ≤ f(x)+(∇f(x))T (y−x)+ L
2 · ∥x− y∥,

x, y ∈ RD, L ∈ R, L > 0

Assumption 2.3 (Finite Dimensional Assumption) In this study, the objective function f : RD → R,
gradient optimizer G denoted as G : R → RD, and coordinate randomization R : RD → RD, all
theoretical analyses under D <∞.

Assumption 2.4 (Linear Representation of All Gradients) Considering iteration from 1 to T , for
any t ∈ [1, T ], and n ∈ N as the power for gradient, ∀ϵ > 0, the following equation holds:

∥gnt − (k1g
n
1 + k2g

n
2 + · · ·+ kT g

n
T )∥ < ϵ (2)

{k1, k2, · · · , kT } are constant and {g1, g2, · · · , gT } represents first-order gradient in 1, 2, · · · , T
iteration.

We can derive equation 2 from the Assumption 2.2 when the objective function is smooth. In fact,
if and only if ∀i, j ∈ N, i ̸= j, corr(gi, gj) = 0, equation 2 holds.

3 METHOD: HIGH-ORDER MOMENTUM ESTIMATOR (HOME)

This section outlines the details of the HOME optimizer, as summarized in Table 1. At its core, the
HOME optimizer offers a framework for incorporating high-power first-order gradients to generate
high-order momentum.
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In particular, we focus on analyzing the properties of high-order momentum using a third-power
first-order gradient as a starting point and extend our theoretical analysis to even higher-order mo-
menta, such as those utilizing a sixth-power gradient. To facilitate both implementation and vali-
dation against other state-of-the-art optimizers, we base our framework on the widely used Adam
optimizer. However, in contrast to Adam, which is dominated by first- and second-order momentum
terms, our proposed method introduces an innovative update rule that is driven by the interaction
between the first and third momentum terms, as shown below:

xt ← xt−1 − αt · (M̂t−1 − Ŝt−1)/(

√
V̂t−1 + ϵ1) (3)

In equation 3, M̂t, V̂t, and Ŝt denote the first-order, second-order, and third-order momentum (please
refer to Definition 2.1). Meanwhile, αt denotes an adaptive learning rate (Huang et al., 2021). And
ϵ1 is set the same as Adam (Kingma & Ba, 2014). In addition, the third momentum term Ŝt is
cultivated on the third-power first-order gradient:

St ← β3St−1 + (1− β3)g
3
t

Ŝt ←
St

1− βt
3

(4)

where β3 is an exponential decay and g3t represents a third-power gradient within iteration t. Intu-
itively, a higher-power gradient dominates the update when the gradient norm is sufficiently large at
the early stage. Otherwise, a lower-order gradient is in charge of the update when the gradient norm
is reduced to a small value. That is, the convergence bound of the HOME optimizer is adaptive. In
addition, other efficient techniques are included for the HOME optimizer, such as adaptive learning
rate (Huang et al., 2021) and coordinate randomization (Zhang & Bao, 2022) since these techniques
guarantee an influential impact (Huang et al., 2021; Jordan et al., 2023) on complex optimization,
e.g., nonsmooth/smooth nonconvex problems.

The input for HOME-3 optimizer is: t represents current iteration; T defines the maximum iteration;
αt denotes an adaptive step size based on current iteration (Huang et al., 2021), such as 0.001×(1−
t
T ); β1 = 0.9, β2 = 0.999, β3 = 0.99 are exponential decay for three momentum terms (Kingma &
Ba, 2014), respectively; Notably, β3 is manually set, ensuring that β1 < β3 < β2; M0 denotes the
first-moment vector and initializes as 0; V0 denotes the second momentum vector and is initialized
as 0; S0 denotes the third momentum vector and is initialized as 0; ϵ1 defines the same in Adam; ϵ2
represents a threshold when gradient within a stationary point. In this work, we set ϵ2 the same as
ϵ1.

Importantly, Table 1 presents a framework updated on Adam optimizer (Kingma & Ba, 2014) to
introduce one additional momentum term using a third-power gradient to improve the convergence
bound. The HOME-3 indicates that the highest power of the gradient for cultivating momentum
is 3. Notably, the coordinate randomization R is only applied to nonsmooth nonconvex problems.
Thus, the framework in Table 1 could be treated as a potential standard framework to incorporate
high-order momentum.

