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ABSTRACT

Recent self-rewarding large language models (LLM) have successfully applied
LLM-as-a-Judge to iteratively improve the alignment performance without the
need of human annotations for preference data. These methods commonly utilize
the same LLM to act as both the policy model (which generates responses) and the
reward model (which scores and ranks those responses). The ranked responses are
then used as preference pairs to train the LLM via direct alignment technologies
(e.g. DPO). However, it is noteworthy that throughout this process, there is no
guarantee on the accuracy of the rewarding and ranking, which is critical for en-
suring accurate rewards and high-quality preference data. Empirical results from
relatively small LLMs (e.g., 7B parameters) also indicate that improvements from
self-rewarding may diminish after several iterations in certain situations, which
we hypothesize is due to accumulated bias in the reward system. This bias can
lead to unreliable preference data for training the LLM. To address this issue, we
first formulate and analyze the generalized iterative preference fine-tuning frame-
work for self-rewarding language model. We then introduce the regularization
to this generalized framework to mitigate the overconfident preference labeling
in the self-rewarding process. Based on this theoretical insight, we propose a
Consistency Regularized sElf-rewarding 1Anguage Model (CREAM) that lever-
ages the consistency of rewarding across different iterations to regularize the self-
rewarding training, helping the model to learn from more reliable preference data.
With this explicit regularization, our empirical results demonstrate the superiority
of CREAM in improving both reward consistency and alignment performance.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities across various tasks, including
natural language understanding and generation (Radford et al., 2019). At the same time, LLMs also
face alignment challenges such as generating hallucinations and harmful outputs (Ji et al., 2023). To
address these issues, a series of research works have explored preference learning methods such as
Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) and direct align-
ment techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) to align the
LLMs with human values and preferences. These alignment methods often require a large amount
of preference pairs which are indispensable in both RLHF and direct alignment training. However,
collecting human-annotated preference pairs is time-consuming and labor-intensive, which seriously
limits the scalability and efficiency of these alignment methods.

Recent advancements in self-rewarding language models (SRLMs) (Yuan et al., 2024) have gained
increasing attention in the field of LLM alignment, which can efficiently synthesize preference data
for iterative preference training. In this method, the single LLM is required to act as two roles,
the policy model and the reward model. Given unlabeled prompt data, the LLM first acts as the
policy model generating several response candidates. Then, the same LLM acts as the reward model,
scoring and ranking these responses. These ranked responses are used as preference pairs to train the
LLM with DPO, significantly reducing the reliance on human-annotated data. The above steps can
be iteratively repeated to further enhance the performance. However, SRLMs still face challenges
in generating reliable and accurate rewards for annotating the preference pairs, which is critical for
ensuring the quality of preference data and the alignment performance of LLMs.
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To address these challenges, we first formulate a generalized iterative preference fine-tuning frame-
work to analyze the self-rewarding training, where this framework can also be adapted to other
iterative preference tuning methods. Through this theoretical framework, we find that the reward-
ing bias issue in SRLMs comes from the overconfident preference labeling, which enforces the
model to distinguish between responses with similar quality. For example, both two responses in
Figure | have high quality judgments from the human. The SRLM enforces the reward model
to make a preference judgment, resulting in noisy and unreliable preference labeling. This can
lead to negative impacts on preference tuning the model. Additionally, the iterative training man-
ner can also accumulate the rewarding bias, further diminishing the benefits of self-improvement.
From the insights of theoretical analysis,
we propose Consistency Regularized sEIf-
rewarding lAnguage Model (CREAM) to mlt_ .........................
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nario, we may employ a pool of external reward  of high quality, which is hard for human to distin-
models to assist in ranking preferences. When guish the preference. While the same model from

two responses are of similar quality, these exter-  different iterations have inconsistent rewarding.
nal models often produce inconsistent rankings.

This inconsistency serves as a signal to indicate the level of confidence in the preference labeling.
In self-rewarding scenarios, however, integrating such external reward models is not feasible. For-
tunately, due to the iterative nature of self-rewarding training, we can use the reward model from
the previous iteration to rank preferences and then compare these rankings with those produced by
the current model. This comparison provides an estimate of such consistency rate. With this consis-
tency rate, we can regularize the preference training to prevent the model from learning unreliable
preference data, thereby mitigating the rewarding bias issue in SRLMs.

In summary, we first formulate a generalized iterative preference fine-tuning framework to analyze
the rewarding bias issue in SRLMs. From the insights of theoretical analysis, we propose CREAM
as the primary contribution of this paper. CREAM leverages the consistency of rewarding across
different iterations for regularized preference training, which can effectively mitigate the reward-
ing bias issue in SRLMs. Empirical results on a series of natural language benchmarks validate
the effectiveness of CREAM in mitigating the rewarding bias issue and enhancing the alignment
performance of LLMs.

Notations. Vectors are denoted by lowercase boldface letters, such as x, and matrices by uppercase
boldface letters, such as A. For any positive integer k, the set 1,2, ...,k is denoted by [k]. Other
general sets are denoted by calligraphic uppercase letters, such as D, with the cardinality of the set
represented as |D|. Without ambiguity, we denote 7g as the language model parameterized by 6, x
as the input prompt, and y as the output response from the language model. All other notations are
defined prior to their first usage. We denote 1[-] as the indicator function.

2 RELATED WORKS

This paper mainly focuses on mitigating the rewarding bias issue in self-rewarding language models
(SRLMs) (Yuan et al., 2024), which is a type of self-improvement method for LLM alignment. In
this section, we introduce the progresses in LLM alignment and discuss the SRLMs in detail.

LLM Alignment. Alignment lies at the core of LLM research and applications, aiming to ensure
that LLMs adhere to human values and preferences. RLHF established the foundational alignment
training paradigm (Leike et al., 2018; Ziegler et al., 2019; Ouyang et al., 2022a), where it lever-
ages human preference feedback to train a reward model, and then use this reward model to guide
the LLM via reinforcement learning algorithms (Schulman et al., 2017). Recent efforts have been
made to develop direct alignment methods (Rafailov et al., 2023; Dong et al., 2023; Azar et al.,
2023; Ethayarajh et al., 2024; Meng et al., 2024; Hong et al., 2024), in order to reduce the costs and
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complexity of RLHF and make it more efficient and accessible. Representatively, DPO (Rafailov
et al., 2023) as a representative direct alignment method, optimizes the LLM with annotated pref-
erence pairs, eliminating the need of training an additional reward model. However, most RLHF
and direct alignment methods heavily rely on human-annotated preference data, where the data col-
lection commonly involves human to distinguish the “good” responses from the “bad” ones, which
is time-consuming and labor-intensive (Ouyang et al., 2022a; Bai et al., 2022). Thus, synthesizing
preference data with minimal human efforts has become a valuable research direction.

Self-Rewarding Language Model. SRLM (Yuan et al., 2024) has emerged as a promising approach
to address the challenge of preference data synthesis in a self-improvement manner. This method
leverages the LLM itself to act as both the policy model and the reward model. The policy model
can generate response candidates for unlabeled prompts, while the reward model uses LLM-as-A-
Judge (Zheng et al., 2023; Bai et al., 2023; Dubois et al., 2024) prompting to reward and rank these
responses based on their quality. The ranked responses are then used as preference pairs to train
the LLM via DPO (Rafailov et al., 2023). And this process can be iteratively repeated to improve
the alignment performance without human intervention. However, having the same LLM serve as
both the policy and reward model, without any regularization, presents challenges in guaranteeing
accurate rewards. This can lead to accumulated bias and noisy preference data, which ultimately
harms the training. Other similar self-improvement methods (Huang et al., 2022; Zelikman et al.,
2022; Chen et al., 2024; Guo et al., 2024b; Zhou et al., 2024) often either use the ground truth
response to avoid annotation bias, or introduce an additional reward model to reduce the noise in
annotations. In contrast, our work neither requires labeled data nor relies on external LLMs. Instead,
we propose to use the consistency of rewarding to mitigate the rewarding bias in SRLMs.

Reward Hacking. In both RLHF and SRLM scenarios, the reward model plays a crucial role in
training the LLMs (Ouyang et al., 2022b; Anwar et al., 2024; Yuan et al., 2024; Fisch et al., 2024).
For RLHF, the reward hacking is a phenomenon where models exploit flaws or biases in reward
models to maximize scores without aligning with the intended goals (Anwar et al., 2024). To mit-
igate such issue, various ensemble rewarding methods (Coste et al., 2023; Eisenstein et al., 2023;
Ramé et al., 2024; Zhang et al., 2024) such as ensemble-based conservative optimization (Coste
et al., 2023) and averaging rewards in the weight space (Ramé et al., 2024) have been proposed
to improve the reliability and robustness. However, these works are mainly focused on estimating
the rewards, while CREAM in the self-rewarding scenario only uses rewards for comparing the re-
sponses to annotate preference data instead of maximizing the estimated rewards. Besides, CREAM
applies regularization instead of conservative value estimation to mitigate the rewarding bias issue.

