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Abstract

The widespread practice of fine-tuning pretrained large language models (LLMs)
on domain-specific data faces two major challenges in memory and privacy. First,
as the size of LLMs continue to grow, encompassing billions of parameters, the
memory demands of gradient-based training methods via backpropagation be-
come prohibitively high. Second, given the tendency of LLMs to memorize
and disclose sensitive training data, the privacy of fine-tuning data must be re-
spected. To this end, we explore the potential of zeroth-order methods in differ-
entially private optimization for fine-tuning LLMs. Zeroth-order methods, which
rely solely on forward passes, substantially reduce memory consumption during
training. However, directly combining them with standard differential privacy
mechanism poses dimension-dependent complexity. To bridge the gap, we intro-
duce DPZERO, a novel differentially private zeroth-order algorithm with nearly
dimension-independent rates. Our theoretical analysis reveals that its complexity
hinges primarily on the problem’s intrinsic dimension and exhibits only a loga-
rithmic dependence on the ambient dimension. This renders DPZERO a highly
practical option for real-world LLMs deployments.

1 Introduction

Fine-tuning pretrained large language models (LLMs), including BERT [20, 66, 82], OPT [111], the
LLaMA family [93, 94], and the GPT family [80, 11, 77, 76], has become a standard practice for
achieving state-of-the-art performance in a wide array of downstream applications. However, two
significant challenges persist in practical adoption: memory demands for gradient-based optimizers
and the need to safeguard the privacy of domain-specific fine-tuning data.

As LLMs evolve from having millions to billions of parameters [11], the resource requirements
for their training escalate significantly, creating barriers for entities with limited computational
resources from deploying and further developing LLMs. Various approaches have been explored
to tackle these limitations, ranging from parameter-efficient fine-tuning (PEFT) [55, 44] to the
development of novel optimization algorithms [16, 60]. While these methods offer some advantages,
they still require memory-intensive first-order gradient information through backpropagation, which
is prohibitive for large models. A recent trend has emerged in developing algorithms for training
neural networks without using backpropagation [10, 87, 42, 43, 79]. Specifically for LLMs, Malladi
et al. [70] introduced zeroth-order methods for fine-tuning, thereby requiring solely forward passes
and achieving a 12x memory reduction compared to first-order algorithms. For instance, utilizing
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a single A100 GPU, zeroth-order methods enable the training of LLMs with 30 billion parameters,
whereas first-order methods, even equipped with PEFT, are limited to training models of up to 6.7
billion parameters. This greatly expands the potential for deploying and fine-tuning LLMs even on
personal devices.

Besides the computational challenge, empricial studies [13, 68, 90] have highlighted the risk of LLMs
inadvertently revealing sensitive information from their training datasets. For instance, Carlini et al.
[13] exploited vulnerabilities in GPT-2 to disclose hundreds of verbatim text samples used during
the model’s training. Such privacy concerns are pronounced especially when users opt to fine-tune
LLMs on datasets of their own. Notably, the expectation that machine learning models should not
compromise the confidentiality of their contributing entities is codified into legal frameworks [97].
The most widely accepted mathematical framework for ensuring privacy in machine learning is the
notion of differential privacy [24], which, with high probability, prevents attackers from identifying
participating entities through model outputs [86]. Consequently, the development of methods that
fine-tunes LLMs under differential privacy has attracted considerable attention [57, 107, 41, 21, 91];
however, most of these efforts focused on first-order algorithms.

Motivated by the interplay of the memory constraints and privacy concerns in fine-tuning LLMs,
we investigate zeroth-order methods that guarantee differential privacy for solving the following
stochastic optimization problem:

min
x∈Rd

FS(x) :=
1

n

n∑
i=1

f(x; ξi) , (1)

where S = {ξi}ni=1 is the training data, x is the model weight, the loss f(x; ξi) is Lipschitz for each
sample ξi, and the averaged loss FS(x) is smooth and possibly nonconvex. In theory, established
studies on both differentially private optimization [7] and zeroth-order optimization [23] indicate
a dependence on the dimension d in the convergence guarantees; such a dimension dependence
becomes problematic in the context of LLMs with dimension d scaling to billions. In practice, and
somewhat surprisingly, empirical studies on the fine-tuning of LLMs using zeroth-order methods
[70] and DP first-order methods [107, 57, 56] have shown that the performance degradation due to
the large model size is not significant. For example, Yu et al. [107] showed that the performance
drop due to privacy is smaller for larger architectures. A 345 million-sized GPT-2-Medium, trained
with (ε = 6.8, δ = 10−5)-DP, suffers from a modest drop of 5.1 in BLEU score [78] (compared to a
non-private model of the same size and architecture), whereas the 1.5 billion-sized GPT-2-XL suffers
a drop of only 4.3 BLEU score under the same privacy budget.

This gap between theory and practice has been linked to the presence of low-rank structures in the
fine-tuning of pretrained LLMs in previous studies [70, 56]. Empirical evidence [81, 40, 35] suggests
that the training of deep neural networks occurs within a subspace governed by a small number
of the leading eigenvectors of the loss’s Hessian. Particularly in the context of fine-tuning LLMs,
Aghajanyan et al. [2] demonstrated that commonly pretrained LLMs often possess a remarkably low
intrinsic dimension [54] (200 for RoBERTa [66] with 355 million parameters) – a low dimensional
reparameterization that retains efficacy in fine-tuning comparable to the full parameter space; Li et al.
[56] revealed that when privately fine-tuning DistilRoBERTa [82, 66] with LoRA [44] (with 7 million
parameters), the gradients are primarily influenced by a small number of principal components,
and projecting these gradients onto a subspace with dimension 100 suffices to regain the original
performance. Note that previous works report how performance changes when fine-tuning is restricted
to some low-dimensional subspace to argue for inherent low-dimensional structure. This is because
directly computing the rank of the Hessian matrix, for a model with hundreds of millions of parameters,
is prohibitively expensive. Such empirical findings drive the investigation of dimension-independent
rates under particular “low-rank” structures. Previous studies in [70] and [69, 56] have examined the
dimension-dependence in zeroth-order and DP first-order optimization, respectively. Both works
suggest that the dependence in the dimension can be effectively replaced by the trace of the loss’s
Hessian, which we refer to as the effective rank or intrinsic dimension.

Given the popularity of fine-tuning LLMs on domain-specific datasetes, we ask the following
fundamental question: Can we achieve a dimension-independent rate both under differential privacy
and with access to only the zeroth-order oracle? Our contributions are summarized in the following.

• We first show that the straightforward approach – that combines DP first-order methods with
zeroth-order gradient estimations (Algorithm 1) – exhibits an undesirable dimension-dependence
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in the convergence guarantees, even when the effective rank of the problem does not scale with the
dimension (Thereom 3.2 and 3.4 in Section 3). There are two root causes. First, the standard practice
of choosing the clipping threshold to be the maximum norm of the estimated sample gradient leads to
an unnecessarily large threshold. Next, on top of this choice of threshold forcing a large noise to be
added to ensure privacy, Algorithm 1 adds that noise in all d directions.

•We present DPZERO (Algorithm 2), the first nearly dimension-independent DP zeroth-order method
for stochastic optimization. Its convergence guarantee depends on the effective rank of the problem
(specified in Assumption 3.3) and exhibits logarithmic dependence on the dimension d (Theorem
4.1 in Section 4). This builds upon two insights. First, the direction of the estimated gradient is a
public information and does not need to be private; it is sufficient to make only the magnitude of the
estimated gradient private, which is a scalar value. Next, we introduce a tighter analysis that allows
us to choose a significantly smaller clipping threshold, leveraging the fact that the typical norm of the
estimated gradient is much smaller than its maximum.

1.1 Related Works

We build upon exciting advances in zeroth-order optimization and differentially private optimization,
which we survey here. Notably, DPZERO is inspired by new empirical and theoretical findings
showing that fine-tuning large language models do not suffer in high-dimensions when using zeroth-
order methods in Malladi et al. [70] or using private first-order optimization in Li et al. [56].

Zeroth-Order Optimization. Nesterov and Spokoiny [74] pioneered the formal analysis of the
convergence rate of zeroth-order methods, i.e., zeroth-order (stochastic) gradient descent (ZO-(S)GD)
that replaces gradients in (S)GD by their zeroth-order estimations, under various assumptions on the
objective function. This is motivated by renewed interest in adopting zeroth-order methods in industry
due to, for example, fast differentiation techniques that require storing all intermediate computations
reaching the memory limitations. Their findings on nonsmooth convex functions are later refined by
Shamir [83]. Lin et al. [59] contributed to further advancements on nonsmooth nonconvex functions
recently. Additionally, Ghadimi and Lan [34] extended the results for smooth functions into the
stochastic setting. Zeroth-order methods have also been expanded to incorporate approaches such as
coordinate descent [58], conditional gradient descent [6], variance reduction techniques [61, 26, 47],
SignSGD [62], and minimax optimization [102]. Additionally, zeroth-order methods find applications
in fields such as black-box machine learning [15, 17], bandit optimization [30, 83], and distributed
learning [28, 108] to reduce communication overhead. These well-established results indicate that
the norm of the zeroth-order gradient scales with the dimension d and the required stepsize is d-times
smaller than that in first-order gradient-based methods, consequently leading to a d-times increase in
the final time complexity. For example, the convergence rate of gradient descent for minimizing a
smooth convex function f(x) is f(x̄T ) −minx∈Rd f(x) ≤ O(1/T ) where x̄T is the average of T
iterates [73], while the zeroth-order method only achieves a rateO(d/T ). It has been shown that such
dimension-dependence of zeroth-order methods is inevitable without additional structures [103, 23].