As discussed before, a higher-order momentum St and Ŝt dominate the update at the beginning,
due to

∥∥g3t ∥∥ >> ∥gt∥. Furthermore, when the gradient approximates a stationary point or local
optimum, such as ∀ϵ > 0, ∥gt∥ < ϵ, the lower-power gradient is in charge of updating. In particular,
let the Eq. 3 equal to 0, we can infer the stopping criteria of HOME-3:

∀ϵ > 0
∥∥∥M̂t − Ŝt

∥∥∥ < ϵ (5)

Since
∥∥∥M̂t − Ŝt

∥∥∥ < ϵ can result in terminating HOME-3, as indicated in equation 4 and equation 5,
we introduce coordinate randomization for HOME optimizers to escape potential stationary points
in the objective function. Furthermore, at the late stage, when the gradient approximates to the
stationary point, such as

∥∥∥M̂t

∥∥∥ ,∥∥∥Ŝt

∥∥∥ < ϵ, coordinate randomization can maintain the difference

between
∥∥∥M̂t

∥∥∥ and
∥∥∥Ŝt

∥∥∥ in order to advance Ŝt − M̂t to escape an open cube of stationary points.
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Table 1: The Pseudo Code of High-Order Momentum Estimator (HOME)
Algorithm 1: HOME-3

1: while t < T
2: gt ← ∇xf(xt)
3: Mt ← β1Mt−1 + (1− β1)gt
4: Vt ← β2Vt−1 + (1− β2)g

2
t

5: St ← β3St−1 + (1− β3)g
3
t

6: M̂t ← Mt

1−βt
1

7: V̂t ← Vt

1−βt
2

8: Ŝt ← St

1−βt
3

9: xt+1 ← xt − αt · (M̂t − Ŝt)/(
√

V̂t + ϵ1)

10: if
∥∥∥M̂t − Ŝt

∥∥∥ < ϵ2

11: x̂t+1 ← R(xt+1)
12: xt+1 ← x̂t+1

13: End if
14: t← t + 1
15: End while

4 THEORETICAL ANALYSES

This section presents the convergence analyses of the HOME-3 optimizer under three assumptions.
We begin by examining the convex case that satisfies Assumption 2.1, demonstrating that HOME-
3 can achieve a convergence upper bound of O(1/T 5/6), as outlined in Section 4.1. In Section
4.2, we extend this analysis under Assumption 2.2, showing that the convergence bound of the
HOME-3 optimizer remains comparable to that of the convex case. Additionally, in Section 4.3, we
introduce a key advancement—coordinate randomization—which can further enhance the perfor-
mance of HOME-3 in nonsmooth nonconvex scenarios. The results partially answer the questions
What is the role of randomization in dimension-free nonsmooth nonconvex optimization raised by
Jordan (Jordan et al., 2023). In short, complete theoretical proofs for the HOME-3 optimizer are
provided in Appendix A of the Supplementary Material.

4.1 CONVEX CASE

We theoretically analyze the convergence bound of HOME-3 under the convexity assumption (please
refer to Assumption 2.1) in this section.The following Theorem 4.1 demonstrates HOME-3 can
reach a convergence bound as O(1/T 5/6).

Theorem 4.1 Let f satisfy Assumption 1, suppose T as the maximum iteration, inferring from

Definitions 2.3, 2.5, and 2.6, then ∥Σ
T
t=1(f(xt)−f(xT ))∥

T can reach O(1/T 1/6).

The detailed proof of Theorem 4.1 can be viewed in Appendix A, Supplementary Material.

4.2 SMOOTH NONCONVEX CASE

In this section, under the smooth nonconvex Assumption (please refer to Assumption 2.2, we prove
that the convergence bound of HOME-3 can approximately reach O(1/T 1/6). The potential issue
impacting the convergence bound of HOME-3 is the term L

2 · ∥x− y∥. According to our analyses,
if T is sufficiently large and guarantees L√

T
→ 0,∀x, y ∈ X , in that case, the convergence bound

of HOME-3 is comparable to convexity assumption (please refer to Assumption 2.1). Similarly, the
convergence upper bound under smooth nonconvex cases can reach to O(1/T 1/6).

Theorem 4.2 Let f satisfy Assumption 2, suppose T as the maximum iteration, inferring from
Definitions 3, 5, and 6, then ∥f(xt)−f(xT )∥

T can reach O(1/T 5/6).
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The detailed proof of Theorem 4.2 can be viewed in Appendix A, Supplementary Material.

4.3 NONSMOOTH NONCONVEX CASE

Due to the complexity of smooth nonconvex cases,
∥∥∥M̂t − Ŝt

∥∥∥ could be 0 when the gradient approx-
imates the stationary point. To overcome this challenge, we incorporate randomization to increase
the opportunity for the optimizer to approximate an open cube of the global optimum. Notably, the
following Lemma proves that the norm of coordinate randomization is equal to 1.