3 METHODOLOGY

In this section, we first formulate the generalized iterative preference fine-tuning framework for self-
rewarding, RL with Al feedback, and other iterative preference tuning methods. Next, we introduce
the motivation behind the proposed consistency regularized self-rewarding method. Finally, we
present the practical implementation algorithm of CREAM in details.

3.1 GENERALIZED ITERATIVE PREFERENCE FINE-TUNING FRAMEWORK

We assume that we can access to the dataset with response Dg and the prompt dataset without
response Dy. The objective is to iteratively minimize the following loss with respect to the neural
network parameter @ and a label function z as

£(07 Z) = £SFT(0; DS) + ExNDU;y,y’Nﬂgt (:]x) [£DPO(0; Y, ylv X, Z)] . (31)

where the first term Lggr(60; Ds) aligns the model 7g to the SFT data. We note here that any potential
SFT methods (Ouyang et al., 2022b; Yuan et al., 2023; Dong et al., 2023; Chen et al., 2024), or the
methods without SFT data (Lspr = 0) can be adapted in this framework. The second term E[Lppo)]
corresponds to learning from the preference data pair {y,y’} generated by the current model 6.
The labeling function z(y,y’,x) € {0, 1} provides the preference judgment between y and y’ for
the DPO loss, where z(y,y’,x) = 1 means y > y’ and z(y,y’,x) = O means y < y’. The DPO
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loss Lppo is defined as follows:

Lppo(8;y,y'%,2) = —2(y,y’,x)log o <10g (77"(3")()) —log (779<yl|x))>

Tret (%) Trer (y'[)
(- 2(y.y',%)) logo (1og (%) “log (m» G2

where ¢ is the reference model for KL divergence regularization, and o (+) is the sigmoid function.
The proposed loss £(0, z) in Eq. (3.1) represents all iterative preference fine-tuning algorithms.
For the reinforcement learning (RL) with human feedback (Ouyang et al., 2022b), z is the human
preference comparing y and y’. For the RL with Al feedback, z is the oracle reward model like GPT-
4 (Achiam et al., 2023). For the self-rewarding language model (Chen et al., 2024), z is given by
comparing the reward score generated from the language model itself, often with LLM-as-a-Judge
prompting. However, as aforementioned, we note that such prompt rewarding method may only
be feasible for larger and advanced LLMs such as Llama-70B (Touvron et al., 2023). For smaller
models such as Llama-7B that do not have complex instruction following and reasoning abilities,
we instead propose to leverage the intrinsic reward model (Rafailov et al., 2023)

ro(x,y) o [log me(y[x) — 10g et (y [X)]

to reward and rank the responses for annotating preference pairs. Therefore, the choice of preference
labeling function z is closely connected with the language model parameter 6. Then, we introduce
the following two-step optimization algorithm to solve Eq. (3.1).

Step 1. (Preference-labeling step) Keep 8 = 8, fixed, select function z to minimize Lppo. In
particular, letting @ = 0 in Eq. (3.2), solution for 2(y, y’,x) = argmin, Lppo(0:;y,y’, X, 2) is

zi41(y,y' %) = 1 [log mg, (y|x) — log Tt (y|x) > log me, (y'|x) — log et (y'[x)] . (3.3)

Step 2. (Learning step) Keep z as of Eq. (3.3), minimize loss function £(8, z;41) with respect to 6
and get 0;11 = argming £(0, z¢11).

Different from existing methods, the proposed two-step optimization method directly uses the intrin-
sic reward model to generate the preference data. This approach is particularly feasible for smaller
LLMs, which lack the capacity to effectively use LLM-as-a-Judge prompts (Zheng et al., 2023) for
rewarding and ranking. We note that the proposed two-step method is similar to the Expectation-
Maximization algorithm and self-training paradigm (Zou et al., 2019). This similarity is supported
by the following theorem, which suggests the convergence of the proposed two-step algorithm.

Theorem 3.1. Suppose the optimization 8;,1 = argming £(0, z¢11) is solvable and the SFT loss
Lser(0; Ds) > 0 for all 6 and Ds, the proposed two-step optimization method converges.

3.2 CONSISTENCY REGULARIZED SELF-REWARDING

The generalized framework presented in Eq. (3.1) assumes the human feedback or GPT-4 are all
reliable so that the preference labeling function z is trustworthy. However, for SRLMs, the accuracy
of preference labeling is not always guaranteed. Therefore, treating all selected preference labels
as “ground truth” by encoding them as hard labels can lead to overconfident mistakes, potentially
propagating biases and inaccuracies from the LLMs. Taking Figure 1 as an example, both the two
responses y and y’ are judged by humans to be of high quality. Forcing the model to be overly
confident in distinguishing between these two responses {y,y'} with similar quality can negatively
impact the performance of SRLMs during training.

This rewarding bias issue motivates us to mitigate such ambiguity by introducing a consistency-
regularized self-rewarding language model, CREAM. Specifically, for a pair of responses with very
similar quality, their oracle reward scores should ideally be very close to each other. Particularly,
when multiple reward models are available, it is likely that some models will rank one response
as superior, while others may rank the opposite response as better, resulting in high ranking in-
consistency (i.e., low ranking consistency) among these models. Based on this, CREAM aims to
prevent the model from learning from preference pairs with low consistency. Instead, it focuses
solely on preference pairs with high consistency across different reward models, thereby mitigat-
ing the rewarding bias issue and stabilize the learning process to some extent. From the theoretical
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Figure 2: The flow of CREAM. In the response sampling stage, the policy model mg, generates N
responses. After that, CREAM uses the reward model Ry, , from the previous iteration to reward
and rank these responses. Then, the rankings are compared with those generated by current reward
model Ry, to estimate the consistency rate. Finally, the policy model 7g, is fine-tuned with consis-
tency regularized preference training objective, resulting in the model g, , , for next iteration.

perceptive, we can introduce a regularization term to Eq. (3.1) as

‘C(ea Z) = ‘CSFT(H; DS) + ]EXNDU;y,y/Nﬂ'gt (+]x) [EDPO(G; Yy, y/) X, Z) + )‘ﬂReg(e; y, y/7 X)], (34)
where the regularization term Lge,(6;y,y’, x) prevents the model 7 from overconfidence in distin-
guishing the preference of {y,y’} with similar quality, which is quantified in the following lemma.
Lemma 3.2. Let the random variable z = z(y,y’, x) be defined as z(y,y’,x) = 1[y > y’|x]. The
Bradley-Terry model (Bradley & Terry, 1952) for the probability of z under parameter 6 is given by

Po(z) = Po(Lly = y'|x]) = o (log(me(y|x) /Mt (y[x)) — log(me (y' %) /mer(y'[x)))

Letting the regularization Lg, be defined by

Lreg(6;y,y',x) = —logo (log(me(y[x) /mret(y %)) — log(mo (y'x) /et (y']%)))
—log o ((log me (y'[x)/met(y'[x)) — (log me (y]%) /Tt (y[x))) . (3.5)

Then the expected regularized loss under the model 6, is given by:
Ey yi~me, (1% Lreg(0:y, ¥, %) = 2KL(u() [| Po(-)), (3.6)

where u(z) is the uniform binary distribution, i.e., u(z = 0) = u(z = 1) = 0.5.

As Lemma 3.2 suggests, the Lge, Will regularize the preference between {y,y’} that has similar
quality to a uniform distribution. Then the following theorem suggests that using Lppo + ALReg
corresponds to the soft-labeled DPO which we implemented in CREAM.

Theorem 3.3. Forall y,y’, x, z, minimizing
L(0,z) = Lsrr(0; Dsrr) + Exnpyiyy'~mo, (1x) [LDP0(0; Y, Y, X, 2) + Areg (0 y, Y, X)]

is equivariant with minimizing

1
£(97 Z) = 72>\£SFT(0§ Ds)

1+

+ EXNDU;y,y/N’ﬂ'st (-]x) [C)\‘CDPO(a; Y, y/7 X, Z) + (1 - CX)LDPO(B; Y, ylv X, 1- Z)]’
3.7)

where the 1 — z reverses the preference order of z(y,y’,x) and C = (1+ X)/(14 2X). We choose
to reverse the preference order if there is evidence that the annotated preference data is reversed.
And the final form can also be viewed as the label smoothing. Details are in Appendix C.3.

