

EVOLUTION AND COMPRESSION IN LLMS: ON THE EMERGENCE OF HUMAN-ALIGNED CATEGORIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Converging evidence suggests that human systems of semantic categories achieve
 012 near-optimal compression via the Information Bottleneck (IB) complexity-
 013 accuracy tradeoff. Large language models (LLMs) are not trained for this ob-
 014 jective, which raises the question: are LLMs capable of evolving efficient human-
 015 aligned semantic systems? To address this question, we focus on color catego-
 016 rization — a key testbed of cognitive theories of categorization with uniquely rich
 017 human data — and replicate with LLMs two influential human studies. First,
 018 we conduct an English color-naming study, showing that LLMs vary widely
 019 in their complexity and English-alignment, with larger instruction-tuned mod-
 020 els achieving better alignment and IB-efficiency. Second, to test whether these
 021 LLMs simply mimic patterns in their training data or actually exhibit a human-
 022 like inductive bias toward IB-efficiency, we simulate cultural evolution of pseudo
 023 color-naming systems in LLMs via a method we refer to as Iterated in-Context
 024 Language Learning (IICLL). We find that akin to humans, LLMs iteratively re-
 025 structure initially random systems towards greater IB-efficiency. However, only a
 026 model with strongest in-context capabilities (Gemini 2.0) is able to recapitulate the
 027 wide range of near-optimal IB-tradeoffs observed in humans, while other state-of-
 028 the-art models converge to low-complexity solutions. These findings demonstrate
 029 how human-aligned semantic categories can emerge in LLMs via the same funda-
 030 mental principle that underlies semantic efficiency in humans.

1 INTRODUCTION

034 As large language models (LLMs) become increasingly popular in everyday use, it is crucial to
 035 understand how their learning biases and representational capacities align with our own. Here, we
 036 investigate this by focusing on a key aspect of human intelligence: the ability to organize informa-
 037 tion into semantic categories (Croft, 2002; Rosch, 2002; Koch, 2008; Boster, 2005; Majid, 2015;
 038 Malt & Majid, 2013). This phenomenon presents two major challenges for AI. First, systems of
 039 semantic categories (semantic systems, for short) exhibit both universal patterns and cross-language
 040 differences (Berlin & Kay, 1969; Berlin, 1992; Croft, 2002), which LLMs must navigate. Second,
 041 LLMs are not grounded in the rich physical and social environment that humans are (Rosch, 1975;
 042 Labov, 1973), and it is unclear how these differences affect their ability to learn human-aligned se-
 043 mantic categories. Therefore, in order to understand whether LLMs can efficiently communicate
 044 with people and adapt to changing environments and communicative needs in a human-like man-
 045 nner, it is crucial to study whether LLMs are capable of structuring meaning according to the same
 046 principles that guide humans.

047 To address this open gap in our understanding of LLMs, we propose a novel theoretical and
 048 cognitively-motivated framework for studying semantic systems in LLMs. We build on the frame-
 049 work of Zaslavsky et al. (2018), which argues that languages efficiently compress meanings into
 050 words by optimizing the Information Bottleneck (IB) principle (Tishby et al., 1999), instantiated as
 051 a tradeoff between the informational complexity and communicative accuracy of the lexicon. This
 052 framework has broad empirical support across human languages (Zaslavsky et al., 2018; 2019; 2021;
 053 Mollica et al., 2021; Zaslavsky et al., 2022). Furthermore, Imel et al. (2025) recently showed that a
 054 drive for IB-efficiency may be present in the individual inductive biases of human learners. While
 055 LLMs are trained on vast amounts of human language data encoded as text, they are not trained with

054 respect to the IB objective. This raises the question: are LLMs capable of developing IB-efficient
 055 human-aligned semantic systems?

056 On the one hand, if LLMs fail to develop efficient semantic systems, it highlights a key misalignment
 057 in their capacity to learn human-like language. Furthermore, human semantic efficiency is
 058 fundamentally constrained by contingent, often perceptually grounded representations of meaning.
 059 Therefore, testing LLMs for efficiency also provides a test of whether they capture the specific rep-
 060 resentations humans use for categorization.

061 We address this open question with an in-depth analysis in the domain of color—a key test case
 062 for categorization theories in cognitive science with rarely available human data as well as practical
 063 implication for human-LLM interactions (see Section 2.1)—and replicate with LLMs two influ-
 064 ential human behavioral experiments (Figure 1). First, we conduct an English color naming ex-
 065 periment (analogous to the human experiment of Lindsey & Brown, 2014), designed to assess the
 066 efficiency and human-alignment of the color naming systems of LLMs. Second, we conduct an
 067 iterated learning experiment of pseudo color-naming systems (analogous to the human experiment
 068 of Xu et al., 2013), designed to reveal implicit inductive learning biases of LLMs by simulating a
 069 process of cultural transmission (see Section 2.3). For the latter, we extend Zhu & Griffiths (2024)’s
 070 iterated in-context learning (I-ICL) paradigm to iterated in-context *language* learning (IICLL).

071 Our key findings and contributions are summarized as follows: First, we show that many promi-
 072 nent LLMs struggle to capture the English color naming system, exhibiting a wide range of com-
 073 plexities that are often lower than the complexity of English. However, with increased size and
 074 instruction-tuning, LLMs can achieve high English-alignment and IB efficiency. Second, using our
 075 IICLL paradigm, we show that LLMs that perform well in the naming task are not merely mim-
 076 icking patterns in their training data but are actually guided by a human-like inductive bias toward
 077 IB-efficiency. Specifically, we show that LLMs iteratively restructure initially random artificial sys-
 078 tems towards greater IB-efficiency and increased human-alignment. However, among the models we
 079 tested, only the model with strongest in-context capabilities (Gemini 2.0) is able to recapitulate the
 080 wide range of near-optimal IB-tradeoffs observed in humans, while other models converge to low-
 081 complexity solutions. Finally, we show that Gemini can also develop structured category systems via
 082 IICLL in a domain that is qualitatively different from color, suggesting that our result could poten-
 083 tially apply also in other domains. Taken together, these findings demonstrate how human-aligned
 084 semantic categories can emerge in LLMs via the same fundamental principle that underlies semantic
 085 efficiency in humans. Importantly, neither humans nor LLMs are explicitly trained for optimizing
 086 the IB objective, suggesting that IB-efficiency may emerge to support intelligent behavior.

087 2 BACKGROUND AND MOTIVATION

090 2.1 WHY TALK ABOUT COLOR?

091 For decades, cognitive scientists have used color as an essential tool to study perception and cat-
 092 egorization. This is in part due to the unprecedented amount of human behavioral data available
 093 for color, which includes research on perceptual space, cross-linguistic semantic variation, cate-
 094 gory learning, and cultural evolution. Especially relevant to our study is the World Color Survey
 095 (WCS) dataset (Cook et al., 2005), which contains color-naming data from 110 non-industrialized
 096 languages. Another relevant study by Xu et al. (2013) demonstrated that the cultural transmission of
 097 initially random, artificial color-term systems in humans leads to more regular systems that resem-
 098 ble those documented in the WCS dataset. To our knowledge, these two data resources—on actual
 099 cross-linguistic naming patterns and on the cultural evolution of category systems—are unique to
 100 the domain of color, making it an ideal domain for evaluating how well LLMs align with human
 101 behavior. Furthermore, studying color naming in LLMs also has practical implications. Generative
 102 AI models, used for tasks like image generation and online product searches, require grounded rep-
 103 resentations of color language. In order for such models to interact in ways we expect them to, it
 104 is crucial to determine the extent to which state-of-the-art LLMs have learned the meaning of color
 105 terms that actually align with human naming patterns.

106 While previous work has shown that human-aligned color representations can be recovered from
 107 LLMs (e.g., Abdou et al., 2021; Patel & Pavlick, 2022), there is limited research on model behavior
 in the context of real-world settings (namely, prompt-based interactions). Particularly relevant to our

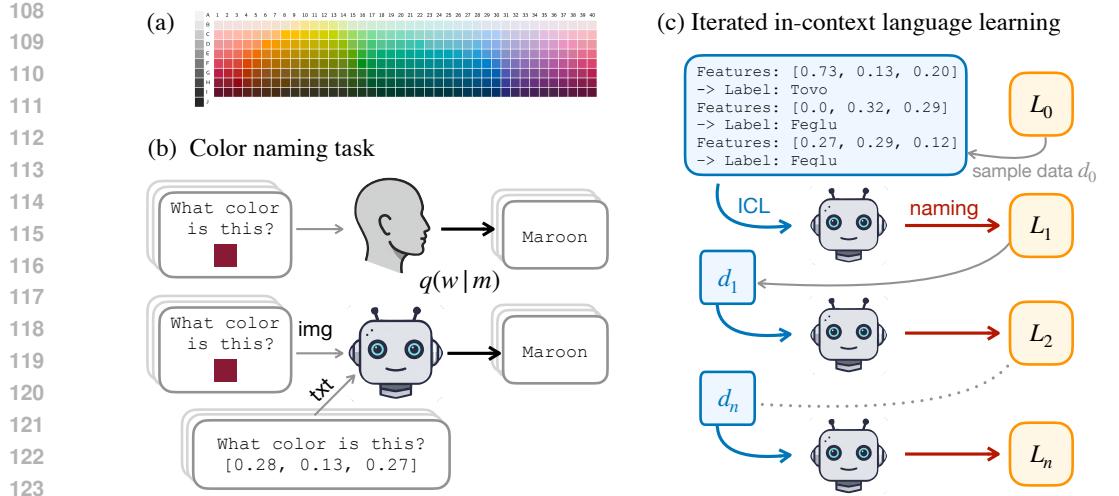


Figure 1: (a) The standard WCS color naming grid (Kay et al., 2009). (b) Color naming task with humans and LLMs. Multi-modal LLMs can observe colors either via text or images. (c) Illustration of the IICLL paradigm. At each generation t , an LLM is prompted with a small dataset for ICL, d_{t-1} , consisting of pairs of colors and pseudo labels sampled from the previous generation’s language, L_{t-1} . With these data in context, the LLM performs the naming task for the full space (a).

work is a study by Marjeh et al. (2024) that showed that several recent instruction-tuned models, namely GPT-3, its “ChatGPT” variants, GPT-3.5 and GPT-4 (Brown et al., 2020; OpenAI et al., 2024) and Mistral 7B Instruct (Jiang et al., 2023) can recover the English and Russian color naming systems by prompting the models to label hex codes. In contrast, we test a large set of 39 models with varying sizes and training stages, we consider both textual RGB inputs and image inputs (for multi-modal models), we analyze the LLMs’ color naming systems through the lens of the IB framework, and we further assess their underlying inductive learning biases in a cultural evolution process via iterated learning. We provide relevant background on the IB and iterated learning frameworks below.

2.2 THE INFORMATION BOTTLENECK AND SEMANTIC SYSTEMS

The IB framework for semantic systems (Zaslavsky et al., 2018), which we employ in this work, is based on the following communication model: a speaker wishes to communicate a mental representation, or belief state, $m \in \mathcal{M}$, defined as a probability distribution over world states $u \in \mathcal{U}$, by mapping it to a word $w \in \mathcal{W}$ via a stochastic encoder $q(w|m)$. A listener then receives w and interprets the speaker’s intended meaning by constructing an estimator \hat{m}_w . In the case of color, for example, the world states \mathcal{U} are given by a set of target colors (Figure 1a). To account for perceptual noise, it is assumed that each m is a Gaussian distribution over the perceptual CIELAB color space centered around a corresponding target color (Zaslavsky et al., 2018). That is, each color is mentally represented by the speaker as a Gaussian distribution and the listener’s goal is to reconstruct the speaker’s belief state over colors.

According to this framework, in order to communicate efficiently, the speaker and listener must jointly optimize the IB tradeoff between minimizing the complexity of their lexicon and maximizing its accuracy. Assuming the listener’s inferences are adapted to the speaker, the lexicon is defined by an encoder $q(w|m)$. Complexity in IB roughly corresponds to the number of bits required for communication, formally defined by $I_q(M; W)$, the mutual information between speaker’s meanings and words. Accuracy is defined by $I_q(W; U)$, the information that the speaker’s words maintain about the target world state, which is also inversely related to the KL-divergence between the speaker’s mental state and the listener’s inferred state, $\mathbb{E}_q[D[M \parallel \hat{M}]]$ (Harremoes & Tishby, 2007; Zaslavsky, 2020). An optimal lexicon, or semantic system, is one that minimizes the IB objective function

$$\mathcal{F}_\beta[q] = I_q(M; W) - \beta I_q(W; U), \quad (1)$$

162 where $\beta \geq 1$ controls the complexity-accuracy tradeoff. The solutions to this optimization problem
 163 define the IB theoretical limit of efficiency.

164 This framework generates precise quantitative predictions that have been gaining converging empirical
 165 support across hundreds of languages and multiple semantic domains, ranging from perceptually-
 166 grounded domains such as color (Zaslavsky et al., 2018; 2022) to higher-level conceptual domains
 167 such as household objects (Zaslavsky et al., 2019; Taliaferro et al., 2025) and personal pronouns (Za-
 168 slavsky et al., 2021). In addition, it has been successfully applied to studying emergent communica-
 169 tion in artificial agents (Chaabouni et al., 2022; Tucker et al., 2022; Gualdoni et al., 2024; Tucker
 170 et al., 2025).