Lemma 4.3 (Norm of Coordinate Randomization Operator is Equal to 1) Suppose the permutation
randomization as an operatorR : RD → RD, ∥R∥ = 1 holds, if D <∞.

It is not difficult to prove Lemma 4.3. The proof of Lemma 4.3 can be viewed in Appendix A,
Supplementary Material.

Importantly, in Theorem 4.4, we discuss the upper bound on the convergence bound of gradient-
based optimizer (Wang & Shen, 2023) incorporating coordinate randomization is comparable to∥∥Gt+1 · f(x0)− Gt · f(x0))

∥∥; thus, we discuss that coordinate randomization could maintain the
convergence bound of incorporated gradient-based optimizer and is shown in Theorem 4.4.

According to Definition 2.3, we can infer:

∥R · [x1, x2, · · · , xD]∥ = ∥[x̂1, x̂2, · · · , x̂D]∥ (6)

According to Definition 2.5, Lemma 4.3, and Assumption 2.3, for any x, y ∈ I , we have:∥∥Rt · Gt · (f(x)− f(y))
∥∥ ≤ ∥∥Rt

∥∥ · ∥∥Gt · (f(x)− f(y))
∥∥ =

∥∥Gt · (f(x)− f(y))
∥∥ (7)

Let x be x1 = G · f(x0) and Y be x0, inferring from equation 5, we have:∥∥Rt · Gt · (f(x1)− f(x0))
∥∥ ≤ ∥∥Gt+1 · f(x0)− Gt · f(x0))

∥∥ (8)

Theorem 4.4 (Coordinate Randomization Maintains The Convergence Bound of Incorporated Op-
timizer) Inferring from Lemma 4.3, the convergence bound of a gradient-based optimizer incorpo-
rating coordinate randomization R · G should be equal to the convergence bound of an original
gradient-based optimizer G without coordinate randomization.

5 NUMERICAL EXPERIMENTS

We validate HOME with three other peer optimizers, such as ADMM (Nishihara et al., 2015), Adam
(Kingma & Ba, 2014), and STORM (Cutkosky & Orabona, 2019), on the public biomedical data
in Multiband Multi-echo (MBME) functional Magnetic Resonance Imaging (fMRI) (Wang, 2018).
After pre-processing (Ji et al., 2022), the size of each input signal matrix is 100 × 902, 629. The
total number of subjects is 29. In this empirical study, all optimizers are terminated after 100 it-
erations with other parameters fixed to the reported default values in the literature (Kingma & Ba,
2014; Cutkosky & Orabona, 2019; Nishihara et al., 2015). In addition, ϵ2 representing the difference
between the previous and current gradient is the same as ϵ1 (Kingma & Ba, 2014). Furthermore,
the experimental studies are validated on the CPU cluster, including 16 Intel Xeon X5570 2.93GHz.
Moreover, to facilitate statistical analyses based on a large number of augmented subjects, the orig-
inal 29 subjects are expanded to 100 via data augmentation techniques (Wen et al., 2020; Iwana &
Uchida, 2021).

5.1 EXPERIMENT ON CONVEX PROBLEM: DICTIONARY LEARNING

Since Dictionary Learning (DL) is one of the representative alternative convex problems (Hao et al.,
2023; Tošić & Frossard, 2011), we employ HOME-3 and other peer optimizers to optimize the
objective functions of DL presented as follows:

min
X,Y ∈Rp×q

∥I −XY ∥+ λ ∥Y ∥1 , p, q ∈ N (9)

6
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In equation 9, I denotes the input matrix. X and Y denote weight and feature matrices, respectively.
λ represents a sparse trade-off set as the default value (Tošić & Frossard, 2011). Since DL is an
alternative convex problem, we can validate the theoretical conclusion in Section 4.1. In addition,
we provide a reconstruction loss to compare HOME with other peer optimizers quantitatively. And,
since DL is an unsupervised learning problem, we provide the reconstruction loss in Eq. 10 as
follows:

Reconstruction Loss =
∥I −XY ∥
∥I∥ (10)

Overall, Figure 1 presents the averaged reconstruction loss of HOME-3 and other peer optimizers to
optimize the objective function of DL. In particular, according to Figure 1 (a), HOME-3 can enhance
the convergence and reconstruction accuracy. Notably, HOME-3 demonstrates a more extensive
reconstruction loss at the early stage due to a larger norm of high-power gradient. In Figure 1
(b), in this most straightforward case, an individual reconstruction loss reveals the convergence of
ADMM (Nishihara et al., 2015) is faster than Adam (Kingma & Ba, 2014) and STORM (Cutkosky
& Orabona, 2019) but HOME-3 obtains the steepest convergence curve at the early stage.