Theorem 3.3 suggests that instead of calculating the regularization term Lgg, We can use the soft-
labeled DPO to train Eq. (3.7). In particular, when A = 0, C, = 0 and Eq. (3.7) degenerates
to Eq. (3.1). This represents the case where the preference label z is trustworthy from human or
some oracle reward models (e.g., GPT-4). In other words, A represents the confidence of the label
function z. Specially, since in our two-step optimization paradigm, the label function z is directly
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Algorithm 1 Consistency-Regularized Self-Rewarding Language Model

Input: seed SFT dataset Ds; unlabeled prompt dataset Dy; initial model parameter 0o;
Input: number of iterations 7'; learning rate n
1: /* SFT training */
2: Obtain 6; by taking the gradient steps over loss L1(0) = 3=, ) cp, log me(y|x) from 6o
3: /* Iterative Preference Training training */
4: fort =1toT do
: Sample {y;;}, ~ me, (-|x;) forall x; € Dy // Response Sampling
Compute reward r;; = log mg, (yi;|xi) — log me, (yij|x:) forall i € [N],j € [|Dul]
Obtain rank J;; for all y;; using reward r;; // Rank on model 6
Compute reward r;; = log me,_, (yi;|xi) — log me, (yi;|x:) forall i € [N],j € [|Dul]
9:  Obtain rank Kj; for all y;; using reward rj; // Rank on model 6;_,
10:  Compute 75 = 7({Ji; }i, { Kij }+) according to Eq. (3.10) for all j € [|Dyl]
11:  Compute consistency rate C = |Dy| ™! > (75 +1)/2 /I Adaptive consistency regularization

D W

12:  Compose preference dataset Dppo using pairs {x;, y;.r, v }; according to Eq. (3.11)

13:  Compose preference dataset Drppo using pairs {x;, v yj+ }; according to Eq. (3.12)

14:  Update 841 by minimizing loss £(6) = CLppo(me,, Doro) + (1 — C)Lopro(me, , Droro)
15: end for

Output: aligned policy model g,

derived from the previous model 7g,, we can measure the performance of 7g, using the consistency
between model 8; and the baseline model (e.g., external reward model) 7, defined by

A(x) = 2By yrom, (150 LIy = ¥'|x, 0 1]y = y'[x, 6], (3.8)

and when A — 0, Cy =~ 1 — )\ representing the consistency of model 6; and 0;. 1]y > y’|x, 6;]
means the response y is better than y’ given the prompt x and language model parameter 6, i.e.,

1[log(mg, (y[x)/mrer(y[x)) — log(mo, (y'|%) /mret (y'[%))],
and similar definition applies to 1y > y’|x, 6;].

3.3 PROPOSED ALGORITHM

Equipped with the above two-stage optimization and the consistency-regularized self-rewarding,
we are ready to present the implementation of CREAM in Algorithm 1. The whole framework of
CREAM is also illustrated in Figure 2. The algorithm starts from the SFT training to obtain the
first model parameter 6; in Line 2. A similar approach is applied in Yuan et al. (2024) for avoid
calculating the Lspr in the future optimization steps. Then for each x; in the unlabeled prompt
set Dy, N response candidates {y;}}; are sampled in Line 5. Then reward scores of these N
candidates can be calculated according to Rafailov et al. (2023) by

rij = Bllog me, (yij|x;) — log e, (yi|x;)] + Blog Z(x;), (3.9)

where we use the initial model parameter 6y as the reference policy 7t. Since 5 > 0 and log Z(x)
is a constant across different response y; for the same input prompt x;, we can drop these factors
and calculate rewards in Line 6. Specially, when ¢ = 1, the rank Kj; is calculated based on the
reference policy 0 itself. Thus we instead use the likelihood 7;; = log mg, (y:;]x;) as the reward
for this edge case. The rank for these N candidates are therefore obtained in Line 7, where J;;
means response y;; is in the J;;-th best in the preference list of x;.

Consistency-Regularized Self-Rewarding. As discussed in Eq. (3.8), a baseline model is re-
quired to measure the consistency. In the self-rewarding scenario, it is infeasible to add an external
reward model as the baseline model. Fortunately, we can employ the model before last update 6;_1
as the baseline model 6; (i.e., last iteration’s model) for evaluating the consistency of the model 6,
thanks to chances provided by iterative training manner. Such a procedure helps mitigate the train-
ing error introduced in ¢ — 1-th step before obtaining 8;. Considering a pair of tied preference pair
y,y’ both performing well, as demonstrated in Figure 1. Py > y’|x, 0] will be oscillating around
0.5 when t grows due to the random noise. Otherwise Py > y’|x, ;] might consistently converge
to 0 or 1. Due to this oscillation, the consistency between 8;_; and 6, on this specific preference
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pair would be low, and the algorithm will learn less from this noninformative preference pair thus
stabilize this oscillation.

Specifically, we calculate the rank of these N candidates using 8;_; in Line 9 and then use the
Kendall’s Tau coefficient (Kendall, 1938) denoted by

Y Ny U ) Ki) > 0 =10 Jis)(Kiy — Ku) < 0]

(3.10)

Kendall’s Tau coefficient is a widely used coefficient (McLeod, 2005; Abdi, 2007) to measure the
consistency of two ranking sequences. Basically, when two sequences perfectly aligns, 7; = 1 and
when two sequence never aligns, 7; = —1. The following lemma draws the further connection
between the Kendall’s Tau and the regularization parameter A proposed in Section 3.2.

Lemma 3.4. Suppose the N response candidate {y;; }; is i.i.d. given the prompt x;, then
E[Tj] =1- 4]Ey,y’~7ret(-\xj) ]l[y - y/|X]‘, Bt] 1[)’ < y,|Xj7 Gt_l] =1- 2)\,
where the expectation is taken over the randomness of sampling the N candidate set.

Given Lemma 3.4, we can recover C ~ 1 — XA = (1 + 7;)/2 and we use average all 7; for all
x; € Dy in Line 11. Finally, in Line 12, we compose the preference dataset by selecting the best
response y;f = yi+; and the worst response y ; = y;-; which is similar with (Yuan et al., 2024).

Dppo = {(%,¥i+j,¥i-5)|%j € Dy,it = arg minJ;;,i" = argmin Jij} (3.11)
1 K2

Following Theorem 3.3, we also prepare the reverse DPO dataset by switching the best response and
the worst response by

Droro = {(Xj,¥i-j,¥i+j)|xj € Dy,i* = argmin J;;, i~ = argmin J;; } (3.12)

and update 0,11 by minimizing the empirical loss of Eq. (3.7) in Line 14. The detailed proof of
theorems and lemmas are provided in the Appendix B.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Data. In our experiments, we use Open Assistant dataset (Kopf et al., 2024) and only reserve about
3.4K human-annotated examples as the seed SFT data Dgs. To construct the unlabeled prompt dataset
Dy, we mix prompts of Dg with the train split of each downstream task (only reserve the prompts)
including (1) ARC-Easy/Challenge (Clark et al., 2018), (2) OpenBookQA (Mihaylov et al., 2018),
(3) SIQA (Sap et al., 2019), and (4) GSM8K (Cobbe et al., 2021). Finally, this process results in a
total of 21K prompts in Dy, which we distribute equally across iterative self-rewarding trainings.

Models. Due to limited computational resources, we mainly conduct experiments with two LLMs
with about 7B parameters, including Llama-3 (Dubey et al., 2024) and Llama-2 (Touvron et al.,
2023), both of which are widely used. Note that the proposed framework is designed for LLMs with
any sizes, while validating our findings on other LLMs will be our future work.

Baseline Methods. To validate our findings, we mainly compare our method with SRLM (Yuan
et al., 2024) which uses the same LLM to serve as both the policy and reward model to generated
preference data for iterative training. Additionally, we introduce a variant of RL with Al feed-
back (Guo et al., 2024a), referred to as “Oracle”. In this variant, the reward model in SRLM is
replaced with an external reward model to demonstrate the upper bound performance of SRLM.
Specifically, we use InternLM2 (Cai et al., 2024), a specialized trained reward model, to provide the
reward scores for the generated responses. We further enhance Oracle’s rewarding by leveraging the
labels from downstream tasks to improve the rewarding accuracy.

Implementation Details. In our experiments, we fine-tune the initial model (MO) on the seed SFT
data for 3 epochs with a learning rate of 1e — 6, resulting in model M 1. Following SRLM approach,
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Table 1: Main results of each method on test sets of downstream tasks. The exact match accuracies
are reported. The “1”” and “|” indicate the performance improvement and degradation compared to
the method’s last iteration (e.g., M1 — M2 and M2 — M3), respectively. The best performance
among methods using self-rewarding is highlighted in bold.

