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ABSTRACT

This work studies offline Reinforcement Learning (RL) in a class of non-Markovian
environments called Regular Decision Processes (RDPs). In RDPs, the unknown
dependency of future observations and rewards from the past interactions can
be captured by some hidden finite-state automaton. For this reason, many RDP
algorithms first reconstruct this unknown dependency using automata learning
techniques. In this paper, we consider episodic RDPs and show that it is possi-
ble to overcome the limitations of existing offline RL algorithms for RDPs via
the introduction of two original techniques: a novel metric grounded in formal
language theory and an approach based on Count-Min-Sketch (CMS). Owing to
the novel language metric, our algorithm is proven to be more sample efficient
than existing results, and in some problem instances admitting low complexity
languages, the gain is showcased to be exponential in the episode length. The
CMS-based approach removes the need for naïve counting and alleviates the mem-
ory requirements for long planning horizons. We derive Probably Approximately
Correct (PAC) sample complexity bounds associated to each of these techniques,
and validate the approach experimentally.

1 INTRODUCTION

The Markov assumption is fundamental for most Reinforcement Learning (RL) algorithms, requiring
that the immediate reward and transition only depend on the last observation and action. Thanks
to this property, computing (near-)optimal policies involves only functions over observations and
actions. However, in complex environments, observations may not be complete representations of
the internal environment state. In this work, we consider RL in Non-Markov Decision Processes
(NMDPs) (Whitehead & Lin, 1995; Bacchus et al., 1997), expressive models where the probability of
future observations and rewards may depend on the entire history, i.e. the past interaction sequence
composed of observations and actions. However, the unrestricted dynamics of NMDPs make them
intractable from both statistical and computational standpoints. This has steered much research effort
towards tractable subclasses of NMDPs. In this work, we focus on Regular Decision Processes
(RDPs) (Brafman & De Giacomo, 2019; 2024). In RDPs, the distribution of the next observation
and reward is determined by conditions over the history that, in terms of formal language theory, fall
within the class of the regular languages. This is a rich class containing many fundamental temporal
patterns, including all patterns that can be specified in Linear Temporal Logic (Manna & Pnueli,
1989; De Giacomo & Vardi, 2013) and those captured by Reward Machines (Toro Icarte et al., 2018;
2019; Toro Icarte et al., 2022). Thus, RDPs can model complex temporal dependencies that may be
based on events that occur arbitrarily far in the past, e.g. that an agent may only enter a restricted area
if it has previously asked for permission and the access was granted. At the same time, RDPs enjoy
many favourable properties, which can be leveraged to develop effective RL algorithms. Prominently,
the fact that the dynamics of an RDP can be represented by a probabilistic-deterministic finite
automaton. This key fact is the basis of all existing RL algorithms for RDPs: learning the automaton
underlying an RDP amounts to learning a representation of the histories that is instrumental to tackle
non-Markovianity, as it allows one to work with an associated Markov Decision Process (MDP).

It is worth noting that RDPs are related to decision processes operating under partial observability.
More precisely, the automaton state of an RDP can be seen as a hidden information state (Subramanian
et al., 2022), and as shown by Brafman & De Giacomo (2019), any RDP is also a POMDP (Kaelbling
et al., 1998), whose hidden dynamics evolve according to its finite-state automaton. Thus RDPs
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S T

G Figure 1: T-maze (Bakker, 2001) with corridor
length N = 10. The observation produced at the
initial position S indicates the position of the goal G
at the end of the corridor for the current episode.

constitute the class of POMDPs where hidden states are determined by the history of observations,
namely, those in which the agent can have sharp beliefs. They also fall into the framework of Predictive
State Representations (PSRs) (Bowling et al., 2006). Therefore, in the hierarchy of decision processes,
RDPs greatly generalise MDPs, without introducing strong forms of partial observability present
in more general processes, such as POMDPs, which quickly lead to intractability (Papadimitriou &
Tsitsiklis, 1987). Despite such applicability, provably correct and sample efficient algorithms for
RDPs are still missing. On one hand, local optimisation approaches are computationally efficient,
but lack correctness guarantees, e.g. Abadi & Brafman (2020), Toro Icarte et al. (2019) and all
RL algorithms with policy networks that can operate on sequences. On the other hand, algorithms
with formal guarantees do not provide a practical implementation (Cipollone et al., 2023; Ronca &
De Giacomo, 2021) or can only be applied effectively in small environments (Ronca et al., 2022).

In this work, we investigate offline RL in episodic RDPs, where the goal is to find a near-optimal policy
using a dataset pre-collected using some behavior policy. Recently, an algorithm called RegORL has
been introduced for this problem by Cipollone et al. (2023), which achieves a sample complexity
with polynomial dependency on the episode length as well as number of actions, observations, and
automaton states. Besides, the sample complexity inversely depends on a complexity notion called
Lp
∞-distinguishability, which is grounded in automata theory and captures the ability to distinguish

between relevant histories generated by the underlying behavior policy. This sample complexity
bound exhibits two major drawbacks, however. First, Lp

∞-distinguishability could assume very low
values relative to problem parameters. Specifically, there exist RDPs in which Lp

∞-distinguishability
≃ 2−H , for episode length H , as formalized in Theorem 1, which asserts that the sample complexity
of RegORL could be exponential in H in some problem instances. Indeed, such an exponential
blow-up is observed in many domains that seem simple from an intuitive point of view, such as
T-maze by Bakker (2001), introduced below and discussed throughout the paper. Second, the
only existing sample complexity lower bound presented in Cipollone et al. (2023) depends on Lp

1-
distinguishability, another complexity notion that is larger than Lp

∞-distinguishability and does not
suffer from exponential decay above. Thus, the following question naturally arises as to whether it is
possible to provably learn a near-optimal policy in RDPs offline without requiring an exponential
(in H) sample complexity, while admitting a computationally tractable implementation. We answer
this question in the affirmative by developing novel algorithmic ideas that build on theory of formal
languages as well as using a suitable data structure.
Example 1 (T-maze). As a running example, we consider a variant of the classic T-Maze domain,
which we refer to as T-maze(c), a non-Markovian grid-world environment introduced by Bakker
(2001). An agent has to reach a goal G from an initial position S in a corridor of length N that
terminates with a T-junction as shown in Figure 1. The agent can move one cell at a time, taking
actions North , South , East , or West . In each episode, the rewarding goal G is placed in the cell
above or below the T-junction, uniformly at random. The initial observation to the agent is 011 if the
goal is above the T-junction, and it is 110 otherwise. At every step in the corridor the observation
is 101 or 111 with equal probability, and at the T-junction and beyond the observation is 010. In
particular, when crossing the corridor, the agent cannot observe its precise location or the goal
position. This yields history-dependent dynamics that cannot be modeled by an MDP or any k-order
MDP. As we show later, this domain can be expressed as an RDP.

Contributions Our main contribution is a provably sample efficient algorithm for offline RL in
episodic RDPs. At the core is a statistical test defined via a novel language metric LX , whose design
borrows ideas from the theory of formal languages. Its construction involves a sophisticated way
of expressively capturing relevant patterns on episode traces in the collected data, which allows
for defining a suitable hierarchy of language families that proves effective for learning in RDPs.
Specifically, as formalized in Theorem 3, this yields a PAC sample complexity bound that depends
on a new notion of complexity called LX -distinguishability, which offers a more refined notion than
Lp
∞-distinguishability and, importantly, does not suffer from an exponential blow-up in domains with

a low language-theoretic complexity. Second, we develop a way to compactly represent probability
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distributions on large sets in order to mitigate the memory requirements of RL algorithms that operate
on large sets of histories. We develop a solution that uses the data structure Count-Min-Sketch
(CMS) (Cormode & Muthukrishnan, 2005), taking inspiration from the automaton-learning algorithm
FlexFringe (Baumgartner & Verwer, 2023). To validate our claims, we provide a theoretical analysis
for both variants, when the LX -distinguishability or CMS is used. Finally, we report numerical
experiments to demonstrate the empirical performance of the proposed approaches.

1.1 RELATED WORK

There is a rich and growing literature on offline (Markovian) RL that cover a broad range of MDP
settings; e.g., (Chen & Jiang, 2019; Jin et al., 2021; Li et al., 2024; Rashidinejad et al., 2021; Ren
et al., 2021; Uehara & Sun, 2022; Uehara et al., 2022; Xie et al., 2021; Yin & Wang, 2021; Zhan et al.,
2022; Sun et al., 2023). In particular, it is by now well established that the optimal sample complexity
in the episodic setting depends on the size of state-space, episode length, as well as some notion of
concentrability, reflecting the distribution mismatch between the behavior and optimal policies, and
optimal algorithms are reported (Li et al., 2024).

Non-Markovian RL The first online RL algorithm for RDPs is provided in Abadi & Brafman
(2020). Later, Ronca & De Giacomo (2021) and Ronca et al. (2022) developed the first online RL
algorithms with sample complexity guarantees. The algorithm and the sample complexity bound
provided in Ronca & De Giacomo (2021) adapt analogous results from automata learning literature
(Balle, 2013; Balle et al., 2013; 2014; Clark & Thollard, 2004; Palmer & Goldberg, 2007; Ron et al.,
1998). Cipollone et al. (2023) introduced RegORL, which is a provably efficient algorithm for offline
RL in RDPs. In this work, we study the same setting and improve on two significant weaknesses
of RegORL, regarding the sample complexity and the space requirements. RL with non-Markovian
rewards have been studied via Reward Machines (Bourel et al., 2023; De Giacomo et al., 2019;
Giacomo et al., 2020; Hasanbeig et al., 2021; Toro Icarte et al., 2018; Xu et al., 2020). Existing
literature, however, provide theoretical sample efficiency when the underlying automaton of such
processes are known, which makes the Markovian state computable; e.g., the online RL algorithm in
Toro Icarte et al. (2019) could be applied to RDPs, but it is not proven to be sample efficient. Lastly,
non-Markovianity is also introduced by the logical specifications that the agent is required to satisfy
(Bozkurt et al., 2020; Fu & Topcu, 2014; Hahn et al., 2019; Hammond et al., 2021; Hasanbeig et al.,
2020); however, it is resolved a priori from the known specification.