Figure 1: Averaged reconstruction loss comparison of proposed HOME-3 and other three peer opti-
mizers within one hundred iterations

5.2 EXPERIMENT ON SMOOTH NONCONVEX PROBLEM: DEEP NONLINEAR MATRIX
FACTORIZATIONS

Furthermore, to validate HOME-3 on smooth nonconvex optimization, we introduce the objective
functions of Deep Nonlinear Matrix Factorization (DNMF) (Trigeorgis et al., 2016), presented in
equation 11a and equation 11b. Overall, DNMF is comparable to layer-stack deep neural networks
such as a Deep Belief Network (DBN) consisting of multiple restricted Boltzmann machines (Hin-
ton, 2009; Gu et al., 2022). Meanwhile, similar to DBN, since DNMF is an unsupervised learning
problem, we focus on comparing reconstruction loss in the following Figure 2. Importantly, to avoid
arbitrary hyperparameter tuning, we employ a rank estimator (Zhao & Zhao, 2020) to automatically
estimate the number of layers and layer size. For activation function between adjacent layers, con-
sidering previous works (Jordan et al., 2023), we set Rectified Linear Unit (ReLU) (Agarap, 2018)
as an activation function Nk in equation 11b to increase the complexity of objective function in
DNMF.

min
Zi∈Rp×q

k⋃
i=1

∥Zi∥1 (11a)

s.t.(
k∏

i=1

Xi) · Nk(Yk) + Zk = I (11b)

In equation 11, I denotes the input matrix. Xi denotes the current layer and Yi denotes the current
feature matrix. In addition, Nk represents an activation function in the current layer. Lastly, Zk

indicates a background noise matrix. And k represents the total layer number.
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In addition, reconstruction loss under smooth nonconvex assumption is denoted as:

Reconstruction Loss =

∥∥∥(∏k
i=1 Xi) · Nk(Yk) + Zk − I

∥∥∥
∥I∥

(12)

In the following Figure 2, we present a reconstruction loss to compare the HOME-3 with other
peer optimizers in the first and second layers of DNMF. Overall, in Figure 2 (a) and (b), HOME-3
has improved the convergence. Even in the late stage (after 60 iterations), due to the high-order
momentum, HOME-3 can still converge faster than peer optimizers.

Figure 2: Averaged reconstruction loss comparison of proposed HOME-3 and other three peer opti-
mizers with in one hundred iterations at first and second layers of DNMF

5.3 EXPERIMENT ON NONSMOOTH NONCONVEX PROBLEM: NOISY DEEP MATRIX
FACTORIZATION

Moreover, in this section, to continuously increase the complexity in objective functions, we aim
to investigate the performance of HOME-3 optimizer under the nonsmooth nonconvex case. To
implement a nonsmooth nonconvex optimization, we add additional random noise to the feature
matrix in DNMF (Lu et al., 2014; Lin et al., 2022), such as:

Yi ← Yi + random noise (13)

In equation 13, a random noise is added to the feature matrix Yi in equation 11. The random noise
results in nonsmooth nonconvex objective functions (Lu et al., 2014; Lin et al., 2022). Importantly,
to avoid the noise overwhelming the original data, we set the boundary of random noise in this
experiment as [−0.1 ·Median, 0.1 ·Median]. Median represents the median of the input matrix
or vector.

Figure 3 compares reconstruction loss of HOME-3 with other peer optimizers under the nonsmooth
nonconvex case. Even in the most complex case, HOME-3 can still enhance the convergence and
provide most accurate reconstruction. In Figures 3 (a) and (b), it is noticeable that the convergence
curve of HOME-3 is steepest within 20 iterations. The results further demonstrate that the high-
order momentum can improve the convergence and maintain the impact until the late stage (please
refer to the convergence curve in Figure 3 (a) and (b) after 80 iterations). Meanwhile, empirical
results suggest that the use of coordinate randomization can benefit gradient optimizers by increasing
reconstruction accuracy.

5.4 EXPERIMENT ON NONSMOOTH NONCONVEX PROBLEM: DEEP NEURAL NETWORK

Besides, Figure 4 presents a comparison between HOME-3 and two other leading optimiz-
ers—ADAM (Kingma & Ba, 2014)and STORM (Cutkosky & Orabona, 2019)—in optimizing a
three-layer DBN Hinton (2009). The DBN uses ReLU (Agarap, 2018), and the reconstruction loss

8
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Figure 3: The averaged training loss comparison of proposed HOME-3 and other three peer op-
timizers within one hundred iterations of all subjects at first and second layers of noisy DNMF,
respectively.

