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Abstract

Recent research on remote sensing object detection has
largely focused on improving the representation of oriented
bounding boxes but has overlooked the unique prior knowl-
edge presented in remote sensing scenarios. Such prior
knowledge can be useful because tiny remote sensing ob-
Jjects may be mistakenly detected without referencing a suf-
ficiently long-range context, which can vary for different
objects. This paper considers these priors and proposes
the lightweight Large Selective Kernel Network (LSKNet).
LSKNet can dynamically adjust its large spatial receptive
field to better model the ranging context of various objects
in remote sensing scenarios. To our knowledge, large and
selective kernel mechanisms have not been previously ex-
plored in remote sensing object detection. Without bells
and whistles, our lightweight LSKNet sets new state-of-
the-art scores on standard benchmarks, i.e., HRSC2016
(98.46% mAP), DOTA-v1.0 (81.85% mAP), and FAIRIM-
v1.0 (47.87% mAP).

1. Introduction

Remote sensing object detection [47,57, 82] focuses on
identifying and locating objects of interest in aerial images,
such as vehicles, ships or aircraft. In recent years, one main-
stream trend has been to generate bounding boxes that accu-
rately fit the orientation of the objects being detected rather
than simply drawing horizontal boxes around them. Conse-
quently, much research has focused on improving the rep-
resentation of oriented bounding boxes for remote sensing
object detection. This has largely been achieved through the
development of specialized detection frameworks (i.e., Rol
Transformer [12], Oriented R-CNN [69], and R3Det [75])
and oriented box encoding (i.e., gliding vertex [71] and
midpoint offset box encoding [609]). Additionally, several
loss functions, including GWD [77], KLD [79], and Modu-
lated Loss [54], have been further proposed to enhance the
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Figure 1. Successfully detecting remote sensing objects requires
using a wide range of contextual information. Detectors with a
limited receptive field may easily lead to incorrect results.

performance of these approaches.

Despite these advances, relatively few works have con-
sidered the strong prior knowledge of remote sensing im-
ages. Aerial images are typically captured at high resolu-
tions from a bird’s eye view. In particular, most objects in
aerial images may be small and difficult to identify based
on their appearance alone. Instead, recognizing these ob-
jects relies on their context, as the surrounding environment
can provide valuable clues about their shape, orientation,
and other characteristics. According to an analysis of the
remote sensing data, we identify two important priors:

e Accurate detection often requires a wide range of
contextual information. As illustrated in Fig. 1, the
limited context used by object detectors in remote
sensing images can often lead to incorrect classifica-
tions. Rather than their appearance, the context distin-
guishes the ship from the vehicle.

¢ The contextual information required for different
objects is very different. As shown in Fig. 2, the
soccer field requires relatively less contextual infor-
mation because of the unique distinguishable court
borderlines. In contrast, the roundabout may require
more context information to distinguish between gar-
dens and ring-like buildings. Intersections, especially
those partially covered by trees, require an extremely
large receptive field due to the long-range dependen-
cies between the intersecting roads.

To address the challenge of accurately detecting objects
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Figure 2. The wide range of contextual information required for
different object types is very different by human criteria. The ob-
jects with red boxes are the exact ground-truth annotations.

in remote sensing images, which often require a wide and
dynamic range of contextual information, we propose a
novel lightweight detection backbone called Large Selec-
tive Kernel Network (LSKNet). Our approach involves dy-
namically adjusting the receptive field of the feature ex-
traction backbone to more effectively process the varying
wide context of the objects being detected. This is achieved
through a spatial selective mechanism, which efficiently
weights the features processed by a sequence of large depth-
wise kernels and then spatially merge them. The weights
of these kernels are determined dynamically based on the
input, allowing the model to adaptively use different large
kernels and adjust the receptive field for each target in space
as needed.

To our knowledge, the proposed LSKNet is the first to in-
vestigate using large and selective kernels for remote sens-
ing object detection. Despite its simplicity and lightweight
nature, our model achieves state-of-the-art performance on
three popular datasets: HRSC2016 (98.46% mAP), DOTA-
v1.0 (81.85% mAP), and FAIRIM-v1.0 (47.87% mAP),
surpassing previously published results. Furthermore, we
demonstrate that our model’s behaviour aligns with the two
priors above, which in turn verifies the effectiveness of the
proposed mechanism.