171
 172 **The IB color naming model.** As part of our evaluation of LLM color naming, we use the previ-
 173 ously published IB color naming model from Zaslavsky et al. (2018). The black curve in Figure 3
 174 shows the IB bound for color naming from this study, together with a reproduction of their results
 175 showing that color naming systems across languages (from the WCS as well as English from Lind-
 176 sey & Brown (2014)) achieve near-optimal IB tradeoffs.

177
 178 **2.3 ITERATED LANGUAGE LEARNING**

179 The second main theoretical framework we apply in this work is based on iterated learning (IL). IL
 180 is a paradigm in cognitive science for simulating cultural transmission and eliciting prior inductive
 181 biases (Griffiths & Kalish, 2007; Kirby et al., 2008; Griffiths et al., 2008). In a typical IL experiment,
 182 participants form chains of “generations.” At each generation t , a participant is exposed to data d_{t-1}
 183 from the previous generation and then produces responses that become input for the next genera-
 184 tion. In iterated language learning (ILL), participants learn examples of pairs of stimuli and artificial
 185 labels during a training period, after which they assign labels to new, unlabeled stimuli in the same
 186 meaning space. In doing so, participants produce a full category system L_t , which is sampled from
 187 to provide training examples to the next generation, and the process repeats. This process, which
 188 requires generalization from limited data, reveals learners’ inductive biases for certain linguistic or
 189 category structures (Griffiths & Kalish, 2007; Griffiths et al., 2008). As shown in Griffiths & Kalish
 190 (2007), under certain conditions, namely that the IL agents are Bayesian who share priors and likeli-
 191 hood functions, this Markov chain converges to a stationary distribution over languages equal to the
 192 learners’ prior distribution $p(L)$. This makes the strong prediction that languages emerging from IL
 193 reflect the population’s underlying inductive biases. Although this is an asymptotic characterization
 194 of IL dynamics, in behavioral experiments with people, researchers observe rapid convergence to
 195 heavily biased distributions of languages (Kirby et al., 2015).

196 **Related work on ILL.** Previous research in machine learning has investigated dynamics related
 197 to ILL. In agent-based simulations, Ren et al. (2020) introduced the neural iterated learning (NIL)
 198 framework, and showed how it can lead to compositional language in neural network agents, and
 199 Carlsson et al. (2024) showed that introducing communication-based training in NIL leads to IB-
 200 efficient color naming systems. These studies, however, did not explore LLMs as we do here. Zhu
 201 & Griffiths (2024) adapted IL to LLMs with strong in-context learning capacities as a prompt-based
 202 workflow known as Iterated In-Context Learning (I-ICL) to elicit LLMs’ implicit prior distribu-
 203 tions over aspects of world knowledge. I-ICL has recently been used to analyze cultural evolution
 204 in LLMs (Ren et al., 2024) and to compare visual and linguistic abstractions between LLMs and
 205 humans (Kumar et al., 2024). Here, we introduce iterated in-context *language* learning (IICLL,
 206 Figure 1c), which goes beyond prior work in leveraging the strong in-context learning abilities of
 207 LLMs to replicate as closely as possible the experimental conditions of ILL studies with humans,
 208 enabling a direct comparison to LLMs of their respective inductive biases, particularly with regards
 209 to semantic efficiency and alignment.

210 **ILL of color naming systems.** The empirical comparison for our IICLL color naming study is
 211 the IL data from Xu et al. (2013). In their experiment, participants were asked to learn and transmit
 212 novel systems of color terms across thirteen generations. We focus on their main results that include
 213 twenty iterated learning chains, each initialized with a random partition of the WCS grid. These
 214 chains vary in the number of allowed color terms, ranging from two to six, and four replications of
 215 each condition. Participants were shown a set of randomly selected colors generated uniquely for
 each chain, and paired with corresponding pseudo words. After training, participants were asked to

216 label all 330 colors of the WCS grid. Xu et al. (2013) found that over time, the IL chains become
 217 increasingly regular and resembling the color naming systems documented in the WCS dataset.
 218 More recently, Imel et al. (2025) found that these chains also converge to highly efficient systems
 219 along the IB bound. Figure 3 shows our reproduction of this finding (plotting only final generations).
 220

221 3 EXPERIMENTAL SETUP

223 Our goal is to test whether LLMs have an inductive bias toward IB-efficiency, as observed in hu-
 224 mans. To this end, we conduct two studies with LLMs: (1) an English color naming study to assess
 225 their semantic alignment and communicative efficiency with respect to English speakers; and (2)
 226 a cultural transmission experiment of artificial color naming systems (using IICLL) to elicit their
 227 inductive learning biases beyond patterns they may have seen during training.
 228

229 **Models.** We consider 39 models across 6 model families: Gemini (Google, 2025), Gemma 3
 230 (Gemma-Team et al., 2025), Llama 3 (Grattafiori et al., 2024), Qwen 2.5 (Qwen et al., 2025), Olmo
 231 2 (OLMo-Team et al., 2025) and GPT-2 (Radford et al., 2019). Within each family, we vary models
 232 along several dimensions. Specifically, to gain insight into the properties that may influence the
 233 models’ behavior in our tasks, we consider models with different sizes, instruction-tuned versus
 234 base models, and text-based versus multi-modal models. For Olmo, we also considered its learning
 235 dynamics by analyzing training checkpoints. For a full list of models, see Table 1 in Appendix D.
 236

237 **Prompts.** In both of our studies, we provided instructions in the prompts to choose only from a
 238 fixed set of terms. The Gemini API supports controlled generation which makes this constrained
 239 classification task straightforward; for all open-weight models, we used log probability based scor-
 240 ing of the allowed terms as a continuation of the prompt. Further details and example prompts can
 241 be found in Appendix J.
 242

243 **Stimuli.** We used the 330 color chips from the WCS grid shown in Figure 1a. These chips repre-
 244 sent a systematic sampling of color space and are standard stimuli in color naming research. Each
 245 chip is associated with precise coordinates in the CIELAB color space, which can be converted to
 246 sRGB coordinates. To present the color stimuli to the text-based LLMs, we encoded color using
 247 these numerical coordinates. For multimodal models, we generated a square colored image corre-
 248 sponding to the WCS chip’s sRGB values, and passed this image together with the text instructions.
 249

250 **Evaluation.** Following Zaslavsky et al. (2018), we use two main evaluation measures in our stud-
 251 ies. First, the *efficiency loss* of a semantic system is measured by its minimum deviation from
 252 optimality, defined as $\varepsilon = \min_{\beta} \left\{ \frac{1}{\beta} (\mathcal{F}_{\beta}[q] - \mathcal{F}_{\beta}^*) \right\}$ where \mathcal{F}_{β}^* is the optimal value of \mathcal{F}_{β} in Eq.
 253 1. Second, we measure the *semantic (mis)alignment* between two systems by the Normalized In-
 254 formation Distance (NID) (Kraskov et al., 2005; Vinh et al., 2010). NID is a metric capturing the
 255 distance between two clusterings (in this case, induced by color naming categories), providing a
 256 quantitative measure of structural similarity between the naming systems. Since NID is bounded in
 257 $[0, 1]$, we take $1 - \text{NID}$ as a measure of similarity, or alignment. **IB-alignment** measures the simi-
 258 larity between a system and the nearest (ε -fitted) optimal IB system. **WCS-alignment** measures the
 259 average alignment between a system and the WCS languages, and **English-alignment** measures the
 260 alignment between a system and English.
 261

262 4 RESULTS

263 4.1 ENGLISH COLOR NAMING

264 We begin by eliciting color naming responses from LLMs with English color terms. We then eval-
 265 uate their IB-efficiency and alignment with the actual English color naming system from Lindsey &
 266 Brown (2014). As illustrated in Figure 1a, we consider two variants of this task, a text-only vari-
 267 ant where colors are presented as sRGB coordinates, and an image-based variant where colors are
 268 presented as a color patch. More details on our procedure can be found in Appendix B.
 269

The resulting systems are shown in Figure 2b, their IB tradeoffs are shown in Figure 2a, and their
 270 quantitative evaluation is shown in Figure 2c (see also Figure 7, 8 and 9 in Appendix E). We

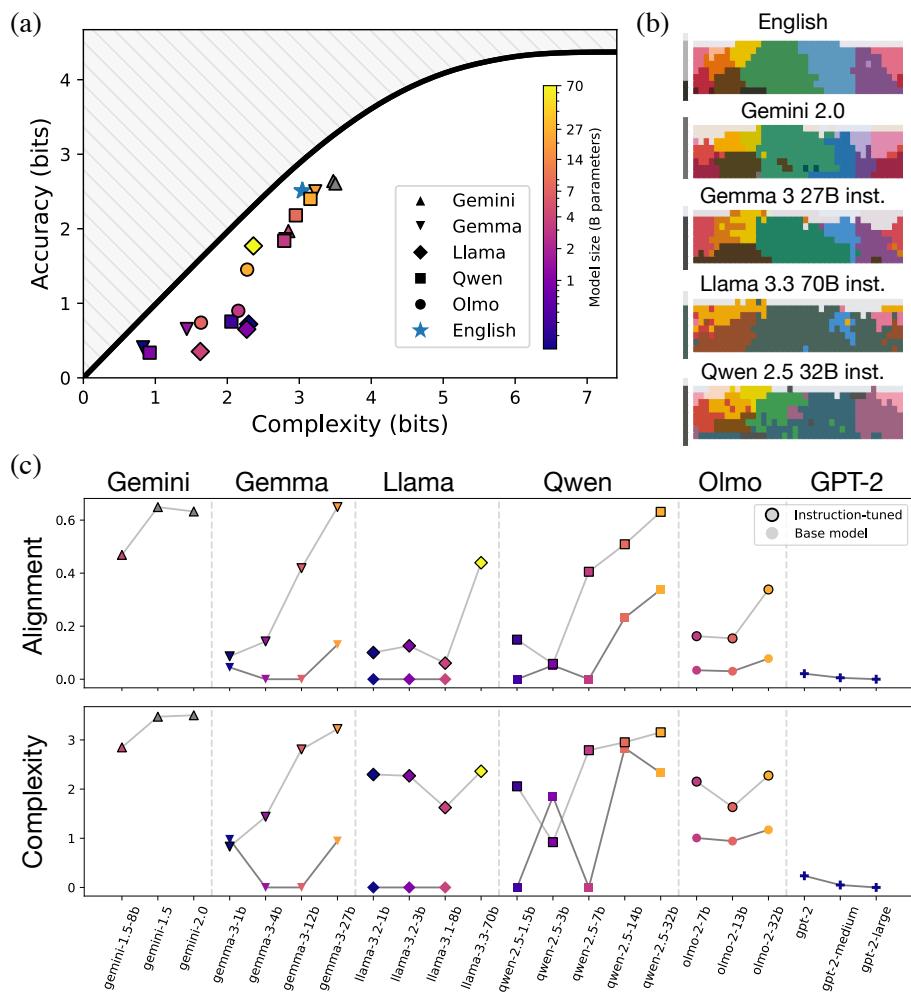


Figure 2: **English color naming experiment with LLMs.** (a) IB complexity-accuracy tradeoffs achieved by instruction-tuned LLMs (see Appendix section E for all/base models), plotted with respect to the English tradeoff (blue star) and IB theoretical bound (black curve) from Zaslavsky et al. (2018). Models vary widely in their tradeoffs, with larger instruction-tuned models reaching the English point. (b) Color naming systems of English (from Lindsey & Brown (2014)) and best-performing LLMs. Each system is shown by its mode map, i.e., it is plotted against the WCS grid (Figure 1a), where each chip is colored by the color-centroid of its modal category. (c) English-alignment (top) and IB complexity (bottom) of all LLMs. Markers are the same as in (a), where a black edge indicates the instruction-tuned model and no edge indicates the base model. Across model families, size and instruction-tuning are associated with higher complexity and better alignment to English.

found that the vast majority of LLMs vary in their complexity and English-alignment, with larger instruction-tuned models achieving better alignment and IB-efficiency. No model aligns perfectly with the English system from Lindsey & Brown (2014), though Gemini-2.0 and Gemma 3 27B (inst.) approximate it closely. Llama 3.3 70B (inst.) and Qwen 2.5 32B (inst.) produce naming systems that are reasonably aligned with English and achieve comparable IB-tradeoffs. We also conducted an analysis on the learning trajectory of Olmo 2 32B (Appendix F), which revealed that English-alignment and complexity increase as a function of learning steps and tokens seen during training. Interestingly, an minimal pair analysis of the multimodal LLMs (Figure 8, Appendix E) revealed that there may be a cutoff of roughly 3 bits of complexity for which processing images rather than text (sRGB coordinates) does not improve alignment.

