
Under review as a conference paper at ICLR 2023

ITERATIVE α-(DE)BLENDING: LEARNING A DETER-
MINISTIC MAPPING BETWEEN ARBITRARY DENSITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a learning method that produces a mapping between arbitrary densi-
ties, such that random samples of a density can be mapped to random samples
of another. In practice, our method is similar to deterministic diffusion processes
where samples of the target density are blended with Gaussian noise. The origi-
nality of our approach is that, in contrast to several recent works, we do not rely
on Langevin dynamics or score-matching concepts. We propose a simpler take on
the topic, which is based solely on basic sampling concepts. By studying blended
samples and their posteriors, we show that iteratively blending and deblending
samples produces random paths between arbitrary densities. We prove that, for
finite-variance densities, these paths converge towards a deterministic mapping
that can be learnt with a neural network trained to deblend samples. Our method
can thus be seen as a generalization of deterministic denoising diffusion where,
instead of learning to denoise Gaussian noise, we learn to deblend arbitrary data.

We provide a short video overview of the paper in our supplementary material.

increasing α

G
au

ss
ia

n

S-
sh

ap
e

Sw
is

s
R

ol
l

S-
sh

ap
e

G
au

ss
ia

n

C
at

Fa
ce

Te
xt

ur
e

...

α1-blend

xα1
∼ pα1

→

α1-deblend

↗

↘

x̄0

x̄1

↘

↗

α2-blend

xα2
∼ pα2

→

α2-deblend

↗

↘

x̄0

x̄1

↘

↗

α3-blend

xα3
∼ pα3

...

Figure 1: Iterative α-blending and deblending. We train a neural network to deblend blended
inputs. By deblending and reblending iteratively we obtain a mapping between arbitrary densities.

1

Under review as a conference paper at ICLR 2023

1 INTRODUCTION

Diffusion models have recently become one of the most popular generative modeling tools (Ramesh
et al., 2022). They have outperformed state-of-the-art GANs (Karras et al., 2020; 2021) and been
applied to many applications such as image generation (Rombach et al., 2021; Dhariwal & Nichol,
2021), image processing (Saharia et al., 2021; Kawar et al., 2022; Whang et al., 2022), text-to-
image (Saharia et al., 2022b), video (Ho et al., 2022) or audio (Kong et al., 2020).

First, there were stochastic diffusion models... These diffusion models have in common that
they can be formulated as a Stochastic Differential Equations (SDEs) (Song et al., 2021b) such as
Langevin dynamics. Langevin’s equation models a random walk that obeys a balance between two
operations related to Gaussian noise: increasing noise by adding more noise and decreasing noise by
climbing the gradient of the log density. Increasing noise performs large steps but puts the samples
away from the true density. Decreasing noise projects the samples back on the true density. Care-
fully tracking and controlling this balance allows to perform efficient random walk and provides a
sampling procedure for the true density. This is the core of denoising diffusion approaches. Noise
Conditional Score Networks (NCSNs) (Song & Ermon, 2019; 2020) use Langevin’s equation di-
rectly by leveraging the fact that the score (the gradient of the log density in Langevin’s equation)
can be learnt via a denoiser when the samples are corrupted with Gaussian noise (Vincent, 2011).
Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) use
a Markov chain formalism with a Gaussian prior that provides an SDE similar to Langevin dynamics
where the score is also implicitly learnt with a denoiser.

...then came deterministic diffusion models. Langevin’s SDEs variants describe an equilibrium
between noise injection and noise removal. Nullifying the noise injection in these SDEs yields Or-
dinary Differential Equations (ODEs), also called Probability Flow ODEs Song et al. (2021b), that
simply describe the deterministic trajectory of a noisy sample projected back in the true density. For
instance, Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2021a) are the ODE variants
of DDPMs. These ODEs provide a smooth deterministic mapping between the Gaussian noise den-
sity and the true density. Deterministic diffusion models have been motivated recently because an
ODE requires much fewer solver iterations than its SDE counterpart. Furthermore, a deterministic
mapping presents multiple practical advantages because samples are uniquely determined by their
prior Gaussian noise, can be interpolated via the Gaussian noise, etc.

Is there a simpler approach to deterministic diffusion? The point of the above story is that, in
the recent line of work on diffusion models, stochastic diffusion models came first and deterministic
diffusion models came after, framed as special cases of the stochastic ones. They hence inherited the
underlying mindset and mathematical framework. As a result, advanced concepts such as Langevin
dynamics, score matching, how they relate to Gaussian noise, etc. appear to be necessary back-
ground to grasp recent deterministic diffusion models. We argue that this is a significant detour to
something that can be framed in a much simpler and more general way. We propose a fresh take on
deterministic diffusion with another mindset, using only basic sampling concepts.

• We derive a deterministic diffusion-like model based on the sampling interpretation of blending
and deblending. We call it Iterative α-(de)Blending (IADB) in reference to the Computer Graphics
α-blending technique that composes images with a transparency parameter Porter & Duff (1984).
Our model defines a mapping between arbitrary densities (of finite-variance).