There has been a recent effort to relax the dimension-dependence in zeroth-order methods leveraging
problem structures. Wang et al. [101] and Cai et al. [12] assumed certain sparsity structure in the
problem and applied sparse recovering algorithms, e.g. LASSO, to obtain sparse gradients from
zeroth-order observations. Golovin et al. [36] analyzed the case when the objective function is
f(Px) for some low-rank projection matrix P . These works either require the objective or the
algorithm to be modified to have a dimension-independent guarantee. Balasubramanian and Ghadimi
[6] demonstrated that ZO-SGD can directly identify the sparsity of the problem and dimension-
independent rate is possible when the support of gradients remains unchanged [12]. Recently, Malladi
et al. [70] provided a relaxation from dependence on the dimension d to a dependence on the trace of
the loss’s Hessian for ZO-SGD when the smoothing parameter approaches 0.

Differentially Private Optimization. Previous works on differentially private optimization mostly
center around first-order methods. For constrained convex problems, tight utility guarantees on both
excess empirical [14, 7, 104, 109, 99] and population [8, 9, 29, 4, 53, 110] losses are well-understood.
As an example, a typical result states that the optimal rate on the excess empirical loss for convex
objectives is Θ(

√
d log(1/δ)/(nε)), where (ε, δ) are privacy parameters, n is the number of samples,

and d is the dimension. The dimension-dependence is fundamental as both the upper bound [7], using
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differentially private (stochastic) gradient descent (DP-(S)GD) introduced in [88], and the lower
bound [7], using a reduction to finger printing codes, have the same dependence.

When the problem is nonconvex, which is the setting of our interest, DP-(S)GD achieves a rate
of O(

√
d log(1/δ)/(nε)) on the squared norm of the gradient [99, 112]. We show that DPZERO

matches this rate with access to only the zeroth-order oracle in Theorem 4.1 in the worst case. When
having access to the first-order oracle, it has been recently shown that such rate can be improved
to O((

√
d log(1/δ)/(nε))4/3) leveraging momentum [95] or variance reduction techniques [3].

It remains an open question whether one can improve Theorem 4.1 analogously. Further, the
convergence to second-order stationary points in nonconvex DP optimization is studied in [33].
Recent advancements in DP optimization have also delved into the understanding of the potential of
public data [31, 67], the convergence properties of per-sample gradient clipping [105, 27, 52], and
the relaxation of the dimension-dependence in the utility upper bound [69, 56].

Early works [46, 89] established that dimension-independent rates can be attained when the gradi-
ents lie in some fixed low-rank subspace. By first identifying this gradient subspace, dimension-
independent algorithms [113, 49] can be designed. Closest to our result is Song et al. [89], which
demonstrated that the rate of DP-(S)GD for smooth nonconvex optimization can be improved
to O(

√
r log(1/δ)/(nε)) under certain structural assumptions, i.e., for generalized linear models

(GLMs) with a rank-r feature matrix. We match this result with access to only the zeroth-order oracle
in Theorem 4.1 for more general structures beyond low-rank GLMs. This is inspired by more recent
results in Li et al. [56] that introduced a relaxed Lipschitz condition for the gradients and provide
dimension-free bounds when the loss is convex and the relaxed Lipschitz parameters decay rapidly.
Similalry, Ma et al. [69] suggested that the d dependence in the utility upper bound for DP stochastic
convex optimization can be improved to a dependence on the trace of the Hessian.

The exploration of DP optimization algorithms that extend beyond first-order methods remains
notably limited. Ganesh et al. [32] investigated the potential of second-order methods for DP convex
optimization. Gratton et al. [37] proposed to use zeroth-order methods for DP-ADMM [45] in
distributed learning. They state that the noise intrinsic in zeroth-order methods is enough to provide
privacy guarantee and rely on the output of zeroth-order methods being Gaussian, which is unverified
to the best of our knowledge. Liu et al. [63] proposed a private genetic algorithm based on zeroth-
order optimization heuristics for private synthetic data generation. Du et al. [21] introduced a novel
noise adding mechanism that happens in the forward pass of training. Although the algorithm is
termed “DP-Forward”, it is not a zeroth-order method and still requires backpropagation for training.
There is also another line of research [38, 92, 84] on the design of differentially private algorithms
for the stochastic bandit problem based on upper confidence bound [5]. Their algorithms are not
directly applicable to our setting. As far as we are aware, no previous studies consider the problem of
deriving dimension-independent rate in DP zeroth-order optimization.

2 Preliminaries

Notation. ∥·∥ is reserved for the Euclidean norm, and we let ∥v∥2W := v⊤Wv for some square
matrix W . We use Sd−1 = {x ∈ Rd | ∥x∥ = 1} to denote the unit sphere in the d-dimensional
Euclidean space, and η Sd−1 is the sphere of radius η > 0. A function p : Rd → R is L-Lipschitz if
|p(x1)− p(x2)| ≤ L∥x1 − x2∥ for x1, x2 in the domain of p. A function q : Rd → R is ℓ-smooth
if it is differentiable and ∥∇q(x1) − ∇q(x2)∥ ≤ ℓ∥x1 − x2∥. The trace of a square matrix J is
denoted by Tr(J). We say a symmetric real matrix M ⪰ 0 if it is positive semi-definite, and
M ⪯ 0 if −M is positive semi-definite. We say two symmetric real matrices satisfy that M1 ⪰M2

if M1 − M2 ⪰ 0, and M1 ⪯ M2 if M1 − M2 ⪯ 0. The clipping operation is defined to be
clipC(x) = x min{1, C/∥x∥} given C > 0. The notation Õ(·) hides additional logarithmic terms.

2.1 Differential Privacy

Definition 1 (Differential Privacy [24, 25]). For two datasets S = {ξi}ni=1 and S′ = {ξ′i}ni=1, we say
the pair (S, S′) is neighboring if max{|S \ S′|, |S′ \ S|} = 1 and we denote neighboring datasets
with S ∼ S′. For an algorithm A and some privacy parameters ε > 0 and δ ∈ (0, 1), we say A
satisfies (ε, δ)-differential privacy (DP) if P(A(S) ∈ B) ≤ eεP(A(S′) ∈ B) + δ for all S ∼ S′ and
all measurable set B in the range of A.
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The design and analysis of DP algorithms typically rely on a thorough understanding of sensitivity
and the composition of DP mechanisms.
Lemma 2.1. (Advanced Composition [48, Theorem 4.3]) Let A be some randomized algorithm oper-
ating on S and outputting a vector in Rd. IfA has sensitivity ∆ := supS∼S′∥A(S)−A(S′)∥ > 0, the
mechanism that adds Gaussian noise N (0, σ2Id) with variance σ2 = (2∆

√
2T log(e+ (ε/δ))/ε)2

satisfies (ε, δ)-DP under T -fold adaptive composition for any ε > 0 and δ ∈ (0, 1).

The original advanced composition theorem in Kairouz et al. [48] is stated for the case where the
output of A is a scalar. Given the spherical symmetry properties of Gaussian noise, the results can be
readily extended to multiple dimensions, as outlined in Lemma 1 of Kenthapadi et al. [51] where the
basis can be selected in a way such that A(S) and A(S′) differ in exactly one dimension.

2.2 Zeroth-Order Optimization

For the optimization problem in Eq. (1) where access to gradients is costly, we consider zeroth-order
methods that solely require the evaluation of function values or directional derivatives which are
cheaper to compute. Given a zeroth-order oracle that yields function evaluations at each querying
point, we define the following two-point estimator [74, 23, 83] of the gradient for each sample ξi in
the dataset S:

gλ(x; ξi) :=
f(x+ λu; ξi)− f(x− λu; ξi)

2λ
u ,

where the random vector u is sampled uniformly from the Euclidean sphere
√
dSd−1 and λ > 0 is

the smoothing parameter [74, 106, 22]. A common approach [72, 71] to generate u uniformly from√
dSd−1 is to set u =

√
d z/∥z∥, with z sampled from the standard multivariate Gaussian N (0, Id).