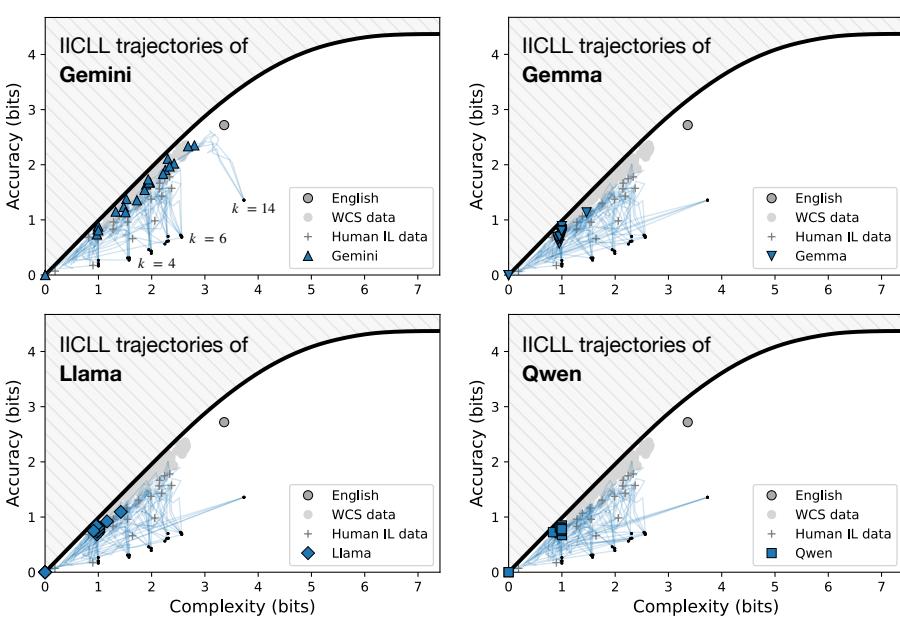


Figure 3: **IICLL with LLMs converges to near-optimal IB solutions.** The trajectories of Gemini 2.0 Flash (upper left), Gemma 3 27B (upper right), Llama 3.3 70B (lower left) and Qwen 2.5 32B (lower right) are plotted on the information plane (same as Figure 2A), together with the IB tradeoffs across human languages (WCS+English) and human IL data. Small black dots correspond to random initializations of chains with varying number of categories, $k \in \{2, 3, 4, 5, 6, 14\}$. Thin blue lines correspond to the LLMs' IICLL trajectories. Gemini captures the complexity range observed across human languages, while the other models converge to lower complexity systems. All models are instruction-tuned.

These findings are somewhat surprising, given that prior work (Abdou et al., 2021; Patel & Pavlick, 2022; Marjeh et al., 2024) has shown that language models of a variety of sizes can in principle recover human-aligned representations of color terms. In contrast, we find that many state-of-the-art pretrained LLMs struggle to reproduce any coherent color vocabulary, when presented with colors (encoded as sRGB coordinates) in a constrained naming task in the spirit of the WCS procedure. Although instruction tuning is associated with better performance, it does not guarantee comparable IB-tradeoffs or alignment to English, even for models on the order of $\sim 15B$ parameters. On the other hand, we were surprised to find that some models—particularly Olmo 2 32B (inst.) (OLMo-Team et al., 2025) and Qwen 7 2.5 VL (inst.) (Bai et al., 2025)—produced systems with category structure resembling not English, but instead other, very low-resource languages from the WCS (see Figure 9 in Appendix E). This suggests that although many LLMs struggle to recover the same particular distinctions as English speakers, they may still possess a representation of color aligned with that of humans.

Taken together, these findings indicate that while color categorization in LLMs is limited to very recent, large, instruction-tuned models, from these models there is a clear capacity to develop color categories aligned with human color perception. However, this English color naming task still leaves open a crucial question: is this behavior merely a reflection of imitating patterns in human data, or does it signify a more intrinsic LLM inductive bias towards IB-efficiency in categorization?

4.2 ITERATED IN-CONTEXT LANGUAGE LEARNING (IICLL)

To investigate whether LLMs possess an efficiency bias that extends beyond learning the specific categories of a language on which they were trained, we turn to our second study, which simulates cultural transmission in LLMs. To this end, we sought to replicate the ILL color naming experiment of Xu et al. (2013) as closely as possible, using our IICLL paradigm shown in Figure 1b (see Appendix G for more details). We considered only large, instruction tuned models that performed well

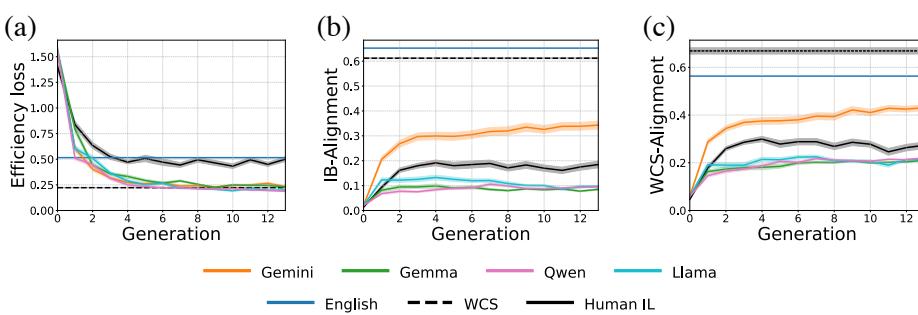


Figure 4: Across IICLL generations, emergent LLM systems become more efficient (a), more aligned with the optimal IB systems (b), and more aligned with human languages (c). Colored curves show the average across initializations and conditions, and the colored regions corresponds to the 95% confidence intervals.

in the English color naming task for our IICLL experiments: Gemini 2.0, Gemma 3 27B, Qwen 2.5 32B, and Llama 3.3 70B – henceforth, Gemini, Gemma, Qwen and Llama (see Appendix L for an analysis showing that smaller models struggle in IICLL).

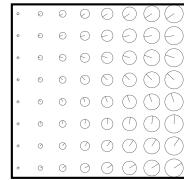
Figure 3 shows the resulting trajectories of IICLL chains on the information plane. Gemini develops color naming systems that converge to a similar range of near-optimal IB solutions as the typological patterns of the WCS languages, as well as the final generation systems from the human IL chains from Xu et al. (2013). There is also broad qualitative fit between its final generation IICLL systems and languages from the WCS (see Appendix I for a comparison of mode maps). The other LLMs also develop systems that converge to highly IB-efficient solutions, though they are generally limited to the lower range of complexity observed in the WCS.

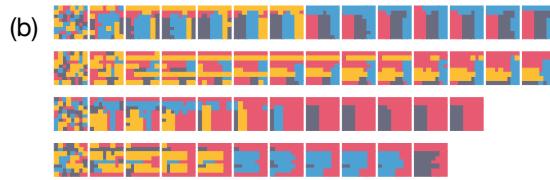
Additional quantitative support for these observations is provided in Figure 4. These figures show that over generations, LLM systems become (i) more efficient in their mapping of stimuli to terms, (ii) more similar to naturally occurring human color systems and (iii) more similar to optimal IB systems. Furthermore, LLM IICLL chains converge near the bound relatively quickly (after roughly four generations), parallel to human IL dynamics.

Strikingly, many trajectories from all models initially climb in complexity towards the IB bound before slowly evolving downwards alongside it. This suggests that the capacity to learn and transmit complex yet near-optimally efficient category systems, while strongest for Gemini, is present in all four LLMs. One factor that may drive the difference between Gemini and the other models is that the IICLL task requires very strong in-context learning, as models must integrate dozens of in-context training examples to generalize well. For example, the $k = 14$ condition includes 84 examples, and in this setting most of the LLMs immediately converge to low-complexity solutions. However, given that (1) the terms in our IICLL experiment are nonsense (made up) terms and (2) we give no indication to the model that the stimuli are in fact colors, only that they have “features” (Figure 1c), all four models show an impressive ability to evolve systems (at least transiently) that are aligned with the structure of human color perception.

In order to precisely assess whether the emergent LLM systems were nontrivially efficient and aligned to WCS languages, we conducted a rotation analysis (Regier et al., 2007) on the final, evolved color systems from our LLM experiments alongside the human data from Xu et al. (2013) (Figure 11 in Appendix H). This analysis involved rotating the color term assignments along the hue dimension of the WCS color grid and evaluating the difference in their IB-efficiency and alignment scores. We found that such rotations away from the actual emergent systems lead to a significant decrease in efficiency and alignment scores for Gemini systems. This suggests that Gemini achieves efficient categorization that is not arbitrary, but is constrained by the specific, perceptually grounded organization of human color categories.

Taken together, our IICLL experiments show that LLMs, like human learners, can in principle re-structure initially random color naming systems in a process of simulated cultural evolution that leads to near-optimality and high alignment with human semantic representations.

432
433
434
435 (a)  A 7x8 grid of circles. Each circle has a small dot in its center and a thin black line (spoke) extending from the center to the circumference. The circles are arranged in a grid pattern, with the size and angle of the spoke varying across the grid.
436
437
438
439
440



441
442 Figure 5: (a) The Shepard circles stimulus grid, (b) Gemini IICLL chains for naming Shepard
443 circles. Rows correspond to individual chains, initialized randomly. Each system is plotted over the
444 stimulus grid, where colors correspond to unique labels.

445 446 447 4.3 THE EMERGENCE OF CATEGORIES IN SHEPARD CIRCLES VIA IICLL

448 While many results in color have previously been shown to generalize to other domains (Zaslavsky
449 et al., 2019; 2021; Mollica et al., 2021), it is far from trivial to conduct a full-scale analysis of the
450 scope we performed for color naming, primarily due to the lack of high-quality data from both native
451 speakers and ILL experiments. Here, nevertheless, we apply the IICLL paradigm in a qualitatively
452 distinct semantic domain to provide initial evidence that LLMs may have a general bias to learn
453 structured category systems.

454 We considered a synthetic domain of so-called “Shepard circles,” a classic conceptual space used
455 to study how humans categorize multidimensional stimuli (Shepard, 1964). These are circles which
456 vary in both radius and angle of rotation of an internal spoke. We generated stimuli by taking eight
457 evenly spaced values for each of the two dimensions, yielding 64 total stimuli (Figure 5a). For this
458 preliminary investigation, we limit our analysis to Gemini. We found that presenting these stimuli as
459 pairs of numbers (radius and angle) proved to be challenging. This is perhaps unsurprising, because
460 unlike color— which is represented in various ways online in both text and images— there is likely
461 no text online that would allow the model to associate these numbers with meaningful perceptual
462 features. To overcome this limitation and better mimic human perception, we presented Gemini with
463 images of the stimuli.

464 The results of a sample of IICLL chains are depicted in Figure 5b. Over generations, Gemini trans-
465 mitted categories that became increasingly compact in their partitioning of the conceptual space, and
466 distinguished regions based on both the radius and angle of the circles. This suggests that LLMs—
467 especially large multimodal models— potentially have a domain-general bias to organize perceptual
468 features into non-arbitrary, and increasingly regular, semantic categories.

469 470 471 5 DISCUSSION

472 In this work, we combined a theory-driven approach, based on the IB principle, with cognitively-
473 motivated experimental methods, based on color naming and iterated language learning to study
474 whether LLMs can acquire a human-like inductive bias toward optimally-compressed semantic
475 representations, without being trained for this objective. To do this, we first conducted an in-depth anal-
476 ysis of English color naming across 39 LLMs, and found that a surprising number of state-of-the-art
477 models fail to capture the English color naming system. However, some of the most recent, larger,
478 instruction-tuned models achieve high English-alignment and comparable IB tradeoffs. We then
479 demonstrated that LLMs that do align well with the English color naming system are not merely
480 mimicking patterns in their training data, but rather exhibit a more fundamental capacity to learn
481 human-aligned, efficient color category systems. To do this, we introduced Iterated in-Context Lan-
482 guage Learning (IICLL) to simulate cultural transmission of category systems. Over generations of
483 IICLL, LLMs tend to restructure randomly-initialized artificial category systems toward greater IB-
484 efficiency and alignment to human naming systems. We also provide initial evidence that LLMs can
485 develop structured categories over generations of IICLL in a domain distinct from color, suggesting
486 that our results may apply in other semantic domains. Taken together, our current findings suggest
487 that LLMs are capable of evolving perceptually grounded, human-like semantic systems, guided

486 by the same IB-efficiency principle that underlies human languages. Importantly, neither humans
 487 nor LLMs are explicitly trained for optimizing the IB objective, suggesting that IB-efficiency may
 488 emerge to support intelligent behavior.

489 Our empirical results open up several important questions for future research. First, while our work
 490 demonstrates that cultural transmission alone (via IICLL) can be a sufficient pressure for some LLMs
 491 to develop efficient, human-like category systems, a more complete understanding of language evo-
 492 lution requires integrating functional pressure of language use, e.g., via communication. Therefore,
 493 an important future direction is to extend our IICLL framework to incorporate communication as a
 494 selective pressure, for example, by adopting models that explicitly integrate both transmission and
 495 communication (e.g., Kouwenhoven et al., 2024). Second, the precise origins of the bias we observe
 496 in LLMs toward efficiency are unclear (for example, how might this bias emerge from properties
 497 of the training data, instruction-tuning, or model size), and investigating this is another important
 498 direction for future work. Lastly, we look forward to extending our analyses across more languages
 499 and semantic domains.

500 **Reproducibility statement.** This work utilizes a previously published model and code
 501 from Zaslavsky et al. (2018), made available at <https://github.com/nogazs/ib-color-naming> under the MIT License. The ILL data from Xu et al. (2013) were obtained
 502 from the authors, and the WCS data are publicly available from the World Color Survey website.
 503 Appendix D provides a list of the specific models used with their Hugging Face or Google API IDs,
 504 and Appendix J includes example prompts. We will make the code for our experiments and analyses
 505 available to reviewers in an anonymous repository.

