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ABSTRACT

Recent self-rewarding large language models (LLM) have successfully applied
LLM-as-a-Judge to iteratively improve the alignment performance without the
need of human annotations for preference data. These methods commonly utilize
the same LLM to act as both the policy model (which generates responses) and the
reward model (which scores and ranks those responses). The ranked responses are
then used as preference pairs to train the LLM via direct alignment technologies
(e.g. DPO). However, it is noteworthy that throughout this process, there is no
guarantee on the accuracy of the rewarding and ranking, which is critical for en-
suring accurate rewards and high-quality preference data. Empirical results from
relatively small LLMs (e.g., 7B parameters) also indicate that improvements from
self-rewarding may diminish after several iterations in certain situations, which
we hypothesize is due to accumulated bias in the reward system. This bias can
lead to unreliable preference data for training the LLM. To address this issue, we
first formulate and analyze the generalized iterative preference fine-tuning frame-
work for self-rewarding language model. We then introduce the regularization
to this generalized framework to mitigate the overconfident preference labeling
in the self-rewarding process. Based on this theoretical insight, we propose a
Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that lever-
ages the consistency of rewarding across different iterations to regularize the self-
rewarding training, helping the model to learn from more reliable preference data.
With this explicit regularization, our empirical results demonstrate the superiority
of CREAM in improving both reward consistency and alignment performance.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities across various tasks, including
natural language understanding and generation (Radford et al., 2019). At the same time, LLMs also
face alignment challenges such as generating hallucinations and harmful outputs (Ji et al., 2023). To
address these issues, a series of research works have explored preference learning methods such as
Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) and direct align-
ment techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) to align the
LLMs with human values and preferences. These alignment methods often require a large amount
of preference pairs which are indispensable in both RLHF and direct alignment training. However,
collecting human-annotated preference pairs is time-consuming and labor-intensive, which seriously
limits the scalability and efficiency of these alignment methods.

Recent advancements in self-rewarding language models (SRLMs) (Yuan et al., 2024) have gained
increasing attention in the field of LLM alignment, which can efficiently synthesize preference data
for iterative preference training. In this method, the single LLM is required to act as two roles,
the policy model and the reward model. Given unlabeled prompt data, the LLM first acts as the
policy model generating several response candidates. Then, the same LLM acts as the reward model,
scoring and ranking these responses. These ranked responses are used as preference pairs to train the
LLM with DPO, significantly reducing the reliance on human-annotated data. The above steps can
be iteratively repeated to further enhance the performance. However, SRLMs still face challenges
in generating reliable and accurate rewards for annotating the preference pairs, which is critical for
ensuring the quality of preference data and the alignment performance of LLMs.
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To address these challenges, we first formulate a generalized iterative preference fine-tuning frame-
work to analyze the self-rewarding training, where this framework can also be adapted to other
iterative preference tuning methods. Through this theoretical framework, we find that the reward-
ing bias issue in SRLMs comes from the overconfident preference labeling, which enforces the
model to distinguish between responses with similar quality. For example, both two responses in
Figure 1 have high quality judgments from the human. The SRLM enforces the reward model
to make a preference judgment, resulting in noisy and unreliable preference labeling. This can
lead to negative impacts on preference tuning the model. Additionally, the iterative training man-
ner can also accumulate the rewarding bias, further diminishing the benefits of self-improvement.

Q: Can you recommend a fun DIY project that can be accomplished in a weekend?

Here are some fun DIY projects that can be completed in a weekend:
1. Macrame Plant Hanger: Create a bohemian-inspired plant hanger
using macrame cord, wooden dowels, and a few basic knots. You can
customize it with different color…….

I'd be happy to suggest some fun DIY projects that can be completed
over a weekend: 
1. DIY Photo Display: Create a unique photo display using
reclaimed wood, string, and clothespins. This project is perfect for
showcasing your favorite memories.…....

A

B

B
A
B
A
B
A

Rewarding

Human

Figure 1: An example of both two responses are
of high quality, which is hard for human to distin-
guish the preference. While the same model from
different iterations have inconsistent rewarding.

From the insights of theoretical analysis,
we propose Consistency Regularized sElf-
rewarding lAnguage Model (CREAM) to mit-
igate the rewarding bias issue in SRLMs, par-
ticularly for broadly accessible 7B-size LLMs.
The core idea behind CREAM is that we should
not force the model to be overly confident in
distinguishing between responses with similar
quality. But how to tell the preference labeling
is reliable or not? Out of the self-rewarding sce-
nario, we may employ a pool of external reward
models to assist in ranking preferences. When
two responses are of similar quality, these exter-
nal models often produce inconsistent rankings.
This inconsistency serves as a signal to indicate the level of confidence in the preference labeling.
In self-rewarding scenarios, however, integrating such external reward models is not feasible. For-
tunately, due to the iterative nature of self-rewarding training, we can use the reward model from
the previous iteration to rank preferences and then compare these rankings with those produced by
the current model. This comparison provides an estimate of such consistency rate. With this consis-
tency rate, we can regularize the preference training to prevent the model from learning unreliable
preference data, thereby mitigating the rewarding bias issue in SRLMs.

In summary, we first formulate a generalized iterative preference fine-tuning framework to analyze
the rewarding bias issue in SRLMs. From the insights of theoretical analysis, we propose CREAM
as the primary contribution of this paper. CREAM leverages the consistency of rewarding across
different iterations for regularized preference training, which can effectively mitigate the reward-
ing bias issue in SRLMs. Empirical results on a series of natural language benchmarks validate
the effectiveness of CREAM in mitigating the rewarding bias issue and enhancing the alignment
performance of LLMs.

Notations. Vectors are denoted by lowercase boldface letters, such as x, and matrices by uppercase
boldface letters, such as A. For any positive integer k, the set 1, 2, . . . , k is denoted by [k]. Other
general sets are denoted by calligraphic uppercase letters, such as D, with the cardinality of the set
represented as |D|. Without ambiguity, we denote πθ as the language model parameterized by θ, x
as the input prompt, and y as the output response from the language model. All other notations are
defined prior to their first usage. We denote 1[·] as the indicator function.

2 RELATED WORKS

This paper mainly focuses on mitigating the rewarding bias issue in self-rewarding language models
(SRLMs) (Yuan et al., 2024), which is a type of self-improvement method for LLM alignment. In
this section, we introduce the progresses in LLM alignment and discuss the SRLMs in detail.

LLM Alignment. Alignment lies at the core of LLM research and applications, aiming to ensure
that LLMs adhere to human values and preferences. RLHF established the foundational alignment
training paradigm (Leike et al., 2018; Ziegler et al., 2019; Ouyang et al., 2022a), where it lever-
ages human preference feedback to train a reward model, and then use this reward model to guide
the LLM via reinforcement learning algorithms (Schulman et al., 2017). Recent efforts have been
made to develop direct alignment methods (Rafailov et al., 2023; Dong et al., 2023; Azar et al.,
2023; Ethayarajh et al., 2024; Meng et al., 2024; Hong et al., 2024), in order to reduce the costs and
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complexity of RLHF and make it more efficient and accessible. Representatively, DPO (Rafailov
et al., 2023) as a representative direct alignment method, optimizes the LLM with annotated pref-
erence pairs, eliminating the need of training an additional reward model. However, most RLHF
and direct alignment methods heavily rely on human-annotated preference data, where the data col-
lection commonly involves human to distinguish the “good” responses from the “bad” ones, which
is time-consuming and labor-intensive (Ouyang et al., 2022a; Bai et al., 2022). Thus, synthesizing
preference data with minimal human efforts has become a valuable research direction.

Self-Rewarding Language Model. SRLM (Yuan et al., 2024) has emerged as a promising approach
to address the challenge of preference data synthesis in a self-improvement manner. This method
leverages the LLM itself to act as both the policy model and the reward model. The policy model
can generate response candidates for unlabeled prompts, while the reward model uses LLM-as-A-
Judge (Zheng et al., 2023; Bai et al., 2023; Dubois et al., 2024) prompting to reward and rank these
responses based on their quality. The ranked responses are then used as preference pairs to train
the LLM via DPO (Rafailov et al., 2023). And this process can be iteratively repeated to improve
the alignment performance without human intervention. However, having the same LLM serve as
both the policy and reward model, without any regularization, presents challenges in guaranteeing
accurate rewards. This can lead to accumulated bias and noisy preference data, which ultimately
harms the training. Other similar self-improvement methods (Huang et al., 2022; Zelikman et al.,
2022; Chen et al., 2024; Guo et al., 2024b; Zhou et al., 2024) often either use the ground truth
response to avoid annotation bias, or introduce an additional reward model to reduce the noise in
annotations. In contrast, our work neither requires labeled data nor relies on external LLMs. Instead,
we propose to use the consistency of rewarding to mitigate the rewarding bias in SRLMs.