• We show that when the initial density is Gaussian, the mappings defined by IADB are exactly the
same as the ones defined by DDIM (Song et al., 2021a). On the theoretical side, our model can
thus be seen as a generalization of DDIM to arbitrary sampling densities rather than just Gaussian.
Furthermore, our alternative derivation leads to a more numerically stable sampling formulation.
Our experiments show that IADB consistently outperforms DDIM in terms of final FID on several
datasets and is more stable with small number of steps in the sampling stage.

• We explore the generalization to arbitrary non-Gaussian densities provided by our model. We
report that, although this generalization seems promising on the theoretical side, the application
possibilities were disappointing in our experiments in image generation. We found that sampling
with non-Gaussian densities can significantly lower the quality of the generated samples and that the
mappings are not always interesting for image processing applications.

2

Under review as a conference paper at ICLR 2023

2 A DETERMINISTIC MAPPING BETWEEN ARBITRARY DENSITIES

We consider two densities p0, p1 : Rd → R+ represented respectively by the red triangle and the
green square in Figure 2. Our objective is to define a deterministic mapping such that i.i.d. samples
x0 ∼ p0 passed through the mapping produce i.i.d. samples x1 ∼ p1.

2.1 BLENDING AND DEBLENDING AS SAMPLING OPERATIONS

(a) α-blending. We call pα the density of the blended samples xα = (1− α)x0 + αx1 obtained
by blending random samples (x0, x1) ∼ p0 × p1 with a blending parameter α ∈ [0, 1]. This is
illustrated in Figure 2-(a).

(b) α-deblending. We call α-deblending the inverse sampling operation, i.e. generating ran-
dom x0 and x1 from the initial densities that could have been α-blended into a point x,
as shown in Figure 2-(b). More formally, it means generating random posterior samples
(x0, x1)|(x,α) ∼ (p0 × p1)|(x,α). Note that we never use these posteriors samples in practice, we
use them only for the derivation of our method.

Proposition 1. If x ∈ Rd is a fixed point, the posteriors samples (x0, x1)|(x,α) ∼ (p0 × p1)|(x,α)
are distributed in the posterior densities. However, if xα ∼ pα is a random sample, the posteriors
samples are distributed in the initial densities: (x0, x1)|(xα∼pα,α) ∼ (p0 × p1) .

Proof. It follows directly from the law of total probability. We provide more details in Appendix A.

(c) α-(de)blending. Let’s consider two blending parameters α1, α2 ∈ [0, 1]. Using the previous
proposition, we can chain α1-deblending and α2-blending to map a random sample xα1

∼ pα1
to

a random sample xα2 ∼ pα2 . Indeed, by sampling posteriors for a random sample xα1 ∼ pα1 ,
we obtain random samples (x0, x1) ∼ (p0 × p1) from the initial densities, and blending them with
parameter α2 provides a random sample xα2 ∼ pα2 . This is illustrated in Figure 2-(c).

(a) α-blending (b) α-deblending
(x0, x1)︸ ︷︷ ︸
∼p0×p1

→ xα︸︷︷︸
∼pα

xα︸︷︷︸
∼pα

→ (x0, x1)|(xα∼pα,α)︸ ︷︷ ︸
∼p0×p1

xα

x1x0

(c) α-(de)blending (d) iterative α-(de)blending
xα1︸︷︷︸
∼pα1

→ (x0, x1)|(xα1
∼pα1

,α1)︸ ︷︷ ︸
∼p0×p1

→ xα2︸︷︷︸
∼pα2

x0︸︷︷︸
∼p0

→ .. → xα︸︷︷︸
∼pα

→ .. → x1︸︷︷︸
∼p1

xα1
xα2

Figure 2: Blending and deblending as sampling operations.

3

Under review as a conference paper at ICLR 2023

2.2 ITERATIVE α-(DE)BLENDING (IADB)

We introduce Iterative α-(de)Blending (IADB), an iterative algorithm that can be implemented
stochastically or deterministically. Our main result is that both variants converge towards the same
limit, which yields a deterministic mapping between the densities p0 and p1 shown in Figure 2-(d).

Algorithm 1: iterative α-(de)blending (stochastic). Let’s consider a number of iterations T and
evenly distributed blending parameters αt = t/T, t = {0, .., T}). This algorithm creates a sequence
(xαt

∼ pαt
, t = {0, .., T}) that starts with a random sample x0 ∼ p0 and ends with a random

sample xαT
= x1 ∼ p1 by applying α-(de)blending iteratively. In each iteration, xαt

∼ pαt
is

αt-deblended by sampling random posteriors, which are sampled and αt+1-blended again to obtain
a new sample xαt+1

∼ pαt+1
. End-to-end, this algorithm provides a stochastic mapping between

samples x0 ∼ p0 and samples x1 ∼ p1.

Algorithm 2: iterative α-(de)blending (deterministic). This algorithm is the same as Algo-
rithm 1 except that, in each iteration, the random posteriors samples are replaced by their expec-
tations. The algorithm is thus not stochastic but deterministic.