We refer to gλ(x; ξ) as the zeroth-order gradient (estimator) in the sequel. Our approach naturally
extends to other zeroth-order gradient estimators, e.g., any distribution of u satisfying E[uu⊤] = Id
[23], the one-point estimators [30, 74], and the directional derivative in the limit λ→ 0 [74, 10].

3 DP-GD with Zeroth-Order Gradients suffers in High Dimensions

A straightforward application of the Gaussian mechanism to the standard zeroth-order method,
detailed in Algorithm 1, suffers from dimension-dependence, even when the effective rank of the
Hessian is bounded (Theorem 3.4). The standard approach to privately solve the optimization
problem in Eq. (1) is to make each gradient update private and apply the composition theorem
over the entire set of T checkpoints, which is known as DP-(S)GD [88, 1, 99]: xt+1 ← xt −
α((1/n)

∑n
i=1 clipC(∇f(xt; ξi)) + zt). While doing so, each sample gradient is first clipped within

an ℓ2 ball of a certain radius C to ensure finite sensitivity of ∆ = 2C/n required by Lemma 2.1. The
noise zt sampled from N (0, (2∆

√
2T log(e+ (ε/δ))/ε)2Id) ensures end-to-end privacy as per the

lemma. This suggests a straightforward zeroth-order method that applies the same technique to the
gradient estimators gλ(xt; ξi), as outlined in Algorithm 1.
Assumption 3.1. The function f(x; ξ) is L-Lipschitz for every ξ. The average function FS(x) is
ℓ-smooth for every given dataset S, and its minimum F ∗

S := minx∈Rd FS(x) is finite.

We analyze Algorithm 1 under Assumption 3.1, which is common in the nonconvex DP optimization
literature [99, 100, 112, 95, 3]. The privacy guarantee follows from standard DP-(S)GD analysis,
and the utility guarantee on the squared gradient norm is derived from classical techniques [74] for
analyzing zeroth-order methods. We provide a proof in Appendix B.
Theorem 3.2. For any ε > 0 and δ ∈ (0, 1), Algorithm 1 is (ε, δ)-DP. Under Assumption 3.1, the
output xτ satisfies that

E[∥∇FS(xτ )∥2] ≤ 16
(
(FS(x0)− F ∗

S) ℓ+ 2L2
)d√d log(e+ (ε/δ))

nε
, (2)

with the choice of parameters

α =
1

4ℓd
, T =

nε√
d log(e+ (ε/δ))

, λ ≤ 4L

ℓd

(√
d log(e+ (ε/δ))

nε

)1/2

, C = Ld.
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Algorithm 1 DP-GD with Zeroth-Order Gradients
Input: Dataset S = {ξ1, · · · , ξn}, initialization x0 ∈ Rd, number of iterations T , stepsize α > 0,

smoothing parameter λ > 0, clipping threshold C > 0, privacy parameters ε > 0, δ ∈ (0, 1).
1: for t = 0, 1, · · · , T − 1 do
2: Sample ut uniformly at random from the Euclidean sphere

√
dSd−1.

3: for i = 1, · · · , n do
4: Compute the zeroth-order gradient estimator

gλ(xt; ξi) ←
f(xt + λut; ξi)− f(xt − λut; ξi)

2λ
ut.

5: Sample zt ∈ Rd randomly from the multivariate Gaussian distribution N (0, σ2Id) with
variance σ = 4C

√
2T log(e+ (ε/δ))/(nε) and update the parameter

xt+1 ← xt − α

(
1

n

n∑
i=1

clipC(gλ(xt; ξi)) + zt

)
.

Output: xτ for τ sampled uniformly at random from {0, 1, · · · , T − 1}.

The total number of zeroth-order gradient computations is nT = n2ε/
√
d log(e+ (ε/δ)), which is

of the order of O(n2/
√
d).

Remark 1. There are three sources of the dependence in d: the norm of the zeroth-order gradient
estimator E[∥(1/n)

∑n
i=1 gλ(x, ξi)∥2] = O(d ∥∇FS(x)∥2), the clipping threshold C = O(d), and

the norm of the privacy noise E[∥zt∥2] = O(dC2) = O(d3). Following the standard analysis of a
one-step update in Eq. (11) gives

E[FS(xt+1)] ≤ E[FS(xt)]−
α

2

(
1− 2d ℓα

)
E[∥∇FS(xt)∥2] + c α2 d3, (3)

where we set λ = 0 to simplify the RHS and c is a constant that depends on problem parameters other
than α and d. A small enough step size, α < 1/(2ℓd), is required to make the second term negative,
where the dependence in d comes from E[∥(1/n)

∑n
i=1 gλ(x, ξi)∥2]. The dependence in d3 in the

last term comes from E[∥zt∥2], which, after balancing error terms, gives the O(d3/2) dependence in
Eq. (2). Remark 4 shows how these terms change under a low-rank structure, enabling Algorithm 1
to attain a reduced error.
Remark 2. The choice of the clipping threshold C = Ld ensures that clipping does not happen
with probability one, which is a common choice in the theoretical analysis of private optimization
algorithms [7, 99, 8]. This follows from the fact that, for L-Lipschitz f(x; ξ), the zeroth-order
gradient is upper bounded by ∥gλ(x; ξ)∥ ≤ Ld almost surely. One of the main contributions of
DPZERO is to provide a tighter analysis that allows a smaller choice by a factor of d1/2, thus reducing
the achievable error (Section 4). The topic on how to select clipping threshold without knowledge of
the Lipschitz constant L still remains an important open question [18, 105, 27, 52].
Remark 3. In non-DP optimization, e.g., [74, 34], zeroth-order methods suffer from an O(d) factor
larger error measured in squared gradient norm, compared with first-order methods. Analogously,
Algorithm 1 achieves anO(d) factor larger error compared with the first-order gradient-based method,
DP-GD [99], that achieves E[∥∇FS(xτ )∥2] = O(

√
d log(1/δ)/(nε)) with stepsize O(1/ℓ). This

O(d) gap can be closed by a judicious choice of the clipping threshold and improved noise adding
mechanism, as we show in the next section.

3.1 Improved Bounds under Low Effective Rank Structures

We are interested in the scenario of fine-tuning pretrained large language models on private data.
It has been demonstrated that certain “low-rank” structure exists in popular fine-tuning scenarios
as discussed in Section 1. Ideally, we hope that Algorithm 1 achieves an error independent of the
dimension, d, when applied to an objective with a low effective rank structure below.
Assumption 3.3. The function f(x; ξ) is L-Lipschitz and ℓ-smooth for every ξ. The average
function FS(x) is twice differentiable with ∇2FS(x) ⪯ H for any x ∈ Rd, and its minimum
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F ∗
S := minx∈Rd FS(x) is finite. Here, the real-valued d× d matrix H ⪰ 0 satisfies that ∥H∥2 ≤ ℓ

and Tr(H) ≤ r∥H∥2. We refer to r as the effective rank or the intrinsic dimension of the problem.

We can slightly relax the smoothness condition to require that only the average loss FS(x) is ℓ-smooth
and the same result in Theorem 3.4 holds. Assumption 3.3 is stated for a more strict condition that
every instance of f(x; ξ) is ℓ-smooth in order to be consistent with what we need for Theorem 4.1.
Setting r = d, this recovers Assumption 3.1 as a special case, since −H ′ ⪯ ∇2FS(x) ⪯ H ′,∀x ∈
Rd, where H ′ = ℓ Id implies that ∥H ′∥2 ≤ ℓ and Tr(H ′) ≤ d∥H ′∥2. With r < d, this assumption
restricts the Hessian upper bound to have additional structures. Note that our assumption on the
Hessian is less restrictive than a strict low-rank assumption even if r ≪ d. For example, the
assumption is satisfied with r = O(log d) ≪ d in the case of a full-rank matrix H , with its i-th
largest eigenvalue being ℓ/i for 1 ≤ i ≤ d.

Similar assumptions have been employed to successfully relax the dimension-dependence in zeroth-
order optimization in the limit λ→ 0 [70] and also for DP first-order optimization when the objective
is smooth and convex [69]. A basic understanding of why the assumption works can be found in (iii)
and (iv) of Lemma A.1 in the appendix: the d-dependence in both the squared norm of zeroth-order
gradient, E[∥(1/n)

∑n
i=1 gλ(xt; ξi)∥2], and the DP noise, E[∥zt∥2], can be refined to a dependence

on Tr(H). However, even equipped with Assumption 3.3, the DP-GD with zeroth-order gradients
(Algorithm 1) still suffers from a dependence in the dimension d, as presented in the theorem below,
with a proof shown in Appendix B. This recovers Theorem 3.2 in the worst-case when r = d, and
with smaller effective rank, r, achieves an improved error on the squared gradient norm.
Theorem 3.4. For any ε > 0 and δ ∈ (0, 1), Algorithm 1 is (ε, δ)-DP. Under Assumption 3.3, the
output xτ satisfies that

E[∥∇FS(xτ )∥2] ≤ 16
(
(FS(x0)− F ∗

S) ℓ+ 2L2
)d√r log(e+ (ε/δ))

nε
, (4)

with the choice of parameters

α =
1

4ℓ(r + 2)
, T =

n(r + 2)ε

d
√
r log(e+ (ε/δ))

, λ ≤ 4L

ℓd

(√
r log(e+ (ε/δ))

nε

)1/2

, C = Ld.