Reward Hacking. In both RLHF and SRLM scenarios, the reward model plays a crucial role in
training the LLMs (Ouyang et al., 2022b; Anwar et al., 2024; Yuan et al., 2024; Fisch et al., 2024).
For RLHF, the reward hacking is a phenomenon where models exploit flaws or biases in reward
models to maximize scores without aligning with the intended goals (Anwar et al., 2024). To mit-
igate such issue, various ensemble rewarding methods (Coste et al., 2023; Eisenstein et al., 2023;
Ramé et al., 2024; Zhang et al., 2024) such as ensemble-based conservative optimization (Coste
et al., 2023) and averaging rewards in the weight space (Ramé et al., 2024) have been proposed
to improve the reliability and robustness. However, these works are mainly focused on estimating
the rewards, while CREAM in the self-rewarding scenario only uses rewards for comparing the re-
sponses to annotate preference data instead of maximizing the estimated rewards. Besides, CREAM
applies regularization instead of conservative value estimation to mitigate the rewarding bias issue.

3 METHODOLOGY

In this section, we first formulate the generalized iterative preference fine-tuning framework for self-
rewarding, RL with AI feedback, and other iterative preference tuning methods. Next, we introduce
the motivation behind the proposed consistency regularized self-rewarding method. Finally, we
present the practical implementation algorithm of CREAM in details.

3.1 GENERALIZED ITERATIVE PREFERENCE FINE-TUNING FRAMEWORK

We assume that we can access to the dataset with response DS and the prompt dataset without
response DU. The objective is to iteratively minimize the following loss with respect to the neural
network parameter θ and a label function z as

L(θ, z) = LSFT(θ;DS) + Ex∼DU;y,y′∼πθt (·|x)[LDPO(θ;y,y
′,x, z)]. (3.1)

where the first term LSFT(θ;DS) aligns the model πθ to the SFT data. We note here that any potential
SFT methods (Ouyang et al., 2022b; Yuan et al., 2023; Dong et al., 2023; Chen et al., 2024), or the
methods without SFT data (LSFT = 0) can be adapted in this framework. The second term E[LDPO]
corresponds to learning from the preference data pair {y,y′} generated by the current model θt.
The labeling function z(y,y′,x) ∈ {0, 1} provides the preference judgment between y and y′ for
the DPO loss, where z(y,y′,x) = 1 means y ≻ y′ and z(y,y′,x) = 0 means y ≺ y′. The DPO
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loss LDPO is defined as follows:

LDPO(θ;y,y
′,x, z) = −z(y,y′,x) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
− (1− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))
, (3.2)

where πref is the reference model for KL divergence regularization, and σ(·) is the sigmoid function.
The proposed loss L(θ, z) in Eq. (3.1) represents all iterative preference fine-tuning algorithms.
For the reinforcement learning (RL) with human feedback (Ouyang et al., 2022b), z is the human
preference comparing y and y′. For the RL with AI feedback, z is the oracle reward model like GPT-
4 (Achiam et al., 2023). For the self-rewarding language model (Chen et al., 2024), z is given by
comparing the reward score generated from the language model itself, often with LLM-as-a-Judge
prompting. However, as aforementioned, we note that such prompt rewarding method may only
be feasible for larger and advanced LLMs such as Llama-70B (Touvron et al., 2023). For smaller
models such as Llama-7B that do not have complex instruction following and reasoning abilities,
we instead propose to leverage the intrinsic reward model (Rafailov et al., 2023)

rθ(x,y) ∝ [log πθ(y|x)− log πref(y|x)]

to reward and rank the responses for annotating preference pairs. Therefore, the choice of preference
labeling function z is closely connected with the language model parameter θ. Then, we introduce
the following two-step optimization algorithm to solve Eq. (3.1).

Step 1. (Preference-labeling step) Keep θ = θt fixed, select function z to minimize LDPO. In
particular, letting θ = θt in Eq. (3.2), solution for z(y,y′,x) = argminz LDPO(θt;y,y

′,x, z) is

zt+1(y,y
′,x) = 1 [log πθt

(y|x)− log πref(y|x) ≥ log πθt
(y′|x)− log πref(y

′|x)] . (3.3)

Step 2. (Learning step) Keep z as of Eq. (3.3), minimize loss function L(θ, zt+1) with respect to θ
and get θt+1 = argminθ L(θ, zt+1).

Different from existing methods, the proposed two-step optimization method directly uses the intrin-
sic reward model to generate the preference data. This approach is particularly feasible for smaller
LLMs, which lack the capacity to effectively use LLM-as-a-Judge prompts (Zheng et al., 2023) for
rewarding and ranking. We note that the proposed two-step method is similar to the Expectation-
Maximization algorithm and self-training paradigm (Zou et al., 2019). This similarity is supported
by the following theorem, which suggests the convergence of the proposed two-step algorithm.
Theorem 3.1. Suppose the optimization θt+1 = argminθ L(θ, zt+1) is solvable and the SFT loss
LSFT(θ;DS) ≥ 0 for all θ and DS, the proposed two-step optimization method converges.

3.2 CONSISTENCY REGULARIZED SELF-REWARDING

The generalized framework presented in Eq. (3.1) assumes the human feedback or GPT-4 are all
reliable so that the preference labeling function z is trustworthy. However, for SRLMs, the accuracy
of preference labeling is not always guaranteed. Therefore, treating all selected preference labels
as “ground truth” by encoding them as hard labels can lead to overconfident mistakes, potentially
propagating biases and inaccuracies from the LLMs. Taking Figure 1 as an example, both the two
responses y and y′ are judged by humans to be of high quality. Forcing the model to be overly
confident in distinguishing between these two responses {y,y′} with similar quality can negatively
impact the performance of SRLMs during training.

This rewarding bias issue motivates us to mitigate such ambiguity by introducing a consistency-
regularized self-rewarding language model, CREAM. Specifically, for a pair of responses with very
similar quality, their oracle reward scores should ideally be very close to each other. Particularly,
when multiple reward models are available, it is likely that some models will rank one response
as superior, while others may rank the opposite response as better, resulting in high ranking in-
consistency (i.e., low ranking consistency) among these models. Based on this, CREAM aims to
prevent the model from learning from preference pairs with low consistency. Instead, it focuses
solely on preference pairs with high consistency across different reward models, thereby mitigat-
ing the rewarding bias issue and stabilize the learning process to some extent. From the theoretical
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Consistency Regularized TrainingSampling Self Rewarding

Consistency Estimation

... ...
Next IterationLast Iteration

Figure 2: The flow of CREAM. In the response sampling stage, the policy model πθt
generates N

responses. After that, CREAM uses the reward model Rθt−1
from the previous iteration to reward

and rank these responses. Then, the rankings are compared with those generated by current reward
model Rθt

to estimate the consistency rate. Finally, the policy model πθt
is fine-tuned with consis-

tency regularized preference training objective, resulting in the model πθt+1
for next iteration.

perceptive, we can introduce a regularization term to Eq. (3.1) as

L(θ, z) = LSFT(θ;DS) + Ex∼DU;y,y′∼πθt (·|x)[LDPO(θ;y,y
′,x, z) + λLReg(θ;y,y

′,x)], (3.4)

where the regularization term LReg(θ;y,y
′,x) prevents the model πθ from overconfidence in distin-

guishing the preference of {y,y′} with similar quality, which is quantified in the following lemma.
Lemma 3.2. Let the random variable z = z(y,y′,x) be defined as z(y,y′,x) = 1[y ≻ y′|x]. The
Bradley-Terry model (Bradley & Terry, 1952) for the probability of z under parameter θ is given by

Pθ(z) = Pθ(1[y ≻ y′|x]) = σ (log(πθ(y|x)/πref(y|x))− log(πθ(y
′|x)/πref(y

′|x))) ,

Letting the regularization LReg be defined by

LReg(θ;y,y
′,x) = − log σ (log(πθ(y|x)/πref(y|x))− log(πθ(y

′|x)/πref(y
′|x)))

− log σ ((log πθ(y
′|x)/πref(y

′|x))− (log πθ(y|x)/πref(y|x))) . (3.5)

Then the expected regularized loss under the model θt is given by:

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = 2KL(u(·) ∥ Pθ(·)), (3.6)

where u(z) is the uniform binary distribution, i.e., u(z = 0) = u(z = 1) = 0.5.