POMDPs, PSRs, and state representation As discussed, RDPs are also POMDPs, and any
RL algorithm for POMDPs can be applied to RDPs. Tractable learning in POMDPs, to our best
knowledge, has been studied for special cases, such as undercomplete POMDPs (Guo et al., 2022;
Jin et al., 2020), few-step reachability (Guo et al., 2016), ergodicity (Azizzadenesheli et al., 2016),
few-step decodability (Efroni et al., 2022; Krishnamurthy et al., 2016), or weakly-revealing (Liu
et al., 2022). However, none of these fully capture the entire RDP class. Non-Markovian dynamics,
and thus RDPs, fall into the framework of PSRs (Bowling et al., 2006; James & Singh, 2004; Kulesza
et al., 2015; Singh et al., 2003). However, existing sample complexity bounds for online RL in PSRs
(Zhan et al., 2023) involve PSR-specific parameters that do not immediately apply to RDPs. RDPs
bear resemblance to state representation methods (Mahmud, 2010; Maillard et al., 2013; Ortner et al.,
2019; Lattimore et al., 2013), since they provide a compact way of mapping from histories to a state
space via their underlying automata. However, existing bounds for state representations grow linearly
in the number of representations, which is exponential in the number of states in our case.

2 PRELIMINARIES

Notation Given a set Y , ∆(Y) denotes the set of probability distributions over Y . For a function
f : X → ∆(Y), f(y | x) is the probability of y ∈ Y given x ∈ X . Further, we write y ∼ f(x) to
abbreviate y ∼ f(· | x). Given an event E, I(E) denotes the indicator function of E, which equals
1 if E is true, and 0 otherwise. For any pair of integers m and n such that 0 ≤ m ≤ n, we let
Jm,nK := {m, . . . , n} and JnK := J1, nK. The notation Õ(·) hides poly-logarithmic terms.

Count-Min-Sketch Count-Min-Sketch, or CMS (Cormode & Muthukrishnan, 2005), is a data
structure that compactly represents a large non-negative vector v = (v1, . . . , vm). CMS takes two
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parameters δc and ε as input, and constructs a matrix C with d = ⌈log 1
δc
⌉ rows and w = ⌈ e

ε⌉
columns. For each row j ∈ JdK, CMS picks a hash function hj : JmK → JwK uniformly at random
from a pairwise independent family (Motwani & Raghavan, 1995). Initially, all elements of v and C
equal 0. An update (i, c) consists in incrementing the element vi by c > 0. CMS approximates an
update (i, c) by incrementing C(j, hj(i)) by c for each j ∈ JdK. At any moment, a point query ṽi
returns an estimate of vi by taking the minimum of the row estimates, i.e. ṽi = minj C(j, hj(i)). For
each row j ∈ JdK, since the updates for vi are always stored in the element C(j, hj(i)), it follows
that C(j, hj(i)) ≥ vi. Hence each point query satisfies ṽi ≥ vi, i.e. CMS never underestimates vi.

2.1 LANGUAGES AND OPERATORS

An alphabet Γ is a finite non-empty set of elements called letters. A string x over Γ is a concatenation
a1 · · · aℓ of letters from Γ; we call ℓ its length, and we write |x| = ℓ. In particular, the string containing
no letters, having length zero, is a valid string called the empty string, and is denoted by λ. Given
two strings x = a1 · · · aℓ and y = b1 · · · bm, their concatenation xy is the string a1 · · · aℓb1 · · · bm.
In particular, xλ = λx = x. Note that |xy| = |x|+ |y|. Concatenation is associative and hence we
can write the concatenation x1x2 · · ·xk of an arbitrary number of strings. The set of all strings over
alphabet Γ is written as Γ∗, and the set of all strings of length ℓ is written as Γℓ. Thus, Γ∗ = ∪ℓ∈NΓ

ℓ.
A language is a subset of Γ∗. Given two languages X1 and X2, their concatenation is the language
defined by X1X2 = {x1x2 | x1 ∈ X1, x2 ∈ X2}. When concatenating with a singleton language
{x}, we often write Xx instead of X{x}, and xX instead of {x}X . Concatenation of languages is
associative, allowing us to write the concatenation X1X2 · · ·Xk of an arbitrary number of languages.

Given the fundamental definitions above, we introduce a novel operator to construct sets of languages,
which will play a key role in the algorithm design through defining relevant patterns on episode
traces. It is inspired by classes of languages in the first level of the dot-depth hierarchy, a well-known
hierarchy of star-free regular languages (Simon, 1972; Thérien, 2005; Pin, 2017).
Definition 1. For ℓ ∈ N and k ∈ JℓK, the operator Cℓ

k maps any set of languages G to a new set of
languages as follows:

Cℓ
k(G) = {{x0G1 · · ·xk−1Gkxk | x0, . . . , xk ∈ Γ∗, |x0 · · ·xk| = (ℓ− k)} | G1, . . . , Gk ∈ G} .

In the definition, each xi can be any string over the chosen alphabet Γ, including the empty string λ.
Thus, xi are arbitrary strings between a string from Gi and the next string from Gi+1. Each resulting
string consists of ℓ occurrences of a letter from Γ or a string from G1, . . . , Gk ∈ G. Different choices
of G1, . . . , Gk ∈ G yield different languages in the resulting set.
Example 2. Let Γ = {a, b, c} and let G = {{a}, {b}}. Then

C10
1 (G) =

{
{xay | x, y ∈ Γ∗, |xy| = 9}, {xby | x, y ∈ Γ∗, |xy| = 9}

}
is the set consisting of (i) the language of all 10-letter strings that include an occurrence of a, and
(ii) the language of all 10-letter strings that include an occurrence of b. Similarly,

C10
2 (G) =

{
{xayaz | s, p, q ∈ Γ∗, |xyz| = 8}, {xbybz | x, y, z ∈ Γ∗, |xyz| = 8},
{xaybz | x, y, z ∈ Γ∗, |xyz| = 8}, {xbyaz | x, y, z ∈ Γ∗, |xyz| = 8}

}
is the set consisting of (i) the language of all 10-letter strings that include two occurrences of a,
(ii) the language of all 10-letter strings that include two occurrences of b, (iii) the language of all
10-letter strings that include an occurrence of a followed by an occurrence of b, (iv) the language of
all 10-letter strings that include an occurrence of b followed by an occurrence of a.

2.2 EPISODIC REGULAR DECISION PROCESSES

A generic episodic decision process is a tuple P = ⟨O,A,R, T̄ , R̄,H⟩, where O is a finite set of
observations, A is a finite set of actions, R ⊂ [0, 1] is a finite set of rewards, and H ≥ 1 is a finite
horizon. We frequently consider the concatenation AO of the sets A and O. Let Ht = (AO)t+1 be
the set of histories of length t + 1, and let em:n ∈ Hn−m denote a history from time m to time n,
both included. Each action-observation pair ao ∈ AO in a history has an associated reward label
r ∈ R, which we write ao/r ∈ AO/R with the understanding that the slash corresponds to string
concatenation. A trajectory e0:T is the full history generated until (and including) time T .
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We assume that a trajectory e0:T can be partitioned into episodes eℓ:ℓ+H ∈ HH of length H + 1.
In each episode e0:H , a0 = a⊥ is a dummy action used to initialize the distribution on H0. The
transition function T̄ : H×A → ∆(O) and the reward function R̄ : H×A → ∆(R) depend on the
current history in H = ∪H

t=0Ht. Given P, a generic policy is a function π : (AO)∗ → ∆(A) that
maps trajectories to distributions over actions. The value function V π : J0, HK ×H → R of a policy
π is a mapping that assigns real values to histories. For h ∈ H, it is defined as V π(H,h) := 0 and

V π(t, h) := E

[
H∑

i=t+1

ri

∣∣∣∣∣h, π
]
, ∀t < H, ∀h ∈ Ht. (1)

For brevity, we write V π
t (h) := V π(t, h). The optimal value function V ∗ is defined as V ∗

t (h) :=
supπ V

π
t (h),∀t ∈ J0, HK,∀h ∈ Ht, where sup is taken over all policies π : (AO)∗ → ∆(A). Any

policy achieving V ∗ is called optimal, which we denote by π∗; namely V π∗
= V ∗. In what follows,

we consider simpler policies of the form π : H → ∆(A) mapping finite histories to distributions
over actions. Let ΠH denote the set of such policies. It can be shown that ΠH always contains an
optimal policy, i.e. V ∗

t (h) := maxπ∈ΠH V π
t (h),∀t ∈ [H],∀h ∈ Ht. A policy π̂ is ε-optimal iff

Eh0 [V
∗
0 (h0)− V π̂

0 (h0)] ≤ ε, where h0 = a⊥o0, for some random o0 ∈ O.