Theorem 1: convergence of iterative α-(de)blending. If p0 and p1 are Riemann-integrable den-
sities of finite variance, the sequences computed by Algorithm 1 and Algorithm 2 converge towards
the same limit as the number of steps T increases, i.e. for any α ∈ [0, 1] we have

lim
T→∞

xα computed by Algorithm 1(x0, T) = lim
T→∞

xα computed by Algorithm 2(x0, T). (1)

Proof. We detail this proof in Appendix B. Intuitively, in each iteration, Algorithm 1 makes a
small step ∆xα = (x1 − x0)∆α along the segment given by random posterior samples. As the
number of iterations increases, many small random steps average out, and the infinitesimal steps are
described by an ODE that involves the expected posteriors like in Algorithm 2:

dxα =
(
x̄1|(xα,α) − x̄0|(xα,α)

)
dα. (2)

Algorithm 1 Iterative α-(de)blending (stoch.)
Require: x0, T

for t = 0, .., T − 1 do
sample (x0, x1) ∼ (p0, p1)|(xαt ,αt)

xαt+1
= (1− αt+1)x0 + αt+1 x1

end for

Algorithm 2 Iterative α-(de)blending (deter.)
Require: x0, T

for t = 0, .., T − 1 do
(x̄0, x̄1) = E(p0,p1)|(xαt ,αt)

[(x0, x1)]

xαt+1
= (1− αt+1) x̄0 + αt+1 x̄1

end for

T
=

10
st

ep
s

T
=

10
00

st
ep

s

Figure 3: Both algorithms step iteratively by moving the samples along segments defined by their
posterior densities. The difference is that Algorithm 1 uses segments between random posterior
samples, which creates stochastic paths, while Algorithm 2 uses the segment between the average
of the posterior samples, which creates deterministic paths. As the number of steps T increases, the
randomness of the stochastic paths averages out and they converge towards the deterministic paths.

4

Under review as a conference paper at ICLR 2023

3 LEARNING ITERATIVE α-(DE)BLENDING

In this section, we explain how to use iterative α-(de)blending in a machine learning context, where
we train a neural network Dθ to predict the average posterior samples used in Algorithm 2.

3.1 VARIANT FORMULATIONS OF ITERATIVE α-(DE)BLENDING

A direct transposition of Algorithm 2 means learning the averages of both posterior samples x̄0 and
x̄1. However, one is implicitly given by the other one such that it is not necessary to learn both and
variants of Alg. 2 are possible. The fact that multiple, theoretically equivalent, variants are possible
is pointed out by Salimans & Ho (2022). However, they are not equivalent in practice. In Table 1,
we summarize four variants derived in Appendix C and compare their practical properties. Variant
(a) is the vanilla transposition of Algorithm 2. It is highly unstable because instead of moving the
current sample xαt

, the new sample xαt+1
is plainly recomputed from the outputs of the neural

network, such that its residual learning errors accumulate in each step. The larger the number of
steps T , the more this variant diverges. Variants (b) and (c) consist of learning either only x̄0 or x̄1.
The sampling suffers from numerical stability near respectively αt = 0 and αt = 1 because of the
respective divisions by αt and 1 − αt. We recommend using variant (d) that consists of learning
the average difference vector x̄1 − x̄0. It is a direct transposition of the ODE defined in Equation 2.
This variant updates the current samples in each iteration without any division. We found it to be
the most stable variant for both training and sampling.

(a) learn x̄0 and x̄1 (b) learn only x̄0 (c) learn only x̄1 (d) learn x̄1 − x̄0

(x̄0, x̄1) = Dθ (xαt
, αt) x̄0 = Dθ (xαt

, αt) x̄1 = Dθ (xαt
, αt) x̄1 − x̄0 = Dθ (xαt

, αt)
xαt+1 = xαt+1 = x̄0 + xαt+1 = x̄1 + xαt+1 = xαt+

(1− αt+1) x̄0 + αt+1x̄1
αt+1

αt
(xαt − x̄0)

(1−αt+1)
(1−αt)

(xαt − x̄1) (αt+1 − αt) (x̄1 − x̄0)

unstable unstable when αt → 0 unstable when αt → 1 stable

Table 1: Variant formulations of iterative α-(de)blending (equivalent in theory, not in practice).

3.2 TRAINING AND SAMPLING

Following variant (d) of Table 1, we train the neural network Dθ to predict the average difference
vector between the posterior samples. Our learning objective is defined by

min
θ

E
α,xα

[∥∥∥∥Dθ (xα, α)− E
x0|(xα,α),x1|(xα,α)

[
x1|(xα,α) − x0|(xα,α)

]∥∥∥∥2
]
. (3)

Note that minimizing the l2 to the average of a distribution is equivalent to minimizing the l2 to all
the samples of the distribution. We obtain the equivalent objective

min
θ

E
α,xα,x0|(xα,α),x1|(xα,α)

[∥∥Dθ (xα, α)−
(
x1|(xα,α) − x0|(xα,α)

)∥∥2] . (4)

Finally, as explained in Section 2.1, sampling xα ∼ pα and (x0|(xα,α), x1|(xα,α)) in this order is
equivalent to sampling x0 ∼ p0 and x1 ∼ p1 and blending them to obtain xα ∼ pα. We obtain our
final learning objective

min
θ

E
α,x0,x1

[
∥Dθ ((1− α)x0 + αx1, α)− (x1 − x0)∥2

]
, (5)

which we use to optimize θ in Algorithm 3. Finally, in Algorithm 4, we iteratively map samples
x0 ∼ p0 to samples x1 ∼ p1 in the same way as in Algorithm 2 where we use the neural network
Dθ to obtain the average posterior difference.