As Lemma 3.2 suggests, the LReg will regularize the preference between {y,y′} that has similar
quality to a uniform distribution. Then the following theorem suggests that using LDPO + λLReg
corresponds to the soft-labeled DPO which we implemented in CREAM.
Theorem 3.3. For all y,y′,x, z, minimizing

L(θ, z) = LSFT(θ;DSFT) + Ex∼DU;y,y′∼πθt (·|x) [LDPO(θ;y,y
′,x, z) + λLReg(θ;y,y

′,x)]

is equivariant with minimizing

L(θ, z) = 1

1 + 2λ
LSFT(θ;DS)

+ Ex∼DU ;y,y′∼πθt (·|x)[CλLDPO(θ;y,y
′,x, z) + (1− Cλ)LDPO(θ;y,y

′,x, 1− z)],

(3.7)

where the 1− z reverses the preference order of z(y,y′,x) and Cλ = (1+λ)/(1+ 2λ). We choose
to reverse the preference order if there is evidence that the annotated preference data is reversed.
And the final form can also be viewed as the label smoothing. Details are in Appendix C.3.

Theorem 3.3 suggests that instead of calculating the regularization term LReg, we can use the soft-
labeled DPO to train Eq. (3.7). In particular, when λ = 0, Cλ = 0 and Eq. (3.7) degenerates
to Eq. (3.1). This represents the case where the preference label z is trustworthy from human or
some oracle reward models (e.g., GPT-4). In other words, λ represents the confidence of the label
function z. Specially, since in our two-step optimization paradigm, the label function z is directly
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Algorithm 1 Consistency-Regularized Self-Rewarding Language Model
Input: seed SFT dataset DS; unlabeled prompt dataset DU; initial model parameter θ0;
Input: number of iterations T ; learning rate η
1: /* SFT training */
2: Obtain θ1 by taking the gradient steps over loss L1(θ) =

∑
(x,y)∈DS

log πθ(y|x) from θ0

3: /* Iterative Preference Training training */
4: for t = 1 to T do
5: Sample {yij}Ni=1 ∼ πθt(·|xj) for all xj ∈ DU // Response Sampling
6: Compute reward rij = log πθt(yij |xi)− log πθ0(yij |xi) for all i ∈ [N ], j ∈ [|DU|]
7: Obtain rank Jij for all yij using reward rij // Rank on model θt

8: Compute reward r′ij = log πθt−1(yij |xi)− log πθ0(yij |xi) for all i ∈ [N ], j ∈ [|DU|]
9: Obtain rank Kij for all yij using reward r′ij // Rank on model θt−1

10: Compute τj = τ({Jij}i, {Kij}i) according to Eq. (3.10) for all j ∈ [|DU|]
11: Compute consistency rate C = |DU|−1 ∑

j(τj + 1)/2 // Adaptive consistency regularization
12: Compose preference dataset DDPO using pairs {xj ,y

+
j ,y

−
j }j according to Eq. (3.11)

13: Compose preference dataset DRDPO using pairs {xj ,y
−
j ,y+

j }j according to Eq. (3.12)
14: Update θt+1 by minimizing loss L(θ) = CLDPO(πθt ,DDPO) + (1− C)LDPO(πθt ,DRDPO)
15: end for
Output: aligned policy model πθT

derived from the previous model πθt
, we can measure the performance of πθt

using the consistency
between model θt and the baseline model (e.g., external reward model) θ′

t, defined by

λ(x) = 2Ey,y′∼πθt (·|x) 1[y ≻ y′|x,θt]1[y ≻ y′|x,θ′
t], (3.8)

and when λ → 0, Cλ ≈ 1 − λ representing the consistency of model θt and θ′
t. 1[y ≻ y′|x,θt]

means the response y is better than y′ given the prompt x and language model parameter θt, i.e.,

1[log(πθt
(y|x)/πref(y|x))− log(πθt

(y′|x)/πref(y
′|x))],

and similar definition applies to 1[y ≻ y′|x,θ′
t].

3.3 PROPOSED ALGORITHM

Equipped with the above two-stage optimization and the consistency-regularized self-rewarding,
we are ready to present the implementation of CREAM in Algorithm 1. The whole framework of
CREAM is also illustrated in Figure 2. The algorithm starts from the SFT training to obtain the
first model parameter θ1 in Line 2. A similar approach is applied in Yuan et al. (2024) for avoid
calculating the LSFT in the future optimization steps. Then for each xj in the unlabeled prompt
set DU, N response candidates {yi}Ni=1 are sampled in Line 5. Then reward scores of these N
candidates can be calculated according to Rafailov et al. (2023) by

rij = β[log πθt
(yij |xj)− log πθ0

(yij |xj)] + β logZ(xj), (3.9)

where we use the initial model parameter θ0 as the reference policy πref. Since β ≥ 0 and logZ(xj)
is a constant across different response yi for the same input prompt xj , we can drop these factors
and calculate rewards in Line 6. Specially, when t = 1, the rank Kij is calculated based on the
reference policy θ0 itself. Thus we instead use the likelihood rij = log πθ0

(yij |xj) as the reward
for this edge case. The rank for these N candidates are therefore obtained in Line 7, where Jij
means response yij is in the Jij-th best in the preference list of xj .

Consistency-Regularized Self-Rewarding. As discussed in Eq. (3.8), a baseline model is re-
quired to measure the consistency. In the self-rewarding scenario, it is infeasible to add an external
reward model as the baseline model. Fortunately, we can employ the model before last update θt−1

as the baseline model θ′
t (i.e., last iteration’s model) for evaluating the consistency of the model θ,

thanks to chances provided by iterative training manner. Such a procedure helps mitigate the train-
ing error introduced in t − 1-th step before obtaining θt. Considering a pair of tied preference pair
y,y′ both performing well, as demonstrated in Figure 1. P [y ≻ y′|x,θt] will be oscillating around
0.5 when t grows due to the random noise. Otherwise P [y ≻ y′|x,θt] might consistently converge
to 0 or 1. Due to this oscillation, the consistency between θt−1 and θt on this specific preference
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pair would be low, and the algorithm will learn less from this noninformative preference pair thus
stabilize this oscillation.

Specifically, we calculate the rank of these N candidates using θt−1 in Line 9 and then use the
Kendall’s Tau coefficient (Kendall, 1938) denoted by

τj =
2

N(N − 1)

∑
1≤i<i′≤N

[1 [(Jij − Ji′j)(Kij −Ki′j) > 0]− 1 [(Jij − Ji′j)(Kij −Ki′j) < 0]] .

(3.10)

Kendall’s Tau coefficient is a widely used coefficient (McLeod, 2005; Abdi, 2007) to measure the
consistency of two ranking sequences. Basically, when two sequences perfectly aligns, τj = 1 and
when two sequence never aligns, τj = −1. The following lemma draws the further connection
between the Kendall’s Tau and the regularization parameter λ proposed in Section 3.2.
Lemma 3.4. Suppose the N response candidate {yij}i is i.i.d. given the prompt xj , then

E[τj ] = 1− 4Ey,y′∼πθt (·|xj) 1[y ≻ y′|xj ,θt]1[y ≺ y′|xj ,θt−1] = 1− 2λ,

where the expectation is taken over the randomness of sampling the N candidate set.

Given Lemma 3.4, we can recover Cλ ≈ 1 − λ = (1 + τj)/2 and we use average all τj for all
xj ∈ DU in Line 11. Finally, in Line 12, we compose the preference dataset by selecting the best
response y+

j = yi+j and the worst response y−
j = yi−j which is similar with (Yuan et al., 2024).

DDPO = {(xj ,yi+j ,yi−j)|xj ∈ DU, i
+ = argmin

i
Jij , i

− = argmin
i

Jij} (3.11)

Following Theorem 3.3, we also prepare the reverse DPO dataset by switching the best response and
the worst response by

DRDPO = {(xj ,yi−j ,yi+j)|xj ∈ DU, i
+ = argmin

i
Jij , i

− = argmin
i

Jij} (3.12)

and update θt+1 by minimizing the empirical loss of Eq. (3.7) in Line 14. The detailed proof of
theorems and lemmas are provided in the Appendix B.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Data. In our experiments, we use Open Assistant dataset (Köpf et al., 2024) and only reserve about
3.4K human-annotated examples as the seed SFT data DS. To construct the unlabeled prompt dataset
DU, we mix prompts of DS with the train split of each downstream task (only reserve the prompts)
including (1) ARC-Easy/Challenge (Clark et al., 2018), (2) OpenBookQA (Mihaylov et al., 2018),
(3) SIQA (Sap et al., 2019), and (4) GSM8K (Cobbe et al., 2021). Finally, this process results in a
total of 21K prompts in DU, which we distribute equally across iterative self-rewarding trainings.

Models. Due to limited computational resources, we mainly conduct experiments with two LLMs
with about 7B parameters, including Llama-3 (Dubey et al., 2024) and Llama-2 (Touvron et al.,
2023), both of which are widely used. Note that the proposed framework is designed for LLMs with
any sizes, while validating our findings on other LLMs will be our future work.