508 REFERENCES

- 510 Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders
 511 Søgaard. Can Language Models Encode Perceptual Structure Without Grounding? A Case Study
 512 in Color. In Arianna Bisazza and Omri Abend (eds.), *Proceedings of the 25th Conference on*
 513 *Computational Natural Language Learning*, pp. 109–132, Online, 2021. Association for Compu-
 514 *tational Linguistics*. doi: 10.18653/v1/2021.conll-1.9.
- 515 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 516 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 517 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 518 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report, 2025.
- 519 B. Berlin and P. Kay. *Basic Color Terms: Their Universality and Evolution*. University of California
 520 Press, 1969. ISBN 978-0-520-01442-8.
- 522 Brent Berlin. *Ethnobiological Classification: Principles of Categorization of Plants and Animals in*
 523 *Traditional Societies*, volume 185. Princeton University Press, 1992.
- 525 James S Boster. Categories and cognitive anthropology. In *Handbook of Categorization in Cognitive*
 526 *Science*, pp. 75–106. Elsevier, 2005.
- 527 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 528 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 529 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 530 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
 531 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 532 Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, 2020.
- 533 Emil Carlsson, Devdatt Dubhashi, and Terry Regier. Cultural evolution via iterated learning and
 534 communication explains efficient color naming systems. *Journal of Language Evolution*, 9(1-2):
 535 49–66, 2024. ISSN 2058-458X. doi: 10.1093/jole/lae010.
- 537 Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec, Elnaz Davoodi,
 538 Kory Wallace Mathewson, Olivier Tielemans, Angeliki Lazaridou, and Bilal Piot. Emergent com-
 539 munication at scale. In *The Tenth International Conference on Learning Representations, ICLR*
 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

- 540 Richard S. Cook, Paul Kay, and Terry Regier. The World Color Survey Database: History and use.
 541 In Henri Cohen and Claire Lefebvre (eds.), *Handbook of Categorization in Cognitive Science*,
 542 pp. 223–241. Elsevier Science Ltd, Oxford, 2005. ISBN 978-0-08-044612-7. doi: 10.1016/
 543 B978-008044612-7/50064-0.
- 544
- 545 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecom-*
 546 *munications and Signal Processing)*. Wiley-Interscience, USA, 2006. ISBN 978-0-471-24195-9.
- 547 William Croft. *Typology and Universals*. Cambridge Textbooks in Linguistics. Cambridge
 548 University Press, Cambridge, 2 edition, 2002. ISBN 978-0-521-80884-2. doi: 10.1017/
 549 CBO9780511840579.
- 550
- 551 Gemma-Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 552 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 553 Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 554 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
 555 hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 556 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 557 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
 558 Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
 559 Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
 560 Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György,
 561 André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,
 562 Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
 563 Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
 564 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 565 mar Sreepathihihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 566 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 567 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 568 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 569 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
 570 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 571 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 572 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 573 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 574 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 575 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 576 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 577 Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 578 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry,
 579 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 580 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 581 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 582 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 583 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 584 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 585 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 586 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 587 Gemma 3 Technical Report, 2025.
- 588
- 589 Google. Gemini 2.0: Flash, flash-lite and pro, 2025.
- 590
- 591 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 592 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 593 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 594 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 595 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 596 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 597 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 598 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,

594 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 595 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 596 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 597 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 598 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 599 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 600 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 601 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 602 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 603 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 604 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 605 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 606 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 607 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 608 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 609 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 610 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 611 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 612 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 613 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 614 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 615 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 616 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 617 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 618 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 619 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 620 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 621 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 622 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 623 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 624 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 625 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 626 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 627 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 628 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 629 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 630 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 631 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 632 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paramjape, Bing Liu, Bo Wu, Boyu
 633 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 634 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 635 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 636 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 637 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 638 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 639 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 640 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 641 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 642 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 643 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 644 son Rudolph, Helen Suk, Henry Aspégren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 645 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 646 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 647 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 648 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 649 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 650 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 651 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 652 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,

- 648 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 649 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 650 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 651 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 652 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 653 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 654 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 655 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 656 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 657 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 658 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 659 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 660 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 661 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 662 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 663 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 664 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 665 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 666 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 667 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
 668 Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihalescu, Vladimir Ivanov, Wei Li,
 669 Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian Wu,
 670 Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 671 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
 672 Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
 673 Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, 2024.
- 674 Thomas L. Griffiths and Michael L. Kalish. Language Evolution by Iterated Learning With
 675 Bayesian Agents. *Cognitive Science*, 31(3):441–480, 2007. ISSN 1551-6709. doi: 10.1080/
 15326900701326576.
- 676 Thomas L. Griffiths, Brian R. Christian, and Michael L. Kalish. Using Category Structures to Test
 677 Iterated Learning as a Method for Identifying Inductive Biases. *Cognitive Science*, 32(1):68–107,
 678 2008. ISSN 1551-6709. doi: 10.1080/03640210701801974.
- 679 Eleonora Gualdoni, Mycal Tucker, Roger Levy, and Noga Zaslavsky. Bridging semantics and prag-
 680 matics in information-theoretic emergent communication. In A. Globerson, L. Mackey, D. Bel-
 681 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 682 Processing Systems*, volume 37, pp. 21059–21078. Curran Associates, Inc., 2024.
- 683 Peter Harremoes and Naftali Tishby. The Information Bottleneck Revisited or How to Choose a
 684 Good Distortion Measure. In *2007 IEEE International Symposium on Information Theory*, pp.
 685 566–570, 2007. doi: 10.1109/ISIT.2007.4557285.
- 686 Nathaniel Imel, Jennifer Culbertson, Simon Kirby, and Noga Zaslavsky. Iterated language learning
 687 is shaped by a drive for optimizing lossy compression. In *Proceedings of the 47th Annual Meeting
 688 of the Cognitive Science Society*, 2025.
- 689 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 690 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 691 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 692 Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023.
- 693 Paul Kay, Brent Berlin, Luisa Maffi, William R. Merrifield, and Richard Cook. *The World Color
 694 Survey*. Center for the Study of Language and Information, Stanford, 2009.
- 695 Simon Kirby, Hannah Cornish, and Kenny Smith. Cumulative cultural evolution in the laboratory:
 696 An experimental approach to the origins of structure in human language. *Proceedings of the
 697 National Academy of Sciences*, 105(31):10681–10686, 2008. doi: 10.1073/pnas.0707835105.
- 698 Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and commu-
 699 nication in the cultural evolution of linguistic structure. *Cognition*, 141:87–102, 2015. ISSN
 700 0010-0277. doi: 10.1016/j.cognition.2015.03.016.

- 702 Peter Koch. 85. Lexical typology from a cognitive and linguistic point of view. In 2. *Halbband*
 703 *Language Typology and Language Universals 2.Teilband*, pp. 1142–1178. De Gruyter Mouton,
 704 2008. ISBN 978-3-11-019426-5.
- 705 Tom Kouwenhoven, Max Peeperkorn, and Tessa Verhoef. Searching for Structure: Investigating
 706 Emergent Communication with Large Language Models, 2024.
- 708 A. Kraskov, H. Stögbauer, R. G. Andrzejak, and P. Grassberger. Hierarchical clustering using mutual
 709 information. *Europhysics Letters*, 70(2):278, 2005. doi: 10.1209/epl/i2004-10483-y.
- 710 Sreejan Kumar, Raja Marjeh, Byron Zhang, Declan Campbell, Michael Y Hu, Umang Bhatt, Bren-
 711 den Lake, and Tom Griffiths. Comparing abstraction in humans and machines using multimodal
 712 serial reproduction. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, vol-
 713 ume 46, 2024.
- 714 William Labov. The boundaries of words and their meaning. In Charles-James N. Bailey and
 715 Roger W. Shuy (eds.), *New Ways of Analyzing Variation in English*. Georgetown University Press,
 716 Washington, D.C., 1973.
- 718 Delwin T. Lindsey and Angela M. Brown. The color lexicon of American English. *Journal of Vision*,
 719 14(2):17, 2014. ISSN 1534-7362. doi: 10.1167/14.2.17.
- 721 Asifa Majid. Comparing Lexicons Cross-linguistically. In John R Taylor (ed.), *The Oxford Hand-
 722 book of the Word*, pp. 0. Oxford University Press, 2015. ISBN 978-0-19-964160-4. doi:
 723 10.1093/oxfordhb/9780199641604.013.020.
- 724 Barbara C Malt and Asifa Majid. How thought is mapped into words. *Wiley Interdisciplinary
 725 Reviews: Cognitive Science*, 4(6):583–597, 2013.
- 727 Raja Marjeh, Ilia Sucholutsky, Pol van Rijn, Nori Jacoby, and Thomas L. Griffiths. Large language
 728 models predict human sensory judgments across six modalities. *Scientific Reports*, 14(1):21445,
 729 2024. ISSN 2045-2322. doi: 10.1038/s41598-024-72071-1.
- 730 Francis Mollica, Geoff Bacon, Noga Zaslavsky, Yang Xu, Terry Regier, and Charles Kemp. The
 731 forms and meanings of grammatical markers support efficient communication. *Proceedings of
 732 the National Academy of Sciences*, 118(49):e2025993118, 2021. doi: 10.1073/pnas.2025993118.
- 733 OLMo-Team, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
 734 gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
 735 Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
 736 Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
 737 Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
 738 atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
 739 Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
 740 OLMo 2 Furious, 2025.
- 741 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 742 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 743 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 744 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 745 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 746 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 747 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 748 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 749 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 750 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 751 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 752 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 753 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 754 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 755 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,

756 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 757 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 758 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 759 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 760 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 761 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 762 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 763 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 764 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 765 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 766 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 767 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 768 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 769 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 770 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 771 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 772 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 773 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 774 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 775 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 776 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 777 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 778 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 779 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 780 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 781 jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 782 Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lillian Weng,
 783 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 784 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan,
 785 Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
 786 Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, 2024.
 787

Roma Patel and Ellie Pavlick. Mapping language models to grounded conceptual spaces. In *International Conference on Learning Representations*, 2022.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 788 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 789 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 790 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 791 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 792 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
 793 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 794 models are unsupervised multitask learners. Technical report, OpenAI, 2019.

Terry Regier, Paul Kay, and Naveen Khetarpal. Color naming reflects optimal partitions of color
 795 space. *Proceedings of the National Academy of Sciences*, 104(4):1436–1441, 2007. doi: 10.1073/
 796 pnas.0610341104.

Yi Ren, Shijie Guo, Matthieu Labeau, Shay B. Cohen, and Simon Kirby. Compositional languages
 801 emerge in a neural iterated learning model. In *Proceedings of the International Conference on*
 802 *Learning Representations (ICLR)*, 2020.

Yi Ren, Shangmin Guo, Linlu Qiu, Bailin Wang, and Danica J. Sutherland. Bias amplification
 803 in language model evolution: An iterated learning perspective. In A. Globerson, L. Mackey,
 804 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information*
 805 *Processing Systems*, volume 37, pp. 38629–38664. Curran Associates, Inc., 2024.

Eleanor Rosch. Cognitive representations of semantic categories. *Journal of Experimental Psychol-
 806 ogy: General*, 104(3):192–233, 1975. ISSN 1939-2222. doi: 10.1037/0096-3445.104.3.192.

- 810 Eleanor Rosch. Principles of categorization. In Daniel J. Levitin (ed.), *Foundations of Cognitive*
 811 *Psychology: Core Readings*, pp. 251–270. MIT Press, 2002.
- 812
- 813 Roger N. Shepard. Attention and the metric structure of the stimulus space. *Journal of Mathematical*
 814 *Psychology*, 1(1):54–87, 1964. ISSN 0022-2496. doi: 10.1016/0022-2496(64)90017-3.
- 815
- 816 Maya Taliaferro, Nathaniel Imel, Esti Blanco-Elorietta, and Noga Zaslavsky. Bilinguals exhibit se-
 817 mantic convergence while maintaining near-optimal efficiency. In *Proceedings of the 47th Annual*
 818 *Meeting of the Cognitive Science Society*, 2025.
- 819
- 820 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *Pro-
 ceedings of the 37th Annual Allerton Conference on Communication, Control and Computing*, pp.
 821 368–377, 1999.
- 822
- 823 Mycal Tucker, Roger P. Levy, Julie Shah, and Noga Zaslavsky. Trading off utility, informativeness,
 824 and complexity in emergent communication. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 825 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.
- 826
- 827 Mycal Tucker, Julie Shah, Roger Levy, and Noga Zaslavsky. Towards Human-Like Emergent Com-
 828 munication via Utility, Informativeness, and Complexity. *Open Mind*, 9:418–451, 2025. ISSN
 829 2470-2986. doi: 10.1162/opmi_a_00188.
- 830
- 831 Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information Theoretic Measures for Clusterings
 832 Comparison: Variants, Properties, Normalization and Correction for Chance. *Journal of Machine*
 833 *Learning Research*, 11(95):2837–2854, 2010. ISSN 1533-7928.
- 834
- 835 Jing Xu, Mike Dowman, and Thomas L. Griffiths. Cultural transmission results in convergence
 836 towards colour term universals. *Proceedings of the Royal Society B: Biological Sciences*, 280
 837 (1758):20123073, 2013. doi: 10.1098/rspb.2012.3073.
- 838
- 839 Noga Zaslavsky. *Information-Theoretic Principles in the Evolution of Semantic Systems*. PhD thesis,
 840 The Hebrew University of Jerusalem, 2020.
- 841
- 842 Noga Zaslavsky, Charles Kemp, Terry Regier, and Naftali Tishby. Efficient compression in color
 843 naming and its evolution. *Proceedings of the National Academy of Sciences*, 115(31):7937–7942,
 844 2018. doi: 10.1073/pnas.1800521115.
- 845
- 846 Noga Zaslavsky, Terry Regier, Naftali Tishby, and Charles Kemp. Semantic categories of artifacts
 847 and animals reflect efficient coding. In *41st Annual Meeting of the Cognitive Science Society*,
 848 2019.
- 849
- 850 Noga Zaslavsky, Charles Kemp, Naftali Tishby, and Terry Regier. Communicative need in colour
 851 naming. *Cognitive Neuropsychology*, 37(5-6):312–324, 2020. ISSN 0264-3294. doi: 10.1080/
 852 02643294.2019.1604502.
- 853
- 854 Noga Zaslavsky, Mora Maldonado, and Jennifer Culbertson. Let's talk (efficiently) about us: Person
 855 systems achieve near-Optimal compression. In *Proceedings of the 43rd Annual Meeting of the*
 856 *Cognitive Science Society*, 2021.
- 857
- 858 Noga Zaslavsky, Keree Garvin, Charles Kemp, Naftali Tishby, and Terry Regier. The evolution of
 859 color naming reflects pressure for efficiency: Evidence from the recent past. *Journal of Language*
 860 *Evolution*, pp. Izac001, 2022. ISSN 2058-458X. doi: 10.1093/jole/izac001.
- 861
- 862 Jian-Qiao Zhu and Thomas L. Griffiths. Eliciting the Priors of Large Language Models using Iterated
 863 In-Context Learning, 2024.
- 864