Figure 4: An illustration of reconstruction loss comparisons of HOME-3 and other peer optimizers
on optimizing 3-layer DBN.

follows the same definition as in equation 12. Notably, HOME-3 achieves the highest reconstruction
accuracy among the methods compared.

Lastly, consistent with previous numerical experiments, HOME-3 is validated on supervised learning
problems (e.g., Logistic Regression (Schober & Vetter, 2021) using publicly released breast cancer
data (Shut, 2023) with other peer optimizers. For a more detailed presentation of these results, please
refer to Figures 6 in Appendix A of the Supplementary Materials.

5.5 STATISTICAL ANALYSES

In this section, we quantitatively analyze previous experimental results on a large number of sam-
ples. Due to all gradient-based optimizers in the empirical study being iterative algorithms, iterative
reconstruction loss (please refer to Figures 1, 2, and 3) within each adjacent iteration is not inde-
pendent. The non-independency limits to directly employ a t-test and/or confidential intervals to
compare all iterative reconstruction accuracy (Field, 2013). Alternatively, Intra-class correlation co-
efficients (ICCs), a descriptive statistic technique that can be used for quantitative measurements
organized into groups (Bujang & Baharum, 2017).

9
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In Figures 5 (a), (b), and (c), we report the ICCs of HOME-3 and three other peer optimizers on
previous empirical experiments in Sections 5.1, 5.2, and 5.3. In particular, Figure 5 (a) describes
the ICCs on reconstruction loss of HOME-3, ADMM (Nishihara et al., 2015), Adam (Kingma &
Ba, 2014), and STORM (Cutkosky & Orabona, 2019) on 100 subjects. ADMM is the most robust
on convex optimization, and HOME-3 is more robust than Adam and STORM (Kingma & Ba,
2014; Cutkosky & Orabona, 2019). In addition, Figure 5 (b) presents the robustness of HOME-3,
ADMM (Nishihara et al., 2015), Adam (Kingma & Ba, 2014), and STORM (Cutkosky & Orabona,
2019) on smooth nonconvex optimization using 100 subjects. In particular, HOME-3 achieves the
most robust reconstruction accuracy since the ICCs in both the first and second layers are close to
0.93 and 0.95. Although ADMM obtains the largest ICCs, its reconstruction loss is inaccurate in
Figure 2. Notably, though coordinate randomization is introduced, HOME-3 is more consistent than
Adam and STORM on smooth nonconvex optimization. Lastly, in Figure 5 (c), the robustness of
HOME-3 is higher than Adam and STORM. There is no significant difference between the first and
second layers using HOME-3 to optimize nonsmooth nonconvex deep models.

Figure 5: Consistency and robustness comparisons of the proposed HOME-3 and three peer algo-
rithms are presented. In Figure 5, panels (a) and (b) demonstrate the ICC values for all optimizers
across subjects on convex and smooth nonconvex optimization, respectively. Additionally, Figure
5(c) provides the ICC values that further indicate the consistency and robustness of the HOME-3
optimizers.

6 CONCLUSION

This work introduces an innovative high-order momentum technique that utilizes high-power gra-
dients to significantly enhance the performance of the gradient-based optimizer. Our contributions
are both theoretical and empirical. On the theoretical side, we demonstrate that high-order momen-
tum with high-power gradients improves the convergence bound of optimizers in both convex and
smooth nonconvex cases, achieving an upper bound of O(1/T 5/6). Empirically, extensive exper-
iments showcase that HOME-3 consistently delivers superior reconstruction accuracy across con-
vex, smooth nonconvex, and nonsmooth nonconvex problems, underscoring its robustness. Looking
ahead, an exciting direction for future research is determining the optimal order of momentum for
complex objective functions, which will be pivotal in efficiently optimizing Large Language Models.
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A APPENDIX

Proofs:

Theorem 4.1 Let f satisfy Assumption 1, suppose T as the maximum iteration, inferring from

Definitions 3, 5, and 6, then ∥Σ
T
t=1(f(xt)−f(xT ))∥

T = O(1/T 5/6) holds.