Baseline Methods. To validate our findings, we mainly compare our method with SRLM (Yuan
et al., 2024) which uses the same LLM to serve as both the policy and reward model to generated
preference data for iterative training. Additionally, we introduce a variant of RL with AI feed-
back (Guo et al., 2024a), referred to as “Oracle”. In this variant, the reward model in SRLM is
replaced with an external reward model to demonstrate the upper bound performance of SRLM.
Specifically, we use InternLM2 (Cai et al., 2024), a specialized trained reward model, to provide the
reward scores for the generated responses. We further enhance Oracle’s rewarding by leveraging the
labels from downstream tasks to improve the rewarding accuracy.

Implementation Details. In our experiments, we fine-tune the initial model (M0) on the seed SFT
data for 3 epochs with a learning rate of 1e− 6, resulting in model M1. Following SRLM approach,
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Table 1: Main results of each method on test sets of downstream tasks. The exact match accuracies
are reported. The “↑” and “↓” indicate the performance improvement and degradation compared to
the method’s last iteration (e.g., M1 → M2 and M2 → M3), respectively. The best performance
among methods using self-rewarding is highlighted in bold.

Model Method Reward Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

GPT-4o CoT - - 94.57 94.71 96.60 79.63 92.27 91.56

Llama-3

Initial - M0 86.29 80.37 86.00 68.58 78.01 79.85

SFT - M1 86.78 80.14 86.40 69.50 78.39 80.24

Oracle External M2 89.60 ↑ 82.17 ↑ 90.00 ↑ 72.88 ↑ 80.82 ↑ 83.09 ↑
M3 89.31 ↓ 81.31 ↓ 90.20 ↑ 73.75 ↑ 76.04 ↓ 82.12 ↑

SRLM Self M2 87.79 ↑ 80.38 ↑ 87.80 ↑ 70.95 ↑ 78.01 ↓ 80.99 ↑
M3 87.17 ↓ 81.23 ↑ 87.30 ↓ 70.37 ↓ 77.48 ↓ 80.71 ↓

CREAM Self M2 88.89 ↑ 80.89 ↑ 88.00 ↑ 69.79 ↑ 81.04 ↑ 81.72 ↑
M3 89.52 ↑ 83.36 ↑ 90.20 ↑ 72.06 ↑ 81.73 ↑ 83.37 ↑

Llama-2

Initial - M0 61.07 48.98 62.20 50.36 23.65 49.25

SFT - M1 60.44 48.46 63.20 50.77 23.88 49.35

Oracle External M2 70.20 ↑ 55.03 ↑ 75.40 ↑ 63.66 ↑ 30.02 ↑ 58.86 ↑
M3 71.72 ↑ 55.80 ↑ 77.20 ↑ 62.44 ↓ 29.57 ↓ 59.35 ↑

SRLM Self M2 58.67 ↓ 46.67 ↓ 59.80 ↑ 49.69 ↓ 25.17 ↑ 48.00 ↓
M3 46.55 ↓ 34.47 ↓ 49.20 ↓ 48.06 ↓ 22.14 ↓ 40.08 ↓

CREAM Self M2 58.97 ↓ 47.53 ↓ 62.80 ↓ 50.43 ↓ 24.41 ↑ 48.83 ↓
M3 62.08 ↑ 48.81 ↑ 64.60 ↑ 51.22 ↑ 25.85 ↑ 50.51 ↑

we then iteratively fine-tune the model using the preference learning objective two additional itera-
tions, producing models M2 and M3. In the preference training of each iteration, we set β = 0.1 of
DPO loss, and fine-tune the model for 1 epoch with a learning rate of 1e− 6. All training processes
use the AdamW optimizer (Loshchilov & Hutter, 2019) with a warmup ratio of 0.1. For the response
sampling stage of all SRLM methods, we use a decoding temperature of 0.8 and generate N = 5
responses per prompt. For evaluating downstream tasks, we use greedy decoding to generate the
answers. All experiments are conducted primarily on NVIDIA A6000 GPUs.

4.2 MAIN RESULTS

The main results are shown in Table 1 which also report the performance of GPT-4o for refer-
ence. From these results, we observe the following: (1) The Standard SRLM fails to achieve
satisfactory performance, particularly with Llama-2 which has relatively weaker foundation per-
formance even after SFT fine-tuning (M0 → M1), which indicates its limitations for 7B-level
LLMs. (2) Compared to SRLM, CREAM achieves a significant improvement across almost all
downstream tasks, showing the advantage of introducing the proposed regularization method.

0% 25% 50% 75% 100%
Percentage

CREAM M3
vs

GPT-4o

CREAM M3
vs

Oracle M3

CREAM M3
vs

SRLM M3

CREAM M3
vs

CREAM M2

CREAM M2
vs

GPT-4o

CREAM M2
vs

Oracle M2

CREAM M2
vs

SRLM M2

CREAM M2
vs

CREAM M1

6% 70% 24%

11% 64% 25%

34% 45% 21%

38% 40% 22%

4% 62% 34%

10% 53% 37%

40% 32% 28%

37% 36% 27%

 Win Tie  Lose

Figure 3: Arena of CREAM v.s. SRLM,
Oracle, and GPT-4o, judged by GPT-4o.

(3) SRLM equipped with an oracle reward model (Or-
acle) can ensure high rewarding accuracy for annota-
tions of self-generated preference data, thereby achiev-
ing the best performance overall. This highlights a criti-
cal challenge for all methods with unreliable rewarding.
Notably, for Llama3, CREAM even outperforms Ora-
cle except on SIQA dataset. This superiority underlines
the success of the proposed method in mitigating the re-
warding bias issue. (4) The consistent improvements
of CREAM across iterations (M1 → M2, M2 → M3)
validate the effectiveness of the proposed regularization
method in mitigating the rewarding bias issue. This also
demonstrates the benefits of using such internal ranking
consistency as a regularization signal.

Alignment Arena. To more directly compare the align-
ment performance of CREAM, we further show the Arena win-rate of our method in Figure 3. We
can find that CREAM can beat baseline methods with the same iteration, which confirms the supe-
riority of the proposed regularized self-rewarding. Also, the win and tie rates of CREAM increase
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with the iteration against stronger models such as Oracle and GPT-4o, indicating the consistent
performance improvements across iterations.

4.3 ANALYSIS

In this section, we provide a detailed analysis to validate and understand the contribution of CREAM
in improving the performance via iterative preference fine-tuning manner.

4.3.1 ANALYSIS OF REWARDING

Rewarding Consistency. We first examine the consistency of rewarding of different methods using
their corresponding models from the last iteration in Table 2. Here, we use the proposed Consistency
Rate C, Kendall correlation coefficient τ , Spearman correlation coefficient, and TopOrder metrics to
measure the consistency, where the TopOrder metric evaluates whether the final paired preference
data remains the same, calculated as follows:

TopOrderj = 1 [argmin Jj = argminKj ] · 1 [argmaxJj = argmaxKj ] ,

where Jj and Kj are the rankings of the responses provided by current model and the last itera-
tion’s model, respectively. This metric assesses whether both the least preferred and most preferred
responses are consistently ranked across iterations. The results confirm that SRLMs exhibit a re-
warding consistency issue, indicating that the generated preference data may not be reliable for
training. In contrast, our method CREAM can keep the ranking consistency across iterations thanks
to the explicit regularization in the training.

Table 2: Ranking consistency of CREAM and
SRLM across iterations using Llama-3.

Iterations Method Consistency C↑ Kendall τ ↑ Spearman ↑ TopOrder ↑

M2 vs M1 SRLM 0.39 ± 0.21 -0.22 ± 0.41 0.36 ± 0.24 0.03 ± 0.18
CREAM 0.73 ± 0.18 0.46 ± 0.35 0.77 ± 0.19 0.19 ± 0.39

M3 vs M2 SRLM 0.46 ± 0.19 -0.08 ± 0.38 0.50 ± 0.22 0.12 ± 0.33
CREAM 0.92 ± 0.09 0.84 ± 0.19 0.95 ± 0.07 0.59 ± 0.49

Prompt Rewarding v.s. DPO Rewarding. As
aforementioned, 7B level LLMs struggle with
generating accurate rewards when using LLM-
as-a-Judge prompting due to their limited ca-
pacity. Both Figure 5 and Figure 4 clearly show
that the SRLM with prompt rewarding is not ef-
fective for smaller LLMs, as the performance
starts to decrease at the first iteration (M1 →
M2) when trained on the self-rewarded preference data. In contrast, the adopted DPO rewarding
method can be more suitable for such small LLMs. This is primarily because DPO rewarding is
intrinsically aligned with the model’s learning objective.