2. Related Work
2.1. Remote Sensing Object Detection Framework

High-performance remote sensing object detectors often
rely on the RCNN [56] framework, which consists of a re-
gion proposal network and regional CNN detection heads.
The RPN proposes high-quality regions of interest (Rols)
from the backbone feature maps, while the regional CNN
detection heads are responsible for object classification and
bounding box regression. Several variations on the RCNN
framework have been proposed in recent years. The two-

stage Rol transformer [12] uses fully-connected layers to
rotate candidate horizontal anchor boxes in the first stage,
and then features within the boxes are extracted for fur-
ther regression and classification. SCRDet [78] uses an
attention mechanism to reduce background noise and im-
prove the modelling of crowded and small objects. Ori-
ented RCNN [69] and Gliding Vertex [71] introduce new
box encoding systems to address the instability of train-
ing losses caused by rotation angle periodicity. Some ap-
proaches [32, 61, 87] treat remote sensing detection as a
point detection task [74], providing an alternative way of
addressing remote sensing detection problems.

Rather than relying on the proposed anchors, one-stage
detection frameworks classify and regress oriented bound-
ing boxes directly from grid densely sampled anchors. The
one-stage S2A network [23] extracts robust object features
via oriented feature alignment and orientation-invariant fea-
ture extraction. DRN [50], on the other hand, leverages at-
tention mechanisms to dynamically refined the backbone’s
extracted features for more accurate predictions. In contrast
with Oriented RCNN and Gliding Vertex, RSDet [54] ad-
dresses the discontinuity of regression loss by introducing
a modulated loss. LD [86] enhances the localization qual-
ity of oriented bounding boxes by distillation. AOPG [6]
and R3Det [75] adopt a progressive regression approach,
refining bounding boxes from coarse to fine granularity. In
addition to CNN, AO2-DETR [9] introduces a transformer-
based detection framework, DETR [4], into remote sensing
detection tasks, which brings more research diversity.

While these approaches have achieved promising results
in addressing the issue of rotation variance, they do not con-
sider the strong and valuable prior information presented in
aerial images. Instead, our approach uses the large kernel
and spatial selective mechanism to better model these pri-
ors without modifying the current detection framework.

2.2. Large Kernel Networks

Transformer-based [59] models, such as the Vision
Transformer (ViT) [1, 11, 14,53,60], Swin transformer [25,

,51,64,70,83], and pyramid transformer [62, 67], have
gained popularity in computer vision. Research [17,45,55,

, 85] has demonstrated that the large receptive field is a
key factor in their success. Recent work has shown that
well-designed convolutional networks with large receptive
fields can also be highly competitive with transformer-based
models. For example, ConvNeXt [40] uses 7x 7 depth-wise
convolutions in its backbone, resulting in significant per-
formance improvements in downstream tasks. In addition,
RepLKNet [13] even uses a 31 x31 convolutional kernel via
re-parameterization, achieving compelling performance. A
subsequent work SLaK [38], further expands the kernel size
to 5151 through kernel decomposition and sparse group
techniques. RF-Next [ 18] automatically searches for a fixed
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Figure 3. Architectural comparison between our proposed LSK module and other representative selective mechanism modules. K: Kernel.

large kernel for various tasks. VAN [19] introduces an ef-
ficient decomposition of large kernels as convolutional at-
tention. Similarly, SegNeXt [20] and Conv2Former [28]
demonstrate that large kernel convolution plays an impor-
tant role in modulating the convolutional features with a
richer context.

Although large kernel convolutions have received atten-
tion in general object recognition, there has been a lack of
research examining their significance in remote sensing de-
tection. As previously noted in Sec. 1, aerial images possess
unique characteristics that make large kernels particularly
well-suited for remote sensing. As far as we know, our work
represents the first attempt to introduce large kernel convo-
lutions for remote sensing and to examine their importance
in this field.

2.3. Attention/Selective Mechanism

The attention mechanism [21] is a simple but effective
way to enhance neural representations for various tasks.
The channel attention SE block [30] uses global average
information to reweight feature channels, while spatial at-
tention modules like GENet [29], GCNet [3], and SGE [34]
enhance a network’s ability to model context information
via spatial masks. CBAM [66] and BAM [52] combine both
channel and spatial attention.

In addition to channel/spatial attention mechanisms, ker-
nel selection is a self-adaptive and effective technique for
dynamic context modelling. CondConv [73] and Dynamic
convolution [5] use parallel kernels to adaptively aggregate
features from multiple convolution kernels. SKNet [33] in-
troduces multiple branches with different convolutional ker-
nels and selectively combines them along the channel di-
mension. ResNeSt [84] extends the idea of SKNet by parti-
tioning the input feature map into several groups. Similarly
to the SKNet, SCNet [37] uses branch attention to captur-
ing richer information and spatial attention to improve lo-
calization ability. Deformable Convnets [8, 89] introduce a
flexible kernel shape for convolution units.