865 A IB COMMUNICATION MODEL AND THEORETICAL BOUND

866

867 **IB communication model** The framework is based on a basic communication model that consid-
 868 ers an inventory of words \mathcal{W} to communicate about a space of meanings, \mathcal{M} . The specific model
 869 we apply in this paper is the previously published IB color naming model of Zaslavsky et al.. In

864 this model, meanings are assumed to be mental representations or beliefs over world states \mathcal{U} , for-
 865 mally defined as a probability distribution $m(u)$ over world states $u \in \mathcal{U}$. In our setting, the set
 866 of world states \mathcal{U} is taken to be the 330 color chips from the WCS grid, and meanings over col-
 867 ors are grounded in the CIELAB perceptual space such that each target color referent, $u_t \in \mathcal{U}$, is
 868 represented as a Gaussian distribution $m_t(u)$ centered around u_t . Meanings are drawn from an in-
 869 formation source, $p(m)$, which characterizes how often each meaning needs to be communicated.
 870 The need distribution over meanings in this model, $p(m)$, was estimated using the method of least-
 871 informative priors (see Zaslavsky et al. (2020) for an extensive evaluation of this need distribution).
 872 Note that, in our IICLL experiments, we sample stimulus-word pairs uniformly for training data for
 873 each generation, instead of biased sampling from this prior. This was done in order to replicate the
 874 procedure in Xu et al. (2013).

875 Given a meaning $m \sim p(m)$, a speaker produces a signal w using a stochastic production policy, also
 876 called an encoder, $q(w|m)$, and then a listener interprets the signal by reconstructing an estimated
 877 belief state $\hat{m}_w(u) = \sum_m q(m|w)m(u)$. Note that this form of listener interpretations corresponds
 878 to a Bayesian listener. While this form is assumed here for simplicity, it is not an actual assumption
 879 but rather a derivation from the theory (see the SI of Zaslavsky et al. (2018)).

880 **IB theoretical bound** A semantic category system in this framework corresponds to a stochastic
 881 encoder, $q(w|m)$, which maps meanings to signals. An optimal semantic system, according to
 882 the IB principle, is an encoder that satisfies a tradeoff between its informational complexity and
 883 communicative accuracy. Complexity, also known as information rate (Cover & Thomas, 2006), is
 884 defined by the mutual information between speaker meanings and signals,

$$886 \quad I_q(M; W) = \sum_m p(m)q(w|m) \log \frac{q(w|m)}{q(w)}, \quad (2)$$

887 which captures the number of bits, on average, that is required to encode meanings with signals.
 888 Maintaining low complexity corresponds to using fewer bits for communication, i.e., achieving high
 889 compression rate, which in turn, can be translated to affording a smaller lexicon size. For example,
 890 minimal complexity can be achieved by compressing all possible meanings into a single signal.
 891 This, however, will result in very poor accuracy. Accuracy, in IB terms, is quantified by

$$894 \quad I_q(W; U) = I(M; U) - \mathbb{E}_q \left[D \left[M \parallel \hat{M} \right] \right], \quad (3)$$

895 which corresponds to maintaining a language that is informative about the speaker’s intentions.
 896 Maximizing accuracy, as expressed in Eq. 3, amounts to minimizing the expected distortion between
 897 speaker and listener meanings, i.e., the Kullback-Leibler (KL) divergence $D[M \parallel \hat{M}]$. We say that a
 898 language’s semantic system is *efficient* to the extent that its encoder q minimizes the IB tradeoff:

$$900 \quad \mathcal{F}_\beta[q] = I_q(M; W) - \beta I_q(W; U) \text{ s.t. } \beta \geq 1, \quad (4)$$

901 where β is a free parameter controlling the tradeoff between pressure to minimize complexity and
 902 pressure to maximize accuracy. The solutions to this optimization problem define the IB theoretical
 903 limit of efficiency, which means that no system can lie above this theoretical bound (see Fig. 3).

905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

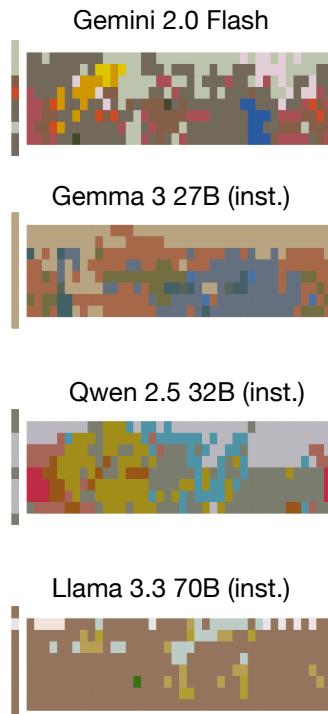
918 B ENGLISH COLOR NAMING PROCEDURE
919

920 The color naming task was conducted by prompting a model to label a color chip, for all 330 color
921 chips from the WCS stimulus array, one stimulus at a time, in a randomized order. Unlike the
922 prompts in our IICLL study, we do not provide the model with access to previous interactions. Each
923 prompt was of the form: “What color is this [<color coordinates>]? You may only use
924 one of the following allowed labels: ['Red', 'Blue', ...] Please provide only a single label from the
925 list just provided. Do not give any explanation.” When prompting models with text only, the color
926 coordinates were sRGB triples. The allowed set of labels were fourteen basic English color terms
927 corresponding to the modal terms from Lindsey & Brown (2014).

928
929 C ENGLISH COLOR NAMING WITH CIELAB INPUTS
930

931 To address the generalizability of our findings beyond sRGB inputs, we replicated our English color
932 naming task using CIELAB triples as the input features for the prompt text. CIELAB is a percep-
933 tually uniform space and so provides a principled color space to contrast with sRGB. We restricted
934 to testing the four models that performed best from our original study (which used sRGB-encoded
935 stimuli).

936 Figure 6 illustrates mode maps of the resulting systems for models when prompted with CIELAB-
937 encoded colors. We found that performance generally degraded across all models when providing
938 features as CIELAB triples: they struggled significantly to align with established English color
939 boundaries, and the resulting category systems were considerably noisier compared to the sRGB-
940 based outputs. This outcome is consistent with previous research by Marjeh et al. (2024) which
941 noted that other frontier models failed to produce coherent English color category systems when
942 prompted with CIELAB triples. Based on this observation, we restricted our IICLL study to the
943 sRGB feature space to assess the models’ inductive bias under ideal conditions.



968 Figure 6: Mode maps for the best-performing models from our English color naming study, when
969 prompted with CIELAB triples.
970

971

972 **D MODELS**
973

975 Model	976 Size (B params)	977 Instruction Tuned	978 Multimodal	979 Hugging Face / Google API ID
976 gemini-1.5	977 n/a	978 Yes	979 Yes	980 gemini-1.5-flash
977 gemini-1.5-8b	978 8	979 Yes	980 Yes	981 gemini-1.5-flash-8b
978 gemini-2.0	979 n/a	980 Yes	981 Yes	982 gemini-2.0-flash
979 gemma-3-1b	980 1	981 No	982 No	983 google/gemma-3-1b
980 gemma-3-1b-it	981 1	982 Yes	983 No	984 google/gemma-3-1b-it
981 gemma-3-4b	982 4	983 No	984 Yes	985 google/gemma-3-4b
982 gemma-3-4b-it	983 4	984 Yes	985 Yes	986 google/gemma-3-4b-it
983 gemma-3-12b	984 12	985 No	986 Yes	987 google/gemma-3-12b
984 gemma-3-12b-it	985 12	986 Yes	987 Yes	988 google/gemma-3-12b-it
985 gemma-3-27b	986 27	987 No	988 Yes	989 google/gemma-3-27b
986 gemma-3-27b-it	987 27	988 Yes	989 Yes	990 google/gemma-3-27b-it
987 gpt-2	988 0.224	989 No	990 No	991 openai-community/gpt2
988 gpt-2-medium	989 0.355	990 No	991 No	992 openai-community/gpt2-medium
989 gpt-2-large	990 0.774	991 No	992 No	993 openai-community/gpt2-large
990 llama-3.1-8b	991 8	992 No	993 No	994 meta-llama/Llama-3.1-8B
991 llama-3.1-8b-instruct	992 8	993 Yes	994 No	995 meta-llama/Llama-3.1-8B-Instruct
992 llama-3.2-1b	993 1	994 No	995 No	996 meta-llama/Llama-3.2-1B
993 llama-3.2-1b-instruct	994 1	995 Yes	996 No	997 meta-llama/Llama-3.2-1B-Instruct
994 llama-3.2-3b	995 3	996 No	997 No	998 meta-llama/Llama-3.2-3B
995 llama-3.2-3b-instruct	996 3	997 Yes	998 No	999 meta-llama/Llama-3.2-3B-Instruct
996 llama-3.3-70b-instruct	997 70	998 Yes	999 No	1000 metallama/Llama-3.3-70B-Instruct
997 olmo-2-7b	1000 7	1001 No	1002 No	1003 allenai/OLMo-2-7B
998 olmo-2-7b-instruct	1001 7	1002 Yes	1003 No	1004 allenai/OLMo-2-7B-Instruct
999 olmo-2-13b	1002 13	1003 No	1004 No	1005 allenai/OLMo-2-13B
1000 olmo-2-13b-instruct	1003 13	1004 Yes	1005 No	1006 allenai/OLMo-2-13B-Instruct
1001 olmo-2-32b	1004 32	1005 No	1006 No	1007 allenai/OLMo-2-32B
1002 olmo-2-32b-instruct	1005 32	1006 Yes	1007 No	1008 allenai/OLMo-2-32B-Instruct
1003 qwen-2.5-1.5b	1006 2	1007 No	1008 No	1009 Qwen/Qwen-2.5-1.5B
1004 qwen-2.5-1.5b-instruct	1007 2	1008 Yes	1009 No	1010 Qwen/Qwen-2.5-1.5B-Instruct
1005 qwen-2.5-3b	1008 3	1009 No	1010 No	1011 Qwen/Qwen-2.5-3B
1006 qwen-2.5-3b-instruct	1009 3	1010 Yes	1011 No	1012 Qwen/Qwen-2.5-3B-Instruct
1007 qwen-2.5-7b	1010 7	1011 No	1012 No	1013 Qwen/Qwen-2.5-7B
1008 qwen-2.5-7b-instruct	1011 7	1012 Yes	1013 No	1014 Qwen/Qwen-2.5-7B-Instruct
1009 qwen-2.5-vl-7b	1012 7	1013 Yes	1014 Yes	1015 Qwen/Qwen-2.5-VL-7B-Instruct
1010 qwen-2.5-vl-7b-instruct	1013 7	1014 Yes	1015 Yes	1016 Qwen/Qwen-2.5-VL-7B-Instruct
1011 qwen-2.5-vl-32b	1014 32	1015 Yes	1016 Yes	1017 Qwen/Qwen-2.5-VL-32B-Instruct
1012 qwen-2.5-14b	1015 14	1016 No	1017 No	1018 Qwen/Qwen-2.5-14B
1013 qwen-2.5-14b-instruct	1016 14	1017 Yes	1018 No	1019 Qwen/Qwen-2.5-14B-Instruct
1014 qwen-2.5-32b	1017 32	1018 No	1019 No	1020 Qwen/Qwen-2.5-32B
1015 qwen-2.5-32b-instruct	1018 32	1019 Yes	1020 No	1021 Qwen/Qwen-2.5-32B-Instruct

1009 Table 1: Full list of models used in our naming study. Models used in our IICLL task are bolded.
10101011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

E NAMING SYSTEMS FOR ALL MODELS

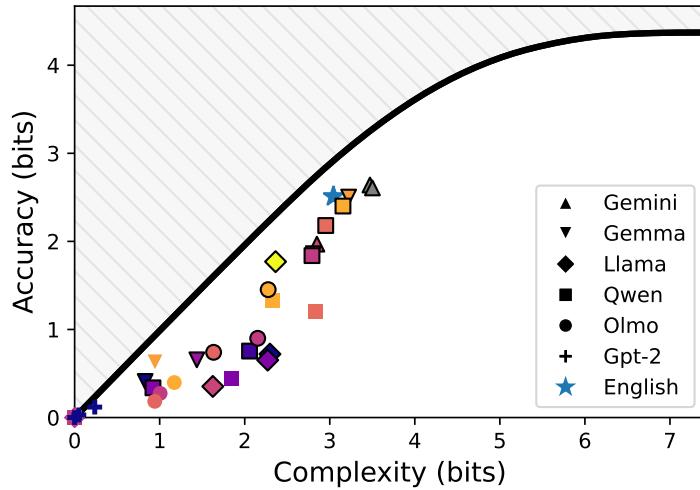


Figure 7: IB complexity-accuracy tradeoffs achieved by text-based LLMs. Same as Figure 2a but including base (not instruction-tuned) models.