Ranking Accuracy. The ranking accuracy is crucial for self-rewarding methods, as it directly affects
the quality of the self-generated preference data for training. Thus, we present the ranking accuracy
in Figure 4 to provide an intuitive comparison the performance of the rewarding performance across
different methods. The results include the ranking accuracy on self-generated preference data and
the RewardBench (Lambert et al., 2024) dataset, both of which is formulated as a ranking task to
predict the preferred one between two responses. We use the self-generated preference data ob-
tained by self-rewarding with ground truth ranking labels, for testing the model’s in-domain ranking
performance. The RewardBench dataset is used to assess the generalizability of the models beyond
the training domain. CREAM consistently achieves higher ranking accuracy than baseline methods,
which promises more reliable preference data for training. Even though the overall ranking accuracy
(≤ 70%) is not satisfying, the introduced consistency regularization can help mitigate the negative
impacts of potentially noisy ranking annotations.
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Figure 4: Pairwise ranking accuracy on Reward-
Bench and a curated Preference Data. P-SRLM is
SRLM with prompt rewarding (LLM-as-a-Judge).
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4.3.2 RELIABILITY OF SELF-CONSISTENCY

Table 3: Comparison of CREAM using oracle re-
ward model and last iteration’s model. BRM de-
notes the choice of baseline reward model.

Method BRM Arc-E Arc-C OBQA SIQA GSM8K

Llama-3 M1 - 86.78 80.14 86.40 69.50 78.39
CREAM M2 M0 88.89 80.89 88.00 69.79 81.04
CREAM M2 Oracle 88.51 81.06 86.20 72.21 79.91

Llama-2 M1 - 60.44 48.46 63.20 50.77 23.88
CREAM M2 M0 58.97 47.53 62.80 50.43 24.41
CREAM M2 Oracle 62.42 48.72 66.00 51.13 22.52

The most straightforward way to enhance the re-
warding and ranking accuracy is by incorporat-
ing external reward models, such as the SRLM
variant “Oracle” used in our experiments. The
theoretical analysis in Eq. (3.8) suggests that we
can mitigate the rewarding bias issue by calcu-
lating the ranking consistency between current
model and other available baseline reward mod-
els (BRMs). However, it is not always feasible
to have access to such external reward models
in practice, such as the self-rewarding scenario. Thus, we instead propose to use the last iteration’s
model as the BRM to measure the consistency of rewarding.

Choice of Baseline Reward Model. To measure the impacts on CREAM of using different BRMs,
we fine-tune the M1 model using CREAM with two different BRMs: the rewarding function of
Oracle and the model from the last iteration (M0). As shown in Table 3, using a strong reward
model as the BRM can bring better regularization effect, especially for Llama-2. However, we find
that the last iteration’s model also provides a reasonably reliable consistency signal for Llama-3. We
attribute this to Llama-3’s inherently stronger foundational alignment and better internal consistency,
which allows it to effectively utilize itself without needing an external reward model.

4.3.3 CONSISTENCY MEASUREMENT

Table 4: Performance of CREAM using different
consistency measurements with Llama3.

Iteration Method Arc-E Arc-C OBQA SIQA GSM8K

M1 - 86.78 80.14 86.40 69.50 78.39

M2
Spearman 86.95 82.00 85.40 70.05 78.77
TopOrder 87.25 80.12 86.88 70.83 79.75
Kendall (Ours) 88.89 80.89 88.00 69.79 81.04

M3
Spearman 88.76 81.83 90.00 70.98 79.15
TopOrder 88.51 80.37 87.40 71.03 79.76
Kendall (Ours) 89.52 83.36 90.20 72.06 81.73

Besides the adopted Kendall τ coefficient, other
metrics can also be used to measure the con-
sistency between two preference ranking lists,
such as Spearman coefficient (Spearman, 1904)
and the aforementioned TopOrder method. We
conduct a comparison experiments of using dif-
ferent consistency measurement methods in Ta-
ble 4. We can observe that: (1) All these mea-
surements are effective with CREAM, indicat-
ing the generalization and applicability of our
regularized training approach. (2) Kendall correlation coefficient generally yields higher scores
across various datasets compared to Spearman and TopOrder methods. (3) The differences in per-
formance highlight the sensitivity of these consistency measurements. Specifically, the Spearman
coefficient appears slightly less robust than Kendall’s τ , as analyzed in Croux & Dehon (2010).
Meanwhile, TopOrder focuses only on top-1 and bottom-1 rankings, limiting its evaluation scope.

5 CONCLUSION

In this paper, we first formulate a generalized iterative preference fine-tuning framework for self-
rewarding language models (SRLMs), which is also applicable to other iterative preference training
methods. Then, we highlight the rewarding bias that emerges from overconfident preference label-
ing, which is particularly problematic for smaller LLMs, such as those with 7B parameters. This
rewarding bias results in the accumulation of noisy and unreliable preference data, harming the pref-
erence training and hindering alignment performance of LLMs. To address this issue, we proposed
the Consistency Regularized sElf-Rewarding lAnguage Model (CREAM), which leverages the con-
sistency of rewarding across different iterations as a regularization signal. This approach allows the
model to learn more selectively, emphasizing reliable preference data and avoiding overconfidence
in preference labeling. Our experimental results on various natural language benchmarks demon-
strate the effectiveness of the proposed method in mitigating the rewarding bias issue and improving
the performance of SRLMs. We believe that these findings can provide valuable insights for future
research on self-improvement methods of LLM alignment.
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Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of measurement and statistics,
2:508–510, 2007.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
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A LIMITATION AND FUTURE WORK

In this section, we discuss the limitations of our work and propose potential solutions for future
research. First, our method requires full fine-tuning of Llama over three iterations, which is both
time-consuming and computationally intensive. For future research, we plan to explore Parameter-
Efficient Fine-Tuning (PEFT) methods to reduce training costs. Second, our approach primarily
focuses on small 7B language models, which may limit its generalizability. We anticipate that, with
enhanced computational resources, our method could be extended to larger models, such as Llama-
3-70B, allowing us to better assess its scalability and robustness across a broader range of scenarios.
Third, it is worth investigating more complex consistency-regularized self-rewarding scenarios, such
as how to assign different weights to various models during the self-rewarding process based on
their importance, and enable these models to collaborate to improve the reward process, thereby
mitigating potential inaccuracies associated with rewarding.

B PROOF OF THE THEOREMS AND LEMMAS

B.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. We denote iteration of the two-step algorithm as t. The algorithm starts from
(θt, zt), and obtains zt+1 = zθt according to Eq. (3.3) in the preference-labeling step and then
obtains θt+1 through the learning step. Since zt+1 = argminz LDPO(θt;y,y

′,x, z) for any y,y′,x
according to Eq. (3.3), we have that

L(θt, zt+1) ≤ L(θt, zt). (B.1)

And the learning step suggests that θt+1 = argminθ L(θ, zt+1), yielding that

L(θt+1, zt+1) ≤ L(θt, zt+1). (B.2)

Connecting Eq. (B.1) with Eq. (B.2) yields that the loss function L(θ, z) is monotonically decreas-
ing, i.e.

· · · ≤ L(θt+1, zt+1) ≤ L(θt, zt+1) ≤ L(θt, zt) ≤ · · · . (B.3)

Since L(θ, z) is upper bounded by 0, it suggests that the sequence of L(θt, zt) will converge w.r.t.
the growth of t.

B.2 PROOF OF LEMMA 3.2

Proof of Lemma 3.2. We start by expanding Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) as

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = Ey,y′∼πθt (·|x) [logPθ(z = 1) + logPθ(z = 0)]

= Ey,y′∼πθt (·|x),y≺y′ [logPθ(z = 1) + logPθ(z = 0)]

+ Ey,y′∼πθt (·|x),y⪰y′ [logPθ(z = 1) + logPθ(z = 0)]

= Ey,y′∼πθt (·|x)Pθt
(z = 0) [logPθ(z = 1) + logPθ(z = 0)]

+ Ey,y′∼πθt (·|x)Pθt
(z = 1) [logPθ(z = 1) + logPθ(z = 0)] ,

(B.4)

where the second equation decompose the expectation Ey,y′∼πθt (·|x) into two expectation
Ey,y′∼πθt (·|x) + Ey,y′∼πθt (·|x), the third equation extract the event y ≥ y′ as distribution Pθt

(z).
Then Eq. (B.4) can be further written by

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = Pθt

(z = 1) [logPθ(z = 1) + logPθ(z = 0)]

+ Pθt(z = 0) [logPθ(z = 1) + logPθ(z = 0)] , (B.5)

since both y,y′ are generated from πθt
(·|x), Pθt

(z = 0) = Pθt
(z = 1) = 0.5. Thus Eq. (B.5)

becomes

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = 2KL(Pθ(z) ∥ Pθt

(z)) = 2KL(Pθ(z) ∥ u(z)), (B.6)

where u(z) is the uniform binary distribution with u(z = 0) = u(z = 1) = 0.5.
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B.3 PROOF THEOREM 3.3

Proof of Theorem 3.3. We start by writing down each components in L(θ, z) defined in Eq. (3.1) by

L(θ, z) = LSFT(θ;DS) + Ex∼D′;y,y′∼πθt
(·|x)[LDPO(θ;y,y

′,x, z) + λLReg(θ;y,y
′,x)]

= LSFT(θ;DS)

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−z(y,y′,x) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−(1− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))
−λ log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−λ log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
= LSFT(θ;DS)

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−(λ+ z(y,y′,x)) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−(1 + λ− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
where the third equation absorbs the regularization into the DPO loss. Noticing that λ+z(y,y′,x)+
(1 + λ− z(y,y′,x)) = 1 + 2λ, by dividing (1 + 2λ) we have

L(θ, z)
1 + 2λ

=
LSFT(θ;DSFT)

1 + 2λ

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−λ+ z(y,y′,x)

1 + 2λ
log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−1 + λ− z(y,y′,x)

1 + 2λ
log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
.