Our approach bears the most similarity to SKNet [33].
However, there are two key distinctions between the two
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Figure 4. A block of LSKNet.

methods. Firstly, our proposed selective mechanism relies
explicitly on a sequence of large kernels via decomposition,
a departure from most existing attention-based approaches.
Secondly, our method adaptively aggregates information
across large kernels in the spatial dimension rather than
the channel dimension utilized by SKNet. This design is
more intuitive and effective for remote sensing tasks be-
cause channel-wise selection fails to model the spatial vari-
ance for different targets across the image space. The de-
tailed structural comparisons are listed in Fig. 3.

3. Methods
3.1. LSKNet Architecture

The overall architecture of the LSKNet backbone is sim-
ply built upon repeated LSKNet Blocks. Fig 4 illustrates
an LSKNet Block, which is inspired by ConvNeXt [41],
MetaFormer [81], PVT-v2 [63], Conv2Former [28] and
VAN [19]. Each LSKNet block consists of two residual
sub-blocks: the Large Kernel Selection (LK Selection) sub-
block and the Feed-forward Network (FFN) sub-block.

The LK Selection sub-block dynamically adjusts the net-
work’s receptive field as needed. The core LSK module
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Figure 5. A conceptual illustration of LSK module.

Model {C1,C2,C3,C4}y  {D1, D2, D3, Da}  #P
*LSKNet-T {32, 64, 160,256}  {3,3.5,2} 43M
*LSKNet-S {64, 128,320,512} {2,2,4,2} 14.4M

Table 1. Variants of LSKNet used in this paper. C;: feature
channel number; D;: number of LSKNet blocks of each stage 7.

RF (k, d) sequence #P FLOPs
23 23, 1) 40.4K 424G
6.1 — (7,3) 11.3K 11.9G
29 (29, 1) 60.4K 63.3G
3B, 1) — (5,2) — (7,3) 11.3K 13.6G

Table 2. Theoretical efficiency comparisons of two representa-
tive examples by expanding a single large depth-wise kernel into
a sequence, given channels being 64. k: kernel size; d: dilation.

(Fig. 5) is embedded in the LK Selection sub-block. It con-
sists of a sequence of large kernel convolutions and a spa-
tial kernel selection mechanism, which will be elaborated
on later. The FFN sub-block is used for channel mixing and
feature refinement, which consists of a sequence of a fully
connected layer, a depth-wise convolution, a GELU [26] ac-
tivation, and a second fully connected layer.

The detailed configuration of different variants of
LSKNet used in this paper is listed in Tab. 1.

3.2. Large Kernel Convolutions

According to the prior (2), as stated in Sec. 1, it is sug-
gested to model a series of multiple long-range contexts for
adaptive selection. Therefore, we propose constructing a
larger kernel convolution by explicitly decomposing it into
a sequence of depth-wise convolutions with a large grow-
ing kernel and increasing dilation. Specifically, for the i-th
depth-wise convolution, the expansion of the kernel size k,
dilation rate d, and the receptive field RF' are defined as
follows:

ki1 <k di=1,di1 <d; <RF;_4, (D
RF, = ki, RF, = di(ki — 1) + RF_1.  (2)

The increasing kernel size and dilation rate ensure that the
receptive field expands quickly enough. We set an upper

bound on the dilation rate to guarantee that the dilation con-
volution does not introduce gaps between feature maps. For
instance, we can decompose a large kernel into 2 or 3 depth-
wise convolutions as in Tab. 2, which have a theoretical re-
ceptive field of 23 and 29, respectively.

There are two advantages of the proposed designs. First,
it explicitly yields multiple features with various large re-
ceptive fields, which makes it easier for the later kernel se-
lection. Second, sequential decomposition is more efficient
than simply applying a single larger kernel. As shown in
Tab. 2, under the same resulted theoretical receptive field,
our decomposition greatly reduces the number of parame-
ters compared to the standard large convolution kernels. To
obtain features with rich contextual information from differ-
ent ranges for input X, a series of decomposed depth-wise
convolutions with different receptive fields are applied:

(Us), 3)

where F&%(-) are depth-wise convolutions with kernel k;
and dilation d;. Assuming there are N decomposed kernels,
each of which is further processed by a 1x1 convolution
layer F1>1(-):

Uy=X, Uy =FW

U, = F*1(U,), foriin [1, N], )

allowing channel mixing for each spatial feature vector.
Then, a selection mechanism is proposed to dynamically
select kernels for various objects based on the multi-scale
features obtained, which would be introduced next.