Episodic RDPs An episodic Regular Decision Process (RDP) (Abadi & Brafman, 2020; Brafman
& De Giacomo, 2019; 2024) is an episodic decision process R = ⟨O,A,R, T̄ , R̄,H⟩ described by
a finite transducer (Moore machine) ⟨U ,Σ,Ω, τ, θ, u0⟩, where U is a finite set of states, Σ = AO
is a finite input alphabet composed of actions and observations, Ω is a finite output alphabet, τ :
U × Σ → U is a transition function, θ : U → Ω is an output function, and u0 ∈ U is a fixed initial
state (Moore, 1956; Shallit, 2008). The output space Ω = Ωo ×Ωr consists of a finite set of functions
that compute the conditional probabilities of observations and rewards, on the form Ωo ⊂ A → ∆(O)
and Ωr ⊂ A → ∆(R). For simplicity, we use two output functions, θo : U × A → ∆(O) and
θr : U ×A → ∆(R), to denote the individual conditional probabilities. Let τ−1 denote the inverse
of τ , i.e. τ−1(u) ⊆ U × AO is the subset of state-symbol pairs that map to u ∈ U . An RDP R
implicitly represents a function τ̄ : H → U from histories in H to states in U , recursively defined
as τ̄(h0) := τ(u0, a0o0), where a0 is some fixed starting action, and τ̄(ht) := τ(τ̄(ht−1), atot).
The transition function and reward function of R are defined as T̄ (o | h, a) = θo(o | τ̄(h), a) and
R̄(r | h, a) = θr(r | τ̄(h), a), ∀h ∈ H,∀ao/r ∈ AO/R. As in previous work (Cipollone et al.,
2023), we assume that any episodic RDP generates a designated termination observation o⊥ ∈ O
after exactly H transitions. This ensures that any episodic RDP is acyclic, i.e. the states can be
partitioned as U = U0 ∪ · · · ∪ UH+1, where each Ut+1 is the set of states generated by the histories
in Ht for each t ∈ J0, HK. An RDP is minimal if its Moore machine is minimal. We use A,O,R,U
to denote the cardinality of A,O,R,U , respectively, and assume H ≥ 2, A ≥ 2 and O ≥ 2.

Since the conditional probabilities of observations and rewards are fully determined by the current
state-action pair (u, a), an RDP R adheres to the Markov property over its states, but not over the
observations. Given a state ut ∈ U and an action at ∈ A, the probability of the next transition is

P(rt, ot, ut+1 | ut, at,R) = θr(rt | ut, at) θo(ot | ut, at) I(ut+1 = τ(ut, atot)).

Since RDPs are Markovian in the unobservable states U , there is an important class of policies that
is called regular. Given an RDP R, a policy π : H → ∆(A) is called regular if π(h1) = π(h2)
whenever τ̄(h1) = τ̄(h2), for all h1, h2 ∈ H. Hence, we can compactly define a regular policy as
a function of the RDP state, i.e. π : U → ∆(A). Let ΠR denote the set of regular policies for R.
Regular policies exhibit powerful properties. First, under a regular policy, suffixes have the same
probability of being generated for histories that map to the same RDP state. Second, there exists at
least one optimal policy that is regular. Finally, in the special case where an RDP is Markovian in
both observations and rewards, it reduces to a nonstationary episodic MDP.
Example 3 (RDP for T-maze). Consider the T-maze described in Example 1, for a generic corridor
length N and horizon H = N + 2. This can be modeled as an episodic RDP ⟨U ,Σ,Ω, τ, θ, u0⟩
with states U := u0 ∪ ({u1,⊤, . . . , uN+3,⊤} ∪ {u1,⊥, . . . , uN+3,⊥})× {1, . . . ,H}, which include
the initial state u0 and two parallel components, ⊤ and ⊥, for the 13 cells of the grid world. In
addition, each state also includes a counter for the time step. Within each component {(ui,⊤, t)}i and
{(ui,⊥, t)}, the transition function τ mimics the grid world dynamics of the maze and increments
the counter t. From the initial state and the start action a0, τ(u0, a0o0) equals u1,⊤ if o0 = 110,
and u1,⊥ if o0 = 011. In the initial state, observations are θo(u0, a0) = unif{110, 011}; in the
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corridor θo(ui,g, a) = unif{101, 111} for every i ∈ JNK and g ∈ {⊤,⊥}; and in the T-junction the
observation is 010. The rewards are null, except for a 1 in the top right or bottom right cell, depending
if the current state is in the component ⊤ or ⊥, respectively.

Distinguishability Consider a minimal RDP R with states U = ∪t∈J0,H+1KUt. Given a regular
policy π ∈ ΠR and t ∈ J0, HK, each RDP state u ∈ Ut+1 defines a unique probability distri-
bution P(· | ut+1 = u, π) on episode suffixes in ΓH−t, where Γ = AO/R is the alphabet of
action-observation-reward triplets. The states in Ut+1 can be compared in terms of the probability
distributions they induce over ΓH−t. Consider any L = {Lℓ}Hℓ=0, where each Lℓ is a metric over
∆(Γℓ). We define the L-distinguishability of R under π as the maximum µ0 ≥ 0 such that, for
any t ∈ J0, HK and any two distinct u, u′ ∈ Ut+1, the probability distributions over suffix traces
et+1:H ∈ ΓH−t from the two states satisfy

LH−t

(
P(et+1:H | ut+1 = u, π),P(et+1:H | ut+1 = u′, π)

)
≥ µ0 .

We will often omit the remaining episode length ℓ = H − t from Lℓ and simply write L. We
consider the Lp

∞-distinguishability, instantiating the definition above with the metric Lp
∞(p1, p2) =

maxj∈JℓK,e∈Γj |p1(e ∗)− p2(e ∗)|, where pi(e ∗), i ∈ {1, 2}, represents the probability of the trace
prefix e ∈ Γu, followed by any trace e′ ∈ Γℓ−u. The Lp

1-distinguishability is defined analogously
using Lp

1(p1, p2) = maxj∈JℓK
∑

e∈Γj |p1(e ∗)− p2(e ∗)|.

2.3 OFFLINE RL IN EPISODIC RDPS

Consider a batch dataset D comprising episodes sampled using a regular behavior policy πb. Specifi-
cally, the k-th episode (or episode trace) in D is of the form ek0:H = ak0o

k
0/r

k
0 · · · akHokH/rkH where,

for each t ∈ J0, HK,

uk
0 = u0, akt ∼ πb(uk

t ), okt ∼ θo(u
k
t , a

k
t ), rkt ∼ θr(u

k
t , a

k
t ), uk

t+1 = τ(uk
t , a

k
t o

k
t ).

The learner seeks an ε-optimal policy π̂ for a given accuracy ε ∈ (0, H], using the smallest dataset D
possible, without further exploration. More precisely, we aim at finding π̂ satisfying V ∗

0 (h)−V π̂
0 (h) ≤

ε for each h ∈ H0 with probability at least 1− δ, using the smallest dataset D possible. We stress
that in so doing πb and underlying RDP states uk

t are unknown to the learner. It suffices to restrict
attention to regular ε-optimal policies (cf. Proposition 5 in Appendix B). However, some assumptions
must be imposed on πb to provably guarantee that an ε-optimal regular policy can be learnt from
D. We first recall the notion of occupancy. Given a regular policy π : U → ∆(A) and a time step
t ∈ J0, HK, let dπt ∈ ∆(Ut ×AO) be the induced occupancy, i.e. a probability distribution over the
states in Ut and the input symbols in AO, recursively defined as dπ0 (u0, a0o0) = θo(o0 | u0, a0) and

dπt (ut, atot) =
∑

(u,ao)∈τ−1(ut)

dπt−1(u, ao) · π(at | ut) · θo(ot | ut, at), t > 0.

Of particular interest is the occupancy d∗t := dπ
∗

t associated with an optimal policy π∗, which is
unique if we assume that π∗ is unique. Likewise, let dbt := dπ

b

t be the occupancy associated with πb.

As in offline RL in MDPs, it is necessary to control the mismatch in occupancy between the behavior
policy πb and the optimal policy π∗. Concretely, the single-policy RDP concentrability coefficient
associated with RDP R and behavior policy πb is defined as in Cipollone et al. (2023):

C∗
R = max

t∈JHK,u∈Ut,ao∈AO

d∗t (u, ao)

dbt (u, ao)
. (2)

We assume that the concentrability is bounded away from infinity, i.e. that C∗
R < ∞, which further

implies that for any t ∈ JHK, u ∈ Ut, dbt (u, a) > 0 whenever a ∈ A is chosen by an optimal policy.

3 LEARNING RDPS WITH STATE-MERGING ALGORITHMS FROM OFFLINE DATA

To learn episodic RDPs from a dataset D of episodes, we adapt the algorithm ADACT-H (Cipollone
et al., 2023). ADACT-H is a state-merging algorithm that iteratively constructs the set of RDP
states U0, . . . ,UH+1 and associated transition function τ of a minimal RDP R. For each t ∈ J0, HK,
ADACT-H maintains a set of candidate states Uc,t+1 = {uao | u ∈ Ut, ao ∈ AO} and a set of
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promoted states Ut+1. Each candidate state uao has an associated multiset of suffixes Z(uao) =
{ekt+1:H : ek ∈ D, τ̄(ek0:t−1) = u, akt o

k
t = ao}, i.e. episode suffixes whose history is consistent with

uao. Initially, Ut+1 contains the candidate with largest multiset. To decide if a candidate uao should
be promoted to Ut+1 or merged with a promoted state u′ ∈ Ut+1, ADACT-H compares the empirical
probability distributions on suffixes using the prefix distance Lp

∞. For reference, we include the
pseudocode of ADACT-H(D, δ) in Appendix A. Cipollone et al. (2023) prove that ADACT-H(D, δ)
constructs a minimal RDP R with probability at least 1− 4AOUδ if D is large enough.

In practice, the main bottleneck of ADACT-H is the statistical test on the last line,

Lp
∞(Z1,Z2) ≥

√
2 log(8(ARO)H−t/δ)/min(|Z1|, |Z2|),

where Z1 and Z2 are two multisets of traces in ΓH−t associated with a candidate state uao and a
promoted state u′, respectively. This is because the number of episode suffixes in ΓH−t is exponential
in the current horizon H − t. The purpose of the present paper is to develop tractable methods for
implementing the statistical test. These tractable methods can be directly applied to any algorithm
that performs such statistical tests, e.g. the approximation algorithm ADACT-H-A (Cipollone et al.,
2023) whose pseudocode we also include in Appendix A. Either algorithm can be incorporated into
an offline RL algorithm for learning an ε-optimal policy, cf. Algorithm RegORL in Appendix A.