When z(y,y′x) = 1, (λ+z(y,y′,x))/(1+2λ) = 1−λ/(1+2λ) and (1+λ−z(y,y′,x))(1+2λ) =
λ/(1 + 2λ). Therefore, letting Cλ = λ/(1 + 2λ) yields that

L(θ, z)
1 + 2λ

=
LSFT(θ;DSFT)

1 + 2λ

+ Ex∼D′;y,y′∼πθt (·|x)[(1− Cλ)LDPO(θ;y,y
′,x, z) + CλLDPO(θ;y,y

′,x, 1− z)],

which completes the proof since minimizing L(θ, z)/(1+λ) is equivalent with minimizing L(θ, z)
itself.

B.4 PROOF OF LEMMA 3.4

Proof of Lemma 3.4. To begin with, according to the ranking of Jij , the sufficient and necessary
condition for Jij − Ji′j > 0 is that rij < ri′j . Similarly, the sufficient and necessary condition for
Kij > Ki′j is that r′ij < r′i′j . As a result, the indicator becomes

1[(Jij − Ji′j)(Kij −Ki′j) > 0] = 1[(rij − ri′j)(r
′
ij − r′i′j) > 0] (B.7)

1[(Jij − Ji′j)(Kij −Ki′j) < 0] = 1[(rij − rij′)(r
′
ij − r′i′j) < 0]. (B.8)

Since rij > ri′j yields yij ≻ yi′j under the input prompt xbj and language model θt, Eq. (B.7)
becomes

1[(Jij − Ji′j)(Kij −Ki′j) > 0] = 1[rij > ri′j ]1[r
′
ij > r′i′j ] + 1[rij < ri′j ]1[r

′
ij < r′i′j ]

= 1[yij ≻ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]

+ 1[yij ≺ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]. (B.9)
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As a result, since yij are i.i.d. given xj , the expectation of first part of the Kendall’s Tau coefficient
is
E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

+ Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt](1[yij ≻ yi′j |xj ,θt−1]− 1[yij ≺ yi′j |xj ,θt−1])]

+ Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt](1[yij ≺ yi′j |xj ,θt−1]− 1[yij ≻ yi′j |xj ,θt−1])]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt](1− 21[yij ≺ yi′j |xj ,θt−1])]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt](1− 21[yij ≺ yi′j |xj ,θt−1])]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]− 1[yij ≺ yi′j |xj ,θt]]

+ 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt−1](1[yij ≺ yi′j |xj ,θt]− 1[yij ≻ yi′j |xj ,θt])]

= 0 + 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt−1](1− 21[yij ≻ yi′j |xj ,θt])] (B.10)

where the second equation merge the terms together, and the third equation is due to the fact 1[yij ≺
yi′j ] + 1[yij ≻ yi′j ] = 1, the forth equation reorganize the term and the fifth equation is due to
the fact that Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt] − 1[yij ≺ yi′j |xj ,θt]] = 0 due to symmetry.
Similarly by reversing the ≺ and ≻, we can write Eq. (B.10) by

E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= 0 + 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt−1](1− 21[yij ≺ yi′j |xj ,θt])]. (B.11)
Adding Eq. (B.10) and Eq. (B.11) together yields

2E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt−1] + 1[yij ≺ yi′j |xj ,θt−1]]

− 4Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

− 4Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

= 2− 8Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]], (B.12)

where the final equation is because E[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]] = E[1[yij ≻
yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1] due to symmetry. Divide Eq. (B.12) by 2 yields the claimed
result.

C ADDITIONAL RESULTS

C.1 COMPARISON OF DIFFERENT KL CONSTRAINTS

We introduce two baseline methods to compare the regularization effect of different KL constraints:
(1) SRLM+KL: SRLM with KL constraint towards the Bernoulli distribution, which introduces a
simple regularization term λ[ πθ(y|x)

πref(y|x) −
πθ(y

′|x)
πref(y′|x) ]

2 to the DPO training loss, where λ is chosen from
{0.1, 0.3, 0.5, 1.0}. (2) CREAM w/o Ranking Correlation + C: This is our method CREAM with
a manually set fixed Consistency Rate (C). We perform a hyperparameter search to set C to validate
the contribution of our automatically determined C via ranking correlation.

The results of these two baselines are shown in Table 5. We can find that (1) Although SRLM+KL
introduces regularization and improves performance compared to SRLM, its overall performance is
weaker than CREAM. Further, CREAM maintains its advantage against SRLM+KL over multiple
iterations, demonstrating that CREAM performs better than directly restricting the KL divergence.
(2) Comparing CREAM w/o Ranking Correlation + C with the original CREAM, we find that the
original CREAM consistently outperforms the variant with manually set C values. This indicates
that a fixed consistency rate is often inferior to the dynamically calculated consistency rate derived
from ranking correlations.
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Table 5: Results for different regularization methods using Llama-3. The best performance among
methods in each iteration is highlighted in bold.

Method Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

Initial M0 86.29 80.37 86.00 68.6 78.01 79.85
SFT M1 86.78 80.14 86.40 69.50 78.39 80.24

SRLM+KL M2 87.92 79.78 86.60 71.49 79.38 81.03

CREAM w/o Ranking Correlation +C=0.1 M2 83.84 72.78 78.20 65.05 75.51 75.08
CREAM w/o Ranking Correlation +C=0.3 M2 88.26 79.86 86.80 69.6 79.98 80.89
CREAM w/o Ranking Correlation +C=0.5 M2 88.17 80.89 85.00 70.9 79.15 80.82
CREAM w/o Ranking Correlation +C=0.7 M2 88.26 79.61 84.40 71.39 79.08 80.55
CREAM w/o Ranking Correlation +C=0.9 M2 87.80 79.61 86.40 70.47 80.14 80.88

CREAM M2 88.89 80.89 88.00 69.79 81.04 81.72

SRLM+KL M3 88.38 80.97 88.20 71.19 80.29 81.81

CREAM w/o Ranking Correlation +C=0.1 M3 89.06 80.46 85.60 70.88 79.23 81.05
CREAM w/o Ranking Correlation +C=0.3 M3 88.09 80.55 87.20 71.4 79.23 81.29
CREAM w/o Ranking Correlation +C=0.5 M3 87.29 80.80 85.00 67.7 80.06 80.16
CREAM w/o Ranking Correlation +C=0.7 M3 85.65 77.39 86.00 68.3 77.94 79.05
CREAM w/o Ranking Correlation +C=0.9 M3 84.39 75.17 83.20 66 78.77 77.51

CREAM M3 89.52 83.36 90.20 72.06 81.73 83.37

Table 6: Results for SRLM and CREAM using Llama-3 for six iterations. ↑ and ↓ indicate the
performance improvement and degradation compared to the method’s last iteration.

Method Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

Initial M0 86.29 80.37 86.00 68.6 78.01 79.85
SFT M1 86.78 80.14 86.40 69.50 78.39 80.24

SRLM

M2 87.79 ↑ 80.38 ↑ 87.80 ↑ 70.95 ↑ 78.01 ↓ 80.99 ↑
M3 87.17 ↓ 81.23 ↑ 87.30 ↓ 70.37 ↓ 77.48 ↓ 80.71 ↓
M4 86.07 ↓ 78.33 ↓ 87.80 ↑ 68.58 ↓ 75.83 ↓ 79.32 ↓
M5 84.34 ↓ 76.53 ↓ 85.80 ↓ 66.84 ↓ 64.22 ↓ 75.55 ↓
M6 76.22 ↓ 72.36 ↓ 76.00 ↓ 59.06 ↓ 59.29 ↓ 68.59 ↓

CREAM

M2 88.89 ↑ 80.89 ↑ 88.00 ↑ 69.79 ↑ 81.04 ↑ 81.72 ↑
M3 89.52 ↑ 83.36 ↑ 90.20 ↑ 72.06 ↑ 81.73 ↑ 83.37 ↑
M4 89.56 ↑ 82.68 ↓ 90.80 ↑ 72.93 ↑ 82.26 ↑ 83.65 ↑
M5 89.35 ↓ 82.08 ↓ 90.20 ↓ 72.06 ↓ 81.73 ↓ 83.08 ↓
M6 88.85 ↓ 81.57 ↓ 89.60 ↓ 71.14 ↓ 82.49 ↑ 82.73 ↓

C.2 SUSTAINABILITY OF SELF-REWARDING

To explore continuous improvements and further validate the effectiveness of the introduced regu-
larization, we conduct additional experiments with SRLM (baseline method) and CREAM (ours)
using Llama-3 for the 4th, 5th, and 6th iterations. From the results in Table 6, we have the fol-
lowing findings: (1) CREAM converges at the 4th iteration (M4) while the baseline method SRLM
started performance degradation much earlier at the 2nd iteration (M2). This shows that CREAM
helps stabilize the self-improvement training by mitigating the rewarding bias issue. (2) CREAM
does not seriously harm the performance after convergence (i.e., during M5 and M6), while SRLM
drastically drops the performance. This suggests that adding this consistency-based regularization
is beneficial to preventing model from degeneration in the long term.