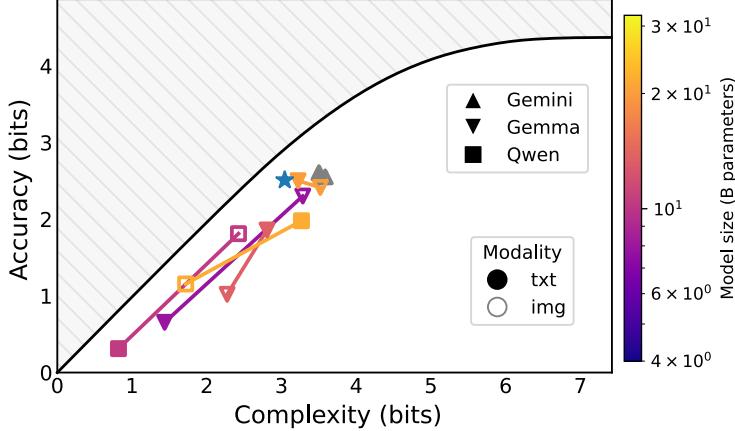
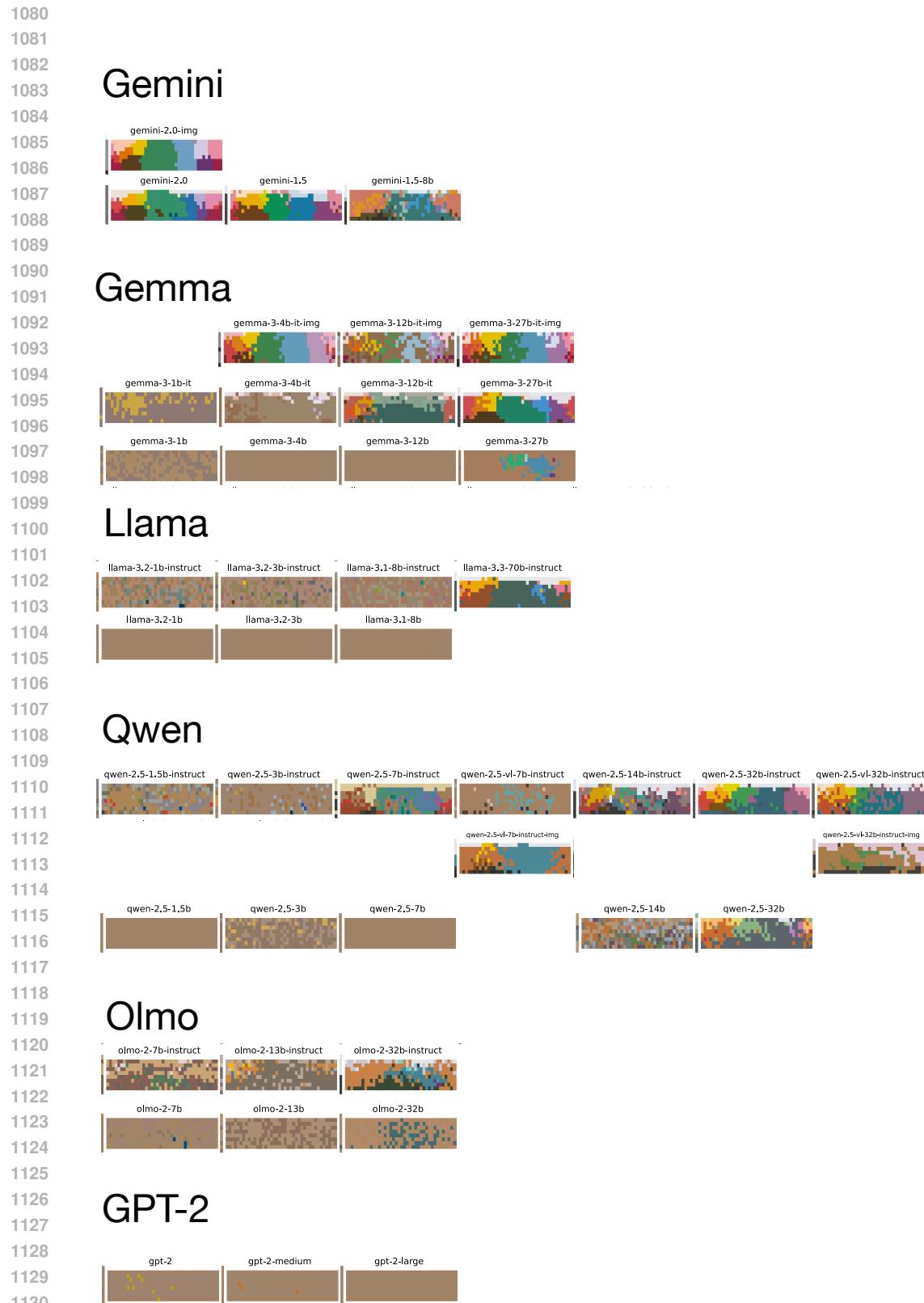


Figure 8: IB complexity-accuracy tradeoffs achieved by instruction-tuned multimodal LLMs. Points without color filling indicate systems resulting from providing colors as images, rather than via sRGB coordinates in text. Each minimal pair is connected by a line. Interestingly, there appears to be a cutoff around 3 bits of complexity for which models that already perform well with text-based prompting do not improve alignment to English when prompted with an image instead.

As can be seen in Figure 9, many of the models performed poorly on the English naming task, with many base (not instruction-tuned) models and some smaller instruction-tuned models failing to produce naming systems with any coherent category structure. Figure 7 shows that these systems are distributed widely across the information plane, with only larger, instruction-tuned, very recent models achieving similar IB-efficiency tradeoffs to English speakers. Interestingly, some models show similar category structure not to English, but to languages in the WCS. For example, Olmo-2-32B-Instruct, and Qwen-2.5-VL-Instruct (when presented with images) bear resemblance to Mayoruna (see the final row of Figure 13), as well as some of the systems to which Gemini-2.0 converges over generations of IICLL. This suggests that although some larger, instruction tuned models and multimodal instruction-tuned models fail to recover the English naming system, they may still possess some general bias towards color category structure that is aligned with humans.



1131 Figure 9: Mode maps for all models. The suffix ‘-img’ for multimodal models indicates that images
1132 were presented as the color stimulus, rather than sRGB coordinates.
1133

1134 F OLMO TRAINING TRAJECTORY
11351136 As model checkpoints are available for the base Olmo 2 32B (OLMo-Team et al., 2025) model
1137 throughout its training, we repeated our English color naming study throughout different stages of
1138 its model training. The training procedure involved two main phases: pre-training on up to 6 trillion
1139 tokens, and a second training stage using a curated dataset of 843 billion tokens, including high-
1140 quality, academic, and instruction-tuning data. This also involved training on 100 billion and 300
1141 billion token samples and then averaging the final checkpoints in a process called model souping.1142 Furthermore, we found that hinting to the model that the coordinates were in fact sRGB values
1143 could improve model performance. Specifically, when the prompt was changed to “What color
1144 is this $\text{rgb}=[\text{ <color coordinates> }]$?” To aid in our analysis of the base pretrained Olmo
1145 models, we used this form of prompting in order to see what structure is achievable in principle.1146 Figure 10 shows that there is a slight increase in scores towards the end of stage 1 training, and a large
1147 jump in performance occurs after just 1000 steps of stage 2 training. This is particularly interesting
1148 given that stage 2 included *pretraining* on instruction-tuning data, given that we found instruction-
1149 tuning was strongly associated with higher alignment and complexity across other models.

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

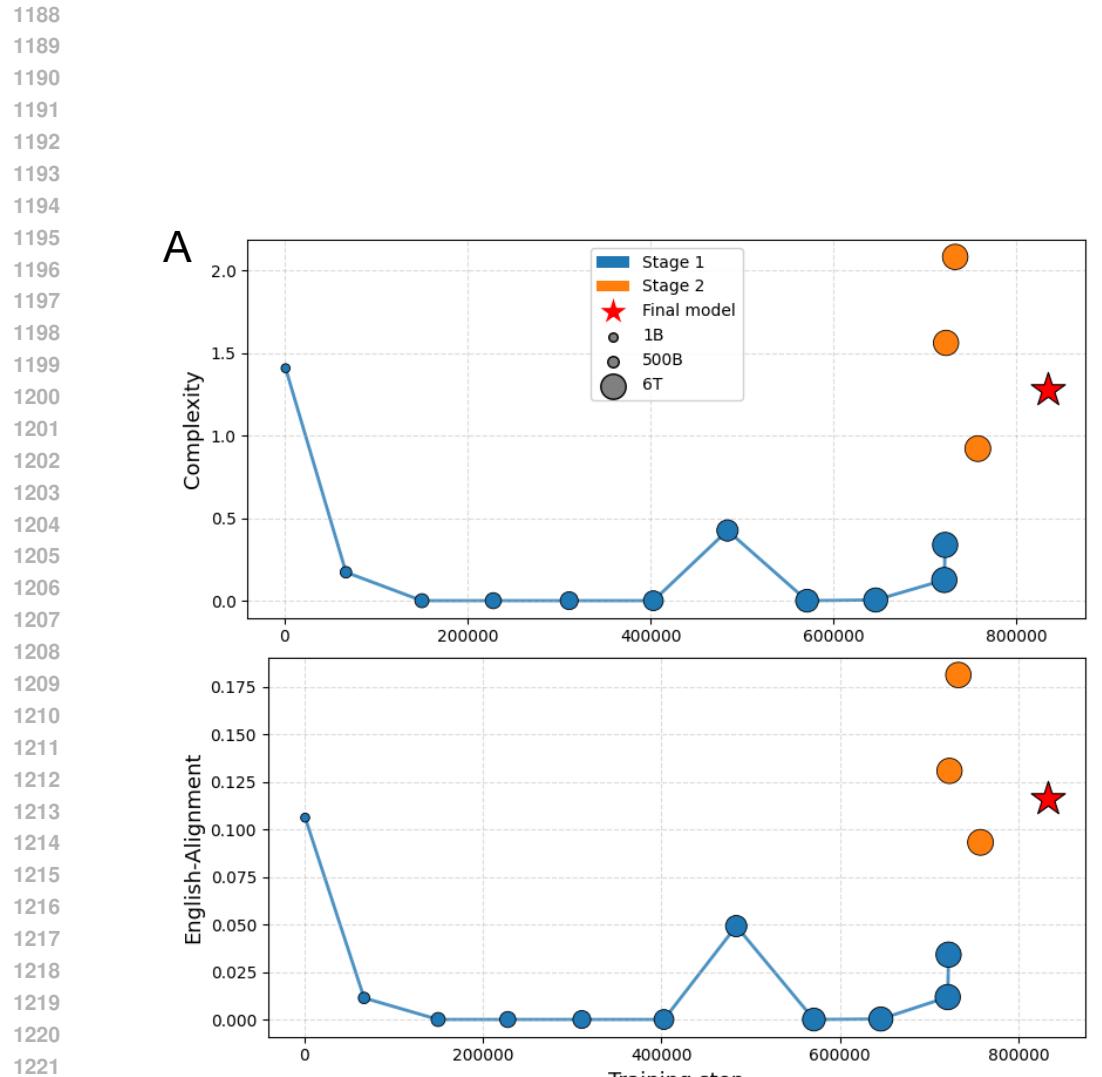
1183

1184

1185

1186

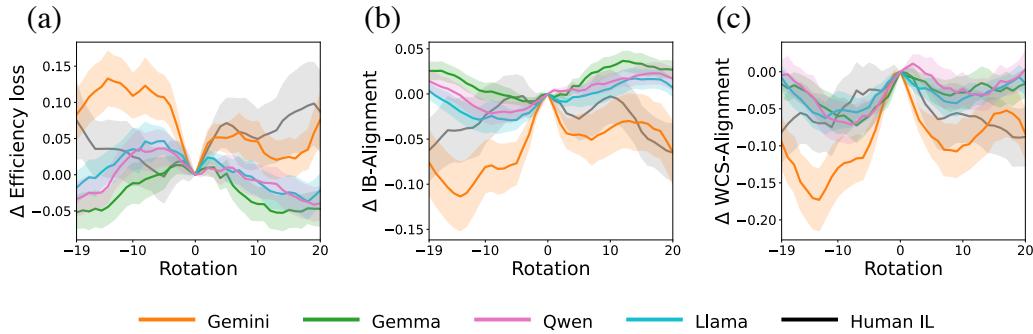
1187



1234 Figure 10: **(a)** Trajectory of English-alignment and complexity of Olmo 2 32B systems over the
 1235 course of training. **(b)** Mode maps of Olmo systems over the course of training.