Algorithm 3 Training
Require: x0 ∼ p0, x1 ∼ p1, α ∈ [0, 1]
xα = (1− α)x0 + αx1

l = ∥Dθ (xα, α)− (x1 − x0)∥2
backprop from l and update θ

Algorithm 4 Sampling
Require: x0, T

for t = 0, .., T − 1 do
xαt+1

= xαt
+ (αt+1 − αt) Dθ (xαt

, αt)
end for

5

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS WITH ANALYTIC DENSITIES

Mapping 1D densities. In Figure 4, we experiment with analytic 1D densities where the expec-
tation x̄1 − x̄0 can be computed analytically rather than being learnt by a neural network Dθ. The
experiment confirms that the analytic version matches the reference and that the neural network
trained with the l2 approximates the same mapping. We also tested training the neural network with
the l1, which makes the neural network approximate the median of x1 − x0 rather than its average.
The resulting mapping does not match the reference. This confirms that learning the average via
l2 training is a key component of our model, as explained in Section 3.2.

IADB with analytic expressions or neural networks (nn) for Dθ

analytic average nn (l2 training) analytic median nn (l1 training)

increasing α

reference

Figure 4: We map a bi-Normal distribution with modes µ1 = −0.5 and µ2 = 0.5 with σ1|2 = 0.1
(in red) to a Normal distribution of unit variance (in blue). The reference shows the intermediate
blended densities pα obtained by analytically convolving both densities. The other densities are the
histograms of the samples xα computed in Algorithm 4 using either analytic expressions or neural
networks (nn) for Dθ. The neural network is a MLP with 5 hidden layers of 64 filters.

Mapping 2D densities. Figure 5 shows that the intermediate blended densities pα computed by
our mapping match the reference blended densities. Figure 6 shows how our algorithm maps the
samples of p0 to samples of p1.

reference

α = 0 α = 1
3 α = 2

3 α = 1

IADB

α = 0 α = 1
3 α = 2

3 α = 1

Figure 5: We display blended samples xα ∼ pα (red) and samples xα computed by Algorithm 4
using a MLP with 5 hidden layers of 64 filters for Dθ (green).

p
0

an
d
p
1

IA
D

B

3-Normal to 2-Normal Normal to S-curve Roll to S-curve

Figure 6: We show samples of the reference densities p0 and p1 and the mapping computed by
Algorithm 4 using a MLP with 5 hidden layers of 64 filters for Dθ. The final samples computed by
the algorithm (green) match the reference samples x1 ∼ p1 (red).

6

Under review as a conference paper at ICLR 2023

5 RELATION TO DDIM

In this section, we explain that IADB can be framed as a more stable generalization of DDIM (Song
et al., 2021a) that enjoys the possibility of using non-Gaussian densities for p0.

Proposition 2. If p0 is a Gaussian density, IADB and DDIM define the same deterministic mapping.

Proof. In Appendix D we show that with a simple change of parameterization, the update rule of
DDIM is exactly the variant (b) in our Table 1.

Experimental comparison of IADB and DDIM. In Figure 7, we experiment under the same
conditions (architecture, training time, 1st-order solver, uniform schedule, Gaussian p0) and measure
the FID score (Heusel et al., 2017) for varying number of sampling steps on 3 image datasets: LSUN
Bedrooms (64x64), CelebA (64 x 64) and AFHQ Cats(128x128) for 120 hours of training. We use
a U-Net architecture(from Diffusers library1). We observe a consistently better performance of
IADB compared to DDIM. This might be due to our numerically stable formulation explained in
Section 3.1. The formulation generally used in DDIM corresponds to the variant (b) presented in
Table 1: they train a denoiser to predict the Gaussian noise present in the noisy image samples,
i.e. their model learns to predict x̄0. However, we explain that this variant makes the sampling less
stable because of the division near 0. As a matter of fact, in their implementation, the sampler starts
at some ϵ > 0 precisely to avoid dividing by 0. Our variant (d) does not suffer from this problem.
Another possibility is that the learning objective defined by variant (d) provides a better optimization
landscape than variant (b). For instance, the effort for learning x̄0 is likely imbalanced in α while
the effort for learning x̄1 − x̄0 is likely more balanced over α.

Discussion. The Langevin/score-matching approach puts the emphasis on the fact that the gradient
of the log density in Langevin’s equation can be learnt via x̄0 when p0 is Gaussian Vincent (2011).
This mindset naturally leads to variant (b) in Table 1. In contrast, the derivation of IADB emphasizes
that xα, x̄0 and x̄1 are aligned and thus that all the four variants of Table 1 are possible.