C.3 DIFFERENCE BETWEEN CREAM LOSS AND WEIGHTED DPO LOSS

We would like to emphasize that the final form of CREAM, which combines a normal DPO and a
reversed DPO, cannot simply be replaced by reducing the weight in a normal DPO (weight * DPO
Loss). Specifically, the loss adopted by CREAM is C log σ(r(y+)−r(y−))+(1−C) log σ(r(y−)−
r(y+)) differs fundamentally from a weighted DPO loss C log σ(r(y+) − r(y−)). From the opti-
mization perceptive, the latter weighted DPO loss behaves similar with a regular DPO loss with a
smaller learning rate. In addition, since the preference probability P (y+ ≺ y−) = σ(r(y+)−r(y−))
and P (y+ ≻ y−) = σ(r(y−) − r(y+)), we would highlight that the CREAM loss can be kind of
viewed as a cross-entropy loss C logP (y+ ≻ y−)+ (1−C) logP (y− ≻ y+) with label-smoothing
factor C. Thus, The weighted DPO loss cannot deliver such a observation.
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Detailed Derivation. The loss used by our CREAM can be expressed as:

C ·D + (1− C) ·RD,

where C is the consistency rate, and D and RD are the DPO loss and ReverseDPO loss, respectively.

For the DPO loss, D = log σ(a− b), where the sigmoid function σ converts the reward gap (a− b)
into a probability P . For RD, the reward gap is (b − a). Recall that the sigmoid function has a
property that σ(x) = 1− σ(−x). Using this property, we can convert the sigmoid (gap part) of RD
to (1− P ). Thus, the RD loss is log(1− P ), and the D loss is logP .

Combining these, we can derive

C ·D + (1− C) ·RD = C · logP + (1− C) · log(1− P ),

which corresponds to a cross-entropy loss for a binary classification task (binary preference judg-
ment). The proposed loss acts as a label smoothing to regularize the training. This regularization is
expected to enhance the model’s generalization ability and performance during training.

Gradient Analysis. To further understand the impact of the sum of normal DPO loss and reversed
DPO loss, we analyze the gradient of the adopted loss function. Recall that CREAM uses the

L = C ·D + (1− C) ·RD

for training, where C is the consistency rate, and D and RD are the DPO loss and ReverseDPO loss,
respectively.

We can simplify the DPO loss by substituting the reward gap[
log

πθ(y
+)

πref(y+)
− log

πθ(y
−)

πref(y−)

]
as xθ. Then, the D loss is written as log σ(xθ), and the RD loss is written as log σ(−xθ).

Recall that the sigmoid function σ has the property that σ(x) = 1 − σ(−x). Then, RD can be
converted to log(1− σ(xθ)). Our regularized loss L is

C log σ(xθ) + (1− C) log(1− σ(xθ)).

The gradient of L with respect to model parameters θ is

∂L

∂θ
= (C − σ(xθ))

∂xθ

∂θ
.

In particular, when C = 1
2 , it pushes the model to learn σ(xθ) =

1
2 , i.e., encouraging the model to

have
πθ(y

+)

πref(y+)
=

πθ(y
−)

πref(y−)
.

So far, there is no theoretical evidence that the likelihoods of both y+ and y− will decrease. How-
ever, based on empirical results from existing works (Rafailov et al., 2023; Azar et al., 2023; Hong
et al., 2024; Ethayarajh et al., 2024), the ∂xθ

∂θ term will decrease the likelihoods of both y+ and
y− while increasing their gap. Thus, the combined optimization will potentially lead to: (1) a de-
crease in the likelihoods of both y+ and y−, (2) an increase in the gap between y+ and y−, while
maintaining

πθ(y
+)

πref(y+)
≈ πθ(y

−)

πref(y−)
.

Empirical Results. We also take additional experiments to validate the SRLM using weight ∗
DPO Loss, where weight ∈ [−1.0, 1.0]. For SRLM + Weight method, M3 is trained based on the
best checkpoint of M2 across different weights. The results are shown in Table 7. Note that “NA”
means the negative of the DPO loss leads to catastrophic forgetting, where the LLM fails to generate
fluent sentences. According to the results, we observe that CREAM outperforms the SRLM+weight
method, indicating its effectiveness and irreplaceability.
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Table 7: Comparison of CREAM and SRLM using weighted DPO loss on Llama-3. “NA” indicates
that the method cannot generate fluent sentences.

Method Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

SRLM + Weight = -1.0 M2 NA NA NA NA NA NA
SRLM + Weight = -0.5 M2 NA NA NA NA NA NA
SRLM + Weight = -0.25 M2 NA NA NA NA NA NA
SRLM + Weight = 0.25 M2 88.97 80.38 87.00 71.39 78.7 81.29
SRLM + Weight = 0.50 M2 86.49 79.61 87.60 70.42 79.00 80.62
SRLM + Weight = 1.00 M2 87.79 80.38 87.80 70.95 78.01 80.99

CREAM M2 88.89 80.89 88.00 69.79 81.04 81.72
SRLM + Weight = -1.0 M3 24.16 22.53 27.6 30.91 1.74 21.39
SRLM + Weight = -0.5 M3 NA NA NA NA NA NA
SRLM + Weight = -0.25 M3 NA NA NA NA NA NA
SRLM + Weight = 0.25 M3 88.93 81.40 89.20 71.34 75.74 81.32
SRLM + Weight = 0.50 M3 88.13 81.74 89.00 70.73 75.89 81.10
SRLM + Weight = 1.00 M3 87.17 81.23 87.30 70.37 77.48 80.71

CREAM M3 89.52 83.36 90.20 72.06 81.73 83.37

Table 8: The distribution of the training samples’ consistency rate C in the six iterations of CREAM.

Iteration
Consistency Rate 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 Total Avg. C

M1 - M2 1329 (13.86%) 3129 (32.62%) 2977 (31.04%) 1647 (17.17%) 510 (5.32%) 9592 (100%) 0.39
M2 - M3 1 (0.01%) 10 (0.10%) 48 (0.50%) 448 (4.67%) 9085 (94.71%) 9592 (100%) 0.92
M3 - M4 3 (0.03%) 24 (0.25%) 195 (2.03%) 1249 (13.03%) 8118 (84.66%) 9589 (100%) 0.87
M4 - M5 2 (0.02%) 10 (0.10%) 121 (1.26%) 888 (9.26%) 8571 (89.36%) 9592 (100%) 0.89
M5 - M6 6 (0.06%) 109 (1.14%) 573 (5.97%) 2129 (22.20%) 6775 (70.63%) 9592 (100%) 0.81

C.4 CONSISTENCY TREND

In CREAM, if the consistency rate C reaches to 0, the preference order of the training data will be
totally reversed, which may lead to overconfidence in the reversed order. However, We would like
to highlight that the consistency between θt−1 and θt can rarely be as low as C ≈ 0. This is because
C = 0 means for any preference pair y, y′, two consecutive model θ and θt−1 give totally reversed
prefernence. For the scaled Kendal Tau, that means if the ranking for 5 generated responses is
A > B > C > D > E, to reach C = 0, we need to change the ranking to E > D > C > B > A,
which is very rare in SRLM. Since θt is trained using the prefernece data given by θt−1, they tend
to have similar behavior and thus such a circumstance making C = 0 can hardly happen in practice.

Further, we analyze the distribution of the consistency and supply the results for 4th, 5th and 6th
iterations as follows. The results in Table 8 show the consistency trend for CREAM. We can find
that the initial consistency rate 0.39 is acceptable, which will not result in heavily relying on re-
verse preferences. Besides, the regularization of CREAM is shown to encourage the consistency of
rankings and maintain stability in the later rounds of training.