Model | Method ~ Reward Iteration | Arc-Easy ~Arc-Challenge OpenBookQA  SIQA  GSMSK | Average
GPT-4o | CoT - -] 9457 94.71 96.60 7963 9227 | 9156
| nitial - MO | 8629 80.37 86.00 68.58 7801 | 79.85
| SFT - Ml | 8678 80.14 86.40 69.50 7839 | 8024
M2 89.60 1 82.17 1 90.00 1 72881 80.821 | 83.091
‘ Oracle  External /5 ‘ 89.31 81.31 ] 90.20 1 73751 76041 | 82127
Llama-
ama-3 SRIM  Self M2 87.79 1 80.38 1 87.80 1 70951 78011 | 80.99 1
M3 87.17 | 81.23 1 87.30 | 70371 77481 | 80711
M2 88.89 1 80.89 1 88.00 1 69791 81.047 | 81721
‘ CREAM  Self M3 ‘ 89.52 1 83.36 1 90.20 1 72061 81737 | 83371
| Initial - MO | 61.07 48.98 62.20 5036 23.65 | 49.25
| SFT - Ml | 6044 48.46 63.20 5077 23.88 | 4935
] ] M2 70.20 1 55.03 1 75.40 1 63.661 30027 | 58.86 1
‘ Oracle  External /5 ‘ 71721 55.80 1 7720 1 62441 2957) | 59.357
Llama-2 SRIM  Self M2 | 5867) 46.67 1 50807  49.69] 25171 | 48.00.
M3 4655 | 3447 4920 | 48061 22141 | 4008
M2 58.97 | 4753 62.80 | 5043 244171 | 48.83 )
‘ CREAM  Self M3 ‘ 62081 48811 64601 51227 25851 | 50511

we then iteratively fine-tune the model using the preference learning objective two additional itera-
tions, producing models M2 and M3. In the preference training of each iteration, we set 5 = 0.1 of
DPO loss, and fine-tune the model for 1 epoch with a learning rate of 1e — 6. All training processes
use the AdamW optimizer (Loshchilov & Hutter, 2019) with a warmup ratio of 0.1. For the response
sampling stage of all SRLM methods, we use a decoding temperature of 0.8 and generate N = 5
responses per prompt. For evaluating downstream tasks, we use greedy decoding to generate the
answers. All experiments are conducted primarily on NVIDIA A6000 GPUs.

4.2 MAIN RESULTS

The main results are shown in Table 1 which also report the performance of GPT-4o0 for refer-
ence. From these results, we observe the following: (1) The Standard SRLM fails to achieve
satisfactory performance, particularly with Llama-2 which has relatively weaker foundation per-
formance even after SFT fine-tuning (MO — M1I), which indicates its limitations for 7B-level
LLMs. (2) Compared to SRLM, CREAM achieves a significant improvement across almost all
downstream tasks, showing the advantage of introducing the proposed regularization method.
(3) SRLM equipped with an oracle reward model (Or-
acle) can ensure high rewarding accuracy for annota-
tions of self-generated preference data, thereby achiev-
ing the best performance overall. This highlights a criti-
cal challenge for all methods with unreliable rewarding.

. Win

. Tie Lose
CREAM M2

CREAM M1

37% 27%

CREAM M2
SRLM M2

28%

37%

Notably, for Llama3, CREAM even outperforms Ora-
cle except on SIQA dataset. This superiority underlines
the success of the proposed method in mitigating the re-
warding bias issue. (4) The consistent improvements
of CREAM across iterations (M1 — M2, M2 — M3)

34%

CREAM M3
Vs 22%

CREAM M2

CREAM M3
Vs

SRLM M3

CREAM M3
s

Oracle M3

CREAM M3
vs 6%
GPT-40

11% 25%

24%

validate the effectiveness of the proposed regularization
method in mitigating the rewarding bias issue. This also
demonstrates the benefits of using such internal ranking
consistency as a regularization signal.

0% 25% 50% 75% 100%
Percentage

Figure 3: Arena of CREAM v.s. SRLM,
Oracle, and GPT-40, judged by GPT-4o.
Alignment Arena. To more directly compare the align-

ment performance of CREAM, we further show the Arena win-rate of our method in Figure 3. We
can find that CREAM can beat baseline methods with the same iteration, which confirms the supe-
riority of the proposed regularized self-rewarding. Also, the win and tie rates of CREAM increase
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with the iteration against stronger models such as Oracle and GPT-4o, indicating the consistent
performance improvements across iterations.

4.3  ANALYSIS

In this section, we provide a detailed analysis to validate and understand the contribution of CREAM
in improving the performance via iterative preference fine-tuning manner.

4.3.1 ANALYSIS OF REWARDING

Rewarding Consistency. We first examine the consistency of rewarding of different methods using
their corresponding models from the last iteration in Table 2. Here, we use the proposed Consistency
Rate C, Kendall correlation coefficient 7, Spearman correlation coefficient, and TopOrder metrics to
measure the consistency, where the TopOrder metric evaluates whether the final paired preference
data remains the same, calculated as follows:

TopOrder; = 1 [argmin J; = arg min K] - 1 [arg max J; = arg max K],

where J; and K are the rankings of the responses provided by current model and the last itera-
tion’s model, respectively. This metric assesses whether both the least preferred and most preferred
responses are consistently ranked across iterations. The results confirm that SRLMs exhibit a re-
warding consistency issue, indicating that the generated preference data may not be reliable for
training. In contrast, our method CREAM can keep the ranking consistency across iterations thanks
to the explicit regularization in the training.

Prompt Rewarding v.s. DPO Rewarding. As
aforementioned, 7B level LLMs struggle with
generating accurate rewards when using LLM-
as-a-Judge prompting due to their limited ca- _ _

. . . ITterations ~ Method ‘ Consistency CT  Kendall 7t Spearman T TopOrder 1
pacity. Both Figure 5 and Figure 4 clearly show Mivemi SRLM | 039021 0222041 0364024 003018
that the SRLM Wlth prompt rewarding is not ef_ CREAM 0.73 £0.18 046+0.35 0.77+0.19 0.19+0.39
fective for smaller LLMs, as the performance — MswM il | (905000  0aas010 095007 0595049
starts to decrease at the first iteration (M1 —
M?2) when trained on the self-rewarded preference data. In contrast, the adopted DPO rewarding
method can be more suitable for such small LLMs. This is primarily because DPO rewarding is

intrinsically aligned with the model’s learning objective.

Table 2: Ranking consistency of CREAM and
SRLM across iterations using Llama-3.

Ranking Accuracy. The ranking accuracy is crucial for self-rewarding methods, as it directly affects
the quality of the self-generated preference data for training. Thus, we present the ranking accuracy
in Figure 4 to provide an intuitive comparison the performance of the rewarding performance across
different methods. The results include the ranking accuracy on self-generated preference data and
the RewardBench (Lambert et al., 2024) dataset, both of which is formulated as a ranking task to
predict the preferred one between two responses. We use the self-generated preference data ob-
tained by self-rewarding with ground truth ranking labels, for testing the model’s in-domain ranking
performance. The RewardBench dataset is used to assess the generalizability of the models beyond
the training domain. CREAM consistently achieves higher ranking accuracy than baseline methods,
which promises more reliable preference data for training. Even though the overall ranking accuracy
(< 70%) is not satisfying, the introduced consistency regularization can help mitigate the negative
impacts of potentially noisy ranking annotations.

RewardBench Curated Preference Data Average Performance on five Datasets
.. 681 —o— SRLM ,.617 —e— SRLM 844 M1  mem M2 M3 6337
8 —< P-SRLM 8 59| =< P-SRLM -
3661 —m— CREAM 3 —#— CREAM . 81.72
§64 :;(;57 2 80.99 g 77
-é é 55 § 504 80.24] 80.24 80.24
S 62 853 <

78 4 77.62
60 51 77.17
M1 M2 M3 M1 M2 M3
Iteration Iteration 76
SRLM P-SRLM CREAM

Figure 4: Pairwise ranking accuracy on Reward- Figure 5: Average performance of SRLM,
Bench and a curated Preference Data. P-SRLM is P-SRLM, and CREAM. The detailed per-
SRLM with prompt rewarding (LLM-as-a-Judge). formance is shown in Table 1 and Table 13.
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4.3.2 RELIABILITY OF SELF-CONSISTENCY

The most straightforward way to enhance the re- Table 3: Comparison of CREAM using oracle re-
warding and ranking accuracy is by incorporat- ward model and last iteration’s model. BRM de-
ing external reward models, such as the SRLM notes the choice of baseline reward model.
variant “Oracle” used in our experiments. The v SR [ AE AmC OBGA SIA GOMEK

. .« . €thot IC- Ic-
theoretical analysis in Eq. (3.8) suggests that we

S X L7 Llama-3MI - 8678 80.14 8640 69.50 7839
can mitigate the rewarding bias issue by calcu-  creamm2 Mo 88.89 80.89 88.00 69.79  §1.04
lating the ranking consistency between current _CREAMM2 Oracle | 8851 8106 8620 7221 7991
model and other available baseline reward mod- ~ Llama-2Ml1 - 60.44 4846 6320 5077 2388

. . CREAMM2 MO | 5897 4753 6280 5043 2441

els (BRMs). However, it is not always feasible ~ creaMM2 Oracle | 6242 4872 6600 5113 2252
to have access to such external reward models
in practice, such as the self-rewarding scenario. Thus, we instead propose to use the last iteration’s
model as the BRM to measure the consistency of rewarding.