IADB

C
el

eb
A

DDIM

C
at

s
B

ed
ro

om
s

T = 2 T = 4 T = 8 T = 16 T = 32 T = 128

Cats DDIM 200.89 39.32 22.98 18.12 13.66 9.26
IADB 86.68 39.40 17.50 11.15 8.06 6.69

CelebA DDIM 177.86 46.58 19.50 11.91 9.23 6.93
IADB 108.13 51.79 22.68 12.15 7.52 5.56

Bedrooms DDIM 307.76 104.55 38.58 24.26 20.34 16.82
IADB 238.45 57.60 18.55 14.12 14.57 15.93

Figure 7: Comparing IADB and DDIM. We use the same Gaussian noise to sample images with
IADB and DDIM. We obtain very close images because the underlying theoretical mappings are the
same. IADB achieves better FID scores w.r.t. the number of steps T than DDIM most of the time.

1https://github.com/huggingface/diffusers

7

Under review as a conference paper at ICLR 2023

6 (DISAPPOINTING) EXPERIMENTS WITH ARBITRARY IMAGE DENSITIES

(Disappointing) sampling quality. In the experiment of Figure 8, we use IADB to compute map-
pings between different image datasets, i.e. in contrast to the experiment of Figure 7, we use real
images rather than Gaussian noise to sample other images. Note that, in contrast to the Gaussian
density, the implicit density represented by an image dataset might not be Riemann integrable, for
instance if the images are distributed on a lower-dimensional manifold. To make sure that our theo-
rem applies, we regularize p0 by applying a little amount of noise to the images. In theory, with this
regularization, IADB is proven to produce a correct sampling of p1 regardless of p0. However, in
practice, we observe that the qualitative performance of the mapping is significantly lower than with
Gaussian noise. This might be because we use an architecture that has been designed specifically
for denoising Gaussian noise or because denoising noise might be fundamentally simpler than de-
blending arbitrary images. In any case, our takeaway is that an experimental set up that works well
with Gaussian noise does not necessarily transpose successfully to other densities.

Pebble CelebA Leave CelebA

Cat Dog Map Sat

Figure 8: Sampling with non-Gaussian densities. We use the same experimental set up as in
Figure 7 except that we replace the Gaussian noise by an image database.

(Disappointing) mappings. For some applications, we wish that IADB would learn a “meaning-
ful” mapping between p0 and p1. Unfortunately, this is not always the case. Indeed, the theory
predicts that the mapping will produce a valid sampling of p1 using p0 but not that the mapping will
be what a human user expects. For instance, Figure 9 shows a result where IADB was trained to
learn a mapping between corrupted images and clean images and we wish that the mapping would
behave like an image restoration process. Unfortunately, although IADB effectively learns to sam-
ple clean images using corrupted ones, the mapping does not produce a valid restoration because the
clean images do not always resemble the corrupted ones.

Corrupt CelebA Corrupt CelebA

Figure 9: Image restoration with IADB. In this experiment, we use IADB to map corrupted images
to clean images. (left) The corruption is a downscaling+noise. (right) The corruption is a decoloriza-
tion+noise. Ideally, the mapping learnt by IADB would restore the corrupted image. Unfortunately,
the mapping creates a clean image but it does not match the corrupted one anymore.

8

Under review as a conference paper at ICLR 2023

7 RELATED WORK

Stochastic Differential Equations (SDEs). The random sequence computed by the stochastic
version of IADB presented in Algorithm 1 is a Markov chain. This algorithm might thus be remi-
niscent of stochastic diffusion models Song et al. (2021b) based on SDEs. However, it is not related
to an SDE. Indeed, SDEs model stochastic behaviors at the infinitesimal scale while our mapping is
stochastic for discrete steps and becomes a deterministic ODE in the infinitesimal limit.

Non-Gaussian denoising diffusion. Some previous works are dedicated to replacing Gaus-
sian noise by other noise distributions such as the generalised normal (exponential power) dis-
tribution (Deasy et al., 2021) or the Gamma distribution (Nachmani et al., 2021). Our more
general derivation works with any finite-variance density rather than specific noise alternatives.
Peluchetti (Peluchetti, 2022) proposes a more general SDE framework. Our ODE can be derived
from his SDE by nullifying the stochastic component and following the aggregation method.

Alternative deterministic diffusion. Cold diffusion (Bansal et al., 2022) shows that diffusion-
like methods can reverse a variety of empirical image degradation processes. Our method is similar
to their animorphosis example where human faces are progressively blended and deblended with
animal faces. Our model provides a proven way to sample from the right density for this application.

Image-to-image translation. In Section 6, we have seen that IADB’s mapping does not provide
a faithful image-to-image translation. Previous works show that conditioning the diffusion process
seem to be necessary to get faithful translations. For instance, adding an energy guide during the
ODE integration (Zhao et al., 2022), by progressively injecting features (Meng et al., 2021), or by
sampling conditional densities Saharia et al. (2021; 2022a). In Figure 10, we experiment with the
latter with Gaussian noise for x0, clean images for x1, and a corrupted version of x1 for the condition
c passed as an additional argument to the neural network: Dθ((1− α)x0 + αx1, c, α) = x̄1 − x̄0.

condition generationscondition generations

Figure 10: Conditional image restoration with IADB. From a corrupt image, either downscaling
(left) or decolorization (right), we create various restorations using Gaussian noises x0.