3.3. Spatial Kernel Selection

To enhance the network’s ability to focus on the most
relevant spatial context regions for detecting targets, we use
a spatial selection mechanism to spatially select the fea-
ture maps from large convolution kernels at different scales.
Firstly, we concatenate the features obtained from different
kernels with different ranges of receptive field:

U =[U;;..; Uy, 5

and then efficiently extract the spatial relationship by apply-
ing channel-based average and maximum pooling (denoted
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a8 Pavg(+) and Ppyaz(+)) to U:
SAcwg = Pavg(ﬁ)’ SAmaa: = maz(ﬁ)7 (6)

where SA,,4 and SA,,,, are the average and maximum
pooled spatial feature descriptors. To allow information in-
teraction among different spatial descriptors, we concate-
nate the spatially pooled features and use a convolution
layer 727N (.) to transform the pooled features (with 2
channels) into N spatial attention maps:

SA = F27N([SAuug: SAmaz)). @)

For each of the spatial attention maps, ﬁi, a sigmoid ac-
tivation function is applied to obtain the individual spatial
selection mask for each of the decomposed large kernels:

where o(-) denotes the sigmoid function. The feature
maps from the sequence of decomposed large kernels are
weighted by their corresponding spatial selection masks and
then fused by a convolution layer F(+) to obtain the atten-
tion feature S:

N
S=F_(SA; Uy). )

i=1

The final output of the LSK module is the element-wise
product between the input feature X and S, similarly
in [19,20,28]:

Y=X-S. (10)

Fig. 5 shows a detailed conceptual illustration of an LSK
module where we intuitively demonstrate how the large
selective kernel works by adaptively collecting the corre-
sponding large receptive field for different objects.

4. Experiments
4.1. Datasets

HRSC2016 [42] is a high-resolution remote sensing
dataset which is collected for ship detection. It consists of
1,061 images which contain 2,976 instances of ships.

DOTA-v1.0 [68] consists of 2,806 remote sensing im-
ages. It contains 188,282 instances of 15 categories: Plane
(PL), Baseball diamond (BD), Bridge (BR), Ground track
field (GTF), Small vehicle (SV), Large vehicle (LV), Ship
(SH), Tennis court (TC), Basketball court (BC), Storage
tank (ST), Soccer-ball field (SBF), Roundabout (RA), Har-
bor (HA), Swimming pool (SP), and Helicopter (HC).

FAIRIM-v1.0 [58] is a recently published remote sens-
ing dataset that consists of 15,266 high-resolution images
and more than 1 million instances. It contains 5 categories
and 37 sub-categories objects.

4.2. Implementation Details

In our experiment, we report the results of the ori-
ented object detection models on HRSC2016, DOTA-v1.0
and FAIRIM-v1.0 datasets. To ensure fairness, we follow
the same dataset processing approach as other mainstream
methods [23, 24, 69]. For DOTA-v1.0 and FAIRIM-v1.0
datasets, we adopt multi-scale training and testing strat-
egy by first rescaling the images into three scales (0.5, 1.0,
1.5), and then cropping each scaled image into 1024 <1024
sub-images with a patch overlap of 500 pixels. For the
HRSC2016 dataset, we rescale the images by setting the
longer side of the image to 800 pixels, without changing
their aspect ratios.

During our experiments, the backbones are first pre-
trained on the ImageNet-1K [10] dataset and then finetuned
on the target remote sensing benchmarks. In ablation stud-
ies, we adopt the 100-epoch backbone pretraining sched-
ule for experimental efficiency (Tab. 3, 5, 4, 6, 7). We
adopt a 300-epoch backbone pretraining strategy to pursue
higher accuracy in main results (Tab. 8, 9, 10), similarly to
[6,23,69,75]. In main results (Tab. 8, 9), the “Pre.” column
stands for the dataset on which the networks/backbones
are pretrained (IN: Imagenet [10] dataset; CO: Microsoft
COCO [36] dataset; MA: Million-AID [43] dataset). Unless
otherwise stated, LSKNet is defaulting to be built within the
framework of Oriented RCNN [69] due to its compelling
performance and efficiency. All the models are trained on
the training and validation sets and tested on the testing set.
Following [69], we train the models for 36 epochs on the
HRSC2016 datasets and 12 epochs on the DOTA-v1.0 and
FAIRIM-v1.0 datasets, with the AdamW [44] optimizer.
The initial learning rate is set to 0.0004 for HRSC2016, and
0.0002 for the other two datasets, with a weight decay of
0.05. The models are implemented under MMRotate [88]
framework. We use 8 RTX3090 GPUs with a batch size
of 8 for model training and use a single RTX3090 GPU for
testing. All the FLOPs we report in this paper are calculated
with a 1024 x 1024 image input.