Choice of Baseline Reward Model. To measure the impacts on CREAM of using different BRMs,
we fine-tune the M1 model using CREAM with two different BRMs: the rewarding function of
Oracle and the model from the last iteration (M0). As shown in Table 3, using a strong reward
model as the BRM can bring better regularization effect, especially for Llama-2. However, we find
that the last iteration’s model also provides a reasonably reliable consistency signal for Llama-3. We
attribute this to Llama-3’s inherently stronger foundational alignment and better internal consistency,
which allows it to effectively utilize itself without needing an external reward model.

4.3.3 CONSISTENCY MEASUREMENT

Besides the adopted Kendall 7 coefficient, other
metrics can also be used to measure the con-
sistency between two preference ranking lists,

Table 4: Performance of CREAM using different
consistency measurements with Llama3.

such as Spearman coefficient (Spearman, 1904)  Tteration Method | AcE Are-C OBQA SIQA  GSMSK
and the aforementioned TopOrder method. We = M! | 8678 80.14 8640 6950 7839
conduct a comparison experiments of using dif- iopggr‘gz‘l} oSl ot L o A L
ferent consistency measurement methods in Ta- Kendall (Ours) | 88.89 8089 88.00 6979 8104
ble 4. We can observe that: (1) All these mea- Spearman 8876 8183 9000 7098  79.15
surements are effective with CREAM, indicat- ™ ;:li,%ﬁler«)m) 32;2; 3231 3(7);;‘3 Z;;S;Z ;?Zg

ing the generalization and applicability of our
regularized training approach. (2) Kendall correlation coefficient generally yields higher scores
across various datasets compared to Spearman and TopOrder methods. (3) The differences in per-
formance highlight the sensitivity of these consistency measurements. Specifically, the Spearman
coefficient appears slightly less robust than Kendall’s 7, as analyzed in Croux & Dehon (2010).
Meanwhile, TopOrder focuses only on top-1 and bottom-1 rankings, limiting its evaluation scope.

5 CONCLUSION

In this paper, we first formulate a generalized iterative preference fine-tuning framework for self-
rewarding language models (SRLMs), which is also applicable to other iterative preference training
methods. Then, we highlight the rewarding bias that emerges from overconfident preference label-
ing, which is particularly problematic for smaller LLMs, such as those with 7B parameters. This
rewarding bias results in the accumulation of noisy and unreliable preference data, harming the pref-
erence training and hindering alignment performance of LLMs. To address this issue, we proposed
the Consistency Regularized sElf-Rewarding lAnguage Model (CREAM), which leverages the con-
sistency of rewarding across different iterations as a regularization signal. This approach allows the
model to learn more selectively, emphasizing reliable preference data and avoiding overconfidence
in preference labeling. Our experimental results on various natural language benchmarks demon-
strate the effectiveness of the proposed method in mitigating the rewarding bias issue and improving
the performance of SRLMs. We believe that these findings can provide valuable insights for future
research on self-improvement methods of LLM alignment.

10
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A LIMITATION AND FUTURE WORK

In this section, we discuss the limitations of our work and propose potential solutions for future
research. First, our method requires full fine-tuning of Llama over three iterations, which is both
time-consuming and computationally intensive. For future research, we plan to explore Parameter-
Efficient Fine-Tuning (PEFT) methods to reduce training costs. Second, our approach primarily
focuses on small 7B language models, which may limit its generalizability. We anticipate that, with
enhanced computational resources, our method could be extended to larger models, such as Llama-
3-70B, allowing us to better assess its scalability and robustness across a broader range of scenarios.
Third, it is worth investigating more complex consistency-regularized self-rewarding scenarios, such
as how to assign different weights to various models during the self-rewarding process based on
their importance, and enable these models to collaborate to improve the reward process, thereby
mitigating potential inaccuracies associated with rewarding.

B PROOF OF THE THEOREMS AND LEMMAS

B.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. We denote iteration of the two-step algorithm as ¢. The algorithm starts from
(04, zt), and obtains z;1 = zp, according to Eq. (3.3) in the preference-labeling step and then
obtains 6, through the learning step. Since z;11 = argmin, Lppo(0s;y,y’, X, z) forany y, y’, x
according to Eq. (3.3), we have that

L0, z011) < L6, 21). (B.1)
And the learning step suggests that 8,1 = argming £(8, z;41), yielding that
L(O111,2011) < L(O, 241). (B.2)

Connecting Eq. (B.1) with Eq. (B.2) yields that the loss function £(6, z) is monotonically decreas-
ing, i.e.

s < L(Opg1, 241) < L(Op zp41) S L(Op,z) < - - (B.3)
Since £(0, z) is upper bounded by 0, it suggests that the sequence of £(6;, z;) will converge w.r.t.
the growth of t. O

B.2 PROOF OF LEMMA 3.2
Proof of Lemma 3.2. We start by expanding Ey v/, (1) Lreg(05y,y', %) as

Ey yiro, (1) Lrea(0;Y, ¥, X) = By yrrs, (1) [log Po(z = 1) +log Pp(z = 0)]
=Ey y/~me, (-1x),y<y’ 108 Po(z = 1) + log Pg(z = 0)]
+ Ey,y’Nﬂe,(-\XLyty’ [log Po(z = 1) 4 log Pyp(z = 0)]
=By yrre, (1x) Pa, (2 = 0) [log Pa(z = 1) + log Pe(z = 0)]
+ By yinme, (10 Po, (2= 1) [log Po(z = 1) + log Py (z = 0)],
(B.4)

where the second equation decompose the expectation Ey v/ ro (|x) Into two expectation
Ey y/~me, (-1x) + Ey y'~mp, (|x)» the third equation extract the event y > y’ as distribution Py, (2).
Then Eq. (B.4) can be further written by

Ey yinmo, (%) Lree(05 Y,y X) = Po,(z = 1) [log Pa(2 = 1) + log Pa(z = 0)]
+ Py, (z = 0) [log Po(z = 1) + log Py (z = 0)], (B.5)

since both y,y’ are generated from 7y, (:|x), Pg,(z = 0) = Pp,(z = 1) = 0.5. Thus Eq. (B.5)
becomes

Ey,y’wwet(-\x)creg(e; yay/ax> = QKL(PB(’Z) || Pet (Z)) = QKL(PG(’Z> || u(z)), (B6)

where u(z) is the uniform binary distribution with u(z = 0) = u(z = 1) = 0.5. O
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B.3 PROOF THEOREM 3.3
Proof of Theorem 3.3. We start by writing down each components in £(8, z) defined in Eq. (3.1) by

L(0,2) = Lsr1(0; Ds) + Exwnriy,y/mmg, (1) [LDP0 (05 ¥, ¥, X, 2) + ALree (6 y, ¥, %))

= Lsrr(6; Ds)
+ By /g, () {_Z(y’yl’x) logo (log (%> s (%»
—(1 = 2(y,y’,x))logo (10% (%) ~log (:ef(f;\f«))))
—Alogo (log ( Wret((};’||):())) (771':1(}},’ ||):<)) >)
—Alogo <log ( (( //||):())) <77rr:f y|):<))>)}
= Lsrr(0; Ds)

/
F Exdr oy v/ momn (1) | — (N + , ” 1 (1 <M) — 1 (M))
Dy,y et( |x) |: ( Z(y Yy X)) ogo og 7rref(y|x) og ﬂ-ref(yl|x)

—(1+X—2(y,y',x))logo (10%‘ (%) ~log (ZHI((};’T:())))]

where the third equation absorbs the regularization into the DPO loss. Noticing that A+z(y, y’, x)+
(I+X=2(y,y',x)) = 1+ 2, by dividing (1 + 2)\) we have

£(97«2) _ »CSFr(e;DSFT)
142X 142X

A2y, y' %) 7o (y|%) o (y'|x)
Exdl iy yvimms (x) | —————=1 I — ] -1 —_—
+ Bxnpriy,y ~omg, (-1%) 1+ 2x 0go | log Tt (y[%) 0g Tt (%)

e IINE )

When z(y,y'x) = 1, M 2(y,y’,x))/(142)X) = 1-A/(14+2)) and (1+A—z(y, y’, x))(14+2)) =
A/(1+ 2)). Therefore, letting C,, = A/(1 + 2)) yields that

£(8,2) _ Lser(0; Dsrr)
142X 142X
+ ]EXND’;y7y’~7r9t (+|x) [(1 - C)\)L:DPO(G; Yy, y/7 X, Z) + C)\EDPO(B; Y, y/7 X, 1- Z)]7

which completes the proof since minimizing £(0, z) /(14 A) is equivalent with minimizing £(0, z)
itself.