C.5 COMPARISON OF ENSEMBLE METHODS

we also include an ablation study on using conservative value estimation methods (Coste et al.,
2023) (Ensemble-Worst) and Ensemble-Mean in SRLMs. Specifically, ensemble method trains 3
different πθ models with 3 different learning rates [7e-7, 1e-6, 3e-6] to serve as the ensemble reward
models in each iteration, since no external models can be involved in the self-rewarding scenario.
Then, these three models would independently reward and rank the responses:

• Ensemble-Worst selects the minimum reward for ranking the response.

• Ensemble-Mean selects the average reward for ranking the response.

Table 9 suggests that CREAM has advantage against Ensemble methods in the alignment perfor-
mance a cross iterations. Additionally, compared with the ensemble model which requires a batch
of reward models, CREAM only requires the model from the last one iteration and thus would be
more efficient than the ensemble methods.
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Table 9: Comparison of SRLM, Ensemble-Worst, Ensemble-Mean and CREAM on Llama-3. The
best performance among methods in each iteration is highlighted in bold.

Method Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

SRLM M2 87.79 80.38 87.80 70.95 78.01 80.99

Ensemble-Worst M2 88.00 79.78 87.00 69.96 78.54 80.66
Ensemble-Mean M2 88.47 80.80 88.00 69.50 80.67 81.49

CREAM M2 88.89 80.89 88.00 69.79 81.04 81.72

SRLM M3 87.17 81.23 87.30 70.37 77.48 80.71

Ensemble-Worst M3 87.75 80.89 86.80 70.78 78.70 80.98
Ensemble-Mean M3 88.85 80.89 87.00 69.96 79.98 81.34

CREAM M3 89.52 83.36 90.20 72.06 81.73 83.37

Table 10: Results for treating the consistency as a property of the data instead of the model using
CREAM on Llama-3. The best performance among methods in each iteration is highlighted in bold.

Method Iteration Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

SRLM (Threshold = 0.0) M2 87.79 80.38 87.80 70.95 78.01 80.99

Threshold = 0.1 M2 88.13 80.89 88.20 70.52 78.70 81.29
Threshold = 0.3 M2 88.38 80.29 89.20 68.99 79.83 81.34
Threshold = 0.5 M2 89.10 80.89 87.20 69.70 80.52 81.48
Threshold = 0.7 M2 88.72 80.20 88.00 69.24 80.82 81.4
Threshold = 0.9 M2 88.55 81.48 88.40 70.78 79.45 81.73
CREAM (Threshold = 1.0) M2 88.89 80.89 88.00 69.79 81.04 81.72

CREAM + dynamic M2 88.13 80.80 88.00 69.50 79.38 81.16

SRLM (Threshold = 0.0) M3 87.17 81.23 87.30 70.37 77.48 80.71

Threshold = 0.1 M3 88.38 80.29 87.20 70.98 79.83 81.34
Threshold = 0.3 M3 88.64 80.38 88.00 71.34 80.52 81.78
Threshold = 0.5 M3 89.10 81.48 89.80 71.08 79.91 82.27
Threshold = 0.7 M3 89.48 81.31 88.60 71.55 80.67 82.32
Threshold = 0.9 M3 89.27 83.02 90.80 72.31 81.50 83.38
CREAM (Threshold = 1.0) M3 89.52 83.36 90.20 72.06 81.73 83.37

CREAM + dynamic M3 88.85 81.57 89.20 71.65 79.91 82.24

C.6 CREAM WITH DATA CONSISTENCY

For CREAM, The introduced (in)consistency serves as the uncertainty quantification for the model
to prevent the model itself being overconfident due to the stochastic training noise or incorrectly la-
beled prefernece data. Such a uncertainty, usually referred to as epistemic uncertainty, is a property
for each model. We further add two variants to explore treating the consistency as a property of
the data instead of the model: (1) Threshold = x: This variant uses the normal DPO for samples
(confident dataset) whose consistency rate C > x, and uses ours C*DPO + (1-C)*RDPO to regu-
larize the training for other samples (unconfident dataset). (2) CREAM w/ Dynamic Consistency:
Instead of original CREAM using the average consistency rate across the dataset, this method uses
dynamic consistency rate for each sample, using each sample’s own consistency rate to regularize
the training.

As shown in Table 10, we observe that as the threshold increases beyond a certain value (including
more samples for regularization), the performance gains converge. Actually, CREAM is compat-
ible with using a threshold to fine-grainedly select the data to regularize, however, this inevitably
introduces an additional hyperparameter. Besides, CREAM already achieves sufficiently good per-
formance, without this added complexity. Compared to the “CREAM w/ Dynamic Consistency”
variant, our method, which utilizes the average consistency rate, significantly reduces the variance
in estimating dataset uncertainty, resulting in improved performance.

C.7 APPLICABILITY OF CREAM

Applicability to Larger Models. Due to the limited computational resources, our experiments
are mainly conducted on 7B-level LLMs such as Llama-2 and Llama-3. However, we believe this
is still meaningful to democratize the self-rewarding paradigm to LLMs of community affordable
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Table 11: Results of SRLM and CREAM with Llama-2-13B.

Method Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

M0 67.47 56.31 67.00 47.54 35.03 54.67
M1 68.27 57.42 67.40 47.85 36.09 55.41

SRLM M2 69.61 57.00 64.00 52.10 31.69 54.88
SRLM M3 62.08 53.67 61.20 48.93 20.77 49.33

CREAM M2 69.19 57.17 69.60 48.57 36.01 56.11
CREAM M3 68.56 59.04 73.20 49.90 36.62 57.46

Table 12: Results of applying SRLM and CREAM to unaligned Llama-3-8B-NO-Chat-Version.

Method Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K Average

M0 30.64 28.50 20.80 23.95 4.02 21.58
M1 31.23 30.21 33.40 26.51 51.25 34.52

SRLM M2 29.80 28.67 36.00 23.44 50.19 33.62
SRLM M3 31.82 30.03 39.00 28.40 48.52 35.55

CREAM M2 31.61 28.75 35.60 28.66 53.00 35.52
CREAM M3 39.18 35.07 49.00 33.62 56.48 42.67

size, such as 7B models. Advanced and larger LLMs (e.g., ChatGPT) are not always accessible,
especially in specific application scenarios like those involving medical or privacy-sensitive data.
It’s important to note that our method is theoretically applicable to LLMs of any size (not limited
to 7B). To validate our method with larger LLMs, we test the CREAM on Llama-2-13B (Touvron
et al., 2023) model without any hyperparameter tunings. The results in Table 11 confirm that our
method remains effective for the 13B LLM, demonstrating the generalizability of our approach
across different model sizes.

Applicability to unaligned Models. First, our method CREAM does require the model to have
some initial alignment capability, as the adopted DPO rewarding relies on the model being aligned,
otherwise the rewards would not be meaningful (Rafailov et al., 2023). The relatively weaker results
of Llama-2 compared to Llama-3 in Table 1 can support this point. Note that in the self-rewarding
scenario, the original SRLM (Yuan et al., 2024) also requires the model to be “post-trained” version,
where they adopt Llama-2-70B-Chat (Touvron et al., 2023) as the initial model (M0). We conduct
additional experiments to test the effectiveness of CREAM with LLMs that are not post-trained.
Specifically, we use Llama-3-8B-NO-Chat-Version (Dubey et al., 2024) as the base model (M0).
The results in Table 12, reveal that: (1) M0 performs poorly due to its lack of instruction following
ability. However, after training on a small amount of seed SFT data, M1 demonstrates improved
performance, especially on the reasoning task GSM8K. (2) Both SRLM and CREAM can effectively
boost the performance, while CREAM often provides greater gains. (3) We find that the performance
gains of CREAM in the 3rd iteration (M2 -¿ M3) exceed those in the 2nd iteration (M1 -¿ M2). This
may be because M2 has better alignment than M1, and the effectiveness of our method relies on the
model’s alignment capability. Based on these findings, we conclude that SRLM-like methods can
still be applied to pre-trained models, provided they have undergone slight alignment (e.g., through
SFT training).

Table 13: Results for different self-rewarding methods using Llama3.

Dataset
Method M1 M2 M3

SFT SRLM P-SRLM CREAM SRLM P-SRLM CREAM

Arc-Easy 86.78 87.79 ↑ 84.64 ↓ 88.89 ↑ 87.17 ↓ 83.75 ↓ 89.52 ↑
Arc-Challenge 80.14 80.38 ↑ 76.79 ↓ 80.89 ↑ 81.23 ↑ 76.28 ↓ 83.36 ↑
OpenBookQA 86.40 87.80 ↑ 80.40 ↓ 88.00 ↑ 87.30 ↓ 80.20 ↓ 90.20 ↑
SIQA 69.50 70.95 ↑ 67.81 ↓ 69.79 ↑ 70.37 ↓ 66.63 ↓ 72.06 ↑
GSM8K 78.39 78.01 ↓ 78.47 ↑ 81.04 ↑ 77.48 ↓ 78.99 ↑ 81.73 ↑
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