8 CONCLUSION

The objective of this work was to find a simple and intuitive way to approach deterministic diffusion.
We derived Iterative α-(de)Blending (IADB), a deterministic diffusion model based on a sampling
interpretation of blending and deblending. Our model is similar to DDIM Song et al. (2021a) but its
derivation is significantly simpler and reveals that the model is valid for arbitrary (finite-variance)
densities rather than only Gaussian densities. Furthermore, our derivation leads to a variant learning
formulation that happens to be more numerically stable than the one of DDIM.

An important takeaway of our experiments is that our results in image generation are significantly
worse when using non-Gaussian densities. The theory allows to use non-Gaussian densities for sam-
pling and our experiments on 2D non-Gaussian densities were successful in this regard. However,
this did not transpose well to image generation in practice. This might be because we used neu-
ral networks that have been designed specifically for the denoising task or because denoising noise
might be fundamentally simpler than deblending arbitrary images.

Finally, note that we experimented with our model in its vanilla setting with a uniform blending
schedule and a first-order ODE solver. It might benefit from the improvements brought to denoising
diffusion such as better blending schedules and higher-order ODE solvers (Karras et al., 2022).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms
without noise, 2022.

Jacob Deasy, Nikola Simidjievski, and Pietro Liò. Heavy-tailed denoising score matching. ArXiv,
abs/2112.09788, 2021.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis.
volume 34, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 32, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Ana-
lyzing and improving the image quality of stylegan. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8107–8116, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. arXiv preprint arXiv:2201.11793, 2022.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis, 2020.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Im-
age synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Eliya Nachmani, Robin San Roman, and Lior Wolf. Denoising diffusion gamma models, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic mod-
els. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 8162–8171, 2021.

Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https://
openreview.net/forum?id=oVfIKuhqfC.

Thomas Porter and Tom Duff. Compositing digital images. SIGGRAPH Comput. Graph., 18(3):
253–259, 1984.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. arXiv preprint arXiv:2104.07636, 2021.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 Conference Proceedings, 2022a.

10

https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC

Under review as a conference paper at ICLR 2023

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffu-
sion models with deep language understanding, 2022b.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
ArXiv, abs/2006.09011, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2021b.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and Pey-
man Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16293–16303, 2022.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation via
energy-guided stochastic differential equations. arXiv preprint arXiv:2207.06635, 2022.

11

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI

Under review as a conference paper at ICLR 2023

A LAW OF TOTAL PROBABILITY

The law of total probability states that the prior density p0 × p1 can be written as a weighted linear
combination of its posterior densities:

p0(x0) p1(x1) =

∫
Rd

(p0(x0) p1(x1))|(xα,α) pα(xα) dxα, (6)

where pα(xα) is the weight of each posterior density (p0(x0) p1(x1))|(xα,α). As a result, sampling
the prior density p0 × p1 can be achieved by choosing a random posterior density proportionally
to its weight, i.e. sampling xα ∼ pα, and choosing a random sample in the posterior density
conditioned by parameter xα, i.e. sampling (x0, x1)|(xα∼pα,α).
This is illustrated in Figure 11.

posterior samples for fixed locations xα

(x0, x1)|(xα,α) ∼ (p0 × p1)|(xα,α)

↘

→

↗

posterior samples for random locations xα ∼ pα
(x0, x1)|(xα∼pα,α) ∼ p0 × p1

Figure 11: Each posterior density represents only a subset of the prior density. However, thanks
to the law of total probability, we know that the average of random posterior densities is exactly
the prior density. As a result, sampling random blended samples xα ∼ pα and random posterior
samples (x0, x1)|(xα,α) ∼ (p0 × p1)|(xα,α) is equivalent to sampling random (x0, x1) ∼ p0 × p1
directly in the prior density.

12

Under review as a conference paper at ICLR 2023

B PROOF OF THE ITERATIVE α-(DE)BLENDING CONVERGENCE THEOREM

B.1 PRELIMINARIES

We first recall some properties that are required in the derivation of the limit of Algorithm 1.

The posterior distributions have finite variance. The theorem requires that p0 and p1 are of finite
variance, such that their respective posterior densities p0|(x,α) and p1|(x,α) are also of finite variance.
This is because the idea of the proof is that averaging many small random steps (provided by the
posterior distributions) converges towards their expectations and it is true only if their variance is
finite. We use this between Equation (23) and Equation (24).

The expectations of the posterior distributions are continuous. If p0 and p1 are classic,
Riemann-integrable, densities, then they are continuous almost everywhere. Since the blended
distributions are essentially convolutions of p0 and p1, it follows that the posterior densities
p0|(x,α) and p1|(x,α) are also continuous almost everywhere and the expectation of their samples
x0|(x,α) ∼ p0|(x,α) and x1|(x,α) ∼ p1|(x,α) are continuous everywhere (the expectation cancels out
the null set where they are not continuous). In summary, for any x ∈ Rd and α ∈ [0, 1] we have:

lim
x′→x

E
[
x0|(x′,α)

]
= E

[
x0|(x,α)

]
, lim

x′→x
E
[
x1|(x′,α)

]
= E

[
x1|(x,α)

]
, (7)

lim
α′→α

E
[
x0|(x,α′)

]
= E

[
x0|(x,α)

]
, lim

α′→α
E
[
x1|(x,α)

]
= E

[
x1|(x,α)

]
. (8)

We use this between Equation (24) and Equation (25).