B.4 PROOF OF LEMMA 3.4

Proof of Lemma 3.4. To begin with, according to the ranking of J;;, the sufficient and necessary
condition for J;; — JZ/ j > Ois that r;; < ry;. Similarly, the sufficient and necessary condition for
K;j > Ky is that rj; < rj,;. As aresult, the indicator becomes

1[(Jij — Jirj)(Kij — Kirg) > 0] = 1[(rij — 1) (ri; — 52;) > 0] (B.7)

]1[(JZJ — Ji’j)(Kij — Ki’j) < 0] = ]l[(rij — 7’2']'/)(7"’] - /]) < 0] (B.8)

Since r;; > 7y yields y;; > ys; under the input prompt xb; and language model 8;, Eq. (B.7)
becomes

]l[(J” — Ji/j)(Kij — Ki/j) > 0] = ]l[T'ij > Ti/j] ]l[ > 7” i’ ] + ]l[?"” < Ty J} ]l[?”gj < Tg/j]

=1y = Yi’j|xjvet} [yij = Yirjlxj,0:-1]
+ 1yij < yirjlx;5,0: Lyi; < yirj|x;, 0i-1]. (B.9)
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As aresult, since y;; are i.i.d. given x;, the expectation of first part of the Kendall’s Tau coefficient
is
E[(Jij = Jirj)(Kij = Kirj) > 0] = E[L[(Jij — Jiry)(Kij — Kir) < 0]]
=Ey.; 5 ~mo, ) LYij = ¥irj %5, 0] Lyij = yirj[x;, 0r-1]]
Lyi; < yirjlxj, 0] Lyi; < yirj|x;, 0—1]]
Lyij < yirjlx;, 0] Uyis = yirj|x;, 0r-1]]
Vij Yirj~mey (+1%5) ]l[yw‘ - yi’j|xj70t] ]I[Yij = Yi’j‘xjﬁetfl]]

[
+Eyu,y1/ i~ (%) [
[
)l

=By, yir;~me, (1x)) [ [Yij = yirg x5, 0] (Uyi; = yirjlx;, 0-1] = Lyij < yirj|x;, 0:-1])]
)l
[
)l
[

Yij Yilj™~T6, ( |x])

+ By, yi ~mo, (1) [LYij = ¥irlxs, 0 (Lyi; < yojlx;, 0e-1] — L[yij = yijlx;, 01-1])]
= Ey,,,y”mre,( \xj)[ Yij = YirglXj, 0(1 — 21 yi; < yirjlxj, 01-1])]
Lyij < yirjlx;, 00(1 — 21yi; < yirjlx;,0:-1])]
= Eyij,yﬂjwret (-%;) Y Llyis = yirjlxj, 0 — Lyi; < yirjlx;, 0]
+ 2By, o e, (1x) L Yig < ¥j1%5, 0] (Lyij < yijlx;, 0] — Lyi; = yirj|x;, 04])]
=04 2By, .y, ~mo, (1x;) [LYij = ¥irj|xj, 0e-1](1 = 2 Lyi; = yirjlx;, 04])] (B.10)
where the second equation merge the terms together, and the third equation is due to the fact 1[y;; <
vij] + 1[y:i; = yi;] = 1, the forth equation reorganize the term and the fifth equation is due to
j J j
the fact that By, v, g, (-x,) [L[yi; = ¥irj[Xj,0:] — Llyi; < yirj|x;,60¢]] = 0 due to symmetry.
Similarly by reversing the < and >, we can write Eq. (B.10) by
E[L[(Jij — Jirj)(Kij — Kirj) > 0] = E[L[(Ji; — Jirj)(Kij — Kirj) < 0]]
=0+42By,; .y, ~mo, (1x) [LYij = yirjxj, 0] (1 = 2 Uyi; < yirslx;, 04])]. (B.11)
Adding Eq. (B.10) and Eq. (B.11) together yields
2E[L[(Jij — Jiry) (K5 — Kirg) > 0] = E[L[(J3; — Jurj) (Kij — Kirj) < 0]]
= 2By, v, ~mo, (1x;) [Lyij = Yirg X5, 001] + Lyi; < yirjlx;, 0-1]]
—AEy.; v, ~mo, Clx) [LYi5 = Yirl%5, 0] Lyis < yirj|x;, 1]
—AEy.; v, ~mo, C1x) [LYij < Yirjl%5, 0] Lyis = yirj|x;, 0r-1]]
=2 =8By, y, ~me, (1x) L Yij = ¥irj|%j, 0] Lyij < yirj|x;j, 0¢-1]], (B.12)
where the final equation is because E[1[y;; < yi|x;,0:] L[yi; = yirj1x;,0:-1]] = E[l[y;; >

Virjl%5, 0 1[yi; < yirj|X;,60:-1] due to symmetry. Divide Eq. (B.12) by 2 yields the claimed
result. H

Yij Yil JNTer |x

C ADDITIONAL RESULTS

C.1 COMPARISON OF DIFFERENT KL CONSTRAINTS

We introduce two baseline methods to compare the regularization effect of different KL constraints:
(1) SRLM+KL: SRLM with KL constraint towards the Bernoulli distribution, which introduces a

simple regularization term /\[:9;&“?) - :?f((’;/,l‘a;)) ]2 to the DPO training loss, where A is chosen from

{0.1,0.3,0.5,1.0}. (2) CREAM w/o Ranking Correlation + C: This is our method CREAM with
a manually set fixed Consistency Rate (C'). We perform a hyperparameter search to set C' to validate
the contribution of our automatically determined C' via ranking correlation.

The results of these two baselines are shown in Table 5. We can find that (1) Although SRLM+KL
introduces regularization and improves performance compared to SRLM, its overall performance is
weaker than CREAM. Further, CREAM maintains its advantage against SRLM+KL over multiple
iterations, demonstrating that CREAM performs better than directly restricting the KL divergence.
(2) Comparing CREAM w/o Ranking Correlation + C with the original CREAM, we find that the
original CREAM consistently outperforms the variant with manually set C' values. This indicates
that a fixed consistency rate is often inferior to the dynamically calculated consistency rate derived
from ranking correlations.
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Table 5: Results for different regularization methods using Llama-3. The best performance among
methods in each iteration is highlighted in bold.

Method Iteration ‘ Arc-Easy Arc-Challenge OpenBookQA SIQA GSMSK ‘ Average
Initial MO 86.29 80.37 86.00 68.6 78.01 79.85
SFT M1 86.78 80.14 86.40 69.50  78.39 80.24
SRLM+KL M2 | 8792 79.78 86.60 7149 7938 | 81.03
CREAM w/o Ranking Correlation +C=0.1 M2 83.84 72.78 78.20 65.05  75.51 75.08
CREAM w/o Ranking Correlation +C=0.3 M2 88.26 79.86 86.80 69.6 79.98 80.89
CREAM w/o Ranking Correlation +C=0.5 M2 88.17 80.89 85.00 70.9 79.15 80.82
CREAM w/o Ranking Correlation +C=0.7 M2 88.26 79.61 84.40 71.39  79.08 80.55
CREAM w/o0 Ranking Correlation +C=0.9 M2 87.80 79.61 86.40 70.47 80.14 80.88
CREAM M2 | 88.89 80.89 88.00 69.79  81.04 | 81.72
SRLM+KL M3 | 8838 80.97 88.20 71.19 8029 | 81.81
CREAM w/o Ranking Correlation +C=0.1 M3 89.06 80.46 85.60 70.88 79.23 81.05
CREAM w/o Ranking Correlation +C=0.3 M3 88.09 80.55 87.20 71.4 79.23 81.29
CREAM w/o Ranking Correlation +C=0.5 M3 87.29 80.80 85.00 67.7 80.06 80.16
CREAM w/o Ranking Correlation +C=0.7 M3 85.65 77.39 86.00 68.3 77.94 79.05
CREAM w/o Ranking Correlation +C=0.9 M3 84.39 75.17 83.20 66 78.77 77.51
CREAM M3 | 89.52 83.36 90.20 7206 8173 | 83.37

Table 6: Results for SRLM and CREAM using Llama-3 for six iterations. T and | indicate the
performance improvement and degradation compared to the method’s last iteration.