4.3. Ablation Study

In this section, we report ablation study results on the
DOTA-v1.0 test set to investigate its effectiveness.

Large Kernel Decomposition. Deciding on the num-
ber of kernels to decompose is a critical choice for the LSK
module. We follow Eq. (1) to configure the decomposed
kernels. The results of the ablation study on the number
of large kernel decompositions, when the theoretical recep-
tive field is fixed at 29, are shown in Tab. 3. It suggests
that decomposing the large kernel into two depth-wise large
kernels results in a good trade-off between speed and accu-
racy, achieving the best performance in terms of both FPS
(frames per second) and mAP (mean average precision).

Receptive Field Size and Selection Type. Based on our
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(k, d) sequence RF Num. FPS mAP (%)
(29, 1) 29 1 18.6 80.66
S, 1H)— (7,4 29 2 20.5 8091
3,1)—(5,2) —(7,3) 29 3 19.2 80.77

Table 3. The effects of the number of decomposed large kernels
on the inference FPS and mAP, given the theoretical receptive field
being 29. We adopt LSKNet-T backbones pretrained on ImageNet
for 100 epochs. Decomposing the large kernel into two depth-wise
kernels achieves the best performance of speed and accuracy.

(k1,d1)  (ke.d2) CS SS | RF FPS mAP (%)
3, 1) (5,2) - - 11 221 80.80
G, D (7,3) - - 23 217 80.94
6. D (7,4) - - 29 205 80.91
(7, 1) 9,4 - - 39 213 80.84
5, 1) (7,3) v - 23 196 80.57
(Y (7,3) - v 23 207 81.31

Table 4. The effectiveness of the key design components of the
LSKNet when the large kernel is decomposed into a sequence
of two depth-wise kernels. CS: channel selection (likewise in
SKNet [33]); SS: spatial selection (ours). We adopt LSKNet-T
backbones pretrained on ImageNet for 100 epochs. The LSKNet
achieves the best performance when using a reasonably large re-
ceptive field with spatial selection.

_ Pooling | ppg | map ()
Max.  Avg.
v 20.7 81.23
v 20.7 81.12
v v 20.7 81.31

Table 5. Ablation study on the effectiveness of the maximum and
average pooling in spatial selection of our proposed LSK mod-
ule. We adopt LSKNet-T backbones pretrained on ImageNet for
100 epochs. The best result is obtained when using both.

evaluations presented in Tab. 3, we find that the optimal so-
lution for our proposed LSKNet is to decompose the large
kernel into two depth-wise kernels in series. Furthermore,
Tab. 4 shows that excessively small or large receptive fields
can hinder the performance of the LSKNet, and a recep-
tive field size of approximately 23 is determined to be the
most effective. In addition, our experiments indicate that
the proposed spatial selection approach is more effective
than channel attention (similarly in SKNet [33]) for remote
sensing object detection tasks. It suggests that in detection
tasks, spatial information is more critical.

Pooling Layers in Spatial Selection. We conduct ex-
periments to determine the optimal pooling layers for spa-
tial selection, as reported in Tab. 5. The results suggest that
using both max and average pooling in the spatial selection
component of our LSK module provides the best perfor-
mance without sacrificing inference speed.

Performance of LSKNet backbone under different
detection frameworks. To validate the generality and ef-

Frameworks ResNet-18 * LSKNet-T
ORCNN [69] 79.27 81.31 (+2.04)
Rol Trans. [12] 78.32 80.89 (+2.57)
S2A-Net [23] 76.82 80.15 (+3.33)
R3Det [75] 74.16 78.39 (+4.23)
#P (backbone only) 11.2M 4.3M (-62%)
FLOPs (backbone only) 38.1G 19.1G (-50%)

Table 6. Comparison of LSKNet-T and ResNet-18 as back-
bones with different detection frameworks on DOTA-v1.0. The
LSKNet-T backbone is pretrained on ImageNet for 100 epochs.
The lightweight LSKNet-T achieves significantly higher mAP in
various frameworks than ResNet-18.