B.2 OBJECTIVE OF THE PROOF

To prove that Algorithm 1 and Algorithm 2 converge towards the same limit as the number of steps
T increases, we need to show that the trajectories of the samples are the same. This is the case if, in
the limit, the derivatives dxα

dα are the same with both algorithms. The discrete update at step t is:

∆αt = αt+1 − αt =
1

T
, (9)

∆xαt
= xαt+1

− xαt
, (10)

and we want to prove that for any α ∈ [0, 1] and at point xα ∈ Rd the continuous limit exists and is
the same with both algorithms:

dxα

dα
= lim

∆α→0

∆xα

∆α
. (11)

B.3 LIMIT OF ALGORITHM 2.

In step t of Algorithm 2 we use the average of the posterior samples that are such that:

xαt = (1− αt) x̄0|(xαt ,αt) + αt x̄1|(xαt ,αt), (12)

xαt+1
= (1− αt+1) x̄0|(xαt ,αt) + αt+1 x̄1|(xαt ,αt), (13)

where Equation (12) is a property of the average posteriors of xαt and Equation (13) is true by
definition in Algorithm 2. We thus have the discrete difference:

∆xαt
= xαt+1

− xαt
= ∆αt

(
x̄1|(xαt ,αt) − x̄0|(xαt ,αt)

)
. (14)

We obtain the discrete ratio
∆xα

∆α
= x̄1|(xα,α) − x̄0|(xα,α), (15)

which is independent of ∆α. The limit hence exists and is defined by

dxα

dα
= lim

∆α→0

∆xα

∆α
=

∆xα

∆α
= x̄1|(xα,α) − x̄0|(xα,α). (16)

13

Under review as a conference paper at ICLR 2023

B.4 LIMIT OF ALGORITHM 1.

In step t of Algorithm 1 we sample random posterior samples x0|(xαt ,αt) and x1|(xαt ,αt) that are
such that:

xαt
= (1− αt)x0|(xαt ,αt) + αt x1|(xαt ,αt), (17)

xαt+1
= (1− αt+1)x0|(xαt ,αt) + αt+1 x1|(xαt ,αt), (18)

where Equation (17) is a property of the posteriors of xαt
and Equation (18) is true by definition in

Algorithm 1. We thus have the discrete difference:

∆xαt
= xαt+1

− xαt
= ∆αt

(
x1|(xαt ,αt) − x0|(xαt ,αt)

)
. (19)

We obtain the discrete difference for any parameter α ∈ [0, 1] and any location xα ∈ Rd

∆xα = ∆α
(
x1|(xα,α) − x0|(xα,α)

)
. (20)

Furthermore, increasing the number of steps is equivalent to decomposing each step ∆α into N
smaller steps ∆α/N . We rewrite the discrete difference as

∆xα =
∆α

N

N−1∑
n=0

(
x1|(xα+n∆α/N ,α+n∆α/N) − x0|(xα+n∆α/N ,α+n∆α/N)

)
. (21)

With this modification, if the derivative exists, it is defined by the limit:

dxα

dα
= lim

∆α→0
lim

N→∞

∆xα

∆α
(22)

= lim
∆α→0

lim
N→∞

1

N

N−1∑
n=0

(
x1|(xα+n∆α/N ,α+n∆α/N) − x0|(xα+n∆α/N ,α+n∆α/N)

)
. (23)

Thanks to the finite-variance condition of p0 and p1, the normalized average sum converges towards
the average of the posterior samples over α′ ∈ [α, α+∆α] as N increases.

dxα

dα
= lim

∆α→0
E

α′∈[α,α+∆α]

[
x1|(xα′ ,α′)

]
− E

α′∈[α,α+∆α]

[
x0|(xα′ ,α′)

]
. (24)

Finally, because the expectations of the posterior densities are continuous, we obtain that the
expectations over [α, α+∆α] converge towards the expectation in α, such that

dxα

dα
= E

[
x1|(xα,α)

]
− E

[
x0|(xα,α)

]
= x̄1|(xα,α) − x̄0|(xα,α). (25)

This is the same result as in Equation (16) with Algorithm 2.

14

Under review as a conference paper at ICLR 2023

C VARIANT FORMULATIONS

We derive the variant formulations introduced in Section 3.1.