4 A TRACTABLE ALGORITHM FOR OFFLINE LEARNING OF RDPS

The lower bound derived in Cipollone et al. (2023) shows that sample complexity of learning RDPs
is inversely proportional to the Lp

1-distinguishability. When testing candidate states of the unknown
RDP, Lp

1 is the metric that allows maximum separation between distinct distributions over traces.
Unfortunately, accurate estimates of Lp

1 are impractical to obtain for distributions over large supports—
in our case the number of episode suffixes which is exponential in the horizon. Accurate estimates of
Lp
∞ are much more practical to obtain. However, there are instances for which states can be well

separated by Lp
1, but have an Lp

∞-distance that is exponentially small. To address these issues, in this
section we develop two improvements over the previous learning algorithms for RDPs.

4.1 THE LANGUAGE METRIC

Testing in the language metric The metrics L1 and L∞ are generic and can be applied to any
distribution. Although this is generally an advantage, they do not exploit the internal structure of the
sample space. In our application, a sample is a trace that, as discussed above, can be regarded as a
string of a specific language. An important improvement, proposed by Balle (2013), is to consider Lp

1
and Lp

∞, which take into account the variable length and conditional probabilities of longer suffixes.
This was the approach followed by the previous RDP learning algorithms. However, these two
metrics are substantially different and lead to dramatically different sample and space complexities.

In this section, we define a new formalism that unifies both metrics and will allow the development
of new techniques for distinguishing distributions over traces. Specifically, instead of expressing the
probability of single strings, we generalize the concepts above by considering the probability of sets
of strings. A careful selection of the sets to consider, which are languages, will allow an accurate
trade-off between generality and complexity.
Definition 2 (Language metric). Let ℓ ∈ N, let Γ be an alphabet, and let X be a set of languages
consisting of strings in Γℓ. The language metric1 in X is a function LX : ∆(Γℓ)×∆(Γℓ) → R, on
pairs of probability distributions p, p′ over Γℓ, defined as

LX (p, p′) := max
X∈X

|p(X)− p′(X)|, (3)

where the probability of a language is p(X) :=
∑

x∈X p(x).

This original notion unifies all the most common metrics. Considering distributions over Γℓ, when
X = {{x} | x ∈ Γℓ}, the language metric LX reduces to L∞. When X = 2Γ

ℓ

, which is the set of
all languages in Γℓ, the language metric becomes the total variation distance, which is half the value
of L1. A similar reduction can be made for the prefix distances. The language metric captures Lp

∞
when X = {xΓℓ−t | t ∈ J0, ℓK, x ∈ Γt}, and it captures Lp

1 when X = ∪t∈J0,ℓK2
Γt

.

1LX is only guaranteed to be a pseudometric, but we call it a metric for simplicity.
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Testing in language classes The language metric can be applied directly to the language of traces
and used for testing in RDP learning algorithms. The language of traces is over the alphabet Γ =
AO/R. Then, it suffices to consider any set of languages X that satisfy X ⊆ ΓH−t = (AO/R)H−t

for each X ∈ X . However, as we have seen above, the selection of a specific set of languages X has a
dramatic impact on the metric that is being captured. In this section, we study an appropriate trade-off
between generality and sample efficiency, obtained through a suitable selection of X . Intuitively,
we seek to evaluate the distance between candidate states based on increasingly complex sets of
languages. We present a way to construct a hierarchy of sets of languages of increasing complexity.
As a first step, we define sets of basic patterns Gi of increasing complexity.

G1 =
{
aO/R | a ∈ A

}
∪
{
AO/r | r ∈ R

}
∪
{
Ao/R | o ∈ O

}
,

G2 = G1 ∪
{
ao/R | a ∈ A, o ∈ O

}
∪
{
aO/r | a ∈ A, r ∈ R

}
∪
{
Ao/r | a ∈ A, r ∈ R

}
,

G3 = G2 ∪
{
ao/r | a ∈ A, o ∈ O, r ∈ R

}
.

The patterns G1 focus on single components, by matching an action a, a reward r, or a single
observation o. Then, the patterns G2 focus on pairs, and the patterns G3 on triplets. Note that the
number of basic patterns increases as we consider more interaction among actions, observations and
rewards. For the first set we have |G1| = A+O+R, for the second |G2| = |G1|+AO+AR+OR,
and for the third |G3| = |G2| + AOR. Starting from the above hierarchy, we identify one more
dimension along which complexity can grow. It results from concatenating the basic patterns from
Gi, and is obtained by applying the operator Cℓ

k. Thus, letting ℓ = H − t, we define the following
two-dimensional hierarchy of sets Xi,j of languages. It is parameterised by i, for the granularity of
the atomic symbols, and by j for the sequential composition with operator Cℓ

k. Formally,

Xi,j =
⋃

k∈JjK C
ℓ
k(Gi), ∀i ∈ J3K, ∀j ∈ JℓK.

The family Xi,j induces a family of language metrics LXi,j , which are non-decreasing along the
dimensions of the hierarchy:

LXi,j
≤ min

(
LXi+1,j

, LXi,j+1

)
, ∀i ∈ J3K,∀j ∈ JℓK.

It is easy to verify that the number of languages in each set satisfies |Xi,j | = |Gi|j ∈ O((AOR)j),
since the operator Cℓ

j introduces one language for each combination of j languages from Gi. Hence
the family LXi,j

has increasing complexity as we increase the values of the parameters i and j.
Moreover, the last level X3,ℓ satisfies LX3,ℓ

≥ Lp
∞ since {xEℓ−t | t ∈ J0, ℓK, x ∈ Et} ⊆ X3,ℓ.

Therefore, the metric LX3,ℓ
is at least as effective as Lp

∞ in distinguishing states. It can be much
more effective as shown next.
Example 4 (Exponential gain in the T-maze). In the T-maze of Examples 1 and 3, when the behaviour
policy πb always chooses East in the corridor and North or South with equal probability at the
T-junction, we observe the following exponential gap between the Lp

∞-distinguishability and the
LX2,1 -distinguishability. The Lp

∞-distinguishability decreases exponentially with the corridor length
N , since the distance between states is determined by the probability of single episode suffixes, which
decreases exponentially with N due to the random observations in the corridor. At the same time, the
LX2,1-distinguishability is constant. In this case, the distance between states is determined by the
probability of observing a positive reward upon performing action North . This probability is 0.5 in
states of kind ⊤, and it is 0 in states of kind ⊥. More formally, the distance between states in Ut is
determined by the probability of the language {xNorth O/r y | x, y ∈ Γ∗, |xy| = H−t+1} ∈ X2,1.

The argument of the example can be developed into a proof of the following theorem, showing that the
language metric can yield an exponential improvement in distinguishability—proof in Appendix C.
Theorem 1. There exist a family of RDPs (RN )N∈N and a corresponding family of regular behaviour
policies (πb

N )N∈N satisfying: (i) the Lp
∞-distinguishability of RN under πb

N is O(2−N ); and (ii) the
LX2,1

-distinguishability of RN under πb
N is Ω(1).

Assumption 1. The behavior policy πb ensures an LXi,j
-distinguishability of at least µ0 > 0, where

Xi,j is constructed as above and is an input to the algorithm.

Given ℓ ∈ J0, HK, let p1, p2 ∈ ∆(Γℓ) be two distributions over traces. To have accurate estimates for
the language metric over some Xi,j , we instantiate two estimators, p̂1 and p̂2, respectively built using
multisets of traces Z1 and Z2, defined as the fraction of samples that belong to the language; that is,
p̂1 :=

∑
e∈Z1

I(e ∈ Xi,j)/|Z1| and p̂2 :=
∑

e∈Z2
I(e ∈ Xi,j)/|Z2|.

8
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4.2 ANALYSIS

In this section we derive high-probability sample complexity bounds for ADACT-H (presented in
Appendix A) when Count-Min-Sketch (CMS) or the language metric LX is used.

Theorem 2. ADACT-H(D, δ) returns the minimal RDP R with probability at least 1 − 3AOUδ
when CMS is used to store empirical probability estimates, the statistical test is

Lp
∞(Z1,Z2) ≥

√
8 log(4(ARO)H−t/δ)/min(|Z1|, |Z2|),

and the size of the dataset D is at least |D| ≥ Õ
(

HC∗
R log(1/δ)

d∗
m·µ2

0

)
, where d∗m = mint,utao d

∗
t (ut, ao)

is the minimum occupancy of the optimal policy π∗.

The proof of Theorem 2 appears in Appendix C. Our new analysis uncovered a mistake in the proof
of Cipollone et al. (2023), and as a result, both their and our sample complexity has an additional
multiplicative term

√
H/µ0. The theorem shows that we can achieve the same asymptotic sample

complexity when using CMS, but at a much lower memory cost.

Theorem 3. ADACT-H(D, δ) returns the minimal RDP R with probability at least 1 − 2AOUδ
when using the language metric LX to define a statistical test

LX (Z1,Z2) ≥
√
2 log(2|X |/δ)/min(|Z1|, |Z2|),

and the size of the dataset D is at least |D| ≥ Õ
(

C∗
R log(1/δ) log |X |

d∗
m·µ2

0

)
.

The proof of Theorem 3 also appears in Appendix C. By definition, µ0 is the L-distinguishability of
R for the chosen language set X , which has to satisfy µ0 > 0 for ADACT-H to successfully learn a
minimal RDP. In the worst case, log |X | = Õ(H), which matches the original bound. However, in the
case of our language hierarchy Xi,j , if j is a small constant we have log |Xi,j | = O(log((AOR)j)) =
O(j log(AOR)) = Õ(1). The constant 1/d∗m depends exponentially on H if there exists an RDP
state that is very hard to reach, but can be much smaller for structured RDPs. In addition, as discussed
earlier, 1/µ0 may be exponentially smaller for LX than for Lp

∞. For completeness, Appendix C also
proves sample complexity bounds for CMS and LX for the approximation algorithm ADACT-H-A.

