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Abstract

Inverted file structure is a common technique
for accelerating dense retrieval. It clusters
documents based on their embeddings; dur-
ing searching, it probes nearby clusters w.r.t.
an input query and only evaluates documents
within them by subsequent codecs, thus avoid-
ing the expensive cost of exhaustive traversal.
However, the clustering is always lossy, which
results in the miss of relevant documents in the
probed clusters and hence degrades retrieval
quality. In contrast, lexical matching, such as
overlaps of salient terms, tends to be strong
feature for identifying relevant documents. In
this work, we present the Hybrid Inverted In-
dex (HI2), where the embedding clusters and
salient terms work collaboratively to accelerate
dense retrieval. To make best of both effective-
ness and efficiency, we devise a cluster selector
and a term selector, to construct compact in-
verted lists and efficiently searching through
them. Moreover, we leverage simple unsuper-
vised algorithms as well as end-to-end knowl-
edge distillation to learn these two modules,
with the latter further boosting the effectiveness.
Based on comprehensive experiments on pop-
ular retrieval benchmarks, we verify that clus-
ters and terms indeed complement each other,
enabling HI2 to achieve lossless retrieval qual-
ity with competitive efficiency across various
index settings. Our code and checkpoint are
publicly available at https://github.com/
namespace-Pt/Adon/tree/HI2.

1 Introduction

Recently, dense retrieval has become the de-facto
paradigm for high-quality first-stage text retrieval,
serving as a fundamental component in various
information access applications such as search
engines (Zou et al., 2021), recommender sys-
tems (Zhao et al., 2022), and question answer-
ing systems (Karpukhin et al., 2020). Specifically,
dense retrievers encode queries and documents into
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their latent embeddings in the semantic space using
bi-encoders, and retrieve relevant documents based
on embedding similarity. In practice, they rely on
Approximate Nearest Neighbor (ANN) indexes to
avoid expensive traversal of all document embed-
dings for each input query, a.k.a. the brute force
search (Johnson et al., 2019).

There are numerous ANN options, e.g. the hash-
ing based ones (Datar et al., 2004; Wang et al.,
2018), the tree based ones (Bentley, 1975; Wang
et al., 2014), the graph based ones (Wang et al.,
2012; Malkov and Yashunin, 2018), and the vec-
tor quantization (VQ) based ones (Jégou et al.,
2011a,b). Among all these alternatives, the VQ
based indexes, exemplified by IVF-PQ, are partic-
ularly praised for their high running efficiency in
terms of both query latency and space consump-
tion, wherein the inverted file structure (IVF) is an
indispensable component (Jégou et al., 2011a).

IVF partitions all document embeddings into
disjoint clusters by KMeans. During searching, it
finds nearby clusters to an input query and eval-
uates documents within these clusters by subse-
quent codecs (e.g. PQ). By increasing the num-
ber of clusters to scan, one may expect higher re-
trieval quality since the relevant document is more
likely to be included, yet with higher query latency
since there are more documents to evaluate (Jégou
et al., 2011a). On top of the basic idea, recent stud-
ies improve the accuracy of IVF by grouping the
cluster embeddings and skipping the least promis-
ing groups (Baranchuk et al., 2018), creating du-
plicated records for boundary embeddings (Chen
et al., 2021), and end-to-end learning the cluster
assignments by knowledge distillation (Xiao et al.,
2022a). Despite their improvements, IVF still ex-
hibits limited retrieval quality, especially when
high efficiency is needed. This is because the clus-
tering is too lossy to include relevant documents in
a few close clusters to the query. What’s worse, it
is not cost-effective to probe more clusters, which
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Figure 1: Recall-latency trade-off example for existing
IVF methods on MSMARCO Passage. Better indexes
should locate at the lower right corner.

sacrifices much more efficiency for minor effective-
ness improvements. To better illustrate the above
points, we take a concrete example.

Example 1 In Figure 1, we showcase the recall-
latency trade-off derived from changing the number
of clusters to visit in the basic IVF and the dis-
tilled IVF (the best IVF method so far (Xiao et al.,
2022a)). We use the “Flat” codec that reranks the
candidate documents in brute force. As such, any
retrieval loss against brute force search (denoted
as “Flat”) is due to the failure of IVF.

Two critical facts can be observed. First, de-
spite improvements from end-to-end distillation,
both IVF methods suffer from much poorer re-
trieval quality at low query latency. With 20ms
latency, IVF-Flat and DistillIVF-Flat achieve re-
call of 0.758 and 0.862, both of which lag far be-
hind 0.927 from brute force search. Second, prob-
ing more clusters marginally improves recall but
significantly increases latency. To promote recall
from 0.899 to 0.909, DistillIVF-Flat doubles the
query latency (from 90ms to around 200ms). Con-
sequently, there is plenty of room to optimize IVF
to achieve lossless retrieval quality with high effi-
ciency.

In contrast to cluster proximity, extensive re-
search has demonstrated that lexical matching, e.g.
overlaps of salient terms between queries and docu-
ments, tend to be strong features for identifying rel-
evant documents (Robertson and Zaragoza, 2009;
Lin and Ma, 2021; Formal et al., 2021). Moreover,
complementary effect has been observed from com-
bining lexical and semantic matching in hybrid re-
trieval systems (Kuzi et al., 2020; Gao et al., 2020;
Shen et al., 2022; Zhang et al., 2023).

In this work, we explore the potential of unifying
embedding clusters and salient terms in a Hybrid
Inverted Index (HI2) for the acceleration of dense
retrieval. Specifically, each document reference

is indexed in inverted lists of two types of entries:
embedding clusters and salient terms. When search-
ing, the input query is dispatched to both types of
inverted lists. Documents within them are merged
and evaluated by subsequent codecs.

For effectiveness, HI2 needs to include relevant
documents in the dispatched inverted lists; For effi-
ciency, HI2 requires these inverted lists to be small
enough to avoid significant overhead during post-
hoc evaluation. Both of them call for construct-
ing compact inverted lists and efficiently searching
through them. To this end, we devise a cluster se-
lector and a term selector, which accurately and
efficiently pick out only a few clusters and terms
for indexing and searching, respectively.

As for the implementation of the cluster and
term selector, we show simple unsupervised algo-
rithms, i.e. KMeans and BM25, work surprisingly
well, whereby HI2 already substantially outper-
forms previous IVF methods with competitive ef-
ficiency. Moreover, we propose to leverage neural
networks for realization and end-to-end learning by
a knowledge distillation objective. This approach
further boosts the retrieval quality, enabling HI2

to remarkably and consistently surpass other ANN
indexes on popular retrieval benchmarks, i.e. MS-
MARCO (Nguyen et al., 2016) and Natual Ques-
tions (Kwiatkowski et al., 2019).

Our contributions are summarized as follows:

• We propose the Hybrid Inverted Index, which
combines embedding clusters and salient
terms for accelerating dense retrieval.

• We devise tailored techniques, i.e. the cluster
selector, the term selector, and the joint opti-
mization, to guarantee the effectiveness and
efficiency of HI2.

• We evaluate HI2 with extensive experiments
and verify its robust advantage across imple-
mentation variations, indexing/searching con-
figurations, and embedding models.

2 Related Works

. • Dense Retrieval. In the last four years, the
rapid development of pre-trained language mod-
els, e.g. BERT (Devlin et al., 2019), has signif-
icantly pushed forward the progress of dense re-
trieval, making it increasingly popular for high-
quality first-stage retrieval (Zhao et al., 2022; Zhu
et al., 2023). Dense retrievers encode queries and



documents into dense vectors (i.e. embeddings)
in the same latent space, where the semantic rele-
vance is measured by embedding similarity. Recent
studies further enhance their retrieval quality by
retrieval-oriented pre-training (Wang et al., 2022;
Xiao et al., 2022b; Gao and Callan, 2022), delicate
negative sampling (Xiong et al., 2021; Qu et al.,
2021; Zhan et al., 2021b), and knowledge distil-
lation from more powerful rankers (Zhang et al.,
2022; Lu et al., 2022; Qu et al., 2021).

• ANNs Indexes. In practice, relevant docu-
ments usually need to be retrieved from a mas-
sive collection. Consequently, dense retrieval must
rely on Approximate Nearest Neighbor (ANN) in-
dexes to avoid the expensive brute force search.
The ANNs indexes can be realized via different
strategies: 1) the hashing based ones (Datar et al.,
2004; Weiss et al., 2008; Wang et al., 2018); 2)
the tree based ones (Bentley, 1975; Wang et al.,
2014; Muja and Lowe, 2014); 3) the graph based
ones (Dong et al., 2011; Wang et al., 2012; Malkov
and Yashunin, 2018); 4) the vector quantization
(VQ) based ones (Ge et al., 2014; Jégou et al.,
2011a,b; Baranchuk et al., 2018). Among these
options, the VQ based indexes are particularly pre-
ferred for massive-scale retrieval owing to their
high efficiency in terms of both query latency and
space consumption (Johnson et al., 2019).

• VQ Index Optimization. Despite the com-
petitive efficiency, VQ-based indexes are prone to
limited retrieval quality when low latency is desired.
In recent years, continuous efforts have been dedi-
cated to alleviating this problem, which can be cat-
egorized into two threads. One thread is to design
advanced heuristics for clustering and evaluation.
For example, (Jégou et al., 2011b) and (Baranchuk
et al., 2018) add another refinement stage over the
quantized embeddings and skip less promising clus-
ters according to tailored heuristics. (Chen et al.,
2021) create duplicated reference for boundary em-
beddings to improve recall with high efficiency.
The other research thread optimizes the VQ in-
dex towards retrieval quality with cross-entropy
loss instead of minimizing the reconstruction loss.
For example, (Zhan et al., 2021a) and (Xiao et al.,
2021) jointly learns the query encoder and the prod-
uct quantizer by contrastive learning. (Xiao et al.,
2022a) further improves the accuracy by leverag-
ing knowledge distillation for joint optimization.
However, all these methods stick to conventional
IVF to organize the search space, which is subop-

timal as shown in Example 1. In this work, our
proposed Hybrid Inverted Index support efficient
identification of relevant documents through both
semantic and lexical matching. Note that our work
is orthogonal to those about efficient inverted index
access (Broder et al., 2003; Mallia et al., 2022) and
hence can be combined for further acceleration.
• Hybrid Retrieval. Recently, there have been

emergent recipes for the union of semantic (dense)
and lexical (sparse) features. Some of them are di-
rect ensembles of dense and sparse retrievers (Ma
et al., 2021; Kuzi et al., 2020); Others use enhanced
optimization objectives, e.g. adversarial hard nega-
tives and distillation, to jointly learn from seman-
tic/lexical features (Gao et al., 2020; Shen et al.,
2022; Zhang et al., 2023). However, they all rely
on separate sparse and dense indexes to work, and
interpolate scores from the two indexes. Differ-
ent from them, HI2 combines semantic and lexical
features at index level, and estimates scores uni-
versally by specific codecs. Meanwhile, HI2 may
benefit from enhanced optimization methods in
these methods, which we leave for future work.

3 Preliminaries

3.1 Dense Retrieval
Given a collection of documents D = {Di}|D|

i=1,
dense retrieval aims to retrieve the top R relevant
documents from D in response to an input query
Q. Specifically, each document D ∈ D and query
Q is encoded into its embedding eD, eQ ∈ Rh, by
a document encoder and a query encoder, respec-
tively. Next, the relevance is measured by the inner
product between them, whereby the top R ranked
documents are returned.

result = top-R
D

{⟨eQ, eD⟩ | D ∈ D} , (1)

where ⟨·, ·⟩ denotes inner product.
In reality, it is impractical to evaluate every doc-

ument (computing ⟨eQ, eD⟩) for each input query
(i.e. the brute force search), which results in ex-
ceedingly high latency and resource consumption.
Instead, ANN indexes are used to avoid exhaus-
tively scanning all documents and accelerate the
relevance measurement by approximation.

3.2 Inverted File Structure and Product
Quantization

Among all alternative ANN indexes, the Vector
Quantization (VQ) based ones are particularly pop-
ular for massive-scale retrieval. They consist of



two basic modules: the inverted file structure (IVF)
and the product quantization (PQ).

To avoid exhaustive search, IVF partitions all
documents into disjoint clusters C = {Ci}Li=1 by
KMeans, where each cluster is associated with an
embedding eCi ∈ Rh. For the query Q, documents
within the closest KC clusters are evaluated by the
subsequent codec (PQ by default):

result = top-R
D

{PQ(Q,D) | D ∈ A(Q)} ,

A(Q) =
⋃

top-KC

Ci

{⟨eQ, eCi⟩ | Ci ∈ C} . (2)

To accelerate relevance estimation, PQ compresses
the document embedding into discrete integer
codes according to a codebook v ∈ Rm×k×h/m.
It splits eD into m fragments {ejD}mj=1, then quan-
tizes each fragment to the closest codeword in v:

êjD = vj,θj , θj = argmin
i

||ejD − vj,i||22. (3)

Therefore, only the global codebook v and the
codeword assignment θ∗ need to be stored, which
is much smaller than the full-precision embedding.
Finally, the relevance is evaluated by:

PQ(Q,D) =

m∑
j=1

⟨ejQ, ê
j
D⟩, (4)

where ejQ is the query embedding fragment. Since

the inner product between ejQ and any codeword
vj,∗ can be cached once computed, the relevance
estimation approximated by PQ is much faster.

By increasing the number of clusters to scan
(KC), higher retrieval quality can be achieved be-
cause the relevant document is more likely to be
included in A(Q). Yet, the latency is increased at
the same time as more documents need to be evalu-
ated. Conventional IVF falls short in including the
relevant document given a small KC , meanwhile,
it needs to sacrifice a lot of efficiency for minor
retrieval quality improvement. In this work, we
propose an alternative to alleviate these problems.

4 Hybrid Inverted Index

The framework of the Hybrid Inverted Index (HI2)
is shown in Figure 2. HI2 organizes the search
space with two types of inverted lists: embedding
clusters (C = {Ci}Li=1) and salient terms (T =
{Tv | v ∈ V} where V is the term vocabulary).
Each document reference is stored in the inverted

lists of 1 cluster and KT
1 terms. When searching,

the input query Q is dispatched to the inverted lists
of KC clusters and KT

2 terms. Documents within
them are merged and evaluated by PQ. Formally,

result = top-R
D

{PQ(Q,D) | D ∈ A(Q)} ,

A(Q) = AC(Q) ∪ AT (Q). (5)

To determine which clusters/terms to use for index-
ing the document and dispatching the query, HI2

employs two modules: a cluster selector and a term
selector. They can be implemented with simple
unsupervised algorithms (resulting in HI2unsup) and
neural networks (resulting in HI2sup).1 This flexible
implementation scheme injects high practicability
into HI2. In the following, we elaborate on the two
modules (§4.1 and §4.2) and the supervised opti-
mization for their neural network implementation
(§4.3).

4.1 Cluster Selector

This module selects 1 cluster for indexing the doc-
ument and KC clusters for dispatching the query
to. Specifically, it associates each cluster Ci with
an embedding eCi ∈ Rh. Then scores each cluster
with the inner product between the document em-
bedding eD or the query embedding eQ: ⟨e∗, eCi⟩.
The document is indexed to the cluster with the
highest score. When searching, the query is dis-
patched to the top KC clusters:

AC(Q) =
⋃

top-KC

Ci

{⟨eQ, eCi⟩ | Ci ∈ C} .

(6)
For HI2unsup, the cluster embeddings {eCi}Li=1 are
produced by KMeans over all document embed-
dings. For HI2sup, they are initialized with KMeans
and optimized on-the-fly by the objective in §4.3.

4.2 Term Selector

This module selects KT
1 terms for indexing the

document and KT
2 terms for dispatching the query.

There are two concerns for designing the term se-
lector: 1) the selected terms must be representative
w.r.t. the input, hence the lexical matching between
the query and the document can be effectively cap-
tured; 2) the term selection for the query must be
efficient enough to avoid excess online overhead.

Therefore, for the document D, the term selector
first tokenizes it to {di}|D|

i=1 where di ∈ V , then it

1We use HI2 to denote both HI2unsup and HI2sup henceforth.
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Figure 2: The framework of the Hybrid Inverted Index (HI2). Each document reference is indexed in inverted lists
of two types of entries: embedding clusters and salient terms. When searching, the input query is dispatched to both
types of inverted lists. Documents within them are merged and evaluated by the subsequent codec (PQ).

estimates the score of each unique term v ∈ V in D
with BM25 (HI2unsup) or BERT (HI2sup). Formally,

sv =


(α+1)×IDF(v)×TF(v,D)

TF(v,D)+α×(1−β+
β|D|
avgdl

)
∃di = v ∧ HI2unsup,

max
di=v

(f(BERT(D)[i])) ∃di = v ∧ HI2sup,

0 ∄di = v.
(7)

α, β are hyper parameters, avgdl is the average doc-
ument length, f(·) is two-layer MLP of Rh → R1

with ReLU activation, and BERT denotes encod-
ing by BERT model (Devlin et al., 2019). As such,
the top KT

1 scored terms are used for indexing the
document. Besides, the average score of each term
across all documents (s̄v) is stored.

The query Q is tokenized to {qi}|Q|
i=1 likewise,

while it is not processed with any complex compu-
tations to save online cost. For short queries, all
its constituting terms are selected; for long queries,
the terms with top KT

2 average score are selected:

AT (Q) =

{⋃
{Tqi | qi ∈ Q} |Q| ≤ KT

2 ,⋃
{Tqi | qi ∈ Q′} otherwise.

Q′ = top-KT
2

qi

{s̄qi | qi ∈ Q} (8)

4.3 Joint Optimization
HI2sup involves learning cluster embeddings in the
cluster selector, the MLP, and BERT in the term
selector. We propose a knowledge distillation ob-
jective for jointly training these parameters towards
retrieval quality. Concretely, we sample a subset
of documents for the query (D ⊆ D), then employ

a powerful teacher Θ to produce accurate estima-
tions of their relevance. Finally, we enforce the
cluster selector and the term selector to produce
similar estimations by KL divergence:

LDistill(Q) =KL(Θ(Q,D) ∥ CS(Q,D))

+KL(Θ(Q,D) ∥ TS(Q,D)). (9)

Following (Xiao et al., 2022a), we simply choose
off-the-shelf embeddings as teachers. Denote soft-
max operator as sm, the teacher estimations are:

Θ(Q,D) = sm{⟨eQ, eD⟩ | D ∈ D}. (10)

The cluster selector estimates relevance by
query-cluster embedding similarity:

CS(Q,D) = sm{⟨eQ, eCϕ(D)
⟩ | D ∈ D}, (11)

where ϕ(D) is the cluster index of the document.
The term selector estimates relevance by term-

score vector similarity:

TS(Q,D) = sm{⟨sQ, sD⟩ | D ∈ D}, (12)

where sQ and sD are the score vector over the
vocabulary derived from Eq 7. Note that here both
queries and documents are processed the same way.

Additionally, since the document cluster assign-
ment ϕ(D) is fixed, we add a commitment loss
to the final loss to keep the document embedding
close to its associated cluster, which is a common
practice for learning quantization (van den Oord



et al., 2017):

LCommit(Q) =
∑
D∈D

log
exp(⟨eD, eCϕ(D)

⟩)∑
C′∈C exp(⟨eD, eC′⟩)

,

L =
∑
Q

LDistill(Q) + LCommit(Q). (13)

5 Experiments

In this section, we first introduce our experimental
settings, then carry out extensive experiments to
investigate the following research questions (RQ):
RQ1: How are the effectiveness and efficiency of
HI2 compared with other baselines methods?
RQ2: Do clusters and terms complement each
other for identifying relevant documents?
RQ3: How is the robustness of HI2 across different
embedding models?

5.1 Experimental Settings

• Datasets. We use two popular benchmark
datasets. 1) MS MARCO (Nguyen et al., 2016).
We use the passage track, including 502,939 train-
ing queries and 6,980 evaluation queries (dev set);
the corpus size is 8,841,823. 2) Natural Ques-
tions (Kwiatkowski et al., 2019). We follow the
split of DPR (Karpukhin et al., 2020), resulting in
79,168 training queries and 3,610 testing queries.
The corpus size is 21,015,324.
• Metrics. For evaluating retrieval quality, we
leverage MRR@K (M@K) and Recall@K (R@K).
For evaluating retrieval efficiency, we compute the
average query latency (QL) and the overall index
size (IS). Our evaluations are based on the same
batch size, thread number, and toolkit (Faiss (John-
son et al., 2019) for ANNs and Pyserini (Lin et al.,
2021) for sparse models). Note that the latency of
HI2 is on par with that of IVF-OPQ given the same
number of candidates to evaluate, because the term
selector dispatches the query with simple heuristics
that introduces very little overhead.
• Baselines. We compare with three types
of retrieval models: 1) Sparse retrievers, in-
cluding BM25 (Robertson and Zaragoza, 2009),
DocT5 (Cheriton, 2019), DeepCT (Dai and Callan,
2019), UniCOIL (Lin and Ma, 2021), and Distil-
SPLADE (Formal et al., 2021); 2) Dense retrievers
with brute force search (denoted as Flat), includ-
ing DPR (Karpukhin et al., 2020), ANCE (Xiong
et al., 2021), CoCondenser (Gao and Callan, 2022),
AR2 (Zhang et al., 2022), and RetroMAE (Xiao

et al., 2022b). 3) Dense retrievers with ANN in-
dexes (denoted as ANNs), including IVF-PQ (Jé-
gou et al., 2011a), IVF-OPQ (Ge et al., 2014),
IVF-JPQ (Zhan et al., 2021a), Distill-VQ (Xiao
et al., 2022a), and HNSW (Malkov and Yashunin,
2018) (we set the edges to 32 and efSearch to 500).
We use RetroMAE and AR2 as the embedding
model on MSMARCO and NQ, respectively, due to
their superior performance with brute force search.
More details are in the Appendix.
• Implementation Details. For all methods involv-
ing clustering, we set the number of clusters L to
10000 and the number of probing clusters when
searching to 100 (except HI2). For all methods
involving PQ, we set the number of fragments m
to 96, the number of sub-clusters k to 256. For
HI2, we use the BERT’s vocabulary (Devlin et al.,
2019) as the term vocabulary V , resulting in 30522
unique terms in total. KT

2 is always set to 32 for
both HI2unsup and HI2sup.

For HI2unsup, we use KMeans over all docu-
ment embeddings to produce cluster embeddings
{eCi}Li=1, BM25 to produce term scores sv with
α = 0.82, β = 0.68, and OPQ (Ge et al., 2014)
as the evaluation codec, all of which are unsu-
pervised algorithms. KC is set to 25, KT

1 is
set to 15. For HI2sup, we initialize cluster em-
beddings with KMeans and optimize them after-
ward. Note the cluster assignment ϕ(D) is fixed
once initialized. We use bert-base-uncased for the
term selector. The passage is tokenized to 128
tokens before encoding. We employ the distilled
OPQ (Xiao et al., 2022a) as the evaluation codec.
KC is set to 30, KT

1 is set to 3. More details
are in the appendix. For reproducibility, we re-
lease our source code and model checkpoints at
https://anonymous.4open.science/r/HI2/.

5.2 Main Analysis (RQ1)

We report the overall evaluation results in Table 1.
On the one hand, our hybrid inverted index

demonstrate superlative effectiveness over baseline
ANN indexes. Specifically, HI2unsup, which solely
relies on unsupervised algorithms, improves the Re-
call@100 of IVF-OPQ (the basic unsupervised VQ
index) by 14%, and improves that of Distill-VQ
(the strongest supervised VQ index in literature)
by 8%. It even triumphs the powerful HNSW in-
dex by 3 absolute points in Recall@100, which
is a more valuable metric for first-stage retrieval
than MRR. Moreover, the neural network imple-

https://anonymous.4open.science/r/HI2/


MS MARCO Natual Questions

Type Method M@10 R@100 R@1000 QL (ms) IS (G) R@5 R@20 R@100 QL (ms) IS (G)

Sparse
Retrievers

BM25 0.187 0.592 0.670 12 0.6 0.490 0.639 0.788 41 2.3
DocT5 0.277 – 0.947 17 1.0 – – – – –
DeepCT 0.243 – 0.913 12 0.7 – – – – –
UniCOIL 0.330 0.823 0.932 124 1.0 0.638 0.774 0.861 480 3.4
DistilSPLADE 0.366 0.896 0.978 455 2.4 – – – – –

Dense
Retrievers
(Flat)

DPR 0.317 0.857 0.959 1751 26 – 0.784 0.853 4785 60
ANCE 0.346 0.873 0.964 1751 26 – 0.819 0.875 4785 60
CoCondenser 0.382 – 0.984 1751 26 0.758 0.843 0.890 4785 60
AR2 0.395 0.919 0.984 1751 26 0.779 0.861 0.908 4785 60
RetroMAE 0.416 0.927 0.988 1751 26 – 0.844 0.894 4785 60

Dense
Retrievers
(ANNs)

IVF-PQ 0.292* 0.763* 0.849* 13 0.9 0.545* 0.696* 0.799* 28 2.1
IVF-OPQ 0.346* 0.796* 0.853* 13 0.9 0.687* 0.775* 0.836* 28 2.1
IVF-JPQ 0.348* 0.799* 0.854* 13 0.9 0.689* 0.776* 0.836* 28 2.1
Distill-VQ 0.358* 0.843* 0.914* 10 0.9 0.705* 0.799* 0.860* 16 2.1
HNSW 0.400 0.887* 0.944* 6 28 0.778 0.857 0.898 13 66

Ours HI2unsup 0.380 0.900 0.966 9 3.0 0.767 0.853 0.896 15 7.1
HI2sup 0.401 0.916 0.976 8 3.0 0.779 0.861 0.906 15 7.1

Table 1: Overall evaluation results. Statistically significant results within ANNs group compared with HI2sup (paired
t-test with p < 0.05) are decorated with *. Best results are bold. Second best results are underlined. QL means the
average query latency. IS means the index size.

mentation and the end-to-end knowledge distilla-
tion further unleash its potential, as HI2sup further
amplify the margins over ANN baselines. Remark-
ably, HI2sup achieves on par retrieval quality with
its brute-force-search teacher (RetroMAE on MS-
MARCO and AR2 on NQ), and surpasses a lot of
well-established sparse and dense retrievers.

On the other hand, the efficiency of our hybrid in-
verted index is also satisfactory. Its query latency is
the second lowest on both datasets, accelerating the
brute force search (Flat) by hundreds of times and
only slightly falling behind that of HNSW. Notably,
the latency is even lower than VQ-based indexes,
because HI2 needs to evaluate fewer candidate doc-
uments. Besides, HI2 possesses a moderate index
size, which is bigger than VQ baselines since more
document references need to be stored, while much
smaller than Flat or HNSW since it does not need
to store full-precision embeddings.

As such, we have showcased the outstanding ef-
fectiveness and efficiency of HI2 under one specific
setting. Next, we are interested in the effectiveness-
efficiency trade-off of HI2 and ANN baselines (we
exclude IVF-PQ and IVF-JPQ, the former is too
weak and the latter is similar to IVF-OPQ). Specif-
ically, for VQ indexes, we change the number of
clusters to visit; for HNSW, we change the num-
ber of neighbors to visit; for HI2, we change the
number of terms to index (KT

1 ) and the number of
clusters to dispatch (KC). Since the index size is
static, we measure recall@100 as effectiveness and
average query latency as efficiency. The resulted
trade-off curves are reported in Figure 3.

From the figure, HI2unsup performs on par with
the powerful HNSW across various index settings,
as their recall are almost identical given the same
latency. Both of them significantly outperform
VQ baselines. Besides, HI2sup brings substantial
improvement over HI2unsup and HNSW, achieving
higher recall with lower latency. Meanwhile, it
efficiently approaches the brute-force-search effec-
tiveness. In contrast, VQ baselines need to largely
increase the latency to marginally improve the re-
call, yet lagging far behind brute force search.

Based on the above analysis, we answer RQ1:
HI2 achieves lossless retrieval quality against brute
force search, with low query latency and small in-
dex size, significantly and consistently outperform-
ing baseline ANN indexes and retaining the advan-
tages across indexing/searching configurations.

5.3 Ablation Analysis (RQ2)

To answer RQ2, we study the individual contribu-
tion from embedding clusters and salient terms.
Specifically, we disable the inverted lists corre-
sponding to terms and clusters, respectively, de-
noted as w.o. Term and w.o. Clus. Other configura-
tions are kept the same. We plot their recall-latency
trade-off curves in Figure 4.

Two critical facts can be observed. First, salient
terms tend to be better features for organizing the
search space than embedding clusters, as the w.o.
Clus variants significantly and consistently outper-
form w.o. Term ones. Thus, our claim that embed-
ding clusters alone falls short in effective identifica-
tion of relevant documents is well justified. Second,
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Figure 3: Effectiveness-efficiency trade-off of different
methods on MS MARCO (A) and Natual Questions (B).

MS MARCO NQ

Emb. ANN Index R@100 QL IS R@100 QL IS

RetroMAE

Flat 0.927 1751 26 0.894 4785 60
HNSW 0.887 6 28 0.873 12 66
IVF-OPQ 0.796 13 0.9 0.843 19 2.1
Distill-VQ 0.843 10 0.9 0.870 19 2.1
HI2unsup 0.900 9 3.0 0.880 15 7.1
HI2sup 0.916 8 3.0 0.885 15 7.1

AR2

Flat 0.919 1751 26 0.908 4785 60
HNSW 0.904 7 28 0.898 13 66
IVF-OPQ 0.846 11 0.9 0.836 28 2.1
Distill-VQ 0.858 10 0.9 0.860 16 2.1
HI2unsup 0.899 9 3.0 0.896 15 7.1
HI2sup 0.909 8 3.0 0.906 15 7.1

Table 2: Evaluation of HI2 and strong ANN baselines
with different embedding models (Emb.).

salient terms and embedding clusters indeed com-
plement each other, as HI2unsup and HI2sup beats their
“homogeneous” variants in terms of both effective-
ness and efficiency. Therefore, we answer RQ2:
Embedding clusters and salient terms complement
each other for more effective and efficient identifi-
cation of relevant documents.

5.4 Robustness Analysis (RQ3)

In Figure 3, we have shown the robust advantage
of HI2 across different index configurations. For
practical usage, it is important to evaluate the ro-
bustness of HI2 given different embedding models.

In Table 2, we report the performance of HI2

and selected strong baselines with RetroMAE and
AR2 as the embedding model. We can notice that
HI2sup always achieves the best recall among all
ANN indexes, which is very close to that of brute
force search. Besides, HI2unsup performs on par with
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Figure 4: Effectiveness-efficiency trade-off of HI2 vari-
ants on MS MARCO (A) and Natual Questions (B).

the strong HNSW index, which uses full-precision
embeddings for evaluation. As for efficiency, we
observe HI2 resides in a sweet spot with the second
lowest query latency and relatively small index size,
which is substantially smaller than Flat and HNSW
but slightly bigger than VQ baselines.

Additionally, the performance of ANN base-
lines is unstable given different embedding models:
higher retrieval quality with brute-force searching
does not result in higher retrieval quality with ANN
acceleration. For example, the recall of AR2 Flat is
inferior to that of RetroMAE Flat on MS MARCO.
However, this trend reverses when ANN baselines
are applied, i.e. AR2 IVF-OPQ is better than Retro-
MAE IVF-OPQ. By comparison, the performance
of HI2 is stable: higher brute-force-search effec-
tiveness corresponds to higher effectiveness of HI2

regardless of the embedding model.
In summary, we answer RQ3: HI2 enjoys high

robustness and stability across different embedding
models, consistently surpassing strong ANN base-
lines with competitive efficiency and aligning well
with the brute force search.

6 Conclusion

In this work, we propose the hybrid inverted in-
dex, which reformulates conventional IVF by uni-
fying both embedding clusters and salient terms
to accelerate dense retrieval. We devise tailored
techniques for cluster selection, term selection, and
joint optimization. With comprehensive experi-
ments, we verify the effectiveness and efficiency



of HI2, which consistently outperforms strong
ANN baselines across implementation variations,
indexing/searching configurations, and embedding
models. Moreover, we demonstrate that embed-
ding clusters and salient terms are complementary
to each other for identifying relevant documents,
which may inspire further research towards the
combination of semantic and lexical features.
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Limitations

Despite the satisfactory performance of the hybrid
inverted index, it has more hyper parameters than
conventional IVF hence may require more effort
to tune them for ideal performance. Moreover, the
searching of clusters and terms is currently inde-
pendent; whilst we believe it is promising to design
a more flexible mechanism to control the search-
ing behaviors. For example, only the term-side
inverted lists will be searched for some queries.
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Appendix

A Baseline Details
• Sparse Retrievers. These methods represent doc-
uments and queries with sparse vectors over the
vocabulary, then estimate relevance with overlap-
ping entries. The retrieval operation is acceler-
ated with the efficient inverted index (Zobel et al.,
1998). BM25 (Robertson and Zaragoza, 2009),
the most basic sparse retriever. DocT5 (Cheri-
ton, 2019), extending BM25 by appending pseudo-
queries to documents. DeepCT (Dai and Callan,
2019), learning contextualized term weights us-
ing BERT to replace the TF-IDF in BM25. Uni-
COIL (Lin and Ma, 2021), learning contextualized
term weights using BERT with contrastive learn-
ing. DistilSPLADE (Formal et al., 2021), learning
sparse term-weight vectors over vocabulary with
knowledge distillation.
• Dense Retrievers with Brute Force Search

(Flat). These methods encode documents and
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queries into dense embeddings, then estimate rel-
evance with embedding similarity. For each in-
put query, all document embeddings are evaluated.
DPR (Karpukhin et al., 2020), the most basic dense
retriever. ANCE (Xiong et al., 2021), enhancing
DPR with hard negatives mined from the previous
model snapshot. CoCondenser (Gao and Callan,
2022), retrieval-oriented pretraining the encoder
model to compress more information in the em-
bedding. AR2 (Zhang et al., 2022), adversarially
train the encoder and a ranker with knowledge dis-
tillation. RetroMAE (Xiao et al., 2022b), retrieval-
oriented pretraining the encoder model with a shal-
low decoder and the representation bottleneck.
• Dense Retrievers with Approximate Nearest

Neighbor Indexes (ANNs). These methods leverage
ANN indexes to accelerate dense retrieval. IVF-
PQ (Jégou et al., 2011a), the basic VQ index. IVF-
OPQ (Ge et al., 2014), unsupervisedly learning a
transformation orthogonal matrix for PQ to achieve
higher accuracy. IVF-JPQ (Zhan et al., 2021a), op-
timizing the PQ codebook with contrastive learning
towards retrieval quality. Distill-VQ (Xiao et al.,
2022a), optimizing the IVF centroids and PQ code-
book with knowledge distillation from any off-the-
shelf embeddings. HNSW (Malkov and Yashunin,
2018), a powerful graph-based ANN index that
is widely used in modern search engines (elastic-
search, 2015).

B Implementation Details

For all methods involving clustering, we set the
number of clusters L to 10000 and the number of
probing clusters when searching to 100 (except
HI2). For all methods involving PQ, we set the
number of fragments m to 96, the number of sub-
clusters k to 256, which results in 32 times smaller
size than the full-precision one. For HI2, we use
the BERT’s vocabulary (Devlin et al., 2019) as the
term vocabulary V , resulting in 30522 unique terms
in total. KT

2 is always set to 32 for both HI2unsup
and HI2sup.

For HI2unsup, we use KMeans over all docu-
ment embeddings to produce cluster embeddings
{eCi}Li=1, BM25 to produce term scores sv with
α = 0.82, β = 0.68, and OPQ (Ge et al., 2014)
as the evaluation codec, all of which are unsuper-
vised algorithms. KC is set to 25, KT

1 is set to 15.
For HI2sup, we initialize cluster embeddings with
KMeans and optimize them afterwards. Note the
cluster assignment ϕ(D) is fixed once initialized.

MS MARCO NQ

Index Codec R@100 QL IS R@100 QL IS

HI2unsup
default 0.900 9 3.0 0.896 15 7.1
Flat 0.909 18 28 0.900 31 65

HI2sup
default 0.916 8 3.0 0.906 15 7.1
Flat 0.920 17 28 0.907 31 65

Table 3: Evaluation of HI2 with different codecs.

We use bert-base-uncased for the term selector. The
passage is tokenized to 128 tokens before encoding.
We employ the distilled OPQ (Xiao et al., 2022a) as
the evaluation codec. KC is set to 30, KT

1 is set to
3. For training HI2sup, we use the annotated ground
truth document D+, 7 hard negatives sampled from
BM25 top 200 results, and in-batch negatives to
form D.

In practice, we find the terms selected by HI2sup
results in much “denser” inverted lists than HI2unsup.
In other words, some terms may be frequently se-
lected from multiple passages, translating to their
super big inverted lists. This is especially the case
for Natual Questions. Therefore, on NQ, we prune
the super big inverted lists to a moderate size in-
spired by static index pruning technique (Nguyen,
2009). Concretely, after indexing all documents,
we count the size of each term-side inverted list,
then take the one at the γ-th percentile (γ defaults
to 0.996) as the threshold, whereby inverted lists
bigger than the threshold are identified as “super
big”. Next, we ascendingly order document refer-
ences based on their individual score to the specific
term of each super big inverted list. We prune the
references from the head until the size of the in-
verted list equals the threshold.

C Codec Analysis
Apart from the default PQ, HI2 can be combined

with other codecs. In Table 3, we compare PQ with
the most powerful yet most expensive Flat codec. It
can be observed that HI2unsup and HI2sup both benefit
from the more powerful codec. This indicates that
HI2 can return high-quality candidates universally
applicable for different codecs. It also reveals that
the current PQ codec is still lossy. However, there
is no free lunch: the powerful Flat codec comes
with higher latency and higher index size, which is
unfavorable for the index efficiency. In summary,
we again verify the practicality of HI2, one may
flexibly balance between higher effectiveness and
higher efficiency.