The total number of zeroth-order gradient computations is nT = n2(r + 2)ε/(d
√

r log(e+ (ε/δ))),
which is of the order of O(n2

√
r/d).

Remark 4. Under the low effective rank scenario, Eq. (3) becomes

E[FS(xt+1)] ≤ E[FS(xt)]−
α

2

(
1− 2(r + 2)ℓα

)
E[∥∇FS(xt)∥2] + c α2 r d2, (5)

where the smaller 2(r + 2)ℓα factor comes from a fine-grained analysis (Eq. (14) in appendix)
which reveals a dependence on E[∥(1/n)

∑n
i=1 gλ(x, ξi)∥2H ] = O(r/d)E[(1/n)

∑n
i=1 ∥gλ(x, ξi)∥2]

(recall ∥v∥2H := v⊤Hv), thus replacing the O(d) term in Eq. (3) with the O(r) term above. Similar
fine-grained analysis for the third term reveals a dependence on E[∥zt∥2H ] = O(r/d)E[∥zt∥2], which
replaces an O(d) factor in Eq. (3) with an O(r) factor above. However, the third term still has O(d2)
dependence due to the clipping threshold, C = O(d). Consequently, even when the effective rank, r,
is bounded, the error in Eq. (4) still grows linearly in d.

4 Nearly Dimension-Independent DP Zeroth-Order Optimization

Algorithm 1 suffers from dependence in the dimension d. In this section, we introduce a novel
approach, DPZERO, as detailed in Algorithm 2, and prove that it is nearly dimension-independent
when the effective rank is small. This improved rate is rooted in two key insights: scalar privacy
noise and a tighter clipping threshold.

First, since the direction of the update, ut, is a public knowledge, we only need to make the
“magnitude” of our update private. This can be achieved by clipping the finite-difference, (f(xt +
λut; ξi)− f(xt − λut; ξi))/(2λ), and adding a scalar noise zt as shown in Algorithm 2. The privacy
noise is only added in one direction, dramatically improving upon the guarantees of Algorithm 1 in
Eq. (4) by a factor of d1/2.
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Next, another factor of d1/2 improvement can be achieved by tightening the clipping threshold.
In the worst-case, the finite-difference can be as large as Ld1/2 (which corresponds to the worst-
case clipping threshold of Ld for ∥gλ(xt, ξi)∥ in Algorithm 1). However, this happens with an
exponentially small probability over the randomness of ut. As proved in Eq. (15) in Appendix C, the
typical size of the finite-difference is

|f(xt + λut; ξi)− f(xt − λut; ξi)|
2λ

≤ |u⊤
t ∇f(xt; ξi)|+

ℓ

2
λd,

where we use the assumption that each f(x; ξ) is ℓ-smooth. Note that such individual smoothness
assumption is common in the analysis of zeroth-order methods [74, 34]. When ut is sampled from
the sphere

√
dSd−1, a standard tail bound (part (ii) of Lemma A.1 in the appendix) implies that

P
(∣∣u⊤

t ∇f(xt; ξi)
∣∣ ≥ C

)
≤ 2
√
2π exp

(
− C2

8L2

)
.

By selecting the smoothing parameter λ to be sufficiently small, a careful choice of C = Õ(L), nearly
independent of d, can ensure a high probability that clipping does not occur. This is significantly
smaller than the worst-case clipping threshold of Ld1/2. The main technical challenge is that we need
to analyze the algorithm given the event that clipping does not happen. The choice of drawing ut

from the uniform distribution over the sphere, together with corresponding tail bounds in Appendix A,
allows us to prove the following nearly dimension-independent bound under the low effective rank
structure in Assumption 3.3. A proof is provided in Appendix C.

Algorithm 2 DPZERO

Input: Dataset S = {ξ1, · · · , ξn}, initialization x0 ∈ Rd, number of iterations T , stepsize α > 0,
smoothing parameter λ > 0, clipping threshold C > 0, privacy parameters ε > 0, δ ∈ (0, 1).

1: for t = 0, 1, · · · , T − 1 do
2: Sample ut uniformly at random from the Euclidean sphere

√
dSd−1.

3: for i = 1, · · · , n do
4: Compute the finite difference f(xt + λut; ξi)− f(xt − λut; ξi).
5: Sample zt ∈ R randomly from the univariate Gaussian distribution N (0, σ2) with variance

σ = 4C
√
2T log(e+ (ε/δ))/(nε) and update the parameter

xt+1 ← xt − α

(
1

n

n∑
i=1

clipC

(
f(xt + λut; ξi)− f(xt − λut; ξi)

2λ

)
+ zt

)
ut.

Output: xτ for τ sampled uniformly at random from {0, 1, · · · , T − 1}.

Theorem 4.1. For any ε > 0 and δ ∈ (0, 1), Algorithm 2 is (ε, δ)-DP. Under Assumption 3.3, its
output xτ satisfies that

E[∥∇FS(xτ )∥2] ≤
(
64
(
(FS(x0)− F ∗

S) ℓ+ L̃2
)
+ 2L2

)√
r log(e+ (ε/δ))

nε
, (6)

where we define

L̃2 = L2 log

(
2
√
2π d(r + 2)n3ε2

r log(e+ (ε/δ))

)
,

and choose the parameters to be

α =
1

4ℓ(r + 2)
, T =

n(r + 2)ε

4
√

r log(e+ (ε/δ))
, C = 4L̃,

λ ≤ 1

ℓd
min

4(2−
√
2)L̃,

L√
d

(√
r log(e+ (ε/δ))

nε

)1/2
 .

The total number of zeroth-order gradient computations is nT = n2(r + 2)ε/(4
√
r log(e+ (ε/δ))),

which is of the order of O(n2
√
r).
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Remark 5. Algorithm 2 is nearly dimension-independent, given that its dependence on d in the final
utility guarantee on the squared gradient norm is solely logarithmic. To the best of our knowledge,
this is the first zeroth-order DP method that is nearly dimension-independent, a feature significantly
beneficial for fine-tuning pretrained LLMs where d ≫ r [2, 56]. When r = d, the error rate
Õ(
√
d log(1/δ)/(nε)) in Eq. (6) nearly matches that of the best known achievable bound of the first-

order gradient-based method DP-(S)GD [99] for smooth nonconvex losses. When the effective rank, r,
is smaller, this algorithm achieves Õ(

√
r log(1/δ)/(nε)) squared gradient norm. Similar dimension-

free rate is established for DP-(S)GD on smooth nonconvex unconstrained generalized linear losses
[89], with a dependence on the rank of the feature matrix. For general private nonconvex optimization
without any low-rank assumptions, there exist first-order methods that achieve an improved rate
O((

√
d log(1/δ)/(nε))4/3) leveraging momentum [95] or variance reduction techniques [3]. It

remains an interesting open question to study their zeroth-order extensions and whether these
methods can achieve improved and dimension-independent bounds under Assumption 3.3.

Remark 6. The RHS of Eq. (6) improves upon Eq. (4) of Algorithm 1 by a factor of d. Simplifying
our analysis in Eq. (21), and conditioning on the event that the clipping does not happen, we get a
similar one-step update analysis as Eq. (5) (see Eq. (21) for a precise inequality). However, since we
now have reduced the clipping threshold by a factor of d1/2 and the privacy noise zt is scalar, we
have E[∥ztut∥2H ] = Õ(r) is nearly independent of the dimension d, and thus the final error scales as
Õ(r1/2).

Remark 7. The strategy of appropriately selecting the clipping threshold to ensure that clipping
occurs with low probability is commonly applied in the analysis of private algorithms [27, 85].
Adaptive choices of clipping thresholds can provably improve error rates for certain problems
including PCA [64] and linear regression [65]. One technical challenge in the choice of the clipping
threshold in DPZERO is that we need the expected one-step progress to be sufficient in Eq. (21). This
requires controlling the progress in the low-probability event that finite difference is clipped. The fact
that ∥ut∥ is finite with probability one simplifies the analysis, which is the reason we choose to sample
ut uniformly at random over the sphere. We believe that the analysis extends to the commonly used
spherical Gaussian random vectors with more work, which we leave as a future research direction.

Remark 8. One byproduct of our design is that the clipping is significantly more efficient. For each
sample, we only need to clip the difference of function values, which is scalar. This is aligned with
recent trends in [41, 57] of innovating the clipping operation to make DP-(S)GD efficient, as clipping
is increasingly becoming the major bottleneck.