Blended samples. A blended sample is by definition the blending of its posterior samples

xαt = (1− αt)x0 + αt x1. (26)

Since blending is linear, a blended sample is also the blending of the average of its posterior samples:

xαt
= (1− αt) x̄0 + αt x̄1. (27)

We can thus rewrite its average posteriors samples x̄0 and x̄1 in the following way:

x̄0 =
xαt

1− αt
− αt x̄1

1− αt
, (28)

x̄1 =
xαt

αt
− (1− αt) x̄0

αt
. (29)

Variant (a): In the vanilla version of the algorithm, a blended sample of parameter αt+1 is ob-
tained by blending x̄0 and x̄1:

xαt+1
= (1− αt+1) x̄0 + αt+1 x̄1. (30)

Variant (b): By expanding x̄0 from Equation (30) using Equation (28), we obtain:

xαt+1
= (1− αt+1) x̄0 + αt+1 x̄1, (31)

= (1− αt+1) x̄0 + αt+1

(
xαt

αt
− (1− αt) x̄0

αt

)
, (32)

=

(
1− αt+1 −

αt+1 (1− α)

αt

)
x̄0 +

αt+1

αt
xαt , (33)

=

(
1− αt+1

αt

)
x̄0 +

αt+1

αt
xαt

, (34)

= x̄0 +
αt+1

αt
(xαt

− x̄0) . (35)

Variant (c): By expanding x̄1 from Equation (30) using Equation (29), we obtain:

xαt+1
= (1− αt+1) x̄0 + αt+1 x̄1, (36)

= (1− αt+1)

(
xαt

1− αt
− αt x̄1

1− αt

)
+ αt+1 x̄1, (37)

=

(
αt+1 −

(1− αt+1)αt

1− αt

)
x̄1 +

1− αt+1

1− αt
xαt , (38)

=

(
1− 1− αt+1

1− αt

)
x̄1 +

1− αt+1

1− αt
xαt

, (39)

= x̄1 +
1− αt+1

1− αt
(xαt

− x̄1) . (40)

Variant (d): By rewriting αt+1 = αt+1 + αt − αt in the definition of xαt+1
, we obtain:

xαt+1 = (1− αt+1) x̄0 + αt+1 x̄1, (41)
= (1− αt+1 + αt − αt) x̄0 + (αt+1 + αt − αt) x̄1, (42)
= (1− αt) x̄0 + αt x̄1 + (αt+1 − αt) (x̄1 − x̄0) , (43)
= xαt

+ (αt+1 − αt) (x̄1 − x̄0) . (44)

15

Under review as a conference paper at ICLR 2023

D RELATION TO DDIM

In this section, we follow the notation of Song et al. (2021a): x0 is a sample of a target density
and ϵ is a random Gaussian sample. The denoiser of DDIM is defined such that, for an input
xt =

√
αtx0 +

√
1− αtϵ, it learns

ϵ(t) (xt) = ϵ̄. (45)

We define

yt =
xt√

αt +
√
1− αt

(46)

= βtx0 + (1− βt) ϵ, (47)

with βt =

√
αt√

αt +
√
1− αt

. yt is an alpha-blended sample such as the one we defined in Section 2.

It follows that we have:
xt√
αt

=
yt
βt

. (48)

We now turn to Equation (13) of Song et al. (2021a):

xt+1√
αt+1

=
xt√
αt

+

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵ(t) (xt) , (49)

By injecting into this expression of the scaled coordinate at line 48, we obtain:

yt+1

βt+1
=

yt
βt

+

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵ̄, (50)

and

yt+1 = yt
βt+1

βt
+ βt+1

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵ̄, (51)

= yt
βt+1

βt
+

1

βt
βtβt+1

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵ̄, (52)

since

βt+1βt

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
= βt (1− βt+1)− (1− βt)βt+1, (53)

= βt − βt+1 (54)

we can simply line 52 to:

yt+1 = yt
βt+1

βt
+

βt − βt+1

βt
, ϵ̄ (55)

= ϵ̄+ yt
βt+1

βt
− βt+1

βt
ϵ̄, (56)

= ϵ̄+
βt+1

βt
(yt − ϵ̄) . (57)

This last form is exactly variant-(b) of IADB (see Table 1). To validate this claim, we trained a
DDIM denoiser and applied the rescaling formula to the output samples. We show in Figure 12 that
when we rescale the output of DDIM, the generated trajectory maps with IADB.

16

Under review as a conference paper at ICLR 2023

a) IADB b) DDIM c) DDIM rescaled (Equation 48)

Figure 12: We trained a MLP with 5 hidden layers of 64 filters to learn Dθ for IADB (a) and the
same architecture to learn ϵθ for DDIM (b) and (c). For (c), we convert points generated by DDIM
using the scaling equation. The trajectories of the samples for IADB (a) and DDIM rescaled (c)
match.

17

	Introduction
	A Deterministic Mapping Between Arbitrary Densities
	Blending and Deblending as Sampling Operations
	Iterative -(de)Blending (IADB)

	Learning Iterative -(de)Blending
	Variant Formulations of Iterative -(de)Blending
	Training and Sampling

	Experiments with Analytic Densities
	Relation to DDIM
	(Disappointing) Experiments with Arbitrary Image Densities
	Related Work
	Conclusion
	Law of Total Probability
	Proof of the Iterative -(de)Blending Convergence Theorem
	Preliminaries
	Objective of the proof
	Limit of Algorithm 2.
	Limit of Algorithm 1.

	Variant Formulations
	Relation to DDIM