Group Model (backbone only) #P FLOPs mAP (%)
Baseline | ResNet-18 11.2M 38.1G 79.27
L VAN-BI [19] 134M 527G 81.15
r
WEE | ConvNeXtV2-N[65] 150M 512G 80.81
Kernel
MSCANS-S [20] 13.IM  45.0G 81.12
. SKNet-26 [33] 145M  58.5G 80.67
Selective
. ResNeSt-14 [84] 8.6M 57.9G 79.51
Attention
SCNet-18 [37] 14.0M  50.7G 79.69
Ours * LSKNet-S 144M 544G 81.48
[46]

Table 7. Comparison on LSKNet-S and other (large Kker-
nel/selective attention) backbones under O-RCNN [69] frame-
work on DOTA-v1.0, except that the is under RT-
MDet [46] framework. All backbones are pretrained on ImageNet
for 100 epochs. Our LSKNet achieves the best mAP under similar
complexity budgets.

Method Pre. mAP(07)T mAP(12)T #P | FLOPs|
DRN [50] IN - 92.70 - -
CenterMap [61] IN - 92.80 41.1M 198G
Rol Trans. [12] IN 86.20 - 55.1M 200G
G.V.[71] IN 88.20 - 41.1M 198G
R3Det [75] IN 89.26 96.01 41.9M 336G
DAL [48] IN 89.77 - 36.4M 216G
GWD [77] IN 89.85 97.37 47.4M 456G
S2ANet [23] IN 90.17 95.01 38.6M 198G
AOPG [0] IN 90.34 96.22 - -
ReDet [24] IN 90.46 97.63 31.6M -
O-RCNN [69] IN 90.50 97.60 41.1M 199G
RTMDet [46] CO 90.60 97.10 52.3M 205G
+ LSKNet-T IN 90.54 98.13 21.0M 124G
* LSKNet-S IN 90.65 98.46 31.0M 161G

Table 8. Comparison with state-of-the-art methods on the
HRSC2016 dataset. The LSKNet-S backbone is pretrained on
ImageNet for 300 epochs, the same with most compared meth-
ods [23,69,75]. mAP (07/12): VOC 2007 [15]/2012 [16] metrics.

fectiveness of our proposed LSKNet backbone, we eval-
uate its performance under various remote sensing de-
tection frameworks, including two-stage frameworks O-
RCNN [69] and Rol Transformer [12] as well as one-
stage frameworks S2A-Net [23] and R3Det [75]. The re-
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Method |Pre./mAP 1| #P| |FLOPs|| PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC
One-stage

R3Det [75] IN [ 76.47 [41.9M | 336G [89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.57 62.68 67.53 78.56 72.62
CFA [22] IN| 7667 | - - [89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96
DAFNe [31] IN|7695| - - 189.40 86.27 53.70 60.51 82.04 81.17 88.66 90.37 83.81 87.27 53.93 69.38 75.61 81.26 70.86
SASM [27] IN | 79.17 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 58.80 87.27 63.82 67.81 78.67 79.35 69.37

AO2-DETR [9] IN | 79.22 | 743M | 304G [89.95 84.52 56.90 74.83 80.86 83.47 88.47 90.87 86.12 88.55 63.21 65.09 79.09 82.88 73.46
S2ANet [23] IN | 79.42 - - 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58
R3Det-GWD [77] IN | 80.23 | 41.9M | 336G [89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92
RTMDet-R [46] IN | 80.54 | 52.3M | 205G [88.36 84.96 57.33 80.46 80.58 84.88 88.08 90.90 86.32 87.57 69.29 70.61 78.63 80.97 79.24
R3Det-KLD [79] IN | 80.63 | 41.9M | 336G [89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68
RTMDet-R [46] CO| 81.33 | 52.3M | 205G |88.01 86.17 58.54 82.44 81.30 84.82 88.71 90.89 88.77 87.37 71.96 71.18 81.23 81.40 77.13

Two-stage

SCRDet [78] IN | 72.61 - - 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21
Rol Trans. [12] IN | 74.61 | 55.IM | 200G |88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03
G.V. [71] IN | 75.02 | 41.1IM | 198G |89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32
CenterMap [61] IN | 76.03 | 41.1IM | 198G |89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06
CSL [76] IN | 76.17 | 37.4M | 236G |90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93
ReDet [24] IN | 80.10 - - 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67
DODet [7] IN | 80.62 - - 89.96 85.52 58.01 81.22 78.71 85.46 88.59 90.89 87.12 87.80 70.50 71.54 82.06 77.43 74.47
AOPG [0] IN | 80.66 - - 89.88 85.57 60.90 81.51 78.70 85.29 88.85 90.89 87.60 87.65 71.66 68.69 82.31 77.32 73.10
O-RCNN [69] IN | 80.87 [ 41.IM | 199G |89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11
KFloU [80] IN | 80.93 | 58.8M | 206G [89.44 84.41 62.22 82.51 80.10 86.07 88.68 90.90 87.32 88.38 72.80 71.95 78.96 74.95 75.27
RVSA [60] MA| 81.24 [114.4M| 414G |88.97 85.76 61.46 81.27 79.98 85.31 88.30 90.84 85.06 87.50 66.77 73.11 84.75 81.88 77.58