5 EXPERIMENTAL RESULTS

In this section we present experimental results to illustrate the properties of our two versions of
ADACT-H. We perform experiments in five domains from the literature on POMDPs and RDPs:
Corridor (Ronca & De Giacomo, 2021), T-maze(c) (Bakker, 2001), Cookie (Toro Icarte et al., 2019),
Cheese (McCallum, 1992) and Mini-hall (Littman et al., 1995), and summarize the results in Table 1.
Appendix D contains a detailed description of each domain, as well as example automata learned. We
compare against FlexFringe (Baumgartner & Verwer, 2023), a state-of-the-art algorithm for learning
probabilistic-deterministic finite automata, which include RDPs as a special case. The RDPs output
by FlexFringe are not always directly comparable to the RDPs output by ADACT-H, since FlexFringe

FlexFringe CMS Language metric

Name H U r time U r time U r time

Corridor 5 11 1.0 0.03 11 1.0 0.3 11 1.0 0.01
T-maze(c) 5 29 0.0 0.11 104 4.0 10.1 18 4.0 0.26
Cookie 9 220 1.0 0.36 116 1.0 6.05 91 1.0 0.08
Cheese 6 669 0.69± .04 19.28 1158 0.4± .05 207.4 326 0.81± .04 2.23
Mini-hall 15 897 0.33± .04 25.79 - - - 5134 0.91± .03 23.9

Table 1: Summary of the experiments. For each domain, H is the horizon, and for each algorithm, U
is the number of states of the learned automaton, r is the reward of the derived policy, averaged over
100 episodes, and time is the running time in seconds of automaton learning. The maximum reward
for all the domains is 1, except for T-maze(c) where the reward upon reaching the goal is 4.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Time (seconds) vs length of corridor (b) Number of RDP states vs length of corridor

Figure 2: Impact of increasing the length of the corridor for the T-maze domain of Example 1.

sometimes learns RDPs with cycles, and uses a number of heuristics that optimize performance, but
which no longer preserve the high-probability sample complexity guarantees.

In Table 1, we see that ADACT-H with the language family X3,1 is faster than FlexFringe in all
domains except T-maze(c) (here FlexFringe fails to find the optimal policy, since the heuristics used
are not optimized to preserve reward), and outputs smaller automata than both FlexFringe and CMS
in all domains except Mini-hall. Since the number of languages in X3,1 is independent of H , the
statistical test does not have to iterate over all suffixes, and the resulting RDPs better exploit the
underlying structure of the domains. In the CMS-based approach, despite having a more compact
representation of the probability distributions, the statistical test still has to iterate over all suffixes,
which is exponential in H for the Lp

∞ distance, and exceeds the allotted time budget of 1800 seconds
in the Mini-hall domain. In Corridor and Cookie, all algorithms learn automata that admit an optimal
policy. However, in T-maze, Cheese and Mini-hall, the RDPs learned by ADACT-H with the language
family X3,1 admit a policy that outperforms those of FlexFringe and CMS.

To better illustrate the improvement in performance for our language-based algorithm, in Figure 2
we compare the time and number of RDP states as a function of the corridor length in T-maze
(Example 1) for our two methods based on CMS and the language metric, respectively. With the
increasing corridor length N (and horizon H ≃ N ), we plot the time taken and RDP size over 20
runs, with K = 100 episodes. Figure 2a shows the time taken for the CMS-based algorithm increases
exponentially whereas there is only a linear increase for the language-based approach, which is
expected since the number of RDP states generated also increases linearly with H . In Figure 2b, the
plot indicates the size of the RDP states produced by the language based approach is optimal (∼2H),
and grows exponentially with H for the CMS approach. We also extend this experiment by increasing
N to 100, observing the same trend for our language-based approach. However, CMS suffers from
slow running times, and exceeds 1800 seconds of running time over 20 runs after H = 15.

6 CONCLUSION

In this paper, we propose two new approaches to offline RL for Regular Decision Processes and
provide their respective theoretical analysis. We also improve upon existing algorithms for RDP
learning, and propose a modified algorithm using Count-Min-Sketch with reduced memory complex-
ity. We define a hierarchy of language families and introduce a language-based approach, removing
the dependency on Lp

∞-distinguishability parameters and compare the performance of our algorithms
to FlexFringe, a state-of-the-art algorithm for learning probabilistic deterministic finite automata.
Although CMS suffers from a large running time, the language-restricted approach offers smaller
automata and optimal (or near optimal) policies, even in domains requiring long-term dependencies.
Finally, as a future work, we plan to expand our approach to the online RDP learning setting.
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A PSEUDOCODE OF ADACT-H, ADACT-H-A AND REGORL

In this section we present the pseudocode of ADACT-H, the approximation algorithm ADACT-H-A
and the full reinforcement learning algorithm RegORL.

Function ADACT–H(D, δ)
Input: Dataset D of traces in ΓH+1, failure probability 0 < δ < 1
Output: Set U of RDP states, transition function τ : U ×AO → U

1 U0 ← {u0}, Z(u0)← D // initial state
2 for t = 0, . . . , H do
3 Uc,t+1 ← {uao | u ∈ Ut, ao ∈ AO} // get candidate states
4 foreach uao ∈ Uc,t+1 do Z(uao)← {et+1:H | aroet+1:H ∈ Z(u)} // compute suffixes
5 umamom ← argmaxuao∈Uc,t+1 |Z(uao)| // most common candidate
6 Ut+1 ← {umamom}, τ(um, amom) = umamom // promote candidate
7 Uc,t+1 ← Uc,t+1 \ {umamom} // remove from candidate states
8 for uao ∈ Uc,t+1 do
9 Similar ← {u′ ∈ Ut+1 | not TESTDISTINCT(t,Z(uao),Z(u′), δ)} // confidence

test
10 if Similar = ∅ then Ut+1 ← Ut+1 ∪ {uao}, τ(u, ao) = uao // promote candidate
11 else u′ ← element in Similar, τ(u, ao) = u′, Z(u′)← Z(u′) ∪ Z(uao) // merge

states
12 end
13 end
14 return U0 ∪ · · · ∪ UH+1, τ

15 Function TESTDISTINCT(t, Z1, Z2, δ)
16 return Lp

∞(Z1,Z2) ≥
√

2 log(8(ARO)H−t/δ)/min(|Z1|, |Z2|)

Function ADACT–H–A(D, δ, ε, U , C)
Input: Dataset D of traces in ΓH+1, failure probability 0 < δ < 1, accuracy ε ∈ (0, H], bounds U and C
Output: Set U ′ of RDP states, transition function τ ′ : U ′ ×AO → U ′

1 U ′
0 ← {u0}, Z(u0)← D // initial state

2 U ′
0 ← U ′

0 ∪ {ue
0}, Z(ue

0)← ∅ // initial side state
3 for t = 0, . . . , H do
4 U ′

t+1 ← {ue
t+1} // side state

5 foreach ao ∈ AO do τ ′(ue
t, ao) = ue

t+1, Z(ue
t+1)← {et+1:H | aroet+1:H ∈ Z(ue

t)}
6 U ′

c,t+1 ← {uao | u ∈ U ′
t, ao ∈ AO} // get candidate states

7 foreach uao ∈ U ′
c,t+1 do Z(uao)← {et+1:H | aroet+1:H ∈ Z(u)} // compute suffixes

8 umamom ← argmaxuao∈U′
c,t+1

|Z(uao)| // most common candidate

9 U ′
t+1 ← U ′

t+1 ∪ {umamom}, τ ′(um, amom) = umamom // promote candidate
10 U ′

c,t+1 ← U ′
c,t+1 \ {umamom} // remove from candidate states

11 for uao ∈ U ′
c,t+1 such that |Z(uao)|/N ≥ 3ε/(10UAOHC) do

12 Similar ← {u′ ∈ U ′
t+1 | not TESTDISTINCT(t,Z(uao),Z(u′), δ)} // confidence

test
13 if Similar = ∅ then U ′

t+1 ← U ′
t+1 ∪ {uao}, τ ′(u, ao) = uao // promote candidate

14 else u′ ← element in Similar, τ ′(u, ao) = u′, Z(u′)← Z(u′) ∪ Z(uao) // merge
states

15 if |U ′
0|+ · · ·+ |U ′

t+1| > U then return Failure
16 end
17 for uao ∈ U ′

c,t+1 such that |Z(uao)|/N < 3ε/(10UAOHC) do
18 τ ′(u, ao) = ue

t+1, Z(ue
t+1)← Z(ue

t+1) ∪ Z(uao) // merge with side state
19 end
20 end
21 return U ′

0 ∪ · · · ∪ U ′
H+1, τ ′
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Algorithm 1: RegORL
Input: Dataset D, accuracy ε ∈ (0, H], failure probability 0 < δ < 1, (optionally) upper bound U on |U|
Output: Policy π̂ : H → ∆(A)

1 D1,D2 ← separate D into two datasets of the same size
2 U , τ ← ADACT–H(D1, δ/(4UAO)), where U = 2(AO)H if not provided
3 D′

2 ←Markov transformation of D2 with respect to τ̄
4 π̂m ← OFFLINERL(D′

2, ε, δ/2)
5 return π̂ : h 7→ π̂m(τ̄(h))

B PROPERTIES OF REGULAR POLICIES

In this appendix we restate two propositions from Cipollone et al. (2023). We refer the reader to the
proofs in that paper.

Proposition 4. Consider an RDP R, a regular policy π ∈ ΠR and two histories h1 and h2 in Ht,
t ∈ [H], such that τ̄(h1) = τ̄(h2). For each suffix et+1:H ∈ ΓH−t, the probability of generating
et+1:H is the same for h1 and h2, i.e. P(et+1:H | h1, π,R) = P(et+1:H | h2, π,R).

Proposition 5. Each RDP R has at least one optimal policy π∗ ∈ ΠR.

C PROOF OF THEOREMS

In this appendix we first prove Theorem 1. Then we prove Theorems 2 and 3 using a series of
technical lemmas, and describing first how to implement ADACT-H using CMS.

C.1 PROOF OF THEOREM 1: EXPONENTIAL IMPROVEMENT VIA THE LANGUAGE METRIC

Theorem 1. There exist a family of RDPs (RN )N∈N and a corresponding family of regular behaviour
policies (πb

N )N∈N satisfying: (i) the Lp
∞-distinguishability of RN under πb

N is O(2−N ); and (ii) the
LX2,1 -distinguishability of RN under πb

N is Ω(1).

Proof. Let RN be the RDP described in Example 3, where N is the corridor length and the horizon
is H = N +1. Let πb

N be the policy for RN that always chooses East in the corridor, and it chooses
North or South with equal probability at the T-junction.

We show the first point by showing that the Lp
∞-distinguishability is at most 0.5N . It suffices to show

Lp
∞(P(e1:H | u1 = u, πb

N ),P(e1:H | u1 = u′, πb
N )) ≤ 0.5N ,

for any two states u, u′ ∈ U1. Then inequality is proven immediately since the Lp
∞-distance is

upper-bounded by the probability of any single episode suffix e1:H , which is 0.5N . In particular,
a factor 0.5 is due to the uniform choice of an action at the T-junction, and 0.5N−1 is due to the
uniform probability over the two possible observations when we take a step in the corridor, for a total
of N − 1 times.

We show the second point by showing that the LX2,1 -distinguishability is at least 0.5. Let t ∈ JN+1K,
and let us consider two distinct states u, u′ ∈ Ut. It suffices to show

LX2,1

(
P(et:H | ut = u, πb

N ),P(et:H | ut = u′, πb
N )
)
≥ 0.5.

Since U0 = {u0} is a singleton, we have t ≥ 1, and hence u = (ut,⊤, t) and u′ = (ut,⊥, t). The
set of languages X2,1 includes X = {xNorth O/r y | x, y ∈ Γ∗, |xy| = H − t+ 1}, which is the
language consisting of all episode suffixes where the positive reward r is obtained upon performing
action North . The probability of language X is 0.5 given ut = u, and it is 0 given ut = u′. This
proves the claimed inequality and hence the theorem.
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C.2 ANALYSIS OF CMS

Given a finite set Y = {y1, . . . , ym} and a probability distribution p ∈ ∆(Y), let p̂ ∈ ∆(Y) be an
empirical estimate of p computed using n samples. CMS can store an estimate p̃ of the empirical
distribution p̂. In this setting, the vector v = (v1, . . . , vm) contains the empirical counts of each
element of Y , i.e. for each i ∈ JmK, vi is the number of times that we have observed element yi.
Given n samples, we have ∥v∥1 = n and p̂(yi) = vi/n for each yi ∈ Y . The following lemma shows
how to bound the error between p̃ and p̂.
Lemma 6. Given a finite set Y , a probability distribution p ∈ ∆(Y), and an empirical estimate
p̂ ∈ ∆(Y) of p obtained using n samples, let p̃ be the estimate of p̂ output by CMS with parameters
δc and ε. With probability at least 1− |Y|δc it holds that ∥p̃− p̂∥∞ ≤ ε.

Proof. Cormode & Muthukrishnan (2005) show that for a point query that returns an approximation
ṽi of vi, with probability at least 1− δc it holds that

ṽi ≤ vi + ε∥v∥1.
In our case, the estimated probability of an element yi ∈ Y equals p̃(yi) = ṽi/n, where ṽi is the
point query for yi. Using the result above, with probability at least 1− δc we have

p̃(yi) =
ṽi
n

≤ vi
n

+
ε∥v∥1
n

= p̂(yi) + ε.

Since CMS never underestimates a value, p̂(yi) ≤ p̃(yi) trivially holds. Taking a union bound shows
that the inequality above holds simultaneously for all yi ∈ Y with probability 1− |Y|δc.

In our setting, Y = Γℓ for a fixed ℓ ∈ JHK. Given a failure probability δ and a multiset Z of elements
in Γℓ, we set the parameters of CMS to δc = δ/(AOR)ℓ and ε =

√
log(2(AOR)ℓ/δ)/2|Z|. This

implies that the size of the matrix of CMS is proportional to

log

(
1

δc

)
· e
ε
= e log

(
(AOR)ℓ

δ

)√
2|Z|

log (2(AOR)ℓ/δ)
< e

√
2|Z| log

(
2(AOR)ℓ

δ

)
= Õ

(√
|Z|(ℓ+ log(1/δ))

)
.

Hence the memory complexity is much smaller than |Γℓ|, the number of elements in v. Since
(AOR)ℓ = |Γℓ|, Lemma 6 implies that ∥p̃− p̂∥∞ ≤ ϵ holds with probability at least 1− δ.

Given a language X ⊆ Γℓ, the estimation error |p̃(X)− p̂(X)| due to CMS is proportional to |X|ε,
which is large if X contains many elements. Alternatively, for a language set X = {X1, . . . , Xm},
we could use the vector element vi of CMS to count the number of elements of Z that are also
members of Xi. However, if the languages overlap (which is the case for many of our language
families), then ∥v∥1 = n no longer holds, and neither does Lemma 6. Hence it is only practical to use
CMS to estimate the error of the language metric LX when the languages in X are small and disjoint.

To bound the prefix distance Lp
∞(p̃uao, p̂uao) between the empirical and estimated distributions on

suffixes of length H − t, for each candidate state (u, ao) ∈ Ut ×AO we need H − t copies of CMS
to store the counts for suffixes of different lengths ℓ ∈ JH − tK. We define an associated event ECMS
to correctly bound Lp

∞(p̃uao, p̂uao) for all candidate states:

ECMS =

{
∀t ∈ J0, HK, (u, ao) ∈ Ut ×AO : Lp

∞(p̃uao, p̂uao) ≤ ε =

√
log(2(AOR)H−t/δ)

2|Z|

}
.

Since the number of instances of CMS is less than HUAO, event ECMS occurs with probability at
least 1−HUAOδ.

C.3 TECHNICAL LEMMAS

The following technical lemmas largely follow the analysis of Cipollone et al. (2023). However, we
reformulate the lemmas in terms of the language metric LX and make them more modular in order to
adapt them to our different settings. We first prove a high-probability upper bound on the language
metric LX between the true suffix distribution and its empirical estimate for any candidate state.
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Lemma 7. Given a timestep t ∈ J0, HK, a candidate state (u, ao) ∈ Ut ×AO, a multiset Z(uao)
of suffixes in ΓH−t, and a set X of languages defined on ΓH−t, with probability at least 1− δ the
language metric LX satisfies

LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

,

where puao ∈ ∆(ΓH−t) is the true distribution on suffixes in ΓH−t that start from (u, ao), and p̂uao
is the empirical estimate of puao induced by Z(uao).

Proof. For each language X ∈ X , let puao(X) =
∑

x∈X puao(x) be the true probability of X ,
and let p̂uao(X) =

∑
x∈Z(uao) I(x ∈ X)/|Z(uao)| be the empirical estimate of puao(X), i.e. the

proportion of elements in Z(uao) that are also in X . Hoeffding’s inequality implies that

P

(
|p̂uao(X)− puao(X)| >

√
log(2/δs)

2|Z(uao)|

)
≤ δs.

Choosing δs = δ/|X | and taking a union bound implies that LX satisfies

LX (p̂uao, puao) = max
X∈X

|p̂uao(X)− puao(X)| ≤

√
log(2|X |/δ)
2|Z(uao)|

with probability 1− |X |δs = 1− δ, which completes the proof.

We define an associated event EX to correctly bound the language metric LX for all (u, ao):

EX =

{
∀t ∈ J0, HK, (u, ao) ∈ Ut ×AO : LX (p̂uao, puao) ≤

√
log(2|X |/δ)
2|Z(uao)|

}
.

For a candidate state uao ∈ U ×AO, let p̂(uao) = |Z(uao)|/N . Applying an empirical Bernstein
inequality yields

P

(∣∣p̂(uao)− dbt (u, ao)
∣∣ >√2p̂(uao) log(4/δ)

N
+

14 log(4/δ)

3N

)
≤ δ. (4)

If we define M := |Z(uao)|, with probability at least 1− δ it holds that∣∣∣∣MN − dbt (u, ao)

∣∣∣∣ ≤
√

2p̂(uao) log(4/δ)

N
+

14 log(4/δ)

3N
=

√
2M log(4/δ) + 14 log(4/δ)/3

N
.

We define an associated event EB to correctly bound |M/N − dbt (u, ao)| for all (u, ao):

EB =

{
∀t ∈ J0, HK, (u, ao) ∈ Ut ×AO :

∣∣∣∣ |Z(uao)|
N

− dbt (u, ao)

∣∣∣∣ ≤ G(|Z(uao)|)
N

}
,

where G(M) =
√
2M log(4/δ) + 14 log(4/δ)/3. We show that under event EB , we can control the

sample complexity N to ensure that we obtain at least a certain number of samples |Z(uao)|.
Lemma 8. Given a candidate state uao ∈ Ut × AO and any b ≥ 1, under event EB it holds that
|Z(uao)| ≥ b log(4/δ) if the sample complexity N satisfies

N ≥ log(4/δ)

dbt (u, ao)
(2b+ 31/6) .

Proof. Letting M = |Z(uao)|, due to event EB and the given bound on N it holds that

dbt (u, ao)−
M

N
≤ G(M)

N

⇔ 0 ≤ M +G(M)−Ndbt (u, ao) ≤ M +G(M)− log(4/δ) (2b+ 31/6)

= M +
√
2 log(4/δ)

√
M − log(4/δ) (2b+ 1/2) .
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Solving the quadratic inequality for positive
√
M yields

√
M ≥ −

√
log(4/δ)

2
+

√
log(4/δ)

2
+ log(4/δ) (2b+ 1/2)

= −
√

log(4/δ)

2
+
√
log(4/δ) + 2b log(4/δ)

≥ −
√

log(4/δ)

2
+

√
log(4/δ) +

√
2b log(4/δ)√

2
=
√

b log(4/δ),

where we have used the inequality
√
x+ y ≥ (

√
x+

√
y)/

√
2. Hence the bound on N in the lemma

implies that M =
√
M

2 ≥ b log(4/δ).

We also prove the following technical lemma.

Lemma 9. If M ≥ 16 log(4/δ) it holds that 3G(M) < 2M .

Proof. Consider the function f(M) = 2M − 3G(M). If M = 16 log(4/δ) we have

f(16 log(4/δ)) = (32− 3
√
32− 14) log(4/δ) > 1 · log(4/δ) > 0.

If M ≥ 16 log(4/δ), the derivative of f is positive:

f ′(M) = 2− 3

√
log(4/δ)

2M
≥ 2− 3√

32
> 0.

Hence f(M) > 0 holds for each M ≥ 16 log(4/δ), which concludes the proof.

C.4 PROOF OF THEOREM 2

Let TESTDISTINCTCMS be the version of TESTDISTINCT that uses the statistical test in the theorem.
To prove Theorem 2, we show that TESTDISTINCTCMS answers correctly if the multisets Z1 and
Z2 have a given minimum size MCMS , both when the suffix distributions are the same and when
they are different. These lemmas are analogous to Lemmas 13 and 14 of Cipollone et al. (2023).

Lemma 10. For t ∈ J0, HK, let Z1 and Z2 be multisets sampled from distributions p1 and
p2 on ∆(ΓH−t). If we use CMS with parameters ε =

√
log(2(AOR)H−t/δ)/2|Z| and δc =

δ/(AOR)H−t to store an approximation p̃i of the empirical estimate p̂i of pi induced by Zi, i ∈ J2K,
if events ECMS and EX hold, and if p1 = p2, then TESTDISTINCTCMS(t,Z1,Z2, δ) returns false.

Proof. For i ∈ J2K, Lp
∞(p̂i, pi) = LX (p̂i, pi) if X contains one language for each prefix from ΓH−t,

implying |X | ≤ 2(AOR)H−t. Events ECMS and EX and the triangle inequality now imply that

Lp
∞(p̃1, p̃2) ≤ Lp

∞(p̃1, p̂1) + LX (p̂1, p1) + LX (p1, p2) + LX (p2, p̂2) + Lp
∞(p̂2, p̃2)

≤

√
log(2(AOR)H−t/δ)

2|Z1|
+

√
log(2|X |/δ)

2|Z1|
+ 0 +

√
log(2|X |/δ)

2|Z2|
+

√
log(2(AOR)H−t/δ)

2|Z2|

≤

√
8 log(4(AOR)H−t/δ)

min(|Z1|, |Z2|)
.

This is precisely the condition for which TESTDISTINCTCMS returns false.

Lemma 11. For t ∈ J0, HK, let Z1 and Z2 be multisets sampled from distributions p1 and
p2 on ∆(ΓH−t). If we use CMS with parameters ε =

√
log(2(AOR)H−t/δ)/2|Z| and δc =

δ/(AOR)H−t to store an approximation p̃i of the empirical estimate p̂i of pi induced by Zi, i ∈ J2K,
if events ECMS and EX hold, and if p1 ̸= p2, then TESTDISTINCTCMS(t,Z1,Z2, δ) returns true if
Z1 and Z2 satisfy min(|Z1|, |Z2|) ≥ 32 log(4(AOR)H−t/δ)/µ2

0.
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Proof. Using the same argument as in the proof of Lemma 10 yields

Lp
∞(p̃1, p̃2) ≥ LX (p1, p2)− Lp

∞(p̃1, p̂1)− LX (p̂1, p1)− LX (p2, p̂2)− Lp
∞(p̂2, p̃2)

≥ µ0 −

√
log(2(AOR)H−t/δ)

2|Z1|
−

√
log(2|X |/δ)

2|Z1|
−

√
log(2|X |/δ)

2|Z2|
−

√
log(2(AOR)H−t/δ)

2|Z2|

≥ µ0 −

√
8 log(4(AOR)H−t/δ)

min(|Z1|, |Z2|)
≥ µ0 −

√
µ2
0

4
=

µ0

2
≥

√
8 log(4(AOR)H−t/δ)

min(|Z1|, |Z2|)
,

where we have used the condition on min(|Z1|, |Z2|) in the lemma. This is precisely the condition
for which TESTDISTINCTCMS returns true.

We next show that ADACT-H returns a minimal RDP if the multiset Z(uao) associated with each
candidate state uao satisfies |Z(uao)| ≥ 32 log(4(AOR)H−t/δ)/µ2

0 ≡ MCMS .
Lemma 12. Under events ECMS and EX , ADACT-H outputs a minimal RDP R if the multiset
Z(uao) associated with each candidate state uao satisfies |Z(uao)| ≥ MCMS .

Proof. We show the result by induction. The base case is given by the set U0, which is clearly
minimal since it only contains the initial state u0. For t ∈ J0, HK, assume that the algorithm has
learned a minimal RDP for sets U0, . . . ,Ut. Let Ut+1 be the set of states at layer t+ 1 of a minimal
RDP. Due to the regular property, each pair of histories that map to a state ut+1 ∈ Ut+1 generate
the same probability distribution over suffixes. Under events ECMS and EX , Lemma 10 implies that
TESTDISTINCTCMS(t,Z(uao),Z(u′a′o′), δ) returns false for each pair of candidate states uao and
u′a′o′ that map to ut+1. Consequently, ADACT-H merges uao and u′a′o′.

On the other hand, by assumption, each pair of histories that map to different states of Ut+1 have
L∞-distinguishability µ0. Under events ECMS and EX , if min(|Z(uao)|, |Z(u′a′o′)|) ≥ MCMS

then Lemma 11 implies that TESTDISTINCTCMS(t,Z(uao),Z(u′a′o′), δ) returns true for each pair
of candidate states uao and u′a′o′ that map to different states in Ut+1. Consequently, ADACT-H
does not merge uao and u′a′o′. It follows that ADACT-H will generate exactly the set Ut+1, which
is that of a minimal RDP.

To prove Theorem 2 we need to ensure that M ≥ MCMS for each candidate state uao. Choosing
b = 64 log(AOR)H/µ2

0 and applying Lemma 8 yields the following bound on the sample complexity:

N ≥ max
uao

{
log(4/δ)

dbt (u, ao)

(
128 log(AOR)H

µ2
0

+ 31/6

)}
.

The three events ECMS , EX and EB hold simultaneously with probability at least 1−(H+2)UAOδ ≥
1− 2HUAOδ, so defining δ0 = δ/2HUAO ensures that the sample complexity holds with probabil-
ity at least 1− δ0. Since dbt (u, ao) ≥ d∗t (u, ao)/C

∗
R ≥ d∗m/C

∗
R, we can bound the sample complexity

as

N ≥ C∗
R log(8HUAO/δ0)

d∗m

(
128 log(AOR)H

µ2
0

+ 31/6

)
= Õ

(
HCR log(1/δ)

d∗m · µ2
0

)
.

This concludes the proof of the theorem.

We also prove a bound on the sample complexity of the approximation algorithm ADACT-H-A. In
this algorithm, the subroutine TESTDISTINCTCMS is only called for a candidate state uao when the
multiset Z(uao) satisfies

|Z(uao)|
N

=
M

N
≥ 3ε

10UAOC
,

where ε, U and C are inputs to the algorithm. We prove the following theorem:
Theorem 13. ADACT-H-A(D, δ, ε, U, C) returns an ε

2 -approximate RDP R′ with probability at
least 1− 2HAOUδ when CMS is used to store empirical probability estimates, the statistical test is

Lp
∞(Z1,Z2) ≥

√
8 log(4(ARO)H−t/δ)/min(|Z1|, |Z2|),

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

and the size of the dataset D is at least

|D| ≥ Õ
(
C log(1/δ)

(
HUAO

εµ2
0

+
1

d∗m

))
.

We first prove that the resulting RDP is ε
2 -approximate.

Lemma 14. Under events ECMS , EX and EB , if U and C are upper bounds on the number of RDP
states U ′ = |U ′| and concentrability C∗

R′ , then ADACT-H-A returns an ε
2 -approximate RDP R′.

Proof. Consider a candidate state uao with M = |Z(uao)|. If M/N ≥ 3ε/10UAOC then we
impose the condition M ≥ MCMS as before. For each such candidate state, ADACT-H-A calls
TESTDISTINCTCMS and outputs the correct RDP state.

On the other hand, if M/N < 3ε/10UAOC and M ≥ 16 log(4/δ), event EB and Lemma 9 yield

dbt (u, ao)−
M

N
≤ G(M)

N
<

2M

3N
⇔ dbt (u, ao) <

5M

3N
<

ε

2UAOC
.

In this case, ADACT-H-A does not call TESTDISTINCTCMS and hence the resulting RDP state may
be incorrect. We can bound the contribution of uao to the value under the optimal policy π∗ as

d∗t (u, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) · r

≤ d∗t (u, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) = d∗t (u, ao) ≤ C∗

R′dbt ≤
ε

2UAO
,

where we have used the fact that the reward is bounded by 1. Summing up the contribution of all
such candidate states to the expected optimal value of histories in H0 yields∑
t∈J0,HK

∑
utao

d∗t (ut, ao)
∑
a′∈A

π∗(τ(u, ao), a′)
∑
r∈R

θr(τ(u, ao), a
′, r) · r ≤

∑
t∈J0,HK

∑
utao

ε

2UAO
≤ ε

2
.

This proves that the resulting RDP R′ is ε
2 -approximate.

To prove Theorem 13, we have to ensure M ≥ 16 log(4/δ) for candidate states such that M/N <
3ε/10UAOC, and M ≥ MCMS otherwise. The former is achieved by choosing b = 16 in Lemma 8,
yielding a bound N ≥ 223 log(4/δ)/6dbt (u, ao). In the latter case, event EB and Lemma 9 yield

M

N
− dbt (u, ao) ≤

G(M)

N
<

2M

3N
⇔ dbt (u, ao) >

M

3N
≥ ε

10UAOC
.

Applying Lemma 8 directly yields the following bound on the sample complexity:

N ≥ max
uao

{
log(4/δ)

dbt (u, ao)

(
128 log(AOR)H

µ2
0

+ 31/6

)
+

223 log(4/δ)

6dbt (u, ao)

}
.

We can now use the respective lower bounds on dbt (u, ao) to achieve the following bound:

N ≥ 10UAOC log(8HUAO/δ0)

ε

(
128 log(AOR)H

µ2
0

+ 31/6

)
+

223C∗
R′ log(8HUAO/δ0)

6d∗m

= Õ
(
C log(1/δ)

(
HUAO

εµ2
0

+
1

d∗m

))
.

C.5 PROOF OF THEOREM 3

Let TESTDISTINCTX be the version of TESTDISTINCT that uses the statistical test in the theorem.
The proof of Theorem 3 is achieved by proving two lemmas analogous to Lemmas 10 and 11.
Lemma 15. For t ∈ J0, HK, let Z1 and Z2 be multisets sampled from distributions p1 and p2 on
∆(ΓH−t), and let p̂1 and p̂2 be empirical estimates of p1 and p2 due to Z1 and Z2, respectively.
Under event EX , if p1 = p2 then TESTDISTINCTX (t,Z1,Z2, δ) answers false.
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Proof. Due to event EX and the triangle inequality we have

LX (p̂1, p̂2) ≤ LX (p̂1, p1) + LX (p1, p2) + LX (p2, p̂2)

≤

√
log(2|X |/δ)

2|Z1|
+ 0 +

√
log(2|X |/δ)

2|Z2|
≤

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

.

This is precisely the condition for which TESTDISTINCTX returns false.

Lemma 16. For t ∈ J0, HK, let Z1 and Z2 be multisets sampled from distributions p1 and p2 on
∆(ΓH−t), and let p̂1 and p̂2 be empirical estimates of p1 and p2 due to Z1 and Z2, respectively.
Under event EX , if p1 ̸= p2 then TESTDISTINCTX (t,Z1,Z2, δ) answers true if Z1 and Z2 satisfy
min(|Z1|, |Z2|) ≥ 8 log(2|X |/δ)/µ2

0.

Proof. Due to event EX and the triangle inequality we have

LX (p̂1, p̂2) ≥ LX (p1, p2)− LX (p̂1, p1)− LX (p2, p̂2)

≥ µ0 −

√
log(2|X |/δ)

2|Z1|
−

√
log(2|X |/δ)

2|Z2|

≥ µ0 −

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

≥ µ0 −
√

µ2
0

4
=

µ0

2
≥

√
2 log(2|X |/δ)
min(|Z1|, |Z2|)

,

where we have used the condition on min(|Z1|, |Z2|) in the lemma. This is precisely the condition
for which TESTDISTINCTX returns true.

The remainder of the proof of Theorem 3 is analogous to that of Theorem 2. To achieve the bound
MX = 8 log(2|X |/δ)/µ2

0, choosing b = 16 log |X |/µ2
0 in Lemma 8 yields a bound

N ≥ max
uao

{
log(4/δ)

dbt (u, ao)

(
32 log |X |

µ2
0

+ 31/6

)}
.

Since TESTDISTINCTX answers correctly under event EX , Lemma 12 directly applies, with the only
difference that we do not need event ECMS to hold, and hence it is sufficient to choose δ0 = δ/2UAO
to ensure that events EX and EB hold. Using the lower bound on dbt (u, ao) yields

N ≥ C∗
R log(8UAO/δ0)

d∗m

(
32 log |X |

µ2
0

+ 31/6

)
= Õ

(
C∗

R log(1/δ) log |X |
d∗m · µ2

0

)
,

We also prove an analogous theorem for the approximation algorithm ADACT-H-A:
Theorem 17. ADACT-H-A(D, δ, ε, U, C) returns an ε

2 -approximate RDP R′ with probability at
least 1− 2AOUδ when using the language metric LX to define a statistical test

LX (Z1,Z2) ≥
√
2 log(2|X |/δ)/min(|Z1|, |Z2|),

and the size of the dataset D is at least

|D| ≥ Õ
(
C log(1/δ)

(
UAO log |X |

εµ2
0

+
1

d∗m

))
,

The proof is also analogous to that of Theorem 13. Concretely, Lemma 14 still holds as long as
we ensure M ≥ MX for candidate states such that M/N ≥ 3ε/10UAOC, and M ≥ 16 log(4/δ)
otherwise. Applying Lemma 8 directly yields the following bound on the sample complexity:

N ≥ max
uao

{
log(4/δ)

dbt (u, ao)

(
32 log |X |

µ2
0

+ 31/6

)
+

223 log(4/δ)

6dbt (u, ao)

}
.

Using the respective lower bounds on dbt (u, ao) yields

N ≥ 10UAOC log(8UAO/δ0)

ε

(
32 log |X |

µ2
0

+ 31/6

)
+

223C∗
R′ log(8UAO/δ0)

6d∗m

= Õ
(
C log(1/δ)

(
UAO log |X |

εµ2
0

+
1

d∗m

))
.
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D DETAILS OF THE EXPERIMENTS

In this appendix we describe each domain in detail and include examples of RDPs learned by
ADACT-H.

D.1 CORRIDOR

This RDP example was introduced by Ronca & De Giacomo (2021). The environment consists of a
2×m grid, with only two actions a0 and a1 which moves the agent to states (0, i+ 1) and (1, i+ 1)
respectively from state (·, i). The goal of the agent is to avoid an enemy which is present in position
(0, i) with probability p0i , and at (1, i) with probability p1i . The agent receives a reward of +1 for
avoiding the enemy at a particular column, and the probabilities p0i and pii are switched every time
it encounters the enemy. When the agent reaches the last column, its position is reset to the first
column. The observation space is given by (i, j, e), where i, j is the cell position of the agent and
e ∈ {enemy, clear} denotes the presence of the guard in the current cell. Fig 3 shows the minimal
automaton obtained by all three algorithms for H = 5.

Figure 3: Automaton obtained from the corridor environment. The edges are labelled as [action,
observation, enemy].

D.2 T-MAZE(C)

The T-maze environment was introduced by Bakker (2001) to capture long term dependencies with
RL-LSTMs. Here we term it classic T-maze, or T-maze(c). As shown in Figure 1, at the initial
position S, the agent receives an observation X , depending on the position of the goal state G in
the last column. The agent can take four actions, North, South, East and West. The agent receives
a reward of +4 on taking the correct action at the T-junction, and −1 otherwise, terminating the
episode. The agent also receives a −1 reward for standing still. At the initial state the agent receives
observation 011 or 110, 101 throughout the corridor and 010 at the T-junction. Figure 1 shows the
optimal automaton obtained when the available actions in the corridor are restricted to only East
(the automaton obtained without this restriction is shown in Figure 6). Table 1 shows our results
with the unrestricted action space. Both our approaches find the optimal policy in this case, unlike
Flex-Fringe which fails to capture this long term dependency.

Figure 4: Automaton obtained from T-maze environment with restricted actions. The edges are
labelled as [action, observation, reward].

Note that T-maze(c) differs from the T-maze of Example 1 in a small but relevant detail: in T-maze(c)
the agent deterministically receives the observation 101 when it is in the corridor, instead in the T-
Maze of Example 1 the agent can receive 101 or 111 uniformly at random. The additional observation
111 is a distraction for the agent, rather than a help, since it does not convey any additional useful
information.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Mini-hall environment (Littman et al., 1995). (b) Simplified cookie domain.

Figure 5: Environments.

Figure 6: Automaton obtained from T-maze (partially restricted action space), restricted language.

D.3 COOKIE DOMAIN

We modify the original cookie domain as described in (Toro Icarte et al., 2019), to a simpler domain
consisting of 4 rooms, blue, white, green and red as shown in Fig. 5b. If the agent presses the button
in room red, a cookie appears in room blue or green with equal probability. The agent can move left,
right, up or down, can press the button in room red, and eat the cookie to receive a reward 1, and then
it may press the button again. There are 6 possible observations (4 for each room, and 2 for observing
the cookie in the two rooms). We use the set X3,1 for distinguishability in the restricted language
case. Our restricted language approach here finds the optimal policy and the smallest state space.

D.4 CHEESE MAZE

Cheese maze (McCallum, 1992) consists of 10 states, and 6 observations, and 4 actions. After
reaching the goal state, the agent receives a reward of +1, and the position of the agent is reintialised
to one of the non-goal states with equal probability. For a horizon of 6, the results for the restricted
language and Flex-Fringe are comparable, however upon further increasing the horizon, Flex-Fringe
outperforms ADACT-H by learning cyclic RDPs which is not possible in our approach.

D.5 MINI-HALL

The mini-hall environment (Littman et al., 1995) shown in Fig 5a has 12 states, 4 orientations in 3
rooms, a goal state given by a star associated with a reward of +1, 6 observation and 3 actions, and
the position of the agent is reset after the goal is reached. This setting is much more complex than the
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others because 12 states are mapped into 6 observations; for example, starting from observation 3, 3
actions are required under the optimal policy to solve the problem if the starting underlying state was
in Room B or C. Although we get a much larger state space, our algorithm gets closer to the optimal
policy. However our CMS approach is not efficient in this case and exceeds the alloted time budget
of 1800 seconds, as it requires to iterate over all possible trajectories.
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