5 Conclusion

Motivated by the memory restricitons and privacy requirements in fine-tuning LLMs, we design
novel zeroth-order methods with differentially private guarantees. Worst-case analyses of both DP
optimization and zeroth-order optimization are known to suffer from dependence on the dimension,
which is prohibitive for fine-tuning LLMs. However, it has been empirically observed that fine-
tuning LLMs exhibit certain low-rank structures, under which zeroth-order optimization [70] and DP
optimization [56] can be shown to respectively overcome the dependence on the dimension. Inspired
by these advances, we present DPZERO, a differentially private and nearly dimension-independent
zeroth-order algorithm. To the best of our knowledge, this is the first zeroth-order and DP approach
whose error rate depends primarily on the problem’s effective rank.

DPZERO uses the full batch gradient every iteration, and the anlaysis guarantees an upper bound
on the the empirical average gradient assuming smooth nonconvex objectives. We defer extensions
to the stochastic mini-batch setting, guarantees on the population loss leveraging the stability of
zeroth-order methods [75], and considerations of other assumptions on the objective functions like
convexity, PŁ inequality [50], and nonsmoothness to future research. We believe this work also opens
up a plethora of other prospective directions in DP zeroth-order optimization. This includes, but is not
limited to, understanding the advantages of the intrinsic noise in zeroth-order gradient estimators for
DP optimization, discovering other structural assumptions like the restricted Lipschitz condition [56]
for dimension-independent rates, and utilizing momentum [95] or variance reduction [3] techniques
for an improved rate and computational complexity.
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A Technical Lemmas

Lemma A.1. Let u be uniformly sampled from the Euclidean sphere
√
d · Sd−1, a ∈ Rd be some

fixed vector independent of u, and H ∈ Rd×d be some fixed matrix independent of u. We have that

(i) E[u] = 0 and E[uu⊤] = Id.

(ii) Eu[u
⊤a] = 0, Eu[(u

⊤a)2] = ∥a∥2 and ∀C ≥ 0,

P(|u⊤a| ≥ C) ≤ 2
√
2π exp

(
− C2

8∥a∥2

)
.

(iii) Eu[(u
⊤a)u] = a and

Eu[(u
⊤a)2∥u∥2] = d∥a∥2,

Eu[(u
⊤a)2uu⊤] =

d

d+ 2

(
2aa⊤ + ∥a∥2Id

)
.

(iv) Eu[u
⊤Hu] = Tr(H) and

Eu[(u
⊤a)2u⊤Hu] =

d

d+ 2

(
2a⊤Ha+ ∥a∥2 Tr(H)

)
.

Proof. (i) is a standard result, e.g., in Duchi et al. [23], and follows by the symmetry of the sphere.
For any u ∈

√
d ·Sd−1, it must be the case that−u ∈

√
d ·Sd−1 as well, which suggests that E[u] = 0.

Since E[
∑d

i=1 u
2
i ] = E∥u∥2 = d, we immediately have that E[u2

i ] = 1 for every i by symmetry.
Then for the off-diagonal terms, since for any u = (u1, · · · , ui, · · · , uj , · · · , ud) ∈

√
d · Sd−1, it

must be the case that (u1, · · · , ui, · · · ,−uj , · · · , ud) ∈
√
d · Sd−1 as well, which suggests that

E[uiuj ] = 0 when i ̸= j. As a result, we can conclude that the matrix E[uu⊤] = Id.

We then show (ii). Applying (i), we have that Eu[u
⊤a] = 0, and that

Eu[(u
⊤a)2] =

d∑
i=1

a2iE[u2
i ] +

∑
i̸=j

aiajE[uiuj ]

= ∥a∥2.
The tail bound follows from Example 3.12 in Wainwright [98], where they show that for any function
h : Sd−1 → R such that ∀x, y ∈ Sd−1,

|h(x)− h(y)| ≤ arccos(x⊤y),

when x is uniformly sampled from Sd−1, it holds that ∀ γ ≥ 0,

P(|h(x)− E[h(x)]| ≥ γ) ≤ 2
√
2π exp

(
−dγ2

8

)
. (7)

Let h(x) = x⊤a/∥a∥ for x ∈ Sd−1. First, we have that ∀x, y ∈ Sd−1,

|h(x)− h(y)|2 =
|(x− y)⊤a|2

∥a∥2

≤ ∥x− y∥2

= 2(1− x⊤y)

≤ (arccos(x⊤y))2,

where we use the inequality that θ2/2 + cos(θ) − 1 ≥ 0 for θ ∈ [0, π] and let x⊤y = cos(θ) such
that arccos(x⊤y) = θ for some θ ∈ [0, π]. When u is uniformly sampled from

√
d · Sd−1, we know

u/
√
d is uniformly from Sd−1. Applying (7) for h(x) = x⊤a/∥a∥ where x ∈ Sd−1, we obtain that

P
(∣∣∣∣ u⊤a√

d∥a∥
− E[u⊤a]√

d∥a∥

∣∣∣∣ ≥ γ

)
≤ 2
√
2π exp

(
−dγ2

8

)
.
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Setting C = γ
√
d∥a∥, the proof is complete since E[u⊤a] = 0. Similar results also exist in Theorem

5.1.4 of Vershynin [96], with all constants hidden behind some absolute c.

Next, we prove (iii). Applying (i), we have that

Eu[(u
⊤a)ui] = aiE[u2

i ] +
∑
j ̸=i

ajE[uiuj ]

= ai.

This implies that Eu[(u
⊤a)u] = a. Applying (ii), we obtain that

Eu[(u
⊤a)2∥u∥2] = d · Eu[(u

⊤a)2]

= d∥a∥2.
For the expectation of the matrix, we start from the diagonal terms.

Eu[(u
⊤a)2u2

i ] =

d∑
j=1

a2jE[u2
ju

2
i ] +

∑
j ̸=k

ajakE[ujuku
2
i ]

= a2iE[u4
i ] +

∑
j ̸=i

a2jE[u2
ju

2
i ].

(8)

Here, we use the property that E[ujuku
2
i ] = 0 for every i when j ̸= k. This follows from symmetry

of the sphere such that for any u = (u1, · · · , uj , · · · , uk, · · · , ud) ∈
√
d · Sd−1, it must be the case

that (u1, · · · , uj , · · · ,−uk, · · · , ud) ∈
√
d · Sd−1 as well. Again by symmetry, we have that E[u4

i ]
remains the same for every i, and E[u2

iu
2
j ] remains the same for every i ̸= j. Denote w1 = E[u4

i ] and
w2 = E[u2

iu
2
j ]. Since it holds that

d∑
i=1

Eu[(u
⊤a)2u2

i ] = Eu[(u
⊤a)2∥u∥2]

= d∥a∥2,
taking summation over (8), we can have that

d∥a∥2 =

d∑
i=1

a2iE[u4
i ] +

d∑
i=1

d∑
j=1,j ̸=i

a2jE[u2
ju

2
i ]

= w1∥a∥2 + w2

d∑
i=1

(∥a∥2 − a2i )

= w1∥a∥2 + (d− 1)w2∥a∥2.
This holds for arbitrary a ∈ Rd, and thus we obtain that

w1 + (d− 1)w2 = d. (9)
We only compute w1 = E[u4

i ] by showing that u2
i /d actually follows the Beta distribution, and the

value of w2 can be derived from (9). First, z/∥z∥ is uniformly distributed on the unit sphere Sd−1

for z ∈ Rd sampled from the standard multivariate Gaussian N (0, Id) [72, 71]. This means that
z2i is distributed according to the χ2-distribution with 1 degree of freedom, and z̄2i :=

∑
j ̸=i z

2
j is

distributed according to the χ2-distribution with degree (d− 1). Since χ2-distribution is a special
case of the Gamma distribution and z2i , z̄2i are independent, we conclude [19, 39] that z2i /(z

2
i + z̄2i )

has the Beta distribution with parameters 1/2 and (d − 1)/2. Finally, since u/
√
d is uniformly

distributed on Sd−1, by symmetry of the sphere, we know that u2
i /d has the same Beta distribution

as z2i /(z
2
i + z̄2i ). The mean and variance of Beta(1/2, (d− 1)/2) is 1/d and 2(d− 1)/(d2(d+ 2)).

This suggests that E[u2
i ] = 1, as already proved in (i), and that

w1 = E[(u2
i − E[u2

i ])
2] + (E[u2

i ])
2

= d2
(

2(d− 1)

d2(d+ 2)
+

1

d2

)
=

3d

d+ 2
.
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By (9), we know w2 = d/(d+ 2). According to (8), we have that the diagonal terms

Eu[(u
⊤a)2u2

i ] = w1a
2
i + w2(∥a∥2 − a2i )

=
2d

d+ 2
a2i +

d

d+ 2
∥a∥2.