Method  Iteration \ Arc-Easy Arc-Challenge OpenBookQA  SIQA  GSMS8K Average

Initial MO 86.29 80.37 86.00 686 7801  79.85
SFT Ml 86.78 80.14 86.40 69.50 7839  80.24
M2 87.79 1 80.38 1 87.80 1 70951 7801, 80.99 1
M3 87.17 | 81.23 1 87.30 | 70371 77480 8071
SRLM M4 86.07 | 78.33 | 87.80 1 68.58 1 75831 7932
M5 84.34 | 76.53 | 85.80 | 66.84 | 6422 7555
M6 76.22 | 72.36 | 76.00 | 59061 5929 68.59
M2 88.89 1 80.89 1 88.00 1 697917 81.041 81.721
M3 89.52 1 83.36 1 90.20 1 72061 81731 83371
CREAM M4 89.56 1 82.68 | 90.80 1 72931 82261 83.651
M5 89.35 | 82.08 | 90.20 | 72061 81731 83.08
M6 88.85 | 81.57 | 89.60 | 71141 82491 8273

C.2 SUSTAINABILITY OF SELF-REWARDING

To explore continuous improvements and further validate the effectiveness of the introduced regu-
larization, we conduct additional experiments with SRLM (baseline method) and CREAM (ours)
using Llama-3 for the 4th, Sth, and 6th iterations. From the results in Table 6, we have the fol-
lowing findings: (1) CREAM converges at the 4th iteration (M4) while the baseline method SRLM
started performance degradation much earlier at the 2nd iteration (M2). This shows that CREAM
helps stabilize the self-improvement training by mitigating the rewarding bias issue. (2) CREAM
does not seriously harm the performance after convergence (i.e., during M5 and M6), while SRLM
drastically drops the performance. This suggests that adding this consistency-based regularization
is beneficial to preventing model from degeneration in the long term.

C.3 DIFFERENCE BETWEEN CREAM L0OSS AND WEIGHTED DPO LoOsSS

We would like to emphasize that the final form of CREAM, which combines a normal DPO and a
reversed DPO, cannot simply be replaced by reducing the weight in a normal DPO (weight * DPO
Loss). Specifically, the loss adopted by CREAM is C'log o (r(y+ ) —r(y—))+(1—C)logo(r(y—) —
r(y4)) differs fundamentally from a weighted DPO loss C'log o(r(y4+) — r(y—)). From the opti-
mization perceptive, the latter weighted DPO loss behaves similar with a regular DPO loss with a
smaller learning rate. In addition, since the preference probability P(y+ < y—) = o(r(y+)—7r(y-))
and P(y+ > y—) = o(r(y—) — r(y+)), we would highlight that the CREAM loss can be kind of
viewed as a cross-entropy loss C'log Py = y_) + (1 — C)log P(y— > y4) with label-smoothing
factor C. Thus, The weighted DPO loss cannot deliver such a observation.
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Detailed Derivation. The loss used by our CREAM can be expressed as:
C-D+(1-C)-RD,
where C'is the consistency rate, and D and RD are the DPO loss and ReverseDPO loss, respectively.

For the DPO loss, D = log o(a — b), where the sigmoid function o converts the reward gap (a — b)
into a probability P. For RD, the reward gap is (b — a). Recall that the sigmoid function has a
property that o(xz) = 1 — o(—x). Using this property, we can convert the sigmoid (gap part) of RD
to (1 — P). Thus, the RD loss is log(1 — P), and the D loss is log P.

Combining these, we can derive
C-D+(1—-C)-RD=C"-logP+(1-C)-log(l - P),

which corresponds to a cross-entropy loss for a binary classification task (binary preference judg-
ment). The proposed loss acts as a label smoothing to regularize the training. This regularization is
expected to enhance the model’s generalization ability and performance during training.

Gradient Analysis. To further understand the impact of the sum of normal DPO loss and reversed
DPO loss, we analyze the gradient of the adopted loss function. Recall that CREAM uses the

L=C-D+(1-C)-RD

for training, where C' is the consistency rate, and D and RD are the DPO loss and ReverseDPO loss,
respectively.

We can simplify the DPO loss by substituting the reward gap

log mo(y") ~log mo(y~)
7Tref(y%?) 7rref(yi)

as xg. Then, the D loss is written as log o(xg), and the RD loss is written as log o (—xy).

Recall that the sigmoid function ¢ has the property that o(z) = 1 — o(—=z). Then, RD can be
converted to log(1 — o(zp)). Our regularized loss L is

Clogo(zg) + (1 — C)log(l — o(xg)).

The gradient of L with respect to model parameters 6 is

oL
00
In particular, when C' = %, it pushes the model to learn o () = %, i.e., encouraging the model to
have
mo(y") _ me(y")
71'ref(?/—"_) 71'ref(y_)
So far, there is no theoretical evidence that the likelihoods of both 4™ and y~ will decrease. How-
ever, based on empirical results from existing works (Rafailov et al., 2023; Azar et al., 2023; Hong
et al., 2024; Ethayarajh et al., 2024), the % term will decrease the likelihoods of both y* and
y~ while increasing their gap. Thus, the combined optimization will potentially lead to: (1) a de-

crease in the likelihoods of both y* and 3, (2) an increase in the gap between y* and y~, while
maintaining

mo(yt)  mly”)
Wref(y+) ’/Tl’ef(yi) .

Empirical Results. We also take additional experiments to validate the SRLM using weight *
DPO Loss, where weight € [—1.0,1.0]. For SRLM + Weight method, M3 is trained based on the
best checkpoint of M2 across different weights. The results are shown in Table 7. Note that “NA”
means the negative of the DPO loss leads to catastrophic forgetting, where the LLM fails to generate
fluent sentences. According to the results, we observe that CREAM outperforms the SRLM+weight
method, indicating its effectiveness and irreplaceability.
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Table 7: Comparison of CREAM and SRLM using weighted DPO loss on Llama-3. “NA” indicates
that the method cannot generate fluent sentences.

Method Iteration | Arc-Easy ~Arc-Challenge OpenBookQA SIQA  GSMSK | Average
SRLM + Weight =-1.0 M2 NA NA NA NA NA NA
SRLM + Weight = -0.5 M2 NA NA NA NA NA NA
SRLM + Weight = -0.25 M2 NA NA NA NA NA NA
SRLM + Weight = 0.25 M2 88.97 80.38 87.00 71.39 78.7 81.29
SRLM + Weight = 0.50 M2 86.49 79.61 87.60 7042  79.00 80.62
SRLM + Weight = 1.00 M2 87.79 80.38 87.80 70.95 78.01 80.99
CREAM M2 | 88.89 80.89 88.00 69.79  81.04 | 81.72
SRLM + Weight = -1.0 M3 24.16 22.53 27.6 3091 1.74 21.39
SRLM + Weight = -0.5 M3 NA NA NA NA NA NA
SRLM + Weight = -0.25 M3 NA NA NA NA NA NA
SRLM + Weight = 0.25 M3 88.93 81.40 89.20 7134 7574 81.32
SRLM + Weight = 0.50 M3 88.13 81.74 89.00 70.73  75.89 81.10
SRLM + Weight = 1.00 M3 87.17 81.23 87.30 7037 7748 80.71
CREAM M3 | 89.52 83.36 90.20 7206  81.73 | 83.37

Table 8: The distribution of the training samples’ consistency rate C' in the six iterations of CREAM.

Horat Consistency Rate 0-0.2 0.2:0.4 0.4-0.6 0.6:0.8 0.8-1.0 Total ‘Avg,C
teration

MI - M2 1329 (13.86%) 3129 (32.62%) 2977 (31.04%) 1647 (17.17%) 510 (5.32%) 9592 (100%) | 0.39
M2 - M3 1(0.01%) 10 (0.10%) 48 (0.50%) 448 (4.67%) 9085 (94.71%) 9592 (100%) | 0.92
M3 - M4 3(0.03%) 24.(0.25%) 195(2.03%) 1249 (13.03%) 8118 (84.66%) 9589 (100%) | 0.87
M4 - M5 2(0.02%) 10 (0.10%) 121 (1.26%)  888(9.26%) 8571 (89.36%) 9592 (100%) | 0.89
M5 - M6 6 (0.06%) 109 (1.14%)  573(5.97%) 2129 (22.20%) 6775 (70.63%) 9592 (100%) | 0.81

C.4 CONSISTENCY TREND

In CREAM, if the consistency rate C reaches to 0, the preference order of the training data will be
totally reversed, which may lead to overconfidence in the reversed order. However, We would like
to highlight that the consistency between 0;_; and 6; can rarely be as low as C' = 0. This is because
C = 0 means for any preference pair y, ', two consecutive model 6 and 6;_; give totally reversed
prefernence. For the scaled Kendal Tau, that means if the ranking for 5 generated responses is
A>B>C>D > FE,toreach C = 0, we need to change the rankingto £ > D > C > B > A,
which is very rare in SRLM. Since 6; is trained using the prefernece data given by 6;_1, they tend
to have similar behavior and thus such a circumstance making C' = 0 can hardly happen in practice.

Further, we analyze the distribution of the consistency and supply the results for 4th, Sth and 6th
iterations as follows. The results in Table 8 show the consistency trend for CREAM. We can find
that the initial consistency rate 0.39 is acceptable, which will not result in heavily relying on re-
verse preferences. Besides, the regularization of CREAM is shown to encourage the consistency of
rankings and maintain stability in the later rounds of training.

C.5 COMPARISON OF ENSEMBLE METHODS

we also include an ablation study on using conservative value estimation methods (Coste et al.,
2023) (Ensemble-Worst) and Ensemble-Mean in SRLMs. Specifically, ensemble method trains 3
different g models with 3 different learning rates [7e-7, le-6, 3e-6] to serve as the ensemble reward
models in each iteration, since no external models can be involved in the self-rewarding scenario.
Then, these three models would independently reward and rank the responses:

* Ensemble-Worst selects the minimum reward for ranking the response.