1236
 1237
 1238
 1239
 1240
 1241

1242 **G ITERATED IN-CONTEXT LANGUAGE LEARNING PROCEDURE**
12431244 **Procedure** We aimed to replicate the procedure of Xu et al. (2013). The initial training data for the
1245 first generation of IICLL consisted of random pairings of colors and nonsense terms, with a sample
1246 size six times the allowed vocabulary size. For vocabulary sizes ranging from 2 to 6 terms, the initial
1247 training data was sourced directly from Xu et al. (2013) to facilitate direct comparison. A 14-term
1248 condition was also included for comparison with English (Lindsey & Brown, 2014), with its initial
1249 mappings randomly generated as it was not part of the original study.1250 Next, we performed a sanity check to ensure that the LLM could recover the information from the
1251 training data. This involved presenting each stimulus from the training set to the LLM one at a time,
1252 in a random order and without any history of previous interactions, and verifying that the model
1253 could recover the correct labels as provided in the prompt. With the exception of the most resource-
1254 intensive $k = 14$ condition, all models achieved a stable comprehension accuracy of $\sim 80\%$ or
1255 greater throughout generations. The $k = 14$ condition served as an extreme-case sanity check,
1256 resulting in highly unstable performance (based on a failure to retrieve the required 84 examples;
1257 see the final paragraph of this section). Only Gemini occasionally passed this threshold; we elected
1258 to report the $k = 14$ condition results to illustrate the point of divergence in model capability.1259 Following this, we began the ‘production phase’, in which we prompted the model to provide a
1260 label for an unseen color stimulus. This was repeated for every item in the WCS stimulus array,
1261 presented in a randomized order, including those stimuli that were part of the initial training set for
1262 that generation. During this production phase, we also monitored the LLM’s consistency with the
1263 labels provided in the initial training set. While perfect adherence was not crucial since deviations
1264 may reflect the models’ inductive biases, we observed that consistency with the training set remained
1265 much higher than chance in the first generations and quickly rose to ceiling.1266 In addition, to promote response coherence and crudely mimic short-term memory influences found
1267 in human experiments, each subsequent prompt was augmented with a sliding window of the 10
1268 most recent user-model interactions (see Appendix K for details on window size selection and its
1269 impact).1270 Once labels were obtained for all stimuli in the production phase, this full set of stimulus-label pairs
1271 constituted the current generation’s complete color category system. This marked the completion of
1272 one generation. To initiate the next generation, a new training set was created by randomly sampling
1273 stimulus-word pairs from the just-completed generation’s system, with the sample size being six
1274 times the number of allowed words in the vocabulary. This entire process was repeated for up to 13
1275 generations, (which was the length of chains in Xu et al. (2013)) or until two successive generations
1276 yielded degenerate systems (where all stimuli are mapped to a single term).1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **H ROTATION ANALYSIS**
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1311 Figure 11: Rotation analysis for final systems of all models' IICLL chains and human ILL chains
1312 from Xu et al. (2013), WCS languages (Kay et al., 2009). The x -axis denotes rotation along columns
1313 (hue dimension) of the WCS grid, while the y -axis is the difference (Δ) in mean (a) efficiency
1314 loss, (b) alignment to IB optima, or (c) alignment to languages in the WCS. Each colored curve
1315 is the average across initializations and conditions, and the colored region corresponds to the 95%
1316 confidence interval around the mean (assuming a normal distribution). In (a), $\Delta > 0$ means that the
1317 actual systems are more efficient than their rotated counterparts, whereas in (b) and (c) $\Delta < 0$ means
1318 that the actual systems are more aligned.

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

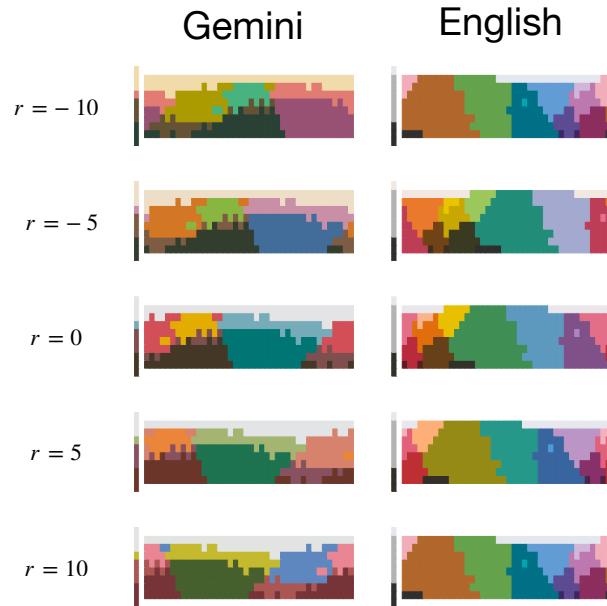
1345

1346

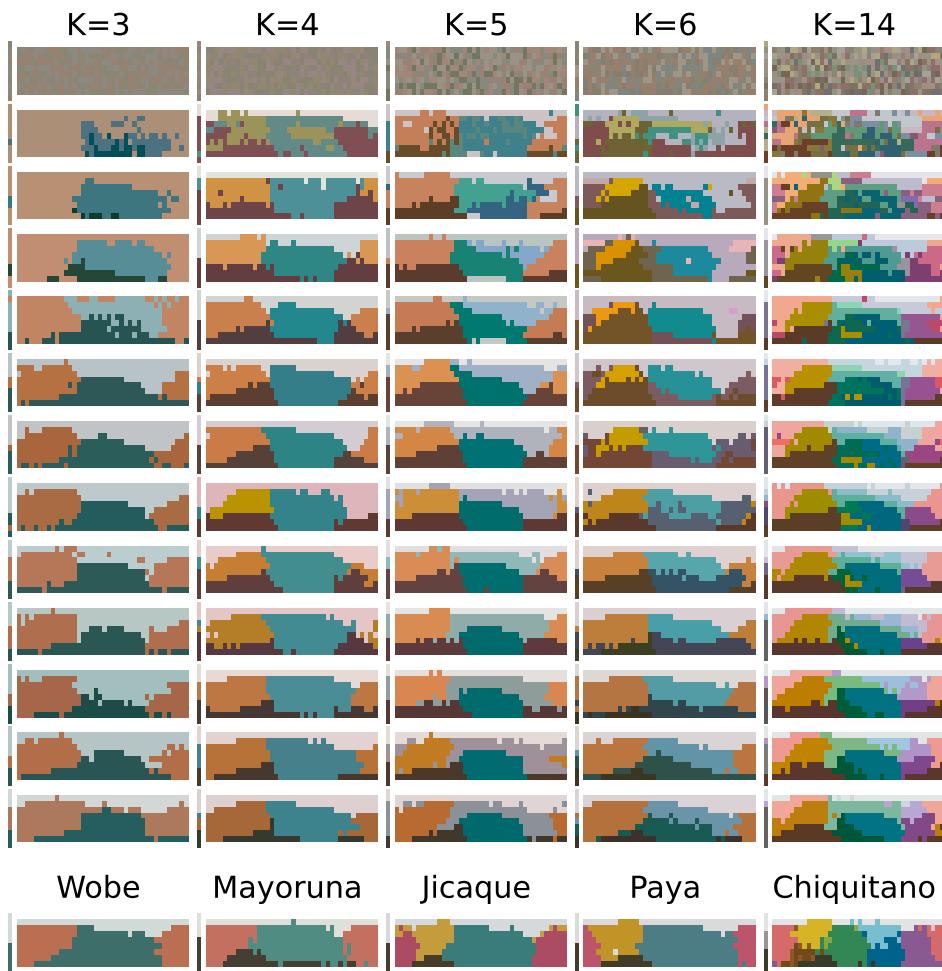
1347

1348

1349



1341 Figure 12: Rotation examples. Hypothetical variants for a final generation system of IICLL with
1342 Gemini 2.0 in the $k = 14$ condition, and the English system from Lindsey & Brown (2014). Variants
1343 are obtained by rotating the color naming system in the hue dimension across the columns of the
1344 WCS stimulus palette. $r = 0$ corresponds to the actual system, $r = 5$ corresponds to a shift of five
1345 columns to the right, and $r = -5$ corresponds to a shift of five columns to the left.

1350 I EXAMPLE CHAINS COMPARED TO WORLD COLOR SURVEY LANGUAGES
1351
13521384 Figure 13: Mode maps for Gemini-2.0 systems over generations of IICLL. Bottom row shows the
1385 language from the WCS dataset that is most similar to the final generation's system.
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405

J PROMPTING

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

In both of our studies, we provided instructions in the prompts to choose only from a fixed set of terms. The Gemini API supports controlled generation which makes this constrained classification task straightforward. For all open-weight models, we used log probability based scoring of the allowed terms as a continuation of the prompt to implement constrained choice. We used this decoding approach because after initial exploration of a brute-force method of repeating the prompt up to ten times until the model generated an output from the allowed set of terms, we found that only Llama 3.3-70B-Instruct could generate usable output (and in this case produced comparable behavior). For our probability-based decoding, we used the default generation configurations loaded from the Hugging Face Transformers library, which include a decoding temperature of 0.6 and a `top_p` sampling threshold of 0.9.

1416
1417

J.1 EXAMPLE PROMPT FOR ENGLISH COLOR NAMING TASK

1418
1419
1420
1421

```
“What color is this [0.73579176, 0.13100809, 0.20245084]? You may only use one of the
following allowed labels: ['Red', 'Blue', 'Yellow', 'Green', 'Orange', 'Purple', 'Pink',
'Brown', 'Black', 'White', 'Gray', 'Peach', 'Lavender', 'Maroon']. Please provide only a
single label from the list just provided. Do not give any explanation.”
```

1422
1423

J.2 EXAMPLE PROMPT DURING ITERATED LEARNING

1424
1425

Training During training, the instructions were:

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```
[
  {
    "role": "user",
    "content": [
      {
        "type": "text",
        "text": "Features: [0.73579176, 0.13100809, 0.20245084] -> Label: Tovo
Features: [0.0, 0.32875953, 0.29290289] -> Label: Feglu
Features: [0.27329472, 0.29777161, 0.12539189] -> Label: Feglu
Features: [0.18075972, 0.20165954, 0.14769053] -> Label: Narp
Features: [0.77448248, 0.32302429, 0.52727771] -> Label: Zarn
Features: [0.49405556, 0.30562009, 0.57919747] -> Label: Mib
Features: [0.71954112, 0.66114241, 0.82844603] -> Label: Mib
Features: [0.13380154, 0.21466098, 0.10314594] -> Label: Tovo
Features: [0.99613596, 0.732415, 0.63294812] -> Label: Tovo
Features: [0.77102815, 0.83377671, 0.0] -> Label: Blim
Features: [0.94004023, 0.73594053, 0.83545817] -> Label: Blim
Features: [0.77780255, 0.4893714, 0.71447577] -> Label: Narp
Features: [0.89354841, 0.92711068, 0.55762157] -> Label: Zarn
Features: [0.18901356, 0.19997485, 0.13980956] -> Label: Blim
Features: [0.26099322, 0.1368575, 0.35608507] -> Label: Zarn
Features: [0.0, 0.67091016, 0.50450556] -> Label: Mib
Features: [0.86141792, 0.28265837, 0.0] -> Label: Feglu
Features: [0.0, 0.422196565, 0.49203637] -> Label: Mib
Features: [0.80047349, 0.92499868, 0.91404717] -> Label: Mib
Features: [0.27606817, 0.14437327, 0.29090483] -> Label: Zarn
Features: [0.91415567, 0.59970537, 0.67293472] -> Label: Narp
Features: [0.8590007, 0.65998705, 0.0] -> Label: Feglu
Features: [0.45183228, 0.37479448, 0.08237481] -> Label: Zarn
Features: [0.91680269, 0.63513813, 0.0] -> Label: Feglu
Features: [0.8994021, 0.89968419, 0.89916582] -> Label: Blim
Features: [0.58159027, 0.030559, 0.08701426] -> Label: Blim
Features: [0.84117237, 0.91203955, 0.93875183] -> Label: Feglu
Features: [0.12209584, 0.66759353, 0.39283492] -> Label: Tovo
Features: [0.81026541, 0.67994708, 0.0] -> Label: Blim
Features: [0.81051796, 0.77667486, 0.88512298] -> Label: Feglu
Features: [0.47551109, 0.20309021, 0.05617448] -> Label: Mib
Features: [0.70626646, 0.35443549, 0.64213025] -> Label: Mib
Features: [0.36974002, 0.20933179, 0.50495342] -> Label: Zarn
Features: [0.0, 0.44248437, 0.46499573] -> Label: Tovo
Features: [0.29926292, 0.15509473, 0.11356989] -> Label: Feglu
Features: [0.0, 0.33817158, 0.21461567] -> Label: Mib"
      }
    ],
    "role": "assistant",
    "content": [

```

```
1458     },
1459     ...
1460 ]
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
```

1512 **Generalization** During generalization sessions, the prompt included (i) the entire training set, (ii)
 1513 up to 10 previous user-assistant interaction pairs to serve as a form of memory / history of the
 1514 conversation, and (iii) the current stimulus being queried from the language model.

1515 For the history, previous interactions appeared in the form:

```

1517 [
1518   {
1519     "role": "user",
1520     "content": [
1521       {
1522         "type": "text",
1523         "text": "Based on the preceding examples, what is the label that best describes this?
1524           Do not give any explanation, and limit your response to exactly one word from
1525           this list of labels: ['Narp', 'Tovo', 'Feglu', 'Mib', 'Blim', 'Zarn'].\nFeatures:
1526           [0.59395637, 0.24607302, 0.5432978] -> Label: "
1527       }
1528     ],
1529   },
1530   {
1531     "role": "assistant",
1532     "content": "Mib"
1533   },
1534   {
1535     "role": "user",
1536     "content": [
1537       {
1538         "type": "text",
1539         "text": "Based on the preceding examples, what is the label that best describes this?
1540           Do not give any explanation, and limit your response to exactly one word from
1541           this list of labels: ['Narp', 'Tovo', 'Feglu', 'Mib', 'Blim', 'Zarn'].\nFeatures:
1542           [0.73535226, 0.11620602, 0.27974255] -> Label: "
1543       }
1544     ],
1545   },
1546   {
1547     "role": "assistant",
1548     "content": "Blim"
1549   },
1550   ...
1551 ]

```

1542 For the current stimulus being queried for a label, the presentation was of the form:

```

1543 {
1544   "role": "user",
1545   "content": [
1546     {
1547       "type": "text",
1548       "text": "Based on the preceding examples, what is the label that best describes this?
1549         Do not give any explanation, and limit your response to exactly one word from
1550         this list of labels: ['Narp', 'Tovo', 'Feglu', 'Mib', 'Blim', 'Zarn'].\nFeatures:
1551         [0.73535226, 0.11620602, 0.27974255] -> Label: "
1552     }
1553   },
1554   ...
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

```

1566
1567

K SLIDING WINDOW CONVERSATION HISTORY

1568
1569
1570
1571
1572
1573
1574
1575
1576

During the production phase of our IICLL experiments, each response from the model was saved and added to a sliding window of N previous user-model interactions, excluding the initial training data. After preliminary explorations with window sizes of 0, 10, 20, and 50, we determined that a window size of 0 led to degenerate category systems more frequently, while the results from a window size of 20 and 50 did not significantly differ from those obtained with a window size of 10. Consequently, we set the window size to 10 for all IICLL experiments. This window was included in the prompt for subsequent stimuli, presented after the initial training data and before each new stimulus, aiming to promote coherence in the model’s responses and to crudely mimic the influence of short-term memory that human participants would possess in Xu et al. (2013)’s experiments.

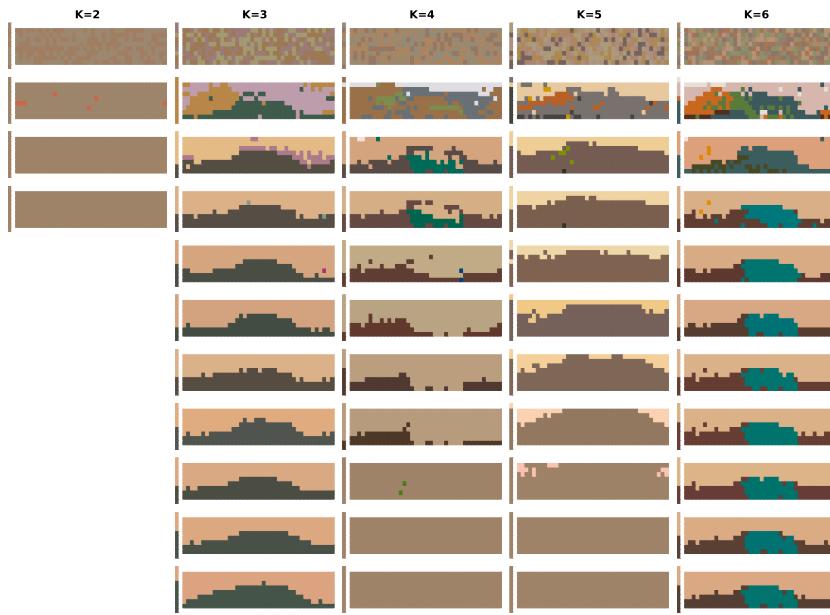
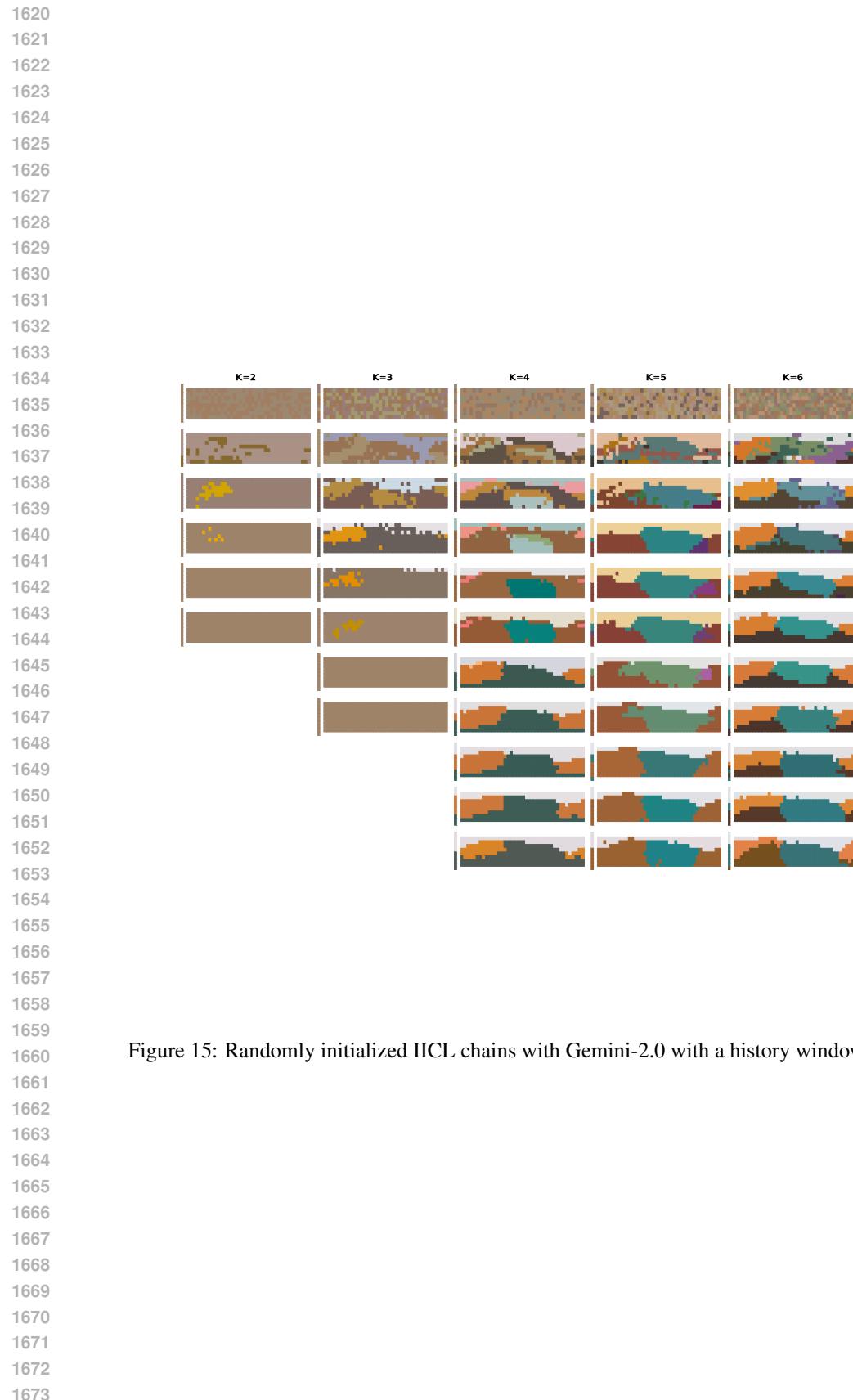
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Figure 14: Randomly initialized IICL chains with Llama-3.3-70B-Instruct with a history window of 0.

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

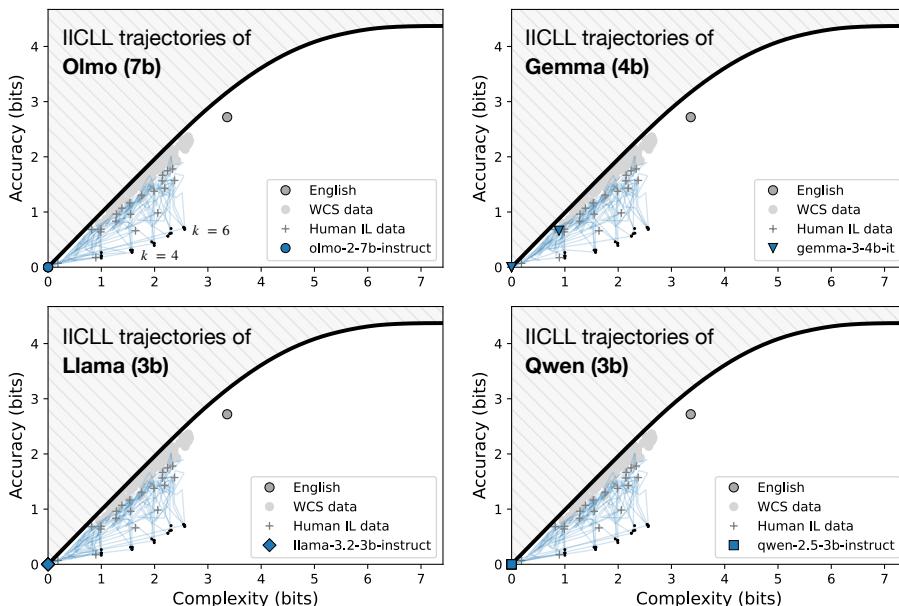


1674 L IICLL WITH SMALLER MODELS

1675
 1676 We restricted our main Iterated In-Context Language Learning (IICLL) analysis to models that per-
 1677 formed well on the initial English naming task to focus specifically on the evolution towards non-
 1678 trivial IB-efficiency. This prioritization was based on our suspicion that models lacking sufficient
 1679 inference power, coherence in color naming, or in-context learning capacity would be unable to
 1680 sustain non-trivial category structure under IL pressure.

1681 In order to confirm this empirically for models with weak initial performance, we ran supplementary
 1682 IICLL simulations using four models that performed modestly at the English naming task: Gemma 3
 1683 4b, Llama 3.2 3B, Qwen 2.5 3B, and OLMo 2 7B (all instruction-tuned). These simulations covered
 1684 the five word-number conditions ($k = 2$ through 6) used in the experiments of Xu et al. (2013).

1685 The trajectories of these chains are depicted in Figure 16. Across these 20 chains, only the Gemma
 1686 model converged to a two-word system (in the $k = 6$ condition), while the remaining 19 chains all
 1687 converged to degenerate, single-word systems. This confirms that smaller models with limited in-
 1688 ference power or in-context learning capacity tend to collapse to degenerate systems when subjected
 1689 to the noisy transmission pressure of iterated learning.



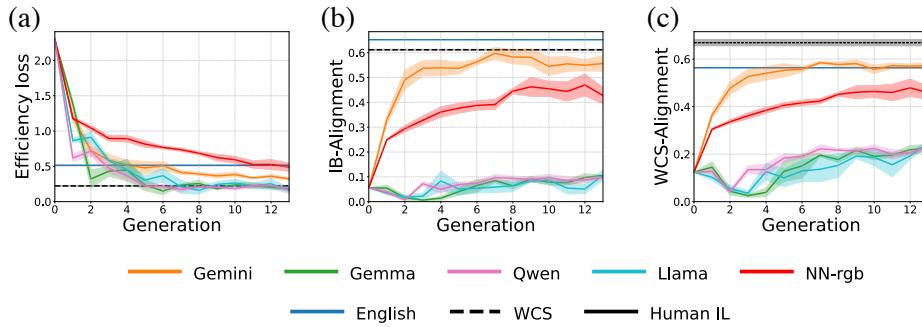
1711 Figure 16: A sample of IICLL trajectories with smaller models from the English naming task.
 1712 Compare to Figure 3 in the main text.
 1713

1728 M NEAREST NEIGHBOR BASELINE FOR IICLL

1730 To test whether the semantic category systems that emerge from IICLL are merely simple approx-
 1731 imations of feature-based clustering, we conducted a set of baseline simulations using a Nearest
 1732 Neighbor (NN) classifier in place of an LLM in the IICLL task. In this setup, the NN classifier
 1733 predicted the category label for each test stimulus based solely on the sRGB features of the provided
 1734 in-context training examples.

1735 We analyzed performance in the most challenging condition ($k = 14$ allowed terms). The re-
 1736 sults, presented in Figure 17, show that while the leading open-weight LLMs achieve significantly
 1737 worse alignment compared to the NN baseline, the leading frontier model, Gemini 2.0, performs
 1738 significantly better than this baseline on all evaluation metrics (efficiency, IB-alignment, and WCS
 1739 alignment). In other words, Gemini’s evolved categories are significantly more human-like and more
 1740 IB-like than a simple nearest-neighbor clustering of the input examples.

1741 This result suggests that the ability to acquire a human-like, optimally-compressed semantic rep-
 1742 resentation is (1) not trivial because it is a capability only emergent in the most advanced frontier
 1743 model, and (2) it cannot be explained by a simpler nearest-neighbor process that only maintains
 1744 contiguous partitions regardless of their efficiency and IB-alignment.



1758 Figure 17: Evolution of LLM systems restricted to the $k = 14$ condition, shown in comparison to
 1759 the Nearest Neighbor sRGB baseline classifier (NN-rgb). While many models struggle to achieve
 1760 alignment to IB and human languages comparable to that of the Nearest Neighbor classifier, Gemini
 1761 achieves greater efficiency (a), alignment with optimal IB systems (b), and alignment with human
 1762 languages (c) across IICLL generations. Compare to Figure 4.