Then we compute the off-diagonal entries for i ̸= j. By the same reasoning as (8), we have that

Eu[(u
⊤a)2uiuj ] =

∑
i ̸=j

aiajE[u2
iu

2
j ]

=
2d

d+ 2
aiaj .

All other terms equal to 0 by symmetry of the sphere. Combining both diagonal and off-diagonal
elements, we have that Eu[(u

⊤a)2uu⊤] = (d/(d + 2))(2aa⊤ + ∥a∥2Id). Similar results are also
shown in Appendix F of Malladi et al. [70].

Finally, we give the proof of (iv). For the first statement, applying (i) in this lemma, we have that

Eu

[
u⊤Hu

]
= E

[
Tr(uu⊤H)

]
= Tr

(
E[uu⊤] ·H

)
= Tr(H).

Similarly for the second statement, we apply (iii) in this lemma and obtain that

Eu

[
(u⊤a)2u⊤Hu

]
= E

[
(u⊤a)2 · Tr(uu⊤H)

]
= E

[
Tr
(
(u⊤a)2uu⊤ ·H

)]
= Tr

(
E
[
(u⊤a)2uu⊤

]
·H
)

=
2d

d+ 2
Tr(aa⊤H) +

d

d+ 2
∥a∥2 Tr(H)

=
2d

d+ 2
a⊤Ha+

d

d+ 2
∥a∥2 Tr(H).

This concludes the proof.

Lemma A.2. Let u be uniformly sampled from the Euclidean sphere
√
dSd−1 and v be uniformly

sampled from the Euclidean ball
√
dBd = {x ∈ Rd | ∥x∥ ≤

√
d}. For any function f(x) : Rd → R

and λ > 0, we define its zeroth-order gradient estimator as gλ(x) = ((f(x+λu)−f(x−λu))/(2λ))u,
and the smoothed function fλ(x) = Ev[f(x+ λv)]. The following properties hold:

(i) fλ(x) is differentiable and Eu[gλ(x)] = ∇fλ(x).

(ii) If f(x) is ℓ-smooth, then we have that

∥∇f(x)−∇fλ(x)∥ ≤
ℓ

2
λd3/2,

Eu[ ∥gλ(x)∥2 ] ≤ 2d · ∥∇f(x)∥2 + ℓ2

2
λ2d3.

The above results are consistent with (iii) in Lemma A.1 when λ→ 0 and f(x) is differentiable such
that g0(x) = u⊤∇f(x)u.

Proof. We first show (i). Similarly to Lemma 10 in Shamir [83], we have that

Eu∈
√
d·Sd−1 [gλ(x)] = Eu∈

√
d·Sd−1

[
f(x+ λu)u

λ

]
.

19



Applying Lemma 2.1 in Flaxman et al. [30], we know

Eu′∈Sd−1 [f(x+ λ′u′)u′] =
λ′

d
∇Ev′∈Bd [f(x+ λ′v′)].

Introducing u =
√
du′, v =

√
dv′ and λ = λ′/

√
d, we thus obtain

Eu∈
√
d·Sd−1

[
f(x+ λu)u

λ

]
= Eu′∈Sd−1

[
f(x+ λ′u′)u′d

λ′

]
= ∇Ev′∈Bd [f(x+ λ′v′)]

= ∇Ev∈
√
d·Bd [f(x+ λv)].

This suggests that fλ(x) is differentiable and Eu[gλ(x)] = ∇fλ(x).
The proof of (ii) mostly follows from Nesterov and Spokoiny [74], where the results are originally
obtained for the case that u is sampled from the standard multivariate Gaussian distribution. By (iii)

in Lemma A.1 and (i) here, we have that for u uniformly sampled from
√
d · Sd−1,

∥∇f(x)−∇fλ(x)∥ =
∥∥∥∥Eu[(u

⊤∇f(x))u]− Eu

[
f(x+ λu)− f(x− λu)

2λ
u

]∥∥∥∥
≤ Eu

∥∥∥∥(f(x+ λu)− f(x− λu)

2λ
− u⊤∇f(x)

)
u

∥∥∥∥
≤
√
d

2λ
Eu|f(x+ λu)− f(x)− λu⊤∇f(x)|

+

√
d

2λ
Eu|f(x)− f(x− λu)− λu⊤∇f(x)|

≤ ℓ

2
λd3/2,

where in the last step we use smoothness of f(x) such that |f(x+λu)−f(x)−λu⊤∇f(x)| ≤ ℓλ2d/2
and the same holds for |f(x)− f(x− λu)− λu⊤∇f(x)| = |f(x− λu)− f(x) + λu⊤∇f(x)|. To
show the last statement, similarly we have that

Eu[∥gλ(x)∥2] =
d

4λ2
Eu[(f(x+ λu)− f(x− λu))2]

≤ 2d · Eu[(u
⊤∇f(x))2] + d

2λ2
Eu[(f(x+ λu)− f(x− λu)− 2λu⊤∇f(x))2]

≤ 2d · Eu[(u
⊤∇f(x))2] + d

λ2
Eu[(f(x+ λu)− f(x)− λu⊤∇f(x))2]

+
d

λ2
Eu[(f(x)− f(x− λu)− λu⊤∇f(x))2]

≤ 2d · ∥∇f(x)∥2 + ℓ2

2
λ2d3, (10)

where in the last step we use Lemma A.1 and smoothness of f(x).

B Proof of Theorem 3.2 and 3.4

Proof of Theorem 3.2. The privacy guarantees directly follow from Lemma 2.1 noticing that the
sensitivity is 2C/n. We then focus on the utility guarantee on E[∥∇FS(xτ )∥2]. Since f(x; ξ) is
L-Lipschitz for every ξ and ∥ut∥ =

√
d, we have that

∥gλ(xt; ξi)∥ =
|f(xt + λut; ξi)− f(xt − λut; ξi)|

2λ
∥ut∥

≤ L∥ut∥2

= Ld.
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This means clipC(gλ(xt; ξi)) = gλ(xt; ξi) when setting C = Ld. For notation simplicity, we let

Gλ(xt) :=
1

n

n∑
i=1

gλ(xt; ξi)

=
1

n

n∑
i=1

f(xt + λut; ξi)− f(xt − λut; ξi)

2λ
ut

=
FS(xt + λut)− FS(xt − λut)

2λ
ut.

Algorithm 1 reduces to xt+1 = xt − α(Gλ(xt) + zt). By smoothness of FS(x), we have that

FS(xt+1) ≤ FS(xt) +∇FS(xt)
⊤(xt+1 − xt) +

ℓ

2
∥xt+1 − xt∥2

= FS(xt)− α∇FS(xt)
⊤(Gλ(xt) + zt) +

ℓ

2
α2∥Gλ(xt)∥2 +

ℓ

2
α2∥zt∥2 + ℓα2z⊤t Gλ(xt).

Since zt is sampled from N (0, σ2Id) and is independent of xt, ut and S, we have that

Ezt [FS(xt+1)] ≤ FS(xt)− α∇FS(xt)
⊤Gλ(xt) +

ℓ

2
α2∥Gλ(xt)∥2 +

ℓ

2
α2 d σ2.

Define Fλ(x) := Ev[FS(x + λv)] for v sampled uniformly from the Euclidean ball
√
d · Bd. By

Lemma A.2, we know Eut
[Gλ(xt)] = ∇Fλ(xt). Since ut is independent of xt and S, taking

expectation with respect to ut and applying (ii) in Lemma A.2, we obtain that

Ezt,ut
[FS(xt+1)] ≤ FS(xt)− α∇FS(xt)

⊤∇Fλ(xt) +
ℓ

2
α2Eut

[∥Gλ(xt)∥2] +
ℓ

2
α2 d σ2

= FS(xt)−
α

2
∥∇FS(xt)∥2 −

α

2
∥∇Fλ(xt)∥2 +

α

2
∥∇Fλ(xt)−∇FS(xt)∥2

+
ℓ

2
α2 Eut [∥Gλ(xt)∥2] +

ℓ

2
α2 d σ2

≤ FS(xt)−
α

2
(1− 2dℓα)∥∇FS(xt)∥2 +

ℓ2

8
α(1 + 2ℓα)λ2d3 +

ℓ

2
α2 d σ2.

(11)

Choosing α = 1/(4ℓd) such that 1− 2dℓα = 1/2 and 2ℓα < 1, we obtain that

E[∥∇FS(xt)∥2] <
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 + 2ℓα dσ2

=
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 +

64ℓC2 αT d log(e+ (ε/δ))

n2ε2

=
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 +

64ℓL2 αT d3 log(e+ (ε/δ))

n2ε2
.

As a result, taking summation from t = 0 to T − 1 and dividing both sides by T , we have that

E[∥∇FS(xτ )∥2] =
1

T

T−1∑
t=0

E[∥∇FS(xt)∥2]

≤ 4(FS(x0)− F ∗
S)

αT
+ ℓ2λ2d3 +

64ℓL2 αT d3 log(e+ (ε/δ))

n2ε2

≤
16(ℓ(FS(x0)− F ∗

S) + 2L2)d
√
d log(e+ (ε/δ))

nε
,

with the choice of parameters

αT =
nε

4ℓd
√
d log(e+ (ε/δ))

, λ ≤ 4L

ℓd

(√
d log(e+ (ε/δ))

nε

)1/2

.