* Ensemble-Mean selects the average reward for ranking the response.

Table 9 suggests that CREAM has advantage against Ensemble methods in the alignment perfor-
mance a cross iterations. Additionally, compared with the ensemble model which requires a batch
of reward models, CREAM only requires the model from the last one iteration and thus would be
more efficient than the ensemble methods.
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Table 9: Comparison of SRLM, Ensemble-Worst, Ensemble-Mean and CREAM on Llama-3. The
best performance among methods in each iteration is highlighted in bold.

Method Iteration | Arc-Easy ~Arc-Challenge OpenBookQA SIQA GSMS8K  Average
SRLM M2 | 8779 80.38 87.80 7095  78.01 80.99
Ensemble-Worst M2 ‘ 88.00 79.78 87.00 69.96 78.54 80.66
Ensemble-Mean M2 88.47 80.80 88.00 69.50  80.67 81.49
CREAM M2 | 88.89 80.89 88.00 69.79  81.04 81.72
SRLM M3 | 87.17 81.23 87.30 70.37  77.48 80.71
Ensemble-Worst M3 ‘ 87.75 80.89 86.80 70.78  78.70 80.98
Ensemble-Mean M3 88.85 80.89 87.00 69.96  79.98 81.34
CREAM M3 | 89.52 83.36 90.20 72.06 81.73 83.37

Table 10: Results for treating the consistency as a property of the data instead of the model using
CREAM on Llama-3. The best performance among methods in each iteration is highlighted in bold.

Method Iteration ‘ Arc-Easy  Arc-Challenge OpenBookQA SIQA GSM8K  Average
SRLM (Threshold = 0.0) M2 | 8779 80.38 87.80 7095  78.01 80.99
Threshold = 0.1 M2 88.13 80.89 88.20 70.52  78.70 81.29
Threshold = 0.3 M2 88.38 80.29 89.20 68.99  79.83 81.34
Threshold = 0.5 M2 89.10 80.89 87.20 69.70  80.52 81.48
Threshold = 0.7 M2 88.72 80.20 88.00 69.24  80.82 81.4
Threshold = 0.9 M2 88.55 81.48 88.40 70.78  79.45 81.73
CREAM (Threshold = 1.0) M2 | 8889 80.89 88.00 69.79  81.04 81.72
CREAM + dynamic M2 | 8813 80.80 88.00 69.50  79.38 81.16
SRLM (Threshold = 0.0) M3 | 8717 81.23 87.30 7037 77.48 80.71
Threshold = 0.1 M3 88.38 80.29 87.20 70.98  79.83 81.34
Threshold = 0.3 M3 88.64 80.38 88.00 71.34  80.52 81.78
Threshold = 0.5 M3 89.10 81.48 89.80 71.08 7991 82.27
Threshold = 0.7 M3 89.48 81.31 88.60 71.55 80.67 82.32
Threshold = 0.9 M3 89.27 83.02 90.80 7231  81.50 83.38
CREAM (Threshold = 1.0) M3 | 89.52 83.36 90.20 72.06  81.73 83.37
CREAM + dynamic M3 | 8885 81.57 89.20 71.65 79.91 82.24

C.6 CREAM WITH DATA CONSISTENCY

For CREAM, The introduced (in)consistency serves as the uncertainty quantification for the model
to prevent the model itself being overconfident due to the stochastic training noise or incorrectly la-
beled prefernece data. Such a uncertainty, usually referred to as epistemic uncertainty, is a property
for each model. We further add two variants to explore treating the consistency as a property of
the data instead of the model: (1) Threshold = x: This variant uses the normal DPO for samples
(confident dataset) whose consistency rate C' > x, and uses ours C*DPO + (1-C)*RDPO to regu-
larize the training for other samples (unconfident dataset). (2) CREAM w/ Dynamic Consistency:
Instead of original CREAM using the average consistency rate across the dataset, this method uses
dynamic consistency rate for each sample, using each sample’s own consistency rate to regularize
the training.

As shown in Table 10, we observe that as the threshold increases beyond a certain value (including
more samples for regularization), the performance gains converge. Actually, CREAM is compat-
ible with using a threshold to fine-grainedly select the data to regularize, however, this inevitably
introduces an additional hyperparameter. Besides, CREAM already achieves sufficiently good per-
formance, without this added complexity. Compared to the “CREAM w/ Dynamic Consistency”
variant, our method, which utilizes the average consistency rate, significantly reduces the variance
in estimating dataset uncertainty, resulting in improved performance.

C.7 APPLICABILITY OF CREAM
Applicability to Larger Models. Due to the limited computational resources, our experiments

are mainly conducted on 7B-level LLMs such as Llama-2 and Llama-3. However, we believe this
is still meaningful to democratize the self-rewarding paradigm to LLMs of community affordable
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Table 11: Results of SRLM and CREAM with Llama-2-13B.

Method | Arc-Easy Arc-Challenge OpenBookQA SIQA  GSMSK  Average
MO 67.47 56.31 67.00 4754  35.03 54.67
M1 68.27 57.42 67.40 4785  36.09 55.41
SRLM M2 69.61 57.00 64.00 52.10  31.69 54.88
SRLM M3 62.08 53.67 61.20 48.93  20.77 49.33
CREAM M2 69.19 57.17 69.60 48.57  36.01 56.11
CREAM M3 68.56 59.04 73.20 49.90  36.62 57.46

Table 12: Results of applying SRLM and CREAM to unaligned Llama-3-8B-NO-Chat-Version.

Method \ Arc-Easy  Arc-Challenge OpenBookQA SIQA GSM8K  Average
MO 30.64 28.50 20.80 23.95 4.02 21.58
Ml 31.23 30.21 33.40 26.51 51.25 34.52
SRLM M2 29.80 28.67 36.00 23.44  50.19 33.62
SRLM M3 31.82 30.03 39.00 28.40 4852 35.55
CREAM M2 31.61 28.75 35.60 28.66  53.00 35.52
CREAM M3 39.18 35.07 49.00 33.62 5648 42.67

size, such as 7B models. Advanced and larger LLMs (e.g., ChatGPT) are not always accessible,
especially in specific application scenarios like those involving medical or privacy-sensitive data.
It’s important to note that our method is theoretically applicable to LLMs of any size (not limited
to 7B). To validate our method with larger LLMs, we test the CREAM on Llama-2-13B (Touvron
et al., 2023) model without any hyperparameter tunings. The results in Table 11 confirm that our
method remains effective for the 13B LLM, demonstrating the generalizability of our approach
across different model sizes.

Applicability to unaligned Models. First, our method CREAM does require the model to have
some initial alignment capability, as the adopted DPO rewarding relies on the model being aligned,
otherwise the rewards would not be meaningful (Rafailov et al., 2023). The relatively weaker results
of Llama-2 compared to Llama-3 in Table 1 can support this point. Note that in the self-rewarding
scenario, the original SRLM (Yuan et al., 2024) also requires the model to be “post-trained” version,
where they adopt Llama-2-70B-Chat (Touvron et al., 2023) as the initial model (M0). We conduct
additional experiments to test the effectiveness of CREAM with LLMs that are not post-trained.
Specifically, we use Llama-3-8B-NO-Chat-Version (Dubey et al., 2024) as the base model (MO).
The results in Table 12, reveal that: (1) MO performs poorly due to its lack of instruction following
ability. However, after training on a small amount of seed SFT data, M1 demonstrates improved
performance, especially on the reasoning task GSM8K. (2) Both SRLM and CREAM can effectively
boost the performance, while CREAM often provides greater gains. (3) We find that the performance
gains of CREAM in the 3rd iteration (M2 -; M3) exceed those in the 2nd iteration (M1 -; M2). This
may be because M2 has better alignment than M1, and the effectiveness of our method relies on the
model’s alignment capability. Based on these findings, we conclude that SRLM-like methods can
still be applied to pre-trained models, provided they have undergone slight alignment (e.g., through
SFT training).

Table 13: Results for different self-rewarding methods using Llama3.

Method | M1 | M2 | M3
Dataset SFT | SRLM P-SRLM CREAM | SRLM P-SRLM CREAM

Arc-Easy 86.78 | 87.791 84.64 88.891 | 87.17] 83751 89.52 1
Arc-Challenge 80.14 | 803817  76.79 | 80.89 7 | 812317 76.28 | 83.36 1
OpenBookQA 86.40 | 87.8017 80.40] 88.001 | 8730] 80201 90.20 1
SIQA 69.50 | 709517 67.81] 69.791T | 70371  66.63 | 72.06 1
GSMBK 78.39 | 78.01] 78471 81.041 | 77.48] 789917 81.73 1
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