Proof : According to Theorem 10.5 in Kingma’s work Kingma & Ba (2014) and Theorem 4 in
Reddi’s work Reddi et al. (2019) , suppose the current iteration is t, we have the iterative format of
HOME-3 as:

xt+1 = xt − α · M̂t − Ŝt√
V̂t

(A1)

Then, we subtract scalar xT and square the both side of equation A1,

(xt+1 − xT )
2 = (xt − xT )

2 − 2α · (M̂t − Ŝt)√
V̂t

· (xt − xT ) + α2 · (M̂t − Ŝt√
V̂t

)2 (A2)

Inferring from equation A2, due to initial value Ŝ0 equal to 0, Ŝt can be considered a linear combi-
nation of cubed gradient g3t :

Ŝt = k1 · g31 + k2 · g32 + · · ·+ kt · g3t (A3)

In equation A3, {ki}ti=1 is coefficient only relating to β3.

Next, inferring from Definition 2.3, Ŝt is bounded. We have:∥∥∥Ŝt

∥∥∥ ≤ max(
∥∥{ki}ti=1

∥∥) ·max(
∥∥{gt}Tt=1

∥∥) (A4)

Similarly, inferring from equation A4, we can prove that the first and second momentum, M̂t and V̂t,
are also bounded. Hereby, according to equation A4, we categorize the convergence bound under
convexity into two folds:

1). When gt is sufficiently large, for example ∥gt∥ > 1, we have
∥∥g3t ∥∥ >> ∥gt∥. Thus, when gt is

sufficiently large to conveniently analyze the convergence bound, we can ignore the influence from
M̂t. In that case, inferring from equation A4, we have:

(xt+1 − xT )
2 = (xt − xT )

2 + 2
α√
V̂t

(β3St−1 + (1− β3)g
3
t )(xt − xT ) + α2 Ŝ

2

V̂t

(A5)

We can infer from equation A5:

g3t (xT − xt) =

√
V̂t

2αt(1− β3)
[(xt − xT )

2 − (xt+1 − xT )
2] +

β3

1− β3
St−1 +

αt

1− β3
· Ŝ2√

V̂t
(A6)

The equation A6 can be converted to the following:

g3t (xT − xt) =

√
V̂t

2α(1− β3)
[(xt − xT )

2 − (xt+1 − xT )
2]+

β3

1− β3

V̂
1
4
t√
α

√
αSt−1

V̂
1
4
t

(xt − xT ) +
α

1− β3
· Ŝ2√

V̂t

(A7)

Using Young’s inequality (ab ≤ 1
2 (a

2 + b2)), we can infer:

g3t (xT − xt) ≤
√
V̂t

2α(1− β3)
[(xt − xT )

2 − (xt+1 − xT )
2]+

β3

2α(1− β3)
(xt − xT )

2

√
V̂t−1 +

β3

1− β3

S2
t−1√
V̂t

+
α

1− β3
· Ŝ2√

V̂t

(A8)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Inferring from Lemma 10.4 and Theorem 10.5 in Kingma’s work and Theorem 4 in Reddi’s
work Reddi et al. (2019), using a sequence {1, 2, · · · , T} to replace t in equation A8 to generate
t+ 1 equations, and calculate the summation of these equations, we have:

ΣT
t=1g

3
t (xt − xT ) ≤ ΣD

i=1

1

2α(1− β3)
(x1 − xT )

2
√
V̂1,i+

1

2(1− β3)
ΣD

i=1Σ
T
t=2(

√
V̂t,i

α
−

√
V̂t−1,i

α
) + ΣD

i=1Σ
T
t=1(xt − xt)

2
√

V̂t,i

+K3Σ
D
i=1 ∥g1:t,i∥

2

K3 <∞

(A9)

Inferring from Theorem 10.5 in Kigma’s work Kingma & Ba (2014) and Theorem 4 in Reddi’s
work Reddi et al. (2019), we have:

ΣT
t=1g

3
t (xt − xT ) ≤

K2
1

2α(1− β3)
ΣD

i=1

√
T V̂T,i +

K2

2α
ΣD

i=1Σ
T
t=1

β3,t

(1− β3,t)

√
tV̂t+

K3Σ
D
i=1 ∥g1:t,i∥

2

K1,K2,K3 <∞

(A10)

Furthermore, we use a sequence {1, 2, · · · , T − 1} to replace t in equation A10 and calculate the
sum of these equations. According to Assumption 2.1, we can infer:

ΣT−1
t=1 (f(xt)− f(xT )) ≤ ΣT−1

t=1 gt · (xt − xt+1) (A11)

According to Assumption 2.3 and Intermediate Value Theorem, we have:

ΣT−1
t=1 g3t · (xt − xt+1) = ΣT

t=1g
3
t · (xt − xT ) = g3 (A12)