This suggests that the total number of iteration is T = nε/
√

d log(e+ (ε/δ)) and the total number of
zeroth-order gradient computations is nT = n2ε/

√
d log(e+ (ε/δ)). Note that the above selection

of parameters ensures scale invariance.
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Proof of Theorem 3.4. The privacy analysis remains the same as before, and we focus on the utility
analysis on E∥∇FS(xτ )∥2. By the same reasoning, when setting C = Ld, Algorithm 1 reduces
to xt+1 = xt − α(Gλ(xt) + zt) where Gλ(xt) = (FS(xt + λut) − FS(xt − λut))ut/(2λ). By
Taylor’s theorem with remainder, for some θ ∈ (0, 1), we have that

FS(xt+1) = FS(xt) +∇FS(xt)
⊤(xt+1 − xt) +

1

2
(xt+1 − xt)

⊤∇2FS(xt + θ(xt+1 − xt))(xt+1 − xt)

≤ FS(xt)− α∇FS(xt)
⊤ (Gλ(xt) + zt) +

α2

2
Gλ(xt)

⊤HGλ(xt) +
α2

2
z⊤t Hzt

+
α2

2

(
Gλ(xt)

⊤Hzt + z⊤t HGλ(xt)
)
.

Here in the inequality, we use Assumption 3.3 such that∇2FS(x) ⪯ H for any x ∈ Rd. Similarly
to (iv) in Lemma A.1, we have that E[z⊤t Hzt] = Tr(E[ztz⊤t ]H) = σ2 Tr(H). Since zt is sampled
fromN (0, σ2Id) and is independent of ut, xt and the dataset S, taking expectation with respect to zt,
we can then obtain that

Ezt [FS(xt+1)] ≤ FS(xt)− α∇FS(xt)
⊤Gλ(xt) +

α2

2
Gλ(xt)

⊤HGλ(xt) +
α2

2
Ezt [z

⊤
t Hzt]

= FS(xt)− α∇FS(xt)
⊤Gλ(xt) +

α2

2
Gλ(xt)

⊤HGλ(xt) +
α2σ2

2
Tr(H).

(12)

Assumption 3.3 implies FS(x) is also ℓ-smooth. By a similar argument as (10) in the proof of (ii) in
Lemma A.2, we have that(

FS(xt + λut)− FS(xt − λut)

2λ

)2

≤ 2
(
u⊤
t ∇FS(xt)

)2
+

ℓ2

2
λ2d2. (13)

As u⊤
t Hut ≥ 0, by (iv) in Lemma A.1 and Assumption 3.3, we have that

E
[
Gλ(xt)

⊤HGλ(xt)
]
= E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

]

≤ 2E
[(
u⊤
t ∇FS(xt)

)2
u⊤
t Hut

]
+

ℓ2

2
λ2d2 E

[
u⊤
t Hut

]
=

2d

d+ 2

(
2∇FS(xt)

⊤H∇FS(xt) + ∥∇FS(xt)∥2 Tr(H)
)
+

ℓ2

2
λ2d2 Tr(H)

≤ 2ℓ(r + 2)∥∇FS(xt)∥2 +
ℓ3

2
λ2d2r.

Taking expectation of (12) with respect to ut, by Lemma A.2 for Fλ(x) = Ev[FS(x+ λv)] with v

uniformly sampled from
√
d · Bd, we have that

E[FS(xt+1)] ≤ FS(xt)− α∇FS(xt)
⊤∇Fλ(xt) + ℓα2(r + 2)∥∇FS(xt)∥2 +

ℓ3α2λ2d2r

4
+

ℓα2 rσ2

2

≤ FS(xt)−
α

2
(1− 2(r + 2)ℓα)∥∇FS(xt)∥2 +

α

2
∥∇FS(xt)−∇Fλ(xt)∥2 +

ℓ3α2λ2d2r

4
+

ℓα2 rσ2

2

≤ FS(xt)−
α

2
(1− 2(r + 2)ℓα)∥∇FS(xt)∥2 +

ℓ2αλ2d2(d+ 2rℓα)

8
+

ℓα2 rσ2

2
.

(14)

Choosing α = 1/(4ℓ(r + 2)) such that 1− 2(r + 2)ℓα = 1/2 and 2ℓαr < 1 ≤ d, we have that

E[∥∇FS(xt)∥2] <
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 + 2ℓα rσ2

=
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 +

64ℓC2 αT r log(e+ (ε/δ))

n2ε2

=
4E[FS(xt)− FS(xt+1)]

α
+ ℓ2λ2d3 +

64ℓL2 αT d2r log(e+ (ε/δ))

n2ε2
.
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As a result, taking summation from t = 0 to T − 1 and dividing both sides by T , we have that

E[∥∇FS(xτ )∥2] =
1

T

T−1∑
t=0

E[∥∇FS(xt)∥2]

≤ 4(FS(x0)− F ∗
S)

αT
+ ℓ2λ2d3 +

64ℓL2 αT d2r log(e+ (ε/δ))

n2ε2

≤
16(ℓ(FS(x0)− F ∗

S) + 2L2)d
√

r log(e+ (ε/δ))

nε
,

with the choice of parameters

αT =
nε

4ℓd
√
r log(e+ (ε/δ))

, λ ≤ 4L

ℓd

(√
r log(e+ (ε/δ))

nε

)1/2

.

This suggests that the total number of iteration is T = n(r+2)ε/(d
√
r log(e+ (ε/δ))) and the total

number of zeroth-order gradient computations is nT = n2(r + 2)ε/(d
√
r log(e+ (ε/δ))). Note

that the above selection of parameters ensures scale invariance.

C Proof of Theorem 4.1

Since ut is independent of the dataset S, the privacy guarantees directly follow from Lemma 2.1 and
post-processing [25] noticing that the sensitivity is 2C/n. We then focus on the utility guarantee on
E∥∇FS(xτ )∥2. Since f(x; ξ) is ℓ-smooth for every ξ, we have that

|f(xt + λut; ξi)− f(xt − λut; ξi)|
2λ

≤ |u⊤
t ∇f(xt; ξi)|+

|f(xt + λut; ξi)− f(xt; ξi)− λu⊤
t ∇f(xt; ξi)|

2λ

+
|f(xt − λut; ξi)− f(xt; ξi) + λu⊤

t ∇f(xt; ξi)|
2λ

≤ |u⊤
t ∇f(xt; ξi)|+

ℓ

2
λd.

(15)

Therefore, by (ii) in Lemma A.1 and Lipschitzness of f(x; ξ), we have that

P
(
|f(xt + λut; ξi)− f(xt − λut; ξi)|

2λ
≥ C0 +

ℓ

2
λd

)
≤ P(|u⊤

t ∇f(xt; ξi)| ≥ C0)

≤ 2
√
2π exp

(
− C2

0

8∥∇f(xt; ξi)∥2

)
≤ 2
√
2π exp

(
− C2

0

8L2

)
.

We define Qt,i to be the event that the clipping does not happen at iteration t for sample ξi, and
Q̄t,i to be the event that the clipping does happen. The above equation implies that if the clipping
threshold is chosen to be C ≥ C0 + ℓλd/2, then we have that P(Qt,i) = 1 − P(Q̄t,i) ≥ 1 −
2
√
2π exp(−C2

0/(8L
2)). Let Q denote the event that the clipping does not happen for every iteration

t = 0, 1, · · · , T − 1 and every sample 1 ≤ i ≤ n, and Q̄ be the event that there exist some t and i
such that the clipping does happen. By the union bound, we have that

P(Q) = 1− P(Q̄)

= 1− P

(
T−1⋃
t=0

n⋃
i=1

Q̄t,i

)

≥ 1− 2
√
2π · nT exp

(
− C2

0

8L2

)
.
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To simplify the notation, we let

Gλ(xt) =
1

n

n∑
i=1

f(xt + λut; ξi)− f(xt − λut; ξi)

2λ
ut

=
FS(xt + λut)− FS(xt − λut)

2λ
ut,

and its per-sample clipped version as

Ĝλ(xt) =
1

n

n∑
i=1

clipC

(
f(xt + λut; ξi)− f(xt − λut; ξi)

2λ

)
ut.