* LSKNet-T (ours) | IN | 81.37 | 21.0M | 124G [89.14 84.90 61.78 83.50 81.54 85.87 88.64 90.89 88.02 87.31 71.55 70.74 78.66 79.81 78.16
* LSKNet-S (ours) | IN | 81.64 | 31.0M | 161G [89.57 86.34 63.13 83.67 82.20 86.10 88.66 90.89 88.41 87.42 71.72 69.58 78.88 81.77 76.52
* LSKNet-S* (ours)| IN | 81.85 | 31.0M | 161G |89.69 85.70 61.47 83.23 81.37 86.05 88.64 90.88 88.49 87.40 71.67 71.35 79.19 81.77 80.86

Table 9. Comparison with state-of-the-art methods on the DOTA-v1.0 dataset with multi-scale training and testing. The LSKNet backbones
are pretrained on ImageNet for 300 epochs, similarly to [23, ]. *: With EMA finetune similarly to the compared methods [46].

Model |G. V.* [71]| RetinaNet* [35] | C-RCNN* [2]| F-RCNN* [56] |Rol Trans.* [12]| O-RCNN [69] |+ LSKNet-T |+ LSKNet-S

mAP(%)| 2992 | 3067 | 3118 | 3212 | 3529 | 4560 | 4693 | 4787
Table 10. Comparison with state-of-the-art methods on the FAIR1M-v1.0 dataset. The LSKNet backbones are pretrained on ImageNet for
300 epochs, similarly to [23,69,75]. *: Results are referenced from FAIRIM paper [58].

sults in Tab. 6 show that our proposed LSKNet-T backbone
significantly improves detection performance compared to
ResNet-18, while using only 38% of its parameters and with
50% fewer FLOPs.

Comparison with Other Large Kernel/Selective At-
tention Backbones. We also compare our LSKNet with 6
popular high-performance backbone models with large ker-
nels or selective attention. As shown in Tab. 7, under similar
model sizes and complexity budgets, our LSKNet outper-
forms all other models on the DOTA-v1.0 dataset.

4.4. Main Results

Results on HRSC2016. We evaluated the performance
of our LSKNet against 12 state-of-the-art methods on the
HRSC2016 dataset. The results presented in Tab. 8 demon-
strate that our LSKNet-S outperforms all other methods
with an mAP of 90.65% and 98.46% under the PASCAL
VOC 2007 [15] and VOC 2012 [16] metrics, respectively.

Results on DOTA-v1.0. We compare our LSKNet with

20 state-of-the-art methods on the DOTA-v1.0 dataset, as
reported in Tab. 9. Our LSKNet-T, LSKNet-S and LSKNet-
S* achieve state-of-the-art with mAP of 81.37%, 81.64 %
and 81.85% respectively. Notably, our high-performing
LSKNet-S reaches an inference speed of 18.1 FPS on
1024x1024 images with a single RTX3090 GPU.

Results on FAIRIM-v1.0. We compare our LSKNet
against 6 other models on the FAIRIM-v1.0 dataset, as
shown in Tab. 10. The results reveal that our LSKNet-T
and LSKNet-S perform exceptionally well, achieving state-
of-the-art mAP scores of 46.93% and 47.87 % respectively,
surpassing all other models by a significant margin.

4.5. Analysis

Detection Results Visualization. Visualization exam-
ples of detection results and Eigen-CAM [49] are shown in
Fig. 6. LSKNet can capture much more context informa-
tion relevant to the detected targets, leading to better perfor-
mance in various hard cases, which justifies our prior (1).
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Figure 6. Eigen-CAM visualization of Oriented RCNN detection framework with ResNet-50 and LSKNet-S. Our proposed LSKNet can
model a much long range of context information, leading to better performance in various hard cases.
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Figure 7. Normalised Ratio R. of Expected Selective RF Area
and GT Bounding Box Area for object categories in DOTA-v1.0.
The relative range of context required for different object cate-
gories varies a lot. Examples of Bridge and Soccer-ball-field are
given, where the visualized receptive field is obtained from Eq. (8)
(i.e., the spatial activation) of our well-trained LSKNet model.

Relative Context Range for Different Objects. To in-
vestigate the relative range of receptive field for each object
category, we define R, as the Ratio of Expected Selective
RF Area and GT Bounding Box Area for category c:

1
R S Ai/Bi an
L.
D N —d Ji
A; =Y "> ISA, - RF,|, B; = Area(GT;), (12)
d=1n=1 j=1

where I, is the number of images that contain the object

Bridge
o ' »-— Roundabout
£ 0.8 - Soccer-ball-field
5 1
(2
=
g 0.6 1
<) >
g > *
% 0.4 4 \ VIV G—
(2]
?:J 4 3
= 0.2 1 - — ——— A
M
0.0 1 4

37'171 B_i_z B_i_l B_é_z B_é_l B_§_2 B_é_s B_§_4 Bg'U B_z';_z
Figure 8. Normalised Kernel Selection Difference in the
LSKNet-T blocks for Bridge, Roundabout and Soccer-ball-field.
B_i_j represents the j-th LSK block in stage i. A greater value is
indicative of a dependence on a broader context.

category c only. The A; is the sum of spatial selection acti-
vation in all LSK blocks for input image 7, where D is the
number of blocks in an LSKNet, and /V is the number of
decomposed large kernels in an LSK module. B; is the to-
tal pixel area of all J; annotated oriented object bounding
boxes (GT). We plot the normalized R, in Fig. 7 which rep-
resents the relative range of context required for different
object categories for a better view.

The results suggest that the Bridge category stands out
as requiring a greater amount of additional contextual in-
formation compared to other categories, primarily due to its
similarity in features with roads and the necessity of con-
textual clues to ascertain whether it is enveloped by water.
Conversely, the Court categories, such as Soccer-ball-field,
necessitate minimal contextual information owing to their
distinctive textural attributes, specifically the court bound-
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ary lines. It aligns with our knowledge and further supports
prior (2) that the relative range of contextual information
required for different object categories varies greatly.

Kernel Selection Behaviour. We further investigate
the kernel selection behaviour in our LSKNet. For object
category c, the Kernel Selection Difference A A, (i.e., larger
kernel selection - smaller kernel selection) of an LSKNet-T
block is defined as:

AAC - |§:&larger - g\-&srnaller| . (13)

We demonstrate the normalised AA. over all images for
three typical categories: Bridge, Roundabout and Soccer-
ball-field and for each LSKNet-T block in Fig. 8. As ex-
pected, the participation of larger kernels of all blocks for
Bridge is higher than that of Roundabout, and Roundabout
is higher than Soccer-ball-field. This aligns with the com-
mon sense that Soccer-ball-field indeed does not require a
large amount of context, since its own texture characteris-
tics are already sufficiently distinct and discriminatory.

We also surprisingly discover another selection pattern
of LSKNet across network depth: LSKNet usually utilizes
larger kernels in its shallow layers and smaller kernels in
higher levels. This indicates that networks tend to quickly
focus on capturing information from large receptive fields in
low-level layers so that higher-level semantics can contain
sufficient receptive fields for better discrimination.

Spatial Activation Visualisations. Spatial activation
map examples for more object categories in DOTA-v1.0

Swimming Pool

_rrr e

N2 0%

Large Vehicle

Plane - Soccer-ball field

Figure 9. Receptive field activation for more object categories in DOTA-v1.0, where the activation map is obtained from the Eq. (8) (i.e.,
the spatial activation) of our well-trained LSKNet model.

are shown in Fig. 9, where the activation map is obtained
from Eq. (8) (i.e., the spatial activation) of our well-trained
LSKNet model. The object categories are arranged in de-
creasing order from top left to bottom right based on the
Ratio of Expected Selective RF Area and GT Bounding Box
Area as illustrated in Fig. 7. The spatial activation visual-
isation results also demonstrate that the model’s behaviour
aligns with our proposed two priors and the above analy-
sis, which in turn verifies the effectiveness of the proposed
mechanism.

5. Conclusion

In this paper, we propose the Large Selective Kernel Net-
work (LSKNet) for remote sensing object detection tasks,
which is designed to utilize the inherent characteristics in
remote sensing images: the need for a wider and adapt-
able contextual understanding. By adapting its large spa-
tial receptive field, LSKNet can effectively model the vary-
ing contextual nuances of different object types. Exten-
sive experiments demonstrate that our proposed lightweight
model achieves state-of-the-art performance on competitive
remote sensing benchmarks.
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