Inferring from equation A10 and equation A12, we conclude:

∥g∥ ≤ (

∥∥∥∥ K2
1

2α(1− β3)
ΣD

i=1

√
T V̂T,i +

K2
2

2α
ΣD

i=1Σ
T
t=1

β3,t

(1− β3,t)

√
tV̂t +K3Σ

D
i=1 ∥g1:t,i∥

2

∥∥∥∥) 1
3

K1,K2,K3 <∞
(A13)

Inferring from equation A13, considering T is sufficiently large, we have:

∥g∥ = O(T 1/6) (A14)

Let
∥∥ΣT−1

t=1 (f(xt)− f(xT ))
∥∥ be RES. Inferring from equation A14 and Assumption 2.4, we have:

RES

T
≤

∥∥ΣT−1
t=1 gt · (xt − xT )

∥∥
T

=
∥ηg∥
T

= O(1/T 5/6) (A15)

Finally, we conclude:
∥RES∥

T
= O(

1

T
5
6

) (A16)

It demonstrates the HOME-3 can reach to the convergence bound O( 1

T
5
6
) when ∥gt − g∥ < ϵ,∀ϵ >

0 and ∥gt∥ is sufficiently large. The following proof demonstrates that the convergence bound could
be reduced when the gradient norm ∥gt∥ becomes smaller at the late stage.

2). On the other hand, we investigate the convergence bound when ∥gt∥ < 1 for any t.

We can infer from Assumption 2.1 and equation A16. Then we have:

RES

T
≤ K2

1

2α(1− β3)
ΣD

i=1

√
T V̂T,i +

K2
2

2α
ΣD

i=1Σ
T
t=1

β3,t

(1− β3,t)

√
tV̂t+

K3Σ
D
i=1 ∥g1:t,i∥

2

K1,K2,K3 <∞

(A17)
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Similarly, suppose T is sufficiently large, we can conclude:

∥RES∥
T

= O(
1

T
1
2

) (A18)

We have proved Theorem 4.1. Theorem 4.1 demonstrate that HOME-3 can provide the convergence
upper bound between O( 1

T
1
2
) and O( 1

T
5
6
). To summarize, the beginning gradient is usually large,

HOME-3 provides a better convergence bound approximately to O( 1

T
5
6
). In the late stage, with the

norm of gradient gradually reduced, the convergence bound of HOME-3 decreases to O( 1

T
1
2
). The

performance of HOME-3 is comparable to Adam Kingma & Ba (2014) in the late stage, such as the
gradient getting stuck in a stationary point.

Theorem 4.2 Let f satisfy Assumption 2, suppose T as the maximum iteration, inferring from
Definitions 3, 5, and 6, then ∥f(x0)−f(xT )∥

T = O(1/T 5/6) holds.

Proof :
1) At the early stage, the norm of gradient gt is sufficiently large, and the higher-order momentum
using g3t dominates the update.

According to Assumption 2.2, we have:

f(xt+1)− f(xt) ≤ gt(xt+1 − xt) +
L

2
(xt+1 − xt)(xt+1 − xt)

T (A19)

Since (xt+1 − xt) and (xt+1 − xt)
T are bounded, we let∥∥(xt+1 − xt)(xt+1 − xt)

T
∥∥ ≤ KM ∥(xt+1 − xt)∥ (A20)

Next, we use a sequence {1, 2, · · · , T − 1} to replace t in equation A16 and calculate the sum of
these equations. We can infer:

∥f(x1)− f(xT )∥ ≤
∥∥∥∥ΣT−1

t=1 gt · (xt+1 − xt) +
L

2
· (xT − x1)

∥∥∥∥ (A21)

According to Definition 2.2, L < ∞, thus, ∥f(x1)− f(xT )∥ only relates to term∥∥ΣT−1
t=1 gt · (xt+1 − xt)

∥∥.

Since
∥∥g3t ∥∥ >> ∥gt∥, ∀t ∈ {1, t}, we can infer:∥∥ΣT−1

t=1 gt · (xt+1 − xt)
∥∥ ≤ ∥∥g3t ∥∥ · ∥∥ΣT−1

t=1 (xt+1 − xt)
∥∥ (A22)

According to equation A20, equation A21, and equation A22 in Theorem 4.1, under Assumption
2.2, similarly, we can conclude:

∥f(x1)− f(xT )∥
T

≤ 1

T
·
∥∥ΣT−1

t=1 gt · (xt − xt+1)
∥∥+

KM

2T
(A23)

Since we previously proved ∥gt∥ = O(T
1
6 ), suppose T is sufficiently large, we can infer

1
T ·

∥∥ΣT−1
t=1 gt · (xt − xt+1)

∥∥ is equal to O( 1

T
5
6
).

Thus, HOME-3 can reach the convergence bound O( 1

T
5
6
) when the norm of gradient is sufficiently

large.

On the other hand, considering the norm of gradient is not large. In that case, the lower-order
momentum using gt can dominate the process.

Similar to equation A22 and equation A23, we can infer:

∥f(x1)− f(xT )∥
T

≤
∥∥ΣT−1

t=1 gt · (xt − xt+1)
∥∥+

KM

T
(A24)
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Since 1
T ·

∥∥ΣT−1
t=1 gt · (xt − xt+1)

∥∥ = O( 1

T
1
2
), we proved that HOME-3 can obtain convergence

bound O( 1

T
1
2
) when the norm of gradient is not large.

In conclusion, HOME-3 can provide a comparable convergence bound under the smooth noncon-
vex Assumption (please refer to Assumption 2.2). The only potential issue is the smoothness of
the objective function. If L >> T in equation A21, the convergence bound could be seriously
influenced.

Lemma 4.3 (Norm of Coordinate Randomization Operator is Equal to 1) Suppose the permutation
randomization as an operatorR : RD → RD, ∥R∥ = 1 holds, if D <∞.

Proof :
ConsideringR applying on finite-dimensional space:

R ·


x1

x2

...
xD

 =


x̂1

x̂2

...
x̂D

 (A25)

Inferring from equation A13, we have:

x̂1 = xi, x̂2 = xj , · · · , x̂D = xk, i, j, k ∈ [1, D] (A26)

Inferring from equation A26, we have:

||{x1, x2, · · · , xD}|| = ||{x̂1, x̂2, · · · , x̂D}|| (A27)

According to the concept of operator norm (Rudin, 1973), we can derive the following:

||R|| = sup
R · ||{x1, x2, · · · , xD}||
||{x1, x2, · · · , xD}||

= sup
||{x̂1, x̂2, · · · , x̂D}||
||{x1, x2, · · · , xD}||

= 1 (A28)

Theorem 4.4 (Coordinate Randomization Maintains The Convergence Bound of Incorporated Op-
timizer) Inferring from Lemma 4.3, the convergence bound of a gradient-based optimizer incor-
porating coordinate randomization R · G should be equal to the convergence bound of an original
gradient-based optimizer G without coordinate randomization.

Proof :
Inferring from the concept of contraction operator, we have:

||G · (f(X)− f(Y ))|| ≤ c||G · (f(X)− f(Y ))||
0 < c < 1

(A29)

We can rewrite the left side of equation A16 as:

||G · (f(It+1)− f(It))|| (A30)

Then, we have:
||G · (f(It+1)− f(It))|| ≤ c · ||(f(It+1)− f(It))|| (A31)

Considering the incorporation of optimizer and randomization asR · G · f(x), we have

||R · G · (f(It+1)− f(It))|| ≤ ||R|| · ||G · (f(It+1)− f(It))|| (A32)

Inferring from Lemma 4.3, it is obvious that we have:

||R|| · || · G · (f(It+1)− f(It))|| = ||G · (f(It+1)− f(It))|| ≤ c · ||f(It+1)− f(It)|| (A33)

equation A33 implies permutation randomization R can maintain the convergence rate of original
gradient-based optimizer G.
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Additional Experiments:

In additional experiments, we compare the time consumption of HOME-3 with other peer optimiz-
ers.

Table 2: Time Consumption Comparison in Seconds of HOME-3 and Other Peer Three Optimizers

Time Consumption at 1st Layer Time Consumption at 2nd Layer

ADMM 431.58± 83.56 ADMM 247.42± 68.54
ADAM 961.65± 199.67 ADAM 585.37± 55.17

STORM 4711.35± 342.25 STORM 4616.66± 556.27
HOME-3 1262.66± 195.16 HOME-3 1108.62± 188.05

Moreover, to ensure a fair comparison among different methods for optimizing supervised learn-
ing problems, we set all parameters to reported default values Kingma & Ba (2014); Cutkosky &
Orabona (2019). Each method was then employed to solve a logistic regression problem (Schober &
Vetter, 2021) using publicly released breast cancer data Shut (2023) for classification. The results,
observed within iterations 1 to 200, are illustrated in Figure 6.

Figure 6: An illustration of reconstruction loss comparisons of HOME-3 and other peer optimizers
on solving logistic regression problem.
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