Algorithm 2 becomes xt+1 = xt−α(Ĝλ(xt)+ ztut) under the above notation. By Taylor’s theorem
with remainder, for some θ ∈ (0, 1), we have that

FS(xt+1) = FS(xt) +∇FS(xt)
⊤(xt+1 − xt) +

1

2
(xt+1 − xt)

⊤∇2FS(xt + θ(xt+1 − xt))(xt+1 − xt)

≤ FS(xt)− α∇FS(xt)
⊤
(
Ĝλ(xt) + ztut

)
+

α2

2
Ĝλ(xt)

⊤HĜλ(xt) +
α2

2
z2t u

⊤
t Hut

+
α2

2
zt

(
Ĝλ(xt)

⊤Hut + u⊤
t HĜλ(xt)

)
.

Here in the inequality, we use Assumption 3.3 such that ∇2FS(x) ⪯ H for any x ∈ Rd. Note that in
Algorithm 2, zt ∈ R is a scalar. Since zt is sampled from N (0, σ2) and is independent of ut, xt and
the dataset S, taking expectation with respect to zt, we have that

Ezt [FS(xt+1)] ≤ FS(xt)− α∇FS(xt)
⊤Ĝλ(xt) +

α2

2
Ĝλ(xt)

⊤HĜλ(xt) +
α2σ2

2
u⊤
t Hut. (16)

We then compute the expectation of each term conditioned on the event Q. When Q happens, we
know that Ĝλ(xt) = Gλ(xt) for every t and thus

E
[
Ĝλ(xt)

⊤HĜλ(xt)
∣∣∣Q] = E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

∣∣∣∣∣Q
]
.

Since H ⪰ 0, we have that u⊤
t Hut ≥ 0. By law of total probability, we obtain

E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

]

= E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

∣∣∣∣∣Q
]
P(Q)

+ E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

∣∣∣∣∣ Q̄
]
P(Q̄)

≥ E

[(
FS(xt + λut)− FS(xt − λut)

2λ

)2

u⊤
t Hut

∣∣∣∣∣Q
]
P(Q).

(17)

Assumption 3.3 implies FS(x) is also ℓ-smooth. Similarly to the proof of Theorem 3.4, by (13) and
the fact that u⊤

t Hut ≥ 0, applying (iv) in Lemma A.1 and Assumption 3.3, we can then obtain that

E
[
Ĝλ(xt)

⊤HĜλ(xt)
∣∣∣Q] ≤ E

[
(FS(xt + λut)− FS(xt − λut))

2u⊤
t Hut

]
4λ2 · P(Q)

≤
E
[
2
(
u⊤
t ∇FS(xt)

)2
u⊤
t Hut

]
P(Q)

+
ℓ2λ2d2

2P(Q)
E
[
u⊤
t Hut

]
=

2d
(
2∇FS(xt)

⊤H∇FS(xt) + ∥∇FS(xt)∥2 Tr(H)
)

(d+ 2)P(Q)
+

ℓ2λ2d2 Tr(H)

2P(Q)

≤ 2ℓ(r + 2)

P(Q)
∥∇FS(xt)∥2 +

ℓ3λ2d2r

2P(Q)
. (18)
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The same as (17), we can also get that

E
[
u⊤
t Hut

∣∣Q] ≤ E
[
u⊤
t Hut

]
P(Q)

≤ rℓ

P(Q)
.

(19)

For the inner-product term, we have that

E
[
∇FS(xt)

⊤Ĝλ(xt)
∣∣∣Q] = E

[
∇FS(xt)

⊤Gλ(xt)
∣∣Q]

= E
[
FS(xt + λut)− FS(xt − λut)

2λ
· u⊤

t ∇FS(xt)

∣∣∣∣Q] .
By law of total probability, we know that

E
[
∇FS(xt)

⊤Gλ(xt)
∣∣Q]P(Q) + E

[
∇FS(xt)

⊤Gλ(xt)
∣∣ Q̄]P(Q̄) = E

[
∇FS(xt)

⊤Gλ(xt)
]

= E
[
∇FS(xt)

⊤∇Fλ(xt)
]
,

where we use Lemma A.2 for Fλ(x) = Ev[FS(x + λv)] with v uniformly sampled from
√
d · Bd.

Rearranging terms, we thus obtain that

E
[
∇FS(xt)

⊤Gλ(xt)
∣∣Q] = E

[
∇FS(xt)

⊤∇Fλ(xt)
]

P(Q)
−

E
[
∇FS(xt)

⊤Gλ(xt)
∣∣ Q̄]P(Q̄)

P(Q)

=
E∥∇FS(xt)∥2

2P(Q)
+

E∥∇Fλ(xt)∥2

2P(Q)
− E∥∇FS(xt)−∇Fλ(xt)∥2

2P(Q)

−
E
[
∇FS(xt)

⊤Gλ(xt)
∣∣ Q̄]P(Q̄)

P(Q)

≥ E∥∇FS(xt)∥2

2P(Q)
− ℓ2λ2d3

8P(Q)
−

E
[
∇FS(xt)

⊤Gλ(xt)
∣∣ Q̄]P(Q̄)

P(Q)
,

where we apply (ii) in Lemma A.2. Assumption 3.3 implies that FS(x) is also Lipschitz, and thus

∇FS(xt)
⊤Gλ(xt) ≤ ∥∇FS(xt)∥∥Gλ(xt)∥

≤ L2∥ut∥2

= L2d.

As a result, we obtain that

E
[
∇FS(xt)

⊤Ĝλ(xt)
∣∣∣Q] ≥ E∥∇FS(xt)∥2

2P(Q)
− ℓ2λ2d3

8P(Q)
− L2d P(Q̄)

P(Q)
. (20)

Plugging (20), (18) and (19) back into (16), we obtain that

E[FS(xt+1)|Q] ≤ E[FS(xt)|Q]− α

2
(1− 2(r + 2)ℓα)

E∥∇FS(xt)∥2

P(Q)
+

ℓα2 rσ2

2P(Q)

+
ℓ2α(d+ 2ℓαr)λ2d2

8P(Q)
+

αL2d P(Q̄)

P(Q)
. (21)

Choosing α = 1/(4ℓ(r + 2)) such that 1− 2(r + 2)ℓα = 1/2 and 2ℓαr < 1 ≤ d, we have that

E∥∇FS(xt)∥2 ≤
4E[FS(xt)− FS(xt+1)|Q]P(Q)

α
+ 2ℓα rσ2 + ℓ2d3λ2 + 4L2d P(Q̄)

≤ 4E[FS(xt)− FS(xt+1)|Q]P(Q)

α
+

64ℓC2 αT r log(e+ (ε/δ))

n2ε2

+ ℓ2d3λ2 + 8
√
2πL2 ndT exp

(
− C2

0

8L2

)
.
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Taking summation from t = 0 to T − 1 and dividing both sides by T , we have that

E∥∇FS(xτ )∥2 =
1

T

T−1∑
t=0

E∥∇FS(xt)∥2

≤ 4[FS(x0)− F ∗
S ]

αT
+

64ℓC2 αT r log(e+ (ε/δ))

n2ε2
+ ℓ2d3λ2

+ 8
√
2πL2 ndT exp

(
− C2

0

8L2

)
=
(
64ℓ[FS(x0)− F ∗

S ] + 4C2
)√r log(e+ (ε/δ))

nε
+ ℓ2d3λ2

+
2
√
2πL2 n2d(r + 2)ε√
r log(e+ (ε/δ))

exp

(
− C2

0

8L2

)
,

with the choice of parameters to be

αT =
nε

16ℓ
√
r log(e+ (ε/δ))

, α =
1

4ℓ(r + 2)
, T =

n(r + 2)ε

4
√

r log(e+ (ε/δ))
.

When selecting λ ≤ 2(
√
2 − 1)C0/(ℓd), we can set C =

√
2C0 such that C ≥ C0 + ℓλd/2 is

satisfied. If C0 and λ further satisfy that

C2
0 = 8L2 log

(
2
√
2π d(r + 2)n3ε2

r log(e+ (ε/δ))

)
, λ ≤ L

ℓd3/2

(√
r log(e+ (ε/δ))

nε

)1/2

,

we can then obtain that

E∥∇FS(xτ )∥2 ≤
(
64 ℓ[FS(x0)− F ∗

S ] + 4C2 + 2L2
)√r log(e+ (ε/δ))

nε

=

(
64 ℓ[FS(x0)− F ∗

S ] + 64L2 log

(
2
√
2π d(r + 2)n3ε2

r log(e+ (ε/δ))

)
+ 2L2

) √
r log(e+ (ε/δ))

nε
.

We conclude that the clipping threshold C and smoothing parameter λ should satisfy that

C = 4L

√√√√log

(
2
√
2π d(r + 2)n3ε2

r log(e+ (ε/δ))

)
,

λ ≤ L

ℓd
min

4(2−
√
2)

√√√√log

(
2
√
2π d(r + 2)n3ε2

r log(e+ (ε/δ))

)
,
1√
d

(√
r log(e+ (ε/δ))

nε

)1/2
 .

The total number of zeroth-order gradient computations is nT = n2(r + 2)ε/(4
√
r log(e+ (ε/δ))),

which is in the order of O(n2
